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Abstract 

 

The research and development of advanced human-machine interfaces (HMI) have 

seen a significant surge during the last decade. These HMIs are gradually started to be 

integrated into our lives. Electromyography (EMG) is one of the types of signals which play 

vital roles in these HMIs. It is the electric manifestation of skeletal muscular activity. 

Traditionally, EMG processing is done by a sliding window-based paradigm, and the time 

windows used are usually in the order of several hundred ms long. This processing paradigm 

inevitably results in significant delay such that real-time detection of muscular onset with 

latency smaller than 10 ms is not possible. This long delay makes it difficult, if not 

impossible, for sEMG to be applied in many HMI applications where sufficiently short 

interaction delay is essential, such as virtual reality (VR), augmented reality (AR), and 

augmentation-on-demand exoskeleton. 

This study investigated the viability of reducing PC mouse-click delay using surface 

Electromyography (sEMG) in Human-Machine Interface (HMI) applications. We examined 

three different real-time processing methods for sEMG onset detection along with a pattern 

recognition method for ultra-short latency. A PC mouse click protocol was used as the 

experimental setup, in which the participants were asked to perform both left and right 

mouse clicking tasks using their index and middle fingers. Surface EMG signals from the 

dorsal interossei muscles of the participants were acquired by dry sEMG electrodes. 

Teager–Kaiser Energy Operator (TKEO), root-mean-square (RMS), and a new onset 

detection method called Divergence Estimator (DE) were used to detect sEMG onset from 

one EMG channel. For the pattern recognition method a binary-class scenario was used: 

'Click’ class and ‘No-Click’ class. 

The results showed that the proposed DE, combined with the binary classification 

approach, outperformed all other combinations of feature extraction methods and threshold 

detection or classification. The detection performance (F1-scores) of binary-classification 

were 0.87 and 0.88 for the left and right-click, respectively, which were significantly better 
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(p<0.05) than all other onset-detection methods. Some detections were approximately 45 

milliseconds ahead of the mouse button clicks of a top-of-the-line professional gaming 

mouse. Moreover, in different noise scenarios, our proposed method outperformed (p<0.05) 

TKEO and RMS for EMG onset-detection. 

The outcomes in the current study demonstrated the possibility of using sEMG to 

establish an ultra-short latency human-in-the-loop human-robot interface, in which human 

motor intentions can be predicted in real-time before overt mechanical human movements 

occur. 
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Chapter 1 
Introduction and Background 

1.1 Human-Machine Interaction 

1.1.1 Overview 

Human-Machine Interaction (HMI) implies communicating or transmitting information between 

a person and machine through an interface. Other common names are Human-Machine Interface 

and Man-Machine Interface; both refer to the same definition. In HMI, the machine can be a 

computer (known as Human-Computer Interaction) or any electrical or mechanical device, or even 

a virtual reality agent. A wide range of HMI devices is used currently in entertainment, machinery, 

and medical practices. Furthermore, in the last two decades, bio-signals-based technologies such 

as Brain-Computer Interface (BCI) and exoskeletons are gaining popularity in research studies due 

to commercial and medical applications, respectively.  

1.1.2 Types 

HMI can be broadly categorized into five categories [4]; each has a unique means to communicate 

and user interaction. 

• Optics 

In Optics-based HMI, the primary hardware used are cameras, lasers, and LEDs. The 

cameras are used for computer vision, and a laser-led based system is used for distance 

calculation. Both work in conjunction with applications like robotics, self-driving cars [5], 

controlling wheelchairs from head gestures [6], giving inputs to the computer using eye-

tracking [7], and more. Most of the applications are based on computer vision, such as 

object detection and detecting criminal or suicidal intentions from body language [8]. 

However, applications in HMI rely intensely on image recognition and motion tracking. 
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• Bionics 

Bionics involves the collaboration of robotic, biological, and computer systems that operate 

together to trigger an action. This is typically achieved using bio-signals, which are 

captured using conductive electrodes. Different types of bio-signals that can be used to 

build the HMI system are Electroencephalography (EEG), Electromyography (EMG), 

Electrocardiography (ECG) signals, which are used to study brain, muscle, and heart 

activities, respectively.  

• Acoustic 

Acoustic HMI relies on sound-based interaction with the system. Speech recognition and 

Text-to-Speech systems are the backbones of this type of HMI, where a specific set of 

words or text acts as a trigger to control a device. The system relies heavily on machine 

learning research, and the recent developments in deep learning and word vectors have 

drastically improved these systems. Some of the applications are voice-controlled 

appliances and wheelchairs [9], as well as voice-enabled music & entertainment controls 

in cars [10], home and mobile devices. 

• Motion 

This type of HMI utilizes motion-based interaction with users. Usually, a predefined path 

of motion acts as a trigger in the device. Accelerometer and gyroscope are the typical 

technologies used in conjunction with other hardware such as mobile, virtual reality (VR), 

augmented reality (AR), and more. Some of the applications are teleoperation of robots 

[11], head rotations [12], driving a wheelchair [13]. 

 

 

  

Figure 1.2: Type of HMI. Acoustic and Optics in the first two; Bionics in the centre; Motion and 
Touch in the last two respectively. [4].  



 

     3 

• Tactile 

Tactile HMI requires physical touch to something by users, which is considered as input to 

the system. Mouse and keyboards are examples of tacile HMI. The most popular 

technology of tactile HMI is touch screens, which we used in our mobile, tablet, and 

laptops. Recently, a pressure-based toggling mechanism of buttons is used in mobile 

devices instead of the button’s physical press. One application in medical practice is haptic 

feedback based surgical procedures [4]. 

 

1.1.3 EMG based HMI 

A sub-category of the bionic HMI is one that utilizes EMG, which is the recording of the 

electrical activity of muscle recruitment. Compare to EEG, which is the recording of cortical 

neuron’s electric activities and is usually in the range of microvolts, EMG is usually in millivolts, 

requires less sophisticated amplification instrumentation, and is less susceptible to various noise 

and artifacts. Several HMI applications rely on EMG, for instance, full-body exoskeleton to 

increase user strength [14], gesture recognition [15], motionless gestures [16], and myoelectric 

control [17]. 

 

Figure 1.2: A EMG based controller for a video game; A myoelectric hand connected to participant’s 
hand with an open cast [3]. 
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Furthermore, EMG-based HMI in gaming is also used in rehabilitation [18] and for user 

engagement and participation. Previous studies used EMG to measure engagement in the Levee 

Patroller game training [19], in myo-gaming [3], or EMG controlled game to test improvement in 

prosthesis control.  

1.1.4 Ultra-Low Latency 

Low latency refers to a computer process that is fast enough to operate on a large volume of data 

with a small delay [20]. Moreover, when the processing delay is less than one millisecond, the 

system is considered ultra-low latency [21]. The ultra-low latency system’s performance is very 

crucial in time-critical real-time applications. The acceptable processing delay in HMI devices 

varies based on the type of HMI and is subjective to each application. In surface EMG based 

bionics, typically hundreds of milliseconds of EMG data is required to make any prediction for an 

outcome. Multiple studies [22] try to reduce this delay in detecting EMG onsets. In a previous 

study [23], the authors show myoelectric control performance based on different window sizes and 

majority voting, which further delays the classification process. They stated the performance of 

pattern recognition is directly proportional to the window length. 

 

1.2 Electromyography 

1.2.1 Overview 

Electromyography (EMG) is a method to record the electric manifestation of skeletal muscular 

activity. The information is captured using electrodes. The torque applied to the skeletal system 

joints due to muscle contraction leads to movement in the body. Muscles are composed of fibers 

that are innervated alpha motor neurons, which receive efferent neural drive descending from the 

central nervous system. A motor unit is made of motor neuron and all the muscle fibres which the 

neuron innervates. Each motor neuron controls a varying number of muscle fibers depending on 

different muscle types [24]. This number is called the innveration ratio. Motor neuron 

depolarization propagates as a wave through axons from the spinal cord to muscle fibres to activate 

a motor unit. The propagating depolarization of the neuronal membrane can be recorded by 
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electrodes placed in the vicinity of the membrane, and such activity is called a motor neuron action 

potential (MUAP). When the MUAP reaches the neuromuscular junction (NMJ), special 

neurotransmitters are released from the axon to the muscle fibre membrane, which depolarizes the 

muscle fibers. And such fibre depolarization would, in turn, propagate from the NMJ, along with 

the fibre, toward the two tendons, to which the fibres are attached. This propagating depolarization 

can also be detected by electrodes place in its vicinity and is called muscle fibre action potential. 

The collective muscle fibre actional potentials from the same motor unit often appear to be a single 

action potential because all fibres within the unit would be activated simultaneously. And this 

‘collective’ action potential is often called the motor unit action potential. One motor unit action 

potential is often referred to as a ‘firing’ of a motor unit. The frequency of motor unit ‘firing’, or 

the firing rate ranges from 4-6 Hz (firings per second) to approximately 30-40 Hz. The above is a 

brief description of the electric process of muscular activation.  

A mechanical process of muscular activation occurs simultaneously with this electric 

process. Upon the membrane depolarization, muscle fibres would shorten, resulting in mechanical 

contraction. The amount of contractile tension generated by the fibres differs among different types 

of muscle fibres. Furthermore, the overall contractile tension generated by a muscular contraction 

further depends on factors, such as how many motor units being activated [25]. The motor unit 

action potential, being an electromagnetic signal, can be detected at the skin surface, usually by 

Ag/Ag-Cl electrodes with conducting gel. The gel helps to reduce impedance between the skin and 

electrode. [26]. For long-duration applications, a gel electrode system is not preferred; instead, dry 

electrodes made of a material such as stainless steel or conductive ceramics are used. Dry 

electrodes often have higher noise levels due to higher electrode-skin impedance. 

In addition to the above described non-invasive measurement of EMG, also known as 

surface EMG (sEMG), EMG can also be measured by invasive electrodes, such as needles or fine 

wires that are trans-cutaneously inserted into the muscle under investigation. This latter method is 

called intramuscular EMG. Although intramuscular EMG collectes muscle activity of individual 

muscle fibers, sEMG is more frequently used in disciplines outside neurophysiology, where these 

invasive methods are not practical due to problems such as electrode insertion, infection, and 

subject compliance. The sEMG signal contains two types of information, Time-Domain, and 
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Frequency-Domain, which depend upon intensity and duration of muscle contraction, electrode-

amplifier configuration, skin-electrode contact quality, and placement of electrode with respect to 

muscle [27]. 

There are multiple sources of noise while acquiring EMG data, such as relative 

displacement between the recording electrode and the muscles under investigation, the movement 

of the electrode with respect to the skin, electromagnetic interferences due to power line, etc. This 

noise degrades the performance of the system and needed to be rectified before any processing. 

Multiple methods can be used to rectify these problems, such as filtering techniques like bandpass 

and stop, high and low pass filters. Noise such as power line noise and motion artifact can be 

largely removed with these techniques.  

1.2.2 Onset Detection 

Onset detection in sEMG refers to defining the exact point in time when activity begins. Various 

sEMG applications use it to perform a task based on the starting and ending of the muscle activity. 

In literature, several onset detection methods were previously used that includes threshold-based 

decision or visual examination [28]. Later TKEO introduced in [29] became the most widely used 

onset detection method in sEMG [30]. Authors [31] showed the efficacy of TKEO in improving 

signal-to-noise ratio (SNR) of surface EMG and reduced false onset detection. Numerous studies 

[30] [32] have used it either as a pre-processing step before feature extraction or as a decision-

making method. 

The major superiority of the nonlinear TKEO over other onset detection methods is that 

only three samples are required to operate, compared to other methods that require a larger amount 

of data. This helps in detecting the instantaneous change in the signal, which corresponds to the 

high-frequency information. Furthermore, the application of TKEO was also extended to identify 

sudden spikes or abrupt signal changes in bio-signals [33]. The TKE-Operator ψ is defined as: 

 𝜓[𝑥(%)] = 𝑥(%)) − 𝑥(%+,) ⋅ 𝑥(%.,) (1.1) 

where x(n) represents the EMG signal as a time series. For onset detection, a threshold is chosen 

as γ times the standard deviation of the base signal. The value of γ is specific to each dataset and 
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need to be determined. An onset or offset is considered when n consecutive samples are above or 

below the threshold, respectively.  

 

In addition to TKEO, studies [30] have also used Root Mean Square (RMS) value for EMG 

onset detection. The same threshold-based detection method can be applied to RMS. However, the 

authors of [30] reported this method was not feasible in the presence of significant noise in sEMG 

signals. In this study, the performances of both TKEO and RMS are investigated, and the results 

are reported in section 3.1. The equation of RMS is defined below. 

 

𝑅𝑜𝑜𝑡	𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒 = ;
1
𝑁>(𝑥?))

@

?A,

 (2.2) 

1.2.3 EMG based Pattern Recognition 

Pattern recognition involves extracting knowledge and statistical information from the data 

to develop classification or regression capacity. It is a multi-stage process. The significant 

limitation of pattern recognition in EMG signals is low classification capacity due to high noise in 

the acquired data. 

 

Figure 1.3: Effect of TKEO on raw EMG. A. Raw EMG of the muscle activity of a mouse click; B. Signal 
output after applying TKEO. 
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Feature extraction is the most critical stage in EMG based pattern recognition and there are 

several existing techniques available [34]. Most studies used time, frequency, and spatial domain 

features from the acquired data. Typically, time and spatial domain features are computationally 

simple and work well in real-time. In contrast, frequency-domain features require a bigger amount 

of data to extract information and thus increase processing time. Generally, pattern recognition 

based on frequency domain features performs better than time-domain features. Some common 

time-domain features are reported below. 

• Integrated EMG 

It is the sum of absolute values of the signal’s amplitude in the time-domain. This is 

typically used in onset detection in case of muscle contraction to control rehabilitation and 

assistive device. 

 
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑	𝐸𝑀𝐺 = > |𝑥%|

@

%A,

 (3.3) 

• Mean Absolute Value 

Followed by rectification, it is window based moving average of absolute values of the 

surface EMG signal. It is a popular feature in EMG pattern recognition applications, 

typically used in myoelectric control. 

 
𝑀𝐴𝑉 =

1
𝑁>|𝑥%|

@

%A,

 (4.4) 

• Variance of EMG 

This feature extracts the power of the signal as a feature. It is the square of the standard 

deviation of the signal with a mean equal to zero in the case of surface EMG. 

 
𝑉𝐴𝑅 =

1
𝑁 − 1>𝑥%)

@

%A,

 (5.5) 
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• Waveform Length 

It is the additive length of signal in a fixed window size; in other words, the absolute sum 

of the difference of amplitudes in consecutive samples. Waveform length is associate with 

a feature that captures some frequency information from the time-domain itself. 

 
𝑊𝐿 = > |𝑥%., − 𝑥%|

@+,

%A,

 (6.6) 

• Zero-Crossing 

The number of times a signal crosses the y-axis at y equal to zero in a specific window size 

known as zero-crossings. The rationale is, high-frequency signals will have more zero-

crossings than low-frequency signals. It can be used in the onset detection problem along 

with a threshold, but traditionally it is considered as a feature in the classification process. 

 
𝑍𝐶 = > N	1,	0,

if 𝑥% ⋅ 𝑥%., ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
otherwise

@+,

%A,

 (7.7) 

• Slope Sign Change 

It captures similar information as zero-crossing, but it calculates how many times, slope 

changes between positive and negative in consecutive samples. Typically, studies have 

used either zero crossings or slope sign change, as a feature in pattern recognition. 

 
𝑆𝑆𝐶 = > 𝑓{(𝑥% − 𝑥%+,) ⋅ (𝑥% − 𝑥%.,)}

@+,

%A)

 

𝑓(𝑥) = N	1,	0,
if 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

otherwise
 

(8.8) 

 

• Willison Amplitude (WAMP) 

Motivated from the previous two, Willison amplitude computes how many times 

differences in two consecutive samples' amplitudes exceeds the predefined threshold. 
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𝑊𝐴𝑀𝑃 = >𝑓(|𝑥% − 𝑥%+,|)

@+,

%A,

 

𝑓(𝑥) = N	1,	0,
if 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

otherwise
 

(9.9) 

 

Other features like the histogram of EMG, Root Mean Square, MAV-Slope, and more are 

also used in the EMG feature extraction process. These are generally applied in muscle onset 

detection and the multi-class classification process. The study [23] shows the efficacy of time-

domain features in multi-function myoelectric control applications; the authors used four time-

domain features collectively applied to linear discriminant analysis (LDA) classifier and obtained 

results with less than five percent error. 

Frequency domain features are also used in the multi-class classification process and are 

often considered more robust than time-domain features. Typical applications are fatigue detection 

in muscles [35] and neurological deformity. Mean frequency and median frequency are the 

traditional features that are used in EMG. In [17], the authors utilized power in multiple pre-

selected frequency sub-bands along with other features to linear regression, which proved superior 

to traditional time-domain features. Frequency domain features are extracted using the power 

spectrum and Fourier transformations, which require a significant amount of data to process, hence 

not recommended for real-time systems. Other methods such as the Autoregressive model also 

exist, which relies on the assumption that a system’s current behavior relies on past behavior of 

the system in time, which is described as: 

• Autoregressive Coefficient (AR) 

 
𝑥% = −>𝑎? ⋅ 𝑥%+? + 𝑤%

[

%A,

  (10.10) 

 

Here, 𝑥%, p, 𝑎?, 𝑤% are the current sample of the signal, order of autoregressive model, 

autoregressive coefficients, and white noise, respectively. AR is used in fatigue 
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applications [36], where authors have used the fourth-order, generally, an order between 

one to ten is seen for sEMG studies.  

1.2.4 Hand Muscle Anatomy 

Muscles connected to the human hand skeleton are skeletal muscles. These muscles are 

responsible for hand movements and the control of individual fingers [37]. If recorded properly, 

electric manifestation in these muscles can be detected at the skin surface, which is surface EMG 

[38]. There are two types of muscles controlling the functions of the hand, intrinsic and extrinsic. 

Extrinsic hand muscles are responsible for gross movements of hands like hand close and 

hand stretch. These muscles are situated between the anterior and posterior sections of the forearm 

and are comprised of extensors and long flexors. Finger muscles include two long flexors and are 

present in the forearm. The superficial flexor is connected to the middle-phalanx and the deep flexor 

to the distal phalanx. The functioning of finger bending relies on these flexors. The thumb muscles 

 
Figure 1.4: Hand Muscle Anatomy [2].  
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consist of two small and long flexors in the thenar muscle group. This group also includes other 

muscles like the opponens and abductor brevis muscle, responsible for thumb movement and 

grasping of objects.  

Intrinsic hand muscles are smaller and are present distal to the wrist joint. Subtle motor 

movements of the finger are controlled by these intrinsic muscles. These muscles are comprised of 

thenar and hypothernar, the interossei, and the lumbrical muscles [2]. Both thenar and hypothenar 

muscles consist of three muscles located at the bottom of the thumb and the little finger, respectively. 

The interossei have four dorsal and three palmar muscles. Furthermore, lumbrical muscles 

comprise four muscles, which all act on metacarpophalangeal, connected to their respective places. 

1.2.4.1 Dorsal Interossei 

There are four dorsal interossei in the hand (Figure 1.5), which exist in between the 

metacarpals of the hand [1, 39]. The shape of these muscles is bipennate and they are responsible 

for the spread of the index, middle, and ring finger. Their function also includes flexion of the same 

 
Figure 1.5: First, second, third and fourth dorsal interossei muscles of the hand [1]. 
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fingers at metacarpophalangeal joints. Our study is focused on investigating sEMG from first and 

third dorsal interossei to detect the mouse click muscle movement before the physical mouse click. 

Muscular contractions of these small muscles are sufficient to generate a mouse click. Consequently, 

the associated sEMG activity is small in magnitude, which makes click detection a challenging 

problem. This study examined the possibility of click detection and investigated the detection delay 

of the sEMG onset. 

 

1.3 Pattern Recognition 

1.3.1 Overview 

Pattern recognition is the process of identifying characteristics of known data that can be 

utilized to perform classification or regression to unseen data. Often EMG applications follow a 

series of steps for classification, which involves filtering and pre-processing, feature extraction 

and reduction, model training, followed by real-time or off-line classification [40]. 

The process starts with acquiring the EMG signal from the participant in a study followed 

by initial pre-processing steps of amplifying, rectification, or filtering. Previous studies have used 

an infinite impulse response (IIR) Butterworth filter for filtering EMG [17]. IIR filters are recursive 

in nature; they take current and previous inputs to generate the output. A low pass filter is used to 

remove high-frequency noise, and a high pass filter is used to remove low-frequency motion 

artifacts; studies have also used a combination of both known as a band-pass filter.  

The feature extraction is a vital part of pattern recognition, affecting its performance. There 

are multiple time domain and frequency domain features extracted from surface EMG to improve 

the robustness of the system, refer to section 1.2.3. The time-domain features are the most widely 

used in EMG applications due to their simplicity, making them adequate for real-time processing. 

Different time-domain features represent specific information of the signal, which is being used 

by the classifier to build the model.  

The next step consists of feature reduction or dimensionality reduction in the case of 

redundant information in extracted features and to avoid the curse of dimensionality. Various 
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means to achieve this are principal component analysis (PCA), auto-encoders, high correlation 

filter, backward feature elimination, low variance filter, and more. The most widely used method 

is PCA. A good dimensionality reduction stage facilitates the model learning process, which 

improves the system’s classification performance [41].  

The last stage consists of model training in the reduced feature space that represents 

patterns for different motions. Generally, supervised learning is used to train classifiers. In this 

case, the classifier uses known data to develop classification intuition. The classifier’s performance 

is then evaluated on novel data, and accuracy obtained using predicted and true labels. The process 

is then repeated with different classification algorithms followed by hyper-parameter tuning to 

improve the robustness; then the best algorithm is chosen for further system development [42]. 

1.3.2 Classification Algorithms 

The selection of best-suited features and classification algorithm constitutes a suitable 

pattern recognition method. Various classifiers are standard in practice for surface EMG studies 

such as Linear Discriminant Analysis (LDA), Logistic Regression, K-Nearest Neighbors (KNN), 

Support Vector Machines (SVM), Artificial Neural Networks, Naive Bayes [43] and more. LDA, 

which is the simplest and most straightforward in implementation, is the first preference as 

classifiers in various scientific studies [23, 41]. It can classify different muscle activations and the 

onsets of multiple intended movements [44]. The permanence of a classifier is measured by its 

classification accuracy, which is calculated by how many times a system correctly detects the 

respective movements. The performance of LDA and SVM classifiers are found very similar in 

the prosthetic control. Below are the details of some common algorithms. 

• Linear Discriminant Analysis (LDA) 

In dimensionality reduction, LDA works as an algorithm to reduce the number of 

dimensions using supervised learning. This is done by transforming higher dimension 

features to a lower dimension feature set. In total, C-1 dimensions are being selected, with 

C being the total number of classes. 
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𝑦 = 𝑤] ⋅ 𝑥 + 𝑤^ (11.11) 

The objective is to find the projection y, with x and w being the input data and projection 

vector, respectively. Similar to Fisher linear discriminant, LDA is also being used as a 

classifier in a pattern recognition problem. It has three main steps. First, inter-class 

separability is computed using means of different classes; the second intra-class variance 

is computed. Third, a lower dimension space is selected, which maximizes inter-class 

distance and minimized the intra-class spread of data. 

  

 
𝐽(𝑤) =

|𝜇, − 𝜇)|
𝑠,
) + 𝑠)

)  (12.12) 

where, 𝜇,	and	𝜇) are the means of two classes, and 𝑠,		and 𝑠) are the variance of each class 

from its own data points. Next, 𝐽(𝑤)	needs to be maximized 𝑎𝑟𝑔𝑚𝑎𝑥	𝐽(𝑤) which can be 

transformed as 

 
𝐽(𝑤) =

𝑤]𝑆e𝑤
𝑤]𝑆f𝑤

 (13.13) 

 

matrix 𝑆e	and	𝑆g  are between class and with-in class scatter, respectively. The separability 

between the classes can be maximized with an appropriate 𝑤 that maximizes 𝐽(𝑤) 

 
𝑎𝑟𝑔𝑚𝑎𝑥g𝐽(𝑤) = 𝑎𝑟𝑔𝑚𝑎𝑥

g

𝑤]𝑆e𝑤
𝑤]𝑆f𝑤

 (14.14) 

 

Fisher first proposed linear discriminant analysis, and it is a linear classifier that works well 

on linear or gaussian data. For nonlinear data, Quadratic discriminant analysis (QDA) is 

preferred, which projects data into higher dimensional space to increase class separability. 
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• Logistic Regression 

In pattern recognition, logistic regression is most widely used to solve a binary 

classification problem. Not to confuse with linear regression, which is used to predict 

continuous values, logistic regression takes the output and passes it to a sigmoid function, 

which returns a probability value based on which the respective class is assigned. The core 

of the algorithm is sigmoid function S(z), whose output varies between 0 and 1. 

 𝑆(𝑧) =
1

1 + 𝑒+i (15.15) 

where z is the input. Typically the threshold for decision boundary is 0.5; if the probability 

is greater than the threshold, it belongs to a positive class; otherwise, it belongs to a 

negative class. Some of the applications are neuromuscular disorder classification and 

prosthetic hand [45]. 

Although multiple pattern recognition techniques are used in practice such as Random Forest, 

Quadratic Discriminant Analysis, and more, in EMG studies, LDA and SVM seem the first choice 

for EMG analysis. 

1.3.3 EMG Pattern Recognition Limitations 

In sEMG applications, classification is done using a sliding window-based system, and the 

time windows used are usually in the order of several hundred milliseconds long. This induces 

delay and makes the application challenging to work in time-critical real-time environments. 

Another limitation of EMG based pattern recognition is some studies have come up with 

proportionality estimator schemes [46, 47] which is not as intuitive as the regression-based control. 

Moreover, most prosthetics pattern recognition techniques can provide only one degree of 

freedom, which is an unusual experience and a difficult task for an amputee to control. In a 

prosthetic arm, multiple degrees of freedom and simultaneous control is expected to be fully 

functional and comparable to a natural human limb. Some studies [48] have also explored the 

usage of non-linearities of artificial neural networks to estimate wrist kinematics using surface 

EMG. 
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1.4 Thesis Outline 

The principal objective of this study is to investigate the possibility of low latency HMI 

using surface EMG. Two key approaches, onset-detection and pattern recognition, were examined 

to achieve this. Moreover, instead of traditional window-based classification in bio-signals, sample 

by sample classification was investigated. Also, the relation between low-latency detection 

performance and increasing window size in surface EMG was explored. 

The rest of the dissertation is structured as follows: Chapter 2 contains the details of 

experiment design, data collection, analysis, and the methods used. It also describes the novel 

feature extraction algorithm along with the pattern recognition method used in this study. Chapter 

3 explains the results and analysis of the experiments performed. For both, proposed new features 

and pattern recognition method, the results are discussed in the context of mouse click detection 

performance and average detection latency. Chapter 4 discuss the results, real-time implications, 

limitations of the study, and its significance, followed by the conclusion and future work in Chapter 

5.  
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Chapter 2 
Methodology 

This chapter explains the experiment setup, terminologies, methods, and performance 

metrics used in our study. 

2.1 Participants  

The study consisted of twenty healthy participants (seven females and thirteen males) with 

an age range from 19-30 years. Participants were allowed to ask any questions and withdraw from 

the experiment at any point of the study. The study and experiment were approved by the Office 

of Research Ethics of the University of Waterloo (ORE 23061). Consequently, a consent form was 

signed for the same by each participant at the beginning of the experiment. 

2.2 Instrumentation 

 

 
Figure 2.1: Placement of three bipolar dry electrodes (E1, E2, E3) over first (E1), second (E2), and third 
(E3) dorsal interossei muscles. 
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The instrumentation consisted of acquiring surface EMG signals using a custom-made 

amplifier with three bi-polar dry electrodes (Danyang Incorporation, China) and a micro-controller 

(STM-32). The three dry electrodes were positioned on the dorsal side of the hand, refer to Figure 

2.1, over the first, second, and third dorsal interossei muscles with the help of an adjustable elastic 

strap-on. 2048 Hz sampling rate was used with the analog filter (Butterworth 5th order band-pass 

filter; 10-500 Hz), which was used before digitizing sEMG data to 12-bit precision. An alcohol 

swap was used to clean the skin before electrode placement. A desktop application was developed 

in Electron/Node JS for UI and C/C++ for signal acquisition, processing, model development, and 

saving results. For mouse click timings, Microsoft Win32 API written in C was used 

simultaneously to get exact click timings and status. 

2.3 Experiment Protocol 

The experimental protocol consisted of three phases: the ‘calibration’ phase, the ‘training’ 

phase, and the ‘real-time running’ phase, completed in this order by all participants. Participants 

could see their visual real-time sEMG activity and their mouse clicks (LEFT & RIGHT) 

information in all three phases. Moreover, for the real-time running phase, the detection 

algorithm’s outcome (detections of mouse clicks) could also be seen visually, along with the lead 

time of each click. After the electrode setup, the ‘calibration’ phase would begin, during which 

the participants were given time between 15-20 minutes to get used to the setup. He/she could 

   
Figure 2.2: ‘Calibration’ phase; Participants can see their real time muscle activity and mouse click timings. 
The Red ones are ‘LEFT’ clicks and green ones are ‘RIGHT’ clicks. First and second row shows the muscle 
activity of first and third channels of the glove, respectively. 
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move their mouse, perform clicks anywhere on the screen, and see his/her real-time sEMG and 

clicks information (see Figure 2.1). For some participants, the EMG activity of one of the click 

types (LEFT or RIGHT) was more prominent than another type. To assist them, initial feedback 

was given to help them calibrate respective mouse click activity and reduce noise. The objective 

was to have change similar change in the magnitude of EMG at the time of mouse click. 

Once the participant got familiar with the setup, the ‘training’ phase would begin, during 

which the participant was asked to perform 25 left clicks and 25 right clicks. For each clicking 

task, a virtual button would appear on a random position at the screen, with ‘LEFT’ or ‘RIGHT’ 

randomly appearing inside the button, (see Figure 2.2). The participant would need to move the 

mouse pointer to the target position, then click either the left or right mouse button as accordingly. 

The movement of the mouse pointer in the protocol was used to mimic real-world scenarios to 

ensure the likelihood of muscle activation while moving. This enables false muscle activations to 

be included in model training due to mouse movements. After the click, the button disappeared, 

and the next random button appeared on the screen after two seconds. At the end of the session, 

the sEMG signals and the corresponding mouse click events (timing) were saved, with which a 

participant-specific model was trained by leave one out cross-validation procedure. Once the 

   
Figure 2.3: ‘Training’ phase; Participants were asked to perform respective mouse clicks on the blue buttons 
as the text written on them; A. Participant in going to perform ‘LEFT’ click on mouse; B. Participant in going 
to perform ‘RIGHT’ click on mouse. 



 

     21 

model was trained, the third phase, namely ‘real-time running’, would start. The developed model 

was used in real-time to detect and register clicks and provide feedback to the participant in real-

time. 

2.4 Data Labeling 

The following procedure segmented the acquired data, as shown in Figure 2.3. The 

timestamp of each mechanical down click (MC-Down) of the mouse button was used as the 

reference point (as time 0 in the subsequent description), with which four sections for each click 

were identified. First, between -200 ms and 0 ms is called the Training Window (TW), i.e. a 200 

ms window before the MC-Down. The TW was used to extract the features of the two-click classes 

(LEFT and RIGHT). This part of the signal likely contained the EMG activity corresponding to 

muscular contraction onset just before the mechanical click along with the mouse movements. The 

Mechanical Click (MC) is the duration of the actual mouse click, in which the first sample of the 

 

Figure 2.4: Various processing windows and corresponding EMG segments with respect to mechanical 
click. Base Signal (BS), two seconds of EMG activity as a result of mouse movement; Mechanical Click 
(MC), a mouse pressed duration of 240 ms; Training Window (TW), a window of 200 ms prior to MC-
Down. 
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window down clicked, and the last sample was up clicked. The EMG activity of this period is 

excluded in training the model. 

Third, Base Signal (BS) is all the EMG activities other than TW and MC. This part of the 

data contained participant’s any muscle activities and background noise relating to his/her clicking 

intention, such as mouse pointer movements on the screen, subtle & unintentional muscle 

movements, and was used to extract features of the ‘No-Click’ class. 

2.5 Data Segmentation 

As a preliminary study, first (on first interossei) and third (on second interossei) channels 

were used in the detection of left and right clicks, respectively. The entire dataset was segmented 

into 25 segments for left-clicks and right-clicks separately from the respective channels. Each 

segment contained the data from the 25 mouse button clicks. Due to the smaller number of click 

trials, a leave-one-out validation procedure was used to evaluate system performance. For brevity, 

each data segment is subsequently referred to as a ‘Click Unit’. 

2.6 Click Detection as an Onset Detection Problem 

The acquired EMG signals were initially processed using two onset detection methods 

previously reported in the literature: Teager-Kaiser Energy Operator (TKEO) and Root Mean 

Square (RMS) of window size of three samples. BS of all training ‘Click Units’ were used to 

determine the threshold for the detection onset. The two popular threshold criteria in sEMG onset 

detection are the p percentage of the BS’s peak value and the mean plus n times the standard 

deviation of the BS, where the values of p and n should be tuned for each participant. In this study, 

we ranked all the peak values of the BS in the ascending order and used the mean of the top 100 

peaks as the detection threshold for all participants. A previous study [10] reported that TKEO 

performed better than RMS in the presence of noise. The two methods were investigated on 

simulated data and experimental data by adding different levels of noise numerically, which 

resulted in the development of a novel method Divergence estimator (DE). 

 
𝐷𝐸 =

1
𝑁>(1 − 𝛼) ⋅ |𝑥(%)| + 𝛼 ⋅ {|𝑥(%) − 𝑥(%.,)| + |𝑥(%) − 𝑥(%+,)|}
@+,

%A,

 (16.16) 
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The above equation captures both magnitude and frequency related information of a signal, 

and α is a regularization parameter with 0.5 as its default value. For onset detection, the window 

size of three samples with a step size of one is used to make it consistent with TKEO and RMS. 

The detailed comparison of onset-detection performance among DE, TKEO, and RMS is shown 

in the Results section. 

2.7 Click Detection as a Binary Classification Problem 

For each participant in onset detection, the value of p and n needed to be tuned, and there 

was no single, one-size-fits-all method for TKEO, DE, and RMS. This motivated the investigation 

to try another approach using classification, which utilizes extracted features data points to develop 

the model that generalizes better for each participant. As such, the second detection approach 

investigated is to treat it as a binary classification program. 

For the left click, three features RMS, DE, and TKEO, were extracted using the first 

channel using the window size of 1.5 ms (three samples). For longer window lengths, a window-

based mean in TKEO’s mathematical operation was added to make it fit for variable window sizes, 

which is call Extended (EXT)-TKEO. Here, EXT-TKEO serves as a feature in for subsequent 

classification. In each training ‘Click Unit’, the ‘No-Click’ class data points were extracted from 

BS, and the ‘Click’ class data points were extracted from TW. The step size of one was used and 

each data point was a 3x1 vector. Thereafter, the top 200 data points from both the classes (‘Click’ 

& ‘No Click’) were used to train the model using the Support Vector Machine (SVM) classification 

algorithm. The entire process was repeated for right-click using the third channel and a separate 

SVM model was generated. In the real-time running phase, these models were used simultaneously 

to detect both left and right clicks in real-time. 
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2.8 Performance Evaluation and System Behaviour 

As detection latency was the main focus of the current study, sample-by-sample predictions 

were used. This led to redefine and consequently optimize confusion-matrix as per the objective 

of the study. A true-positive was registered when any sample of TW or MC was predicted as the 

‘Click’ class by the algorithm, refer to Figure 2.4. If the click detection occurs in TW, a down-

click was simulated by the algorithm, and the detection lead was calculated from the MC-Down. 

If the click detection occurs in MC, a delay was calculated from MC-Down. A false-positive was 

registered when any BS sample was predicted as a ‘Click’ by the algorithm. A false-negative was 

registered when there was a ‘No-Click’ prediction in TW or MC. A true-negative was registered 

when there was a ‘No-Click’ prediction in BS. Overall, two confusion-matrix were used separately 

for left, and right-click detection. 

A higher number of ‘No-Click’ class data points would give an unrealistic high value of 

accuracy (imbalanced dataset) if used as a performance metric. It gives equal weights to all four 

 
Figure 2.5:  Revised confusion matrix example. First click has two false-positives, two true-negatives and 
one false-negative. Second click has four true-negatives and one true-positive. 
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categories; true-positives, true-negatives, false-positives, and false-negatives. Therefore, the F1-

score [1], which is the harmonic mean of precision and recall, was used as a primary metric. A 

high value of precision ensures lower false detections and a high value of recall ensures no 

detection is missed. Therefore, for this study F1 score was chosen as a primary metric that 

represents method’s true click detection performance. Furthermore, total clicks detected ahead 

from MC-Down, average lead time in milliseconds, and the effect of increasing window sizes are 

shown in Results for both left and right clicks. 

2.9 EMG Simulation Test for Divergence Estimator (DE) 

EMG signal numerical simulation can be as a straightforward process as stochastic 

Gaussian noise [49]. Other more advanced methods, such as simulating EMG as the summation 

of concurrently active motor unit action potential trains (MUAP), are also used in various research 

studies, when EMG is used to infer certain physiological parameters, such as conduction velocity 

and motor unit synchrony [50]. In this study, the simpler simulation approaches i.e. colored 

Gaussian noise were used. To investigate the onset-detection performance of various algorithms, 

different types of artifacts were used to contaminate the simulated EMG. Two types of noise, 

spiking (due to instrumentation) noise and motion artifact, were simulated. For each type of 

artifact, a total of 18 sets of simulated signals with six different signal-to-noise (SNR) ratio (2, 4, 

6, 8, 10, and 12 dB) and three different sampling frequencies (1024, 2048, and 4096 Hz) were used 

to evaluate the detection performance. Each set consisted of 50 iterations of simulated EMG. 

Ten seconds of simulated EMG were used in a sample-by-sample classification setting for 

low detection latency. First, five seconds were regarded as the reference signal and used to 

determine the detection threshold; the next five seconds were regarded as muscle activity signal. 

After applying onset-detection algorithms, the threshold for all was chosen as 80% of the reference 

signal’s maximum amplitude. Detection was made when any sample crossed that threshold. For 

spiking noise, five noise artifacts were added to the reference signal. Each spike’s amplitude was 

randomly chosen between zero to thirty percent of the maximum amplitude of the whole signal. 

For motion artifact, one simulated low-frequency (1 to 50 Hz) random signal of duration one to 

three seconds was added in the reference signal. The performance of TKEO & DE and RMS & 
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DE were compared and reported in the results section for spiking noise and motion artifact, 

respectively. 

2.10 Statistical Analysis 

The significance analysis was performed between onset methods and classification results. 

F1-scores for both left and right-click predictions were obtained using cross-validation for all 

twenty participants. First, the Shapiro–Wilk test was performed to test the normality of the F1-

scores for both left and right-click. For right-click, all the methods (TKEO, RMS, DE, and 

Classification) were normally distributed, which moved analysis towards the parametric one-way 

ANOVA test, followed by posthoc multiple comparisons, if the significance of the main effect is 

detected. However, for left click, RMS and DE were not normally distributed, which led analysis 

towards the non-parametric Kruskal Wallis test, followed by individual method comparison using 

the Wilcoxon signed-rank test. The significance level of 0.05 (p<0.05) was used in all the tests. 

The entire statistical analysis was performed using the SciPy package. 
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Chapter 3 
Results 

This chapter explains the results and performances of Divergence Estimator (DE), click 

detection methods, and the effect of bigger window sizes. 

3.1 EMG Simulation Results for Divergence Estimator (DE) 

For simulated EMG, the performance of divergence estimator (DE) with different values α 

of were compared with TKEO and RMS in different noise conditions. The results of the 

algorithm’s performance in spiking noise and motion artifacts are shown in Figures 3.1 and 3.2 

respectively. 

The performance of TKEO and DE in spiking noise is shown in Figure 3.1. In the 

simulation, the value of α was fixed to 0.5 for DE and 0.8 for DE-II. Both DE-II performed better 

DE followed by TKEO in case of spiking noise (p < 0.05). For the SNR of two decibels and 1024 

Hz sampling rate, the F1 scores of DE-II and TKEO were around 0.24 and 0.21, which was 

improved to 0.79 and 0.72 for 12 dB SNR, respectively. Similar behavior was observed in other 

configurations with the sampling rate of 2048 Hz and 4096 Hz. 

 
Figure 3.1: Detection performance in the presence of simulated spiking noise. A. Sampling Rate (1024 Hz); 
B. Sampling Rate (2048 Hz); C. Sampling Rate (4096 Hz); Mean F1 Score as a function of signal to noise 
ratio (SNR) of 50 iterations (p < 0.05). DE (α = 0.5) and DE-II (α = 0.8). The shaded area indicate the 
respective standard deviation in each case. 
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For motion artifact, see Figure 3.2. The performance of RMS and DE are reported with two 

values of α as 0.5 and 0.75. The results confirmed the poor onset-detection performance of RMS 

in the case of motion artifacts which was suggested by the authors of  [30]. 

Similar to spiking noise, DE-II performed better than DE followed by RMS in case of 

motion artifacts (p < 0.05). For the SNR of two decibels and 1024 Hz sampling rate, the F1 scores 

of DE-II and RMS were around 0.2 and 0.1, which got improved to 0.95 and 0.81 for 12 dB SNR, 

respectively. RMS performed the same in the other two configurations of 2048 Hz and 4096 Hz 

sampling rates. 

 

 

 

 

 

 

 

 
Figure 3.2: Detection performance in the presence of simulated motion artifacts. A. Sampling Rate (1024 
Hz); B. Sampling Rate (2048 Hz); C. Sampling Rate (4096 Hz); Mean F1 Score as a function of signal to 
noise ratio (SNR) of 50 iterations (p < 0.05). DE (α = 0.5) and DE-II (α = 0.75). The shaded area indicate 
the respective standard deviation in each case. 
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3.2 Experimental EMG Data Results for Divergence Estimator (DE) 

 

For experimental sEMG data, the onset detection performance of all algorithms was 

compared using acquired sEMG data of twenty participants with multiple thresholds. The mean 

ROC (Receiver Operating Characteristics) and AUC (Area Under the Curve) of DE (α = 0.5), 

RMS, and TKEO  are reported in Figure 3.3. On average, for onset detection of both left and right 

clicks, the AUC of DE (α = 0.5) and TKEO were higher than that of RMS (0.96 and  0.96 vs 0.95). 

The ROC of DE (α = 0.5) and TKEO are highly similar. 

 

 

 

 

 
Figure 3.3: Mean ROC curve of TKEO, DE (α = 0.5) and RMS of all twenty participants for left and right 
click detections. 
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3.3 Mouse Click Detection Results 

 

The performance comparison between binary classification and onsets detection methods 

for left and right click using 1.5 ms window size is shown in Figure 3.4. For the left click detection, 

the F1 score of binary classification was 0.86 ± 0.09 which was significantly higher (p < 0.001) 

than  RMS (0.78 ± 0.09), DE (0.79 ± 0.08) and TKEO (0.79 ± 0.07). Likewise, the binary 

classification performance for right click  (0.88 ± 0.08) was significantly higher (p<0.01) than DE 

(0.79 ± 0.08), TKEO (0.79 ± 0.08) and RMS (0.76 ± 0.10).  

 
 
 
 
 

 
Figure 3.4: Detection performance comparison between onset detection and binary classification methods 
for left and right mouse click detection. 
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Table 3.2 ‘Left’ click detection results (F1-scores) of all participants based on leave one out 
validation. 

Participants TKEO DE RMS Binary 
Classification 

P-01 0.87 0.89 0.87 0.90 

P-02 0.72 0.73 0.70 0.76 

P-03 0.82 0.81 0.85 0.87 

P-04 0.74 0.68 0.75 0.82 

P-05 0.84 0.84 0.81 0.96 

P-06 0.85 0.85 0.87 0.94 

P-07 0.67 0.69 0.64 0.96 

P-08 0.80 0.83 0.79 0.84 

P-09 0.59 0.56 0.51 0.60 

P-10 0.84 0.84 0.86 0.84 

P-11 0.76 0.79 0.75 0.97 

P-12 0.74 0.72 0.71 0.71 

P-13 0.83 0.83 0.83 0.83 

P-14 0.79 0.79 0.79 0.81 

P-15 0.90 0.90 0.90 0.92 

P-16 0.87 0.88 0.88 0.89 

P-17 0.82 0.82 0.8 0.94 

P-18 0.82 0.83 0.83 0.86 

P-19 0.86 0.86 0.85 1 

P-20 0.79 0.79 0.75 0.88 

Average 0.79 0.79 0.78 0.86 
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Table 3.2 ‘Right’ click detection results (F1-scores) of all participants based on leave one out 
validation. 

Participants TKEO DE RMS Binary 
Classification 

P-01 0.79 0.84 0.82 0.81 

P-02 0.81 0.76 0.81 0.98 

P-03 0.89 0.84 0.86 0.95 

P-04 0.84 0.83 0.83 0.86 

P-05 0.75 0.67 0.73 0.85 

P-06 0.77 0.68 0.76 0.97 

P-07 0.75 0.78 0.75 0.96 

P-08 0.82 0.77 0.83 0.82 

P-09 0.83 0.82 0.86 0.87 

P-10 0.74 0.63 0.74 0.83 

P-11 0.68 0.58 0.63 0.88 

P-12 0.86 0.83 0.84 0.92 

P-13 0.74 0.81 0.73 0.84 

P-14 0.79 0.77 0.80 0.72 

P-15 0.90 0.90 0.89 1 

P-16 0.66 0.67 0.67 0.83 

P-17 0.64 0.62 0.67 0.74 

P-18 0.83 0.86 0.84 0.96 

P-19 0.96 0.96 0.96 0.91 

P-20 0.76 0.68 0.77 1 

Average 0.79 0.79 0.76 0.88 
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3.4 Effect of bigger window sizes for binary classification 

Figure 3.5 shows the effect of increasing window size in binary classification. 

Performances were tested in a 1.5 ms to 100 ms window size setting. For both the clicks, the 

detection performance decreased with the increase in window size. From window sizes 1.5 ms to 

100 ms, the F1 score dropped from 0.85 to 0.64 and 0.88 to 0.66 for left and right-click, 

respectively. In addition to the detection performance, click with leads or average click detections 

before MC-Down were also reduced, see Figure 3.6 A, from 20 ± 3 to 8 ± 3 for left click and from 

20 ± 2 to 9 ± 2  right-click as a function of increasing the window size.  

  

 
Figure 3.5: Effect of increasing window size in binary classification performance for left and right click 
detection. 
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3.5 Timing Estimates 

The performance of binary classification for different window sizes is reported in Figure 

3. Figure 3.6 B shows the behavior of average detection lead with respect to increasing window 

size. It states the negative correlation between detection lead and window size. It dropped from 45 

milliseconds to 10 milliseconds for a window size of 1.5 milliseconds and 100 milliseconds, 

respectively. Figure 3.5, 3.6 A, 3.6 B shows the performance and detection lead drop till 40 

milliseconds window size was greater than the rest of the window sizes. 

Figure 3.4 shows, for mouse click reaction improvement (or higher detection leads), the 

binary classification using SVM with our proposed features outperformed existed onset detection 

methods. Figure 3.6 B shows, the best performance of this study was achieved at the window size 

of 1.5 milliseconds, the average detection lead was approximately 45 milliseconds, for both 

‘LEFT’ and ‘RIGHT’ clicks. Figure 3.5 shows, for the same window size (1.5 milliseconds), the 

F1-score performed the best, 0.85 for the ‘LEFT’ click and 0.88 for the ‘RIGHT’ click. 

  

 
Figure 3.6: A. Average detected clicks before MC-Down for all participants as a function of increasing 
window size; B. Average detection lead for all participants as a function of increasing window size. 
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Chapter 4 
Discussion  

At the present, pattern recognition based machine learning in EMG is limited to academic 

and research applications. HMI applications with electrophysiological signals are applied in 

rehabilitation, meditation, heart-rate monitoring using EMG,  EEG, and, ECG respectively. 

Beyond these applications, HMI has yet to find broader applications in everyday life. This study 

focused on improving the close-loop control (or feedback) delay of HMI’s based on surface EMG, 

which can be used in various time-critical applications, such as VR/AR, and on-demand 

exoskeletons.  

4.1 Divergence Estimator (DE) 

In this study, a novel method, namely divergence estimator (DE), was proposed for the 

onset detection of sEMG in the context of ultra-short latency (a few milliseconds). This new feature 

extraction method was compared with the other two commonly used sEMG onset detection 

features, TKEO, and RMS. DE was tested with threshold-based techniques as well as pattern 

recognition techniques.  

Few studies have previously investigated the low latency context of EMG analysis [22, 

51]. Both the studies considered low latency as an onset detection problem.  In [51], the authors 

used a window size of 32 milliseconds with 4 milliseconds overlap and tested their proposed 

method in the presence of spiking noise. Their method outperformed TKEO for window sizes of 

a few hundred milliseconds. However, they did not consider the detection latency of a few 

milliseconds which exists in problems like mouse click detection. In another study, the author 

proposed a new onset detection method for low latency detection, but there is no comparison 

between their proposed method and existing common EMG onset detection algorithms [22]. 

Different types of noise (spiking and motion artifact) in acquired experimental data 

motivated the development of DE. The intuition was to operate with the same onset-detection 

method in different noise scenarios. For simulated data, Figures 3.1 and 3.2 showed TKEO 

performed poorly in spiking noise, and RMS performed poorly in motion artifacts. The tests 
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conducted in different noise scenarios and different values of α in simulated EMG confirmed the 

utility α in DE’s performance, refer to Figures 3.1 and 3.2. The parameter α in DE is a key feature 

and can be tuned according to the dataset to improve EMG onset-detection performance. For 

experimental data (n = 20), the mean ROC and AUC of TKEO, RMS, and DE were computed. 

The DE (α = 0.5) outperformed RMS but the performance was similar to TKEO. However, the 

value of α was fixed to 0.5 for ROC calculation which can be optimized to outperform TKEO for 

onset detection. In addition, just like RMS, DE can also be employed as a feature in pattern 

recognition techniques. Section 2.7 described its usage as a feature, along with extended-TKEO 

and RMS. Collectively all three outperformed for mouse click detection and reducing detection-

latency. 
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4.2 Binary Classification for click detection 

Figure 3.4 shows, for mouse click detection, binary classification using SVM outperformed 

remaining popular onset detection methods. A previous study considered low latency as an onset 

detection problem [22]. This motivated the preliminary investigation of mouse click detections 

started through TKEO and RMS onset-detection methods, which suggested that both strategies 

were not one-size-fits-all. This encouraged us to look for alternative methods that led to the 

development of DE. The goal was to deal with various forms of noise with just one technique.  

Although the DE can be tuned to optimum performance for onset-detection, the key 

drawback of the rule-based threshold system is that various types of noise are not taken into 

account for calculation. This limits the optimum performance of click detection. In comparison, 

approaches focused on pattern recognition use information that exists in acquired data to extract 

the best hyperplane to classify the data points. This behavior can be observed in figure 3.4 where 

all initial approaches are outperformed by binary classification using SVM. 

Figure 3.6 indicates the detrimental effect of the greater window size. This is due to the 

fact the detections are made so delayed they were counted as false negative for mouse click 

detection. This effect restricted us to the study of wider window size and frequency domain 

characteristics. Our investigation led us to use our proposed features; DE, Extended-TKEO, and 

RMS. Also, features were sorted in decreasing order instead of using data points directly from the 

extracted features, followed by the selection of the top two hundred data points from each class. 

This ensures low false positives in the detection of mouse clicks and higher true click detections 

before physical mouse clicks.  

Traditionally, EMG based pattern recognition uses window sizes of up to a few hundred 

milliseconds [23], allowing frequency domain features the privilege of extracting. Capturing low-

latency detection up to a few milliseconds sounds unreasonable for bigger window sizes. It is 

difficult to catch the frequency domain features in a window size of a few milliseconds (less than 

five ms), which restricts our analysis to the usage of time-domain features only. Moreover, typical 

EMG time-domain features, such as waveform length, zero-crossing, or more, refer to section 
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1.2.3, are inadequate for limited window sizes to obtain any useful information. The maximum 

and minimum values of zero-crossings for a window size of 1.5 ms (sampling rate 2048 Hz) were 

two and zero, which doesn’t contribute much to the classification. 

Another significant difference in the analysis approach is the step-size of one, over window 

overlaps. Every data point needs to be analyzed as soon as it is collected from the hardware to 

ensure the earliest detection. The processing delay was introduced by window-overlaps, which 

was a significant bottleneck for the objective of this study. While sample by sample processing 

introduced additional overhead to system output, the low-level programming language C/C++ was 

used to tackle this problem. 
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4.3 Detection Leads 

The results of Figure 3.4, showed that the proposed DE, combined with the binary 

classification approach, outperformed all other combinations of feature extraction methods and 

threshold detection or classification. For both click detection and detection lead, the best 

performance was obtained at 1.5-millisecond window size. Across all twenty participants, the 

detection lead was approximately 45 milliseconds and the detection performance (F1-score) for 

left and right mouse click detection were 0.87 and 0.88, respectively. Better performance of 

classification was due to data-driven policy compared to onset detection, which relies on the rule-

based system for threshold selection. It was also examined that the classic sEMG time-domain 

features proposed in  [23], which is the most popular sEMG feature extraction method, performed 

particularly poorly in the context of ultra-short latency. This is because features such as zero-

crossing and slope-sign change are considered non stationary [52] for very short window sizes of 

few milliseconds.  

Figure 3.6 shows the seemingly unintuitive deteriorating performance with the increasing 

window size. In the experimental protocol, the duration of mouse-clicks (between MC-Down and 

 
Figure 4.1: A detection lead example. The system on the ‘Right’ is connected to sEMG based glove and 
system on the ‘Left’ is connected to gaming mouse. After a mouse click, the click time recorded by the 
‘Right’system was 49 ms earlier than ‘Left’ system. 
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MC-Up) was very short (typically < 150 ms), simulating realistic mouse clicks. As such, a true-

positive can only be registered within this short period. This presented a serious challenge for 

longer processing windows. The longer the windows, the more likely detections would occur 

outside the mouse-click duration, hence considered as false detection. If this ‘window of 

opportunity’ was to be relaxed, higher detection accuracy might be obtained. However, it would 

defeat the purpose of the current study: ultra-short latency detection (or even prediction).  

The proposed method was tested in the ‘real-time running’ phase to validate the click 

reaction time improvements. A script was written to display Unix Epoch time in milliseconds when 

clicked on the screen, which was deployed into two systems. An example of detection lead is 

shown in Figure 4.1. After the ‘calibration’ and ‘training’ phase, the left system was connected to 

a mechanical mouse and the right system to the EMG glove. When the participant pressed the 

mouse click, the timestamp recorded after clicks are shown in Figure 4.1 for both the systems. For 

a real-time test, the mean and standard deviation of the detection lead was 55 ± 23 milliseconds (n 

= 20 clicks). Further details about reaction time lead and detection performance are reported in the 

results section. 
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4.4 Limitations and Future Work of the Study 

The two key research limitations are. First, to distinguish the ‘LEFT’ and ‘RIGHT’ mouse 

clicks, only three electrodes were used. And even though sEMG from three channels were acquired 

in the experiment setup, the results from the other two channels were not reported here due to 

poorer performance. For electrode placement, muscles closer to the respective fingers were 

selected. While the results of the click detection acceptable, to identify the best location of 

electrodes, a high-density electrode grid should be used. We found that spatial domain features 

utilizing three electrodes did not contribute much to pattern recognition performance when 

conducting experiments. The other drawback was the set of glove size that could not be modified 

according to the hand size of the person. This led to incorrect positioning of electrodes for some 

participants on their respective muscles, hence the signal-to-noise ratio (SNR) was not good 

therefore leading to lower performance. 

For future work, although the proposed pattern recognition method is tested in a binary 

classification setting, it is interesting to see the performance of the system in a multi-class problem 

setting. On the hardware aspect, a high-density EMG grid needed to be used to identify the optimal 

electrode placement on muscle and acquire spatial domain features for improved performance. Not 

only can a high-density electrode grid increase the efficiency of the click detection, but it can also 

boost the reaction lead for mouse clicks. In addition, the glove with movable electrodes in the 

glove or multiple gloves that could accommodate different hand sizes would perform better. On 

the algorithms aspect, methods using deep learning (LSTMs and GRUs) are getting popular in 

surface EMG studies [53]. The development in deep leaning based time-series prediction can be 

explored low-latency context. 
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Chapter 5 
Conclusion 

This study primarily focused on three analysis. First, the evaluation of the proposed novel 

method Divergence Estimator under various noise settings and its comparison with existing onset-

detection techniques. The performance results of DE were reported for both simulation and 

experimental data, which states that DE either outperformed or similar to exiting methods like 

TKEO and RMS. Second, the detection of mouse click detection existing EMG onset-detection 

methods and binary classifications. Results showed binary classification outperformed the 

remaining onset detection methods used in the analysis. Third, the effect of different processing 

window size on detection latency. The results showed that mean detection leads to 45 milliseconds 

were achieved across all participants for a very small window size (1.5 milliseconds). 

For onset-detection the performance of TKEO and DE are similar and both outperformed 

RMS. Although the value of alpha in DE was designed to be optimized for each dataset, for 

demonstration purposes, a constant value of alpha (0.5) was used for DE in ROC - AUC and onset-

detection calculations. Second, the approach using binary classification was found to be best suited 

for low-latency problems. Traditionally EMG pattern recognition doesn’t perform well for smaller 

window sizes, but our proposed set of features DE, RMS, and Extended TKEO outperformed the 

existing onset-detection techniques. Third, the experiments showed, for the optimized values of 

alpha the performance of DE was superior compared to TKEO and RMS in spiking and motion 

artifact noise. The tests were conducted on various SNR ratios and multiple iterations. 

This study was focused to investigate the possibility of improving user’s reaction time 

using EMG-based HMI for desktop mouse click and the results of the study confirmed the 

likelihood of the same. In conclusion, achieving low-latency HMI using sEMG and pattern 

recognition with extremely small window sizes are possible, which can be used in many time-

critical applications, including human-robotic interaction and VR/AR applications. 
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