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Abstract

Social robots used in education can take different roles, including tutor robots and peer
robots. Peer robots (also called teachable robots) take the role of a novice in a teaching
interaction while the students take the role of the teacher. Teachable robots leverage
learning by teaching, which has been shown in prior research to increase the students’
learning effort and time spent on the learning activity, leading to enhanced student learning.
The concept of teachable robots has previously been applied for one-to-one interaction,
however, to date, few studies use teachable robots in a group setting.

In this thesis, we developed an adaptive learning algorithm for a teachable robot that
encourages a group of students to discuss their thoughts and teaching decisions during the
tutoring session. We hypothesize that the robot’s encouragement of group discussion can
enhance the social engagement of group members, leading to improved task engagement,
learning and enjoyment. The robot adapts to the students’ talking activity and adjusts the
frequency and type of encouragement. The robot uses reinforcement learning to maximise
interaction between the students.

The proposed approach was validated through a series of studies. The first pilot study
was performed in an elementary school and observed the interactions between groups of
students and teachable robots. The main study investigated the feasibility of an adaptive
encouraging robot in a remote setting. We recruited 68 adults, who worked together in
pairs online on a web application called Curiosity Notebook to teach a humanoid robot
about the classification of rocks and minerals. We measured social engagement based
on the communication between group-mates, while the metric for task engagement was
generated based on the users’ activities in the Curiosity Notebook.

The results show that the adaptive robot was successful in creating more dialogue
between group members and in increasing task engagement, but did not affect learning or
enjoyment. Over time, the adaptive robot was also able to encourage both members to
contribute more equally to the conversation.
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Chapter 1

Introduction

Robots in education have demonstrated great potential for improving learning, enabling
students to improve their self-esteem [7] motivation [31], and engagement [16]. While robots
can take a variety of roles [7], teachable robots—robots that take the role of a novice taught
by students—Ileverage learning by teaching to further enhance student learning. The idea
is that teaching an agent can induce the so-called Protégé Effect [14], i.e., students learn
better by teaching others due to increased effort, spending more time on the teaching
activity and an increased sense of responsibility [14,76].

While pedagogical research highlights the importance of group interaction and engage-

ment on students’ learning and overall performance in school [1,24] and group interaction
is frequent in classrooms, many of the research experiments involving teachable robots
are based on one-to-one interaction with the robot [5, 11,31,41,46,49]. Even in studies

occurring in group settings (e.g. studies in classrooms), only one student teaches the robot
during each teaching session and there is a general lack of discussion of group dynamics
and its effects on the students’ experience [29,66,87]. In order to address this gap, we
examine group interactions in social robotics and study the effect of social engagement on
the learning experience.

In this thesis, we developed a teachable robot that dynamically adjusts its behaviour
to the communicative activity of a pair of users. The robot encourages social engagement
by inviting the users to discuss their thoughts and decisions with their group-mate. The
frequency and style of the robot’s encouragement are decided by a reinforcement learning
(RL) algorithm based on a reward signal that encourages group communication, mea-
sured from the users’ real-time audio input. We hypothesized that the adaptive robot will
increase users’ social engagement, improve their communication, and allow for equal con-



tribution from each group mate. The feasibility of the teachable robot system and different
characteristics of the robot (curious and fast learner) were tested in multiple pilots and
simulations prior to the user study.

1.1 Contributions

We introduced an adaptive algorithm for encouraging social (group) engagement to analyze
group interactions in a learning context with adaptive teachable robots. Our work is one
of the few studies in the teachable robots domain that observes social interactions and
is distinguished from the previous work because users not only work in dyads but social
engagement is adaptively encouraged.

This work also provides an approach for physical teachable robots to be integrated with
a web-based learning platform. The system was examined in a case study (pilot) and the
results of users’ interaction with the physical robot could be used to improve the design of
future physical robots.

We performed a user study (N=68) to assess the effects of adaptive encouragement on
increasing group (social) engagement and its effects on learning. We analyse the impact of
encouragement on a range of factors, including social engagement, task engagement, knowl-
edge gain (measured immediately after the experiment), as well as participant-reported
measures such as enjoyment, group work dynamic, perception of the robot, mood and
motivation.

1.2 Thesis Outline

This thesis is organized into the following chapters:
Chapter 2 presents a review of the literature relevant to this thesis.

Chapter 3 introduces the experimental setup, the humanoid robot and the web appli-
cation used for the pilots and user studies.

Chapter 4 defines the adaptive learning algorithm used in creating the adaptive teach-
able robot.

Chapter 5 presents the pilots and simulations conducted to test the performance and
feasibility of the system and the experimental setup.



Chapter 6 includes the details, the measures and the results of the online user study.

Chapter 7 discusses the limitations, a few possible directions for future work and con-
clusions.



Chapter 2

Literature Review

Robots in education have demonstrated great potential to assist the student learning pro-
cess [7] and improve social skills [58]. Robots used in education can take on different roles
during the learning process, which could be a tutor, a peer, or a novice peer [7]. When
the robot takes the role of a novice, it can be teachable, in this case, the robot can also
be called a teachable robot. In this chapter, we first summarise the literature on social
robots used in education. Afterwards, we focus on teachable (novice) robots and their
characteristics. Teachable robots are less knowledgeable robots and require the student
user’s help in learning. Moreover, we discuss the literature around adaptive robots and the
benefits of adaptability. Lastly, we discuss the use of robots in groups of users to influence
group dynamics. The experimental studies discussed in this chapter are summarised in
three tables. For studies using robots as a peer (same level of knowledge as students) refer
to Table 2.1, for studies with teachable robots, refer to Table 2.2 and for case studies refer
to Table 2.3.

2.1 Social Robots in Education

According to research on social robots in education, incorporating social behaviours in
robots, such as expressiveness, can improve the learning gain for students [60]. The benefits
of the human-robot interaction for the students are affected by the social attributes of
the interaction, such as gaze, spatial arrangement, expression of emotions and voice tone
[34,30,49,87] and robots should show a degree of adaptability to be considered social [25].
Using social robots has the potential to increase accessibility for students because learning
can happen outside of the classroom [11].



The social aspects of the robot are enhanced by its physical embodiment. Physical
robots can be used in lessons that need physical interaction with the world, such as pushing
or touching [7]. Comparing virtual agents and physical robots revealed that embodied
robots get more attention from the students which could increase their engagement [15]
and students had a more positive perception (e.g. likability and trustworthiness) of physical
robots [77].

Initially, most of the focus was on designing robots to tutor students or being a teach-
ing assistant in the classroom. Recently, more researchers have studied the relationship
between robots and students [7]. There are additional benefits of increased engagement
from making the robot take a peer role, rather than a tutor [87]. Furthermore, some re-
searchers aim to increase the benefits of social robots in education by relying on the Protégé
Effect [32].

2.2 Teachable Robots

Studies in education and human-computer interaction (HCI) have already shown teaching
boosts learning, understanding, and recall of the material [11], also known as the Protégé
Effect. Teachable robots are novices that allow the users to take on the teaching role [7]
and elicit the protégé effect, which increases students’ effort [14] and improves learning [68].
Teachable robots can keep students engaged for longer periods [31,16] and a study shows
that students were motivated by taking the role of the teacher [31].

Teachable robots need to show their learning progress and improvements to increase
students’ task performance and learning. A study comparing robots in two conditions,
“learning” and ‘“non-learning” illustrates the importance of the robot’s demonstration of
learning [12]. In the study, the students corrected a humanoid robot’s handwriting over the
span of 4 weeks. The results indicated that the robot showing learning positively influenced
the student tutor’s writing ability and performance compared to the “non-learning” robot.

2.3 Adaptive Teachable Robots

Characteristics of the teachable robot can be designed to be adaptive [7,8,25]. Robots
that adapt to the educational level and performance of the students led to greater learning
gains [7,11] and task performance [73] in comparison to robots that do not adapt. Robots
with adaptive characteristics (e.g. dynamically changing voice, knowledge progression,
verbal and non-verbal social behaviour) increase social presence [19], and learning gains [5].
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To investigate the effects of adaptive social responsiveness and voice on learning, Lubold
et. al. [19] performed a study with a peer robot that conveyed emotional information with
its manner of speaking. The robot, Quinn, was designed to adapt its tone, intensity and
speaking rate to that of the students. The results showed participants had the highest
social presence (defined as the perceptual illusion of non-mediation) when the robot used
both social dialogue and an adaptive voice. However, there was no significant effect on
learning gains. The experiment was conducted with three conditions: (1) a social robot
condition (social) with social dialogue content in addition to the educational content, (2)
the addition of voice adaptation (social + voice), and (3) the (control condition) was a robot
with neither social dialogue nor voice adaptation. They observed a correlation between
the number of retaught attempts and learning, as well as social presence and learning.

A study on personalization [5] compared a personalized and non-personalized robot
in two different classrooms. The learning task was administered through a tablet. The
personalized robot differed in non-verbal behaviour (gaze and movement), friendliness (e.g.
calling the children by their name), and adapted its progression (responsiveness) to the
students. The students showed significantly increased learning when using the personalized
robot. However, despite the robot being in a classroom, the robot only supported one-on-
one interaction and the turn-taking was moderated by the teacher.

2.4 Group Interaction

Group interactions are rare in studies of teachable robots in education [29,66,87], and such
studies do not tend to discuss the effects of group interaction on the experiment results.
Zaga et. al. [37] show additional benefits (e.g. increased engagement) from the robot taking
a peer role, rather than a tutor, their participants included 10 pairs of students, however,
there is no discussion about the group aspects. Tanaka et. al. [66] worked on developing
an educational application for the humanoid robot Pepper. They defined three games
which were designed to take advantage of care-receiving robots (CRR) and total physical
response (TPR), the children play the games in groups but no more information is provided.
Hood et. al. [29] observed group-mates giving each other advice while teaching a humanoid
robot handwriting. This collaboration occurred naturally without the researchers’ or robot
suggestions.

Outside of educational HRI research, there have been studies attempting to manipulate
human team dynamics, performance, and perception of group cohesion during human-robot
interaction [0, 69, 80].



A study by Werry et. al. [80] uses a robot as a mediator for autism therapy. The
children work with the robot in groups of 2 and they observed shared attention and social
interaction in one trial. They concluded social robots have the potential for changing
non-social plays (a child playing alone), to non-interactive (both children playing with the
robot without any social interaction) and eventually to interactive and social play. They
suggested the need for further two-children-one-robot interaction.

Micbot [69] is a microphone robot that was used to shape the group dynamics and
team performance in a game context. Micbot was a non-participant in the team and
influenced the team either by back-channelling or encouraging the least active member to
join the discussion. Micbot also incorporated movements to turn toward the speaker when
they talked. The results showed that the robot with encouraging behaviour and matching
movements (instead of random movements or no movements) balanced participation, and
improved group task performance.

Outside of the context of social robots, adaptability has been used to increase engage-
ment in group settings. Meng et al. [52] explored the idea of a robotic “Living Architec-
ture System” (LAS) [6] automatically adapting to a group’s preferences in an experiment
conducted within a museum exhibition. The reward for the reinforcement learning (RL)
algorithm was user engagement, which was measured with ambient sensors. The results of
the experiment showed that the RL-selected robot actions could increase engagement.

In contrast to these prior works, our teachable robot adaptively encourages group en-
gagement to shape group dynamics and is personalized to the groups’ social engagement
behaviours during the course of interaction.



Table 2.1: Summary of Controlled Studies for Peer Robots

Study | Task Robot | Independent Variable | Dependent Variable(s) Measurement
Adapting storv level vs 1) New words learned 1) Vocabulary test
Kory et | language | Dragon- Not I; dagtin Ztor levél 2) Complexity & style of stories | 2) Story length, Flesch-Kincaid grade level
al. [11] | learning | Bot pLing Y 3) Similarity 3) CohMetrix
1) In-game actions: choosing (expressing
Interaction with human desire), successful shape selection
. . before interacting with collaboration in the context of a | (simultaneously choosing), unsuccessful
Wainer | video Kaspar . . -
ot e the robot vs. cooperative video game shape selection
al. 7] & After the robot” 2) Coding videos: prompting, positive affect,
’ gaze and gaze shift, choosing (verbally)
. . . . Story length
Kory et | language | Dragon- | Easy robot stories vs. | Language improvement in stories :
. . x Vocabulary test
al. [12] | learning | Bot Hard stories
Task Eng t i ategories . .
1)a E}o Eii?\%(?ngzuin 3 categories 1) Behavioral & Gaze observations
Zaga et | puzzle Nao Peer vs. Tutor SUIHVE: o 2) Task completion percentage & duration
al. [87] | game 2) Behavioral: task performance 3) Enjoyment questionnaire (IMI)
’ 3) Affective: enjoyment
Soc%al + v01c.c—adaptatlon7 1) Rapport and Social presence 1) L1k0rt—scal§ qucstlo.ns,
. Social Behaviours, . Networked Minds Social Presence Inventory
Lubold | math Quinn - 2) Persistence
ot Control Condition 3) Learning Gain 2) Re-taught attempts.
al. [19] (3 conditions x 2 genders) & 3) Pre and Post-Study knowledge test
1) Pre- and post knowledge test,
within-interaction performance data,
Personalized vs. 1) Learning gains class exams
idxter Hlljtiﬁ & | Nao Non-personalized 2) Perception 2) Intrinsic Motivation Inventory (IMI),
class Perceived Social Support,
al. [9] cation

Networked Minds Social Presence

* within-subject (all other studies are between-subject)




Table 2.2: Summary of Controlled Studies for Novice Robots

Study Task Robot | Independent Variable | Dependent Variable(s) Measurement
Tanaka verb Nao Care—rece*lver robot vs. 1) Learn%ng 1) Pre & po§t-st11dy knowledge test
. No robot 2) Teaching forms 2) Coding videos
et al. [68] | learning
1) Performance 1) Response time, writing time
2) Robot’s score 2) Euclidean distance between letters
Johal et | hand- Nao Spatial arrangement” 3) Engagement 3) With-me-ness
al. [30] writing 4) Perception of robot’s learning | 4) Total student feedback (+1 or -1)
5) Persistence 5) Number of demos per word
) . Embodied Robot vs. 1) Learning gains 1) Pre & post-study knowledge test
Z;fa%ke]l et | math Quinn Virtual agent 2) Perception 2) Godspeed Questionnaire
. . Virtual agent vs. 1) Engagement 1) Observational protocol
gsrzllb[erg] math Epi Physical robot 2) Perception 2) Godspeed questionnaire
1) Awareness of robot’s Grades
Learning robot vs ;; irelrcgsi'eiilf (j)bf(;th; ?slr)footrmance 1,2,4,5) Interviews
Chandra | hand- Nao & TODOL VS pre \ 3) Godspeed questionnaire (modified)
ot al. [12] | writing Non-learning robot 4) Perceived robot’s role 6)Pre, post-study tests
’ 5) Self-efficacy in tutoring ’
6) Learning gains
Deictic gestures (2) x Correction count percentage
Yadollahi | reading | Nao Types of mistakes (3) x | Correction percentage . b g
. * (True Positive + False Positive)
et al. [37] Level of reading (2)
Side-by-side vs Comfort, Attention
Chaffey | math Nao Y ) . Engagement, Motivation Post-study Survey
Face-to-face F-formations . o
et al. [10] Physical Proximity

* within-subject (all other studies are between-subject)




01

Table 2.3: Summary of Case Studies

Study Task Role | Robot | Study Goal Measurement
English test score
. . Durati
Kanda et | language | peer Robovie | Investigate the effects of the robot raron - . .
al. [35] learning on encouraging learning Time spent in interaction vs. friends
’ Pre and post study test
Tanaka et | verb novice | Nao Will the number of mistakes the | Coding videos
al. [68] learning robot makes invoke care-giving be-
haviours in children
. . .. . Duration of interaction
Hood et | hand- novice | Nao Observe the children’s interaction .
. . Number of demonstrations
al. [29] writing with the robot
Tanaka et | language | novice | Pepper | Validate the system Observations
al. [60] learning
Experiment duration
Study the engagement and Numbcr.of demonstrations 7
. . Correlation between student’s
Lemaignan | hand- novice | Nao performance of ..
et al. [10] | writing during the interaction feedback and robot’s mistakes
' Interviews and follow-up updates
With-me-ness
Validate the system. In addition, | Number of demonstrations
Jacq et al. | hand- novice | Nao one case study inve,stigated the Experime.n.t dur.ation
o effects of the robot’s progress Demo writing time
[31] writing

on student’s feedback and progress

Parent’s interview




2.5 Summary

Robots in education with the ability to adapt and provide personalised interaction can pro-
vide additional benefits for their users in comparison to non-adaptive robots . The studies
reviewed showed positive feedback and greater learning in the case of adaptive robots. The
adaptive algorithm we employ adapts the robot’s group engagement encouraging actions.

For the robots to be more social and utilize the embodiment of the robot and its
potential to outperform virtual agents, they can be designed to express emotions through
body movements. The results of experiments on robots’ behaviours show that curiosity,
interest and deictic gestures increase the students’ motivation, engagement and result in an
overall more positive teaching experience. Our humanoid robot accompanies its dialogue
with appropriate movements that could be neutral, happy, sad, curious and bored.

Most of the literature on social teachable robots focuses on individual student’s interac-
tion with the robot in contrast to the natural classroom setting in which the student is not
in isolation. The education literature also points out the benefits of social engagement and
collaboration on learning while robots have demonstrated some potential for being a mod-
erator for collaboration. Therefore, teachable robots used in group settings demonstrate a
potential for increasing engagement, sense of group inclusion and learning.
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Chapter 3

Experimental Setup

To evaluate the idea of a teachable adaptive robot and investigate the effects of adaptive
social engagement encouragement on learning, we developed an experimental setup for
a group human-robot teaching interaction. The proposed experimental setup consists of
three main components detailed in the sections of this chapter. The first component is
a web application called Curiosity Notebook [14,15], which we adapted for this study.
The second component is an adaptive encouragement algorithm with audio data as the
reward signal, the algorithm is detailed in Chapter 4. The last component is a NAO V6
! Humanoid robot (as seen in Figure 3.4) from Softbank Robotics, which is connected to
the Curiosity Notebook.

3.1 Curiosity Notebook

The Curiosity Notebook [11,15] enables users to read articles on various topics, structured
as taxonomies, and teach the robot about them. Figure 3.1 shows the Curiosity Notebook
interface during the task of rock classification. The users start the conversation by clicking
one of the interactive buttons. There are two categories of buttons to interact with the
robot: the teaching buttons and the checking buttons. Amongst the teaching buttons,
users can use the describe button to teach the agent about an object’s features, the explain
button to explain the feature and the compare button to discuss similarities or differences
between rocks. After the user clicks any of the three teaching buttons, the robot guides the
interaction by asking different types of questions to learn about the features of a sample

thttps:/ /www.softbankrobotics.com /emea/en /nao
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Welcome, Parastoo! = Logout
Your Mission: Teach Gamma to distinguish between igneous, sedimentary, and metamorphic. 4 online: @B
IGNEOUS SEDIMENTARY METAMORPHIC 1 2 3

Gamma is sleeping...
.8 ‘ @ o ‘

DESCRIBE EXPLAIN COMPARE

6 GABBRO GRANITE OBSIDIAN PUMICE

-

gabbro. You may have touched Gabbro every day, on your kitchen
countertop. Gabbro is usually dark gray or dark green. On it, you can see
coarse grains of medium to large-size crystals. Sometimes, you can see
layers created by bands of light and dark minerals. Gabbro forms from
the same magma as Basalt. Basalt is formed when it erupts from a
volcano and cools very quickly, whereas Gabbro cools slowly inside the
Earth. Because it cools slowly, it has time to grow larger crystals.
Gabrros is found underground close to volcanoes, and in the earth’s crust
under the oceans. Gabbro can be polished to be a very shiny black,
making it great for cemetery markers, countertops for kitchens, floor

tiling, etc.

Figure 3.1: Curiosity Notebook with Zoom, 1: Robot’s Notes, 2: Repeat Request 3: End
Teaching, 4: Online Users, 5: Categories, 6: Example Articles, 7: Teach Buttons, 8: Check
Buttons, 9: Chat Window, 10: Zoom window of Gamma’s video
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rock in a specific category. The conversations initiated by each button are associated
with a state machine. A detailed diagram of the Describe button state machine is shown in
Figure 3.2. The yellow states indicate where the encouragement of collaboration was added
with an adaptive algorithm. The robot first starts the conversation and asks for the user
to pick a rock and introduce it. If the rock is new for the robot, it will ask for the rock’s
category, and then move on to ask questions about features of the selected rock. If the
rock is already known, the robot immediately moves on to asking for more features about
the rock. The robot only proceeds to the next state after each user input if the state is
valid, otherwise, the robot gives the user a second chance to respond. At the end, the robot
communicates its feelings and excitement about learning. No other interactive buttons can
be clicked until the state machine for the current button has reached the termination state.
The checking buttons are for testing the robot’s learning. The users can choose to either
quiz the robot by asking it to categorize an object or correct a previously learned concept
in the robot’s notes. The users can read and move between the categories and articles of
each category at any time.

There are also three special-function buttons. Unlike the interactive buttons, the
special-function buttons are all single action with no states and can be clicked at any
time. The first button is the Robot’s Notes button. Clicking on the Robot’s Notes button
brings up a notebook containing notes of all the knowledge that the robot has learned so
far. The Repeat button can be used by users in case they misheard or did not hear the
robot. The End Teaching button allows the users to indicate that they have finished the
teaching process. Users can choose to stop teaching at any time.

The Curiosity Notebook supports group or one-on-one interaction. In our work, the
group mode (for a pair of users) was used, in which case the Curiosity Notebook uses
automated turn-talking to facilitate social interactions. In the turn-taking mechanism,
one user will be the active teacher; only the active teacher can chat with the robot. The
second user can click on different articles or use any of the special-function buttons. The
turn-taking was shown to be effective in moderating the conversation during our initial
pilot (discussed in Chapter 5, Section 5.1). The Curiosity Notebook can be used on its
own or connect to a physical robot. For our study, we used the Curiosity Notebook with
a humanoid robot. The connection to the robot is described in section 3.3.

3.1.1 Curiosity Notebook, Early Version

An early version of the Curiosity Notebook was used in the first in-person pilot detailed
in Chapter 5. In this early version, the teaching task started by the user choosing a
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Figure 3.2: The state machine that is executed after the Describe Button is clicked
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topic (choice between Arts, Animals, and Rocks), then picking an object for the robot
to learn about. The flowchart of the chat interaction is available in Fig. 3.3. After the
user registered an object, the robot would ask them to select a sentence from the available
articles, to teach the robot about a feature of a category. Then the robot proceeded to
ask questions about the sentence (immediate questions) and/or deeper questions about the
category. Examples of the questions are given in Table 3.1. The first three are immediate
types and the last three are deeper questions. There was no adaptive element in this pilot,
the maximum number of questions the robot could ask was 4 and the type of question
was chosen randomly. After the robot asked the questions, the robot proceeded to either
ask for a fun fact about the category/object, tell a joke or ask how well it’s performing
(validation question). The list of validation questions is also provided in Table 3.1. In
the final step, the robot indicated that it has learned the targeted feature, and one of
the progress bubbles on the notebook interface would be filled. The cycle was repeated
for all the subsequent features. Each topic has between 8 to 10 features before the robot
can classify all the objects of that topic into the three categories covered in the lesson.
The robot also responded to each of the answers the students provide to its question.
The emotional tone of the response depends on the robot’s understanding and personality.
The emotion is also conveyed through NAO animations as discussed in Section 3.3. The
robot’s personality had two variables, curiosity level (low or high), and learning speed (slow
or fast).

3.2 User Audio Input

Capturing the audio input of the users requires either two different channels (for in-person
studies), or the use of speaker diarization (the process of partitioning audio based on
speaker identity). For our system, we developed both techniques but found that using
different microphones for two users showed better performance. The voice activity of each
microphone was set to the noise level of the room and a Voice Activity Detection (VAD)
algorithm was used to capture the duration of voice activity. The Python interface for
WebRTC? VAD was used in our system. During the remote experiments (as described in
Chapter 6), the voice activity was coded manually in real-time as we couldn’t develop a
reliable Zoom audio speaker diarization technique. The VAD algorithm however was still
used for data analysis after the experiment.

2https://webrtc.org/
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Figure 3.3: Flowchart of interaction between a robot and a group of students for learning
a feature. The stages in the green box are the focus for reinforcement learning.
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Table 3.1: Example of Question Types in the task of Animal Classification

Clarifying Question What does cold-blooded mean?

Example Question What is an example of an insect?

Why Question Why are dogs mammals?

Meaning Question Can you give me more examples of reptiles?
Feature Question Do dogs have fur covering them?
Generalization Questions Do all mammals have four legs?

Am I smart?

Am I a good student?

Am I learning?

Do you think I learned well?

Validation Questions Will I do well in a test?

Am T still good at learning?

How do you think I am doing? Good or bad?
Do you think I will ace the test?

Do you think I know more now than before?

3.3 The Humanoid Robot

The robot connects to the Curiosity Notebook via a Postgres database provisioned on the
Heroku platform, such that each robot utterance is sent to the database and then to the
robot. In addition to the text of the dialogue, each sentence is coded with an emotion:
happy, sad, baseline, bored or curious. Most of the robot’s sentences are neutral. The
emotion code is happy if the robot just learned something (e.g. “I love learning about
rocks”). Sentences are coded as sad if the robot makes a mistake during the quiz. The
emotion is curious with a 50% probability if the robot is asking a question, and a sentence
is coded bored if the notebook was idle for more than 2.5 minutes, in which case the
robot asks participants to continue teaching. The emotion coding was also used to select
the appropriate movement for the robot. The majority of the motions were predefined
in naoqi, the operating system of NAO V6 robot, with a few additional nod motions,
developed manually by joint manipulation for the neutral category. The movements are
summarized in Table 3.2. The utterances are spoken out by the robot while it is acting
the corresponding movement.
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Figure 3.4: The humanoid robot during a Zoom call

3.3.1 The Humanoid Robot for the In-Person Pilot

During the in-person studies, the robot also had some physical capabilities that we couldn’t
utilize in the online user study. The Nao robot has cameras that we used for reading
barcodes of objects. However, in one of our pilots, we noticed the robot head movements
interfered with its ability to read barcodes, therefore, we added the option for users to
type the name of the object they picked or to click on the object in the web interface. The
robot also has speech recognition that wasn’t performing as expected and we didn’t use
it for the pilots. We also developed a way to communicate with the robot outside of the
web interface using touch. The robot was able to receive feedback by touching, a pat on
the head was used as an encouragement signal (when the robot was correct or was doing
a good job) and a tap on the hands was a signal to let the robot know it made a mistake.
The foot sensors were used to activate vision and speech recognition explained above.
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Table 3.2: Robot’s Movements

Emotion Sample Movements

sad Scared, frustrated, hurt, sad, crying, and getting shy, looking down

happy Laughs, giggles, excited noises such as “Yoohoo”, clapping sounds,

neutral Hands and head movements while talking. Sneezing, Eye contact
and turning its head to indicate listening,

curious Recalling and Thinking motions, for example scratching its head,

putting a hand under its chin.
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Chapter 4

Adaptive Encouragement

This chapter starts with a brief background on Reinforcement Learning and specifically
Q-Learning. The background is followed by details of our Q-Learning algorithm designed
to encourage group collaboration, how the algorithm is rewarded and how the users are
encouraged. The chapter ends with our proposed research questions and hypothesis.

4.1 Q-Learning Background'

Reinforcement learning (RL) algorithms map each state (defined as the representation of
the environment at a given time) to an action that changes the environment based on the
rewards associated with each state and action. The goal is to learn the most rewarding
action for each state and maximize the total reward received. The value function of an RL
algorithm keeps track of the long-term desirability of states, calculated by predicting future
rewards. The mapping learned by the RL algorithm is called a policy. Q-Learning is an off-
policy and model-free reinforcement learning algorithm [65]. Model-free RL is used when
we don’t have an accurate model of the environment therefore we can’t predict the state
that each action will lead to. Off-policy learning methods don’t follow the learned policy
while generating training data. Q-Learning keeps track of the best actions by updating
a Q-table. The Q-table summarizes the rewards received for selecting each action at a
particular state and is used for making future decisions (selecting actions). After each
action, the appropriate value in the QQ-table is updated based on the reward received
according to the Q-function defined in Equation (4.1). Here, S; indicates the state at the

'Based on Sutton, 2018 [(5]
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time ¢t and A; represents the action. The learning rate A controls how fast the algorithm
adapts the Q-table values. The discount rate v controls how much the new reward matters
versus the previous rewards when updating the Q-table value. The exploration rate (¢)
is the probability € with which the algorithm disregards its Q-table values for picking the
best action and picks a random action instead.

Q(Sn At) = Q(St> At) + )‘[RtJrl + ’Ym(?XQ(StH’ a) - Q(St> At)] (4-1)

4.2 Q-Learning for Encouragement

Our goal is to increase group/social engagement between the team members using RL,
hence, we modified the robot to deliver encouraging statements during the teaching con-
versation, specifically, after posing a question to the user and waiting for their answer.
The states where encouragement can be provided are highlighted in Figure 3.2 in yellow.
For creating an adaptive encouraging system, we use the Q-learning algorithm [79] to se-
lectively choose if and how to encourage group engagement based on the users’ talking
activity. The reinforcement learning framework is defined as follows:

1. States: At each time step, the interaction can be in one of four states: a) there
is not enough conversation, b) user A is dominating the conversation, c) user B is
dominating the conversation, d) both users are equally and fully contributing.

2. Actions: There are five possible actions: encourage the active user, encourage the
inactive user, encourage both users, pick a non-encouraging sentence, or say nothing.

3. Rewards: A weighted sum of the total time spent talking and the ratio of talking
time of two users. The total reward is calculated as shown in Equation (4.5).

4.3 Reward Calculation

To calculate the reward of the Q-learning at each step, the algorithm reads the voice
activity duration of both users (spki, spks) since the last reward calculation. The reward
has two parts. The first part rewards more talking between both users (7, ), which is
calculated using the ratio of the total duration that both users spoke (ttqking) and the
total time spent interacting with the robot (). The second part rewards the ratio of
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Table 4.1: Encouraging Sentences

Encouragement Type Sentence

“Make sure you let your partner know what you are thinking.”
“Try to explain your answer to your partner before telling me.’
“Why don’t you ask if your partner agrees with you?”

“Why don’t you ask what your partner thinks?”

“Why don’t you two discuss this?”

“Can you two talk amongst yourselves first?”

“Let’s do this together team!”

encourage-both “You can discuss it together first.”

“We can discuss it as a team!”

“Do you want to discuss if you both agree?”

encourage the active user :

encourage the other user

how much the first user talks to how much the second user talks (7,4,). Both parts of
the reward (4.3) and (4.4) are calculated as their distance from the ideal value of 1 (i.e.,
the users spoke the full duration of the experiment and they spoke equally). The total
is calculated by summing the two partial rewards and combining them as a cost (Coverair)
by negation (4.5). The full algorithm is described in Algorithm 1. The state at time ¢ is
indicated with state;, and the notation is consistent for actions and costs.

k
ratio = il and  tyaiking = Spk1 + spks (4.2)
spks
t alkin,
Feaip = (1 — —2E9 )2 (4.3)
Zftotal
Tratio = (1 - ratiO)Q (44)
Ctotal = _(Ttalk + Tratio)

4.4 FEncouraging Statements

There are three different types of encouraging statements, in addition to baseline non-
encouraging statements, summarized in Table 4.1. The robot utterances were created
following the techniques teachers use in their classrooms to promote class participation [62]
and encourage cooperative learning and group discussions in the class [26]. Some utterances
were targeted to individual users by calling their name to specifically engage them [51], or
to ask them to engage their partner, while others were aimed at the group as a whole [57].
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Algorithm 1 Q-Learning: returns an action

Require: states|]|, actions[],v, A, €, Quable

Ensure: size(actions) > 0, size(states) > 0
spky, spko < read audio()

spky

spko

ttalking — Spkl + Ska

Zftot‘al + 10

ratio <

{Calculate the reward of last action}

Ttalk < (
total

Tratio < (1 — ratio)?
costy_y < —(r7 +13)

tmlkm
] — talking y2

{Updating the Q-table}
if t > 0 then
Qrapie|State; 1, action, 1] = Qapie|State, 1, action, 1]+
A X (costy_1 + v X max(Qqape[states]) — Quapie[states_1, action; 1))

sstate;_1 <— state;
end if

{Pick Future Action}
if random number < € then
action; < pick random(actions|])
else
actiony <— max(Quapie[state])
end if

return action;
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4.5 Research Questions

In this work, we seek to investigate whether we can design an adaptive robot that can
increase users’ social engagement as measured by their communication. We also seek to
understand how the adaptive robot affects the learning outcomes and the learning experi-
ence of the users. Our first hypothesis (H1) is that the robot encouraging teamwork will
increase users’ social engagement during the study, therefore increasing their communica-
tion. The second hypothesis (H2) is that the adaptive robot will have greater effects on
(H2a) task engagement, (H2b) enjoyment and (H2c) learning in comparison to the base-
line robot. Our third hypothesis (H3) is that adaptively encouraging teamwork will ensure
both users contribute to the conversation more equally, without any user dominating the
conversation.
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Chapter 5

Pilots and Simulations

The experimental setup (the curiosity notebook and the humanoid robot) was first piloted
in a classroom setting. In the pilot, we observed children interact with the robot and the
curiosity notebook while updating the system. The pilot was reviewed and received ethics
clearance through the University of Waterloo Research Ethics Committee (ORE#40392).
In addition to the pilot, simulations were used to test the adaptive learning algorithm. The
pilot and the simulation results are documented in this chapter.

5.1 Elementary School Pilot!

The goal of the elementary school pilot study was to validate the basic learning-by-teaching
system, which includes the earlier version of the Curiosity Notebook connected to the
humanoid robot. We chose to use the NAO humanoid robot (discussed in section 3.3) for
the study following previous research that demonstrates the physical embodiment of the
social robot carries additional benefits for the social interaction (as discussed in section 2.1).
The system used in the pilot didn’t record user audio as the robot wasn’t designed to be
adaptive or to encourage social interaction.

1Some results discussed in this section have been published. Law, Baghaei Ravari, Chhibber, Kulic, Lin,
Pantasdo, Ceha, Suh, and Dillen. Curiosity Notebook: A Platform for Learning by Teaching Conversational
Agents [44]
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5.1.1 Study Design

The pilot study was carried out as an observational study in a local primary school from
May to June 2019, one day a week, for a duration of 5 weeks. Participants included 7
females, and 9 males, with 11 students from the 4th grade and 5 from the 5th grade.
The students were divided into 4 groups of three students, a group of two and 2 groups
of one student. Each student was provided with a Chromebook to access the curiosity
notebook. Each group was teaching one NAO robot. The NAO robot connected to the
Curiosity Notebook as explained in Chapter 3. The sessions lasted 90 minutes. The pilot
used the measures introduced in section 6.4, except it excluded measures regarding group
work enjoyment and the familiarity with the group members.

In the first 4 weeks of the experiment, 4 groups of students (triads) were asked to
teach the robot rock classification, animal classification and painting classification. In the
first week, students were given a short introduction on the task, did the pre-study survey
and proceeded to teach the robot animal classification. Researchers sat with each group
to observe the students and answer questions during the interaction about the system,
however, the children learned how to operate the notebook within the first 15 minutes
of the interaction. Researchers also helped the students answer the pre-study and post-
study surveys and knowledge tests. In the surveys, the students were asked about their
familiarity with computers and robots, their perception of the robot and at the end, they
were interviewed about their teaching experience. All the interactions with the Curiosity
Notebook were logged in the notebook database. After finishing each topic (e.g. finishing
animal classification) the students did the post-study survey. In the 5th week, the new
students were also given a brief introduction of the task, except their interaction was only
a single session. The results of this pilot are published in [11].

5.1.2 Lessons Learned

Students generally enjoyed the teaching experience. The post-study survey showed that
students liked the robots and thought that it was fun teaching the robots.

In the first week of the pilot, the free-form interaction caused some students to be left
out of the conversation, which led to the implementation of a fixed turn-taking structure.
The students in groups of more than one had to take turns, the turns switched after a single
interaction block. An interaction block is defined as one robot request, one student response
and finally one acknowledgment of the response from the robot. Another downside to free-
form interaction was that without the robot leads and questions, the students were not
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Figure 5.1: The experiment setup, NAO and Laptops (Source: “Curiosity Notebook: A
Platform for Learning by Teaching Conversational Agents” [11])

sure how to proceed with teaching. We decided to change the structure of the Curiosity
Notebook so the robot always starts the conversation by giving some hint as to what
questions should students answer next. However, in the post-study survey, the students
expressed that they wished they had more choice in how they teach the robot, the latest
version of the Curiosity Notebook includes multiple teaching options to give the users this
freedom.

We also observed some group collaboration, some students took the initiative to offer
help to their teammates during the teaching session, without any explicit robot encourage-
ment of teamwork. This behaviour might also be motivated by students’ eagerness to get
their own turn. Groups progressed through the task at different speeds and they also had
different approaches to when they wanted to quiz the robot. Some groups only quizzed the
robot after they finished teaching, while others quizzed the robot multiple times through-
out the teaching session. Additionally, it was observed that in a group setting, the amount
of attention the robot gave each student affected students’ perception of their own teaching
ability. The students also noticed the teachable robot’s social characteristics such as calling
the students by their names and looking in the student’s direction.

After analyzing the responses to the validation questions, we concluded they are pos-
itively biased (37 positives vs 7 negatives and 3 mildly negatives e.g. “not good enough
yet”). This phenomenon has been discussed in other literature [70], students might have
felt bad if they didn’t reward the robot, even when the performance was not great. How-
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ever, one group constantly gave negative feedback to the robot. This might be due to
curiosity for observing the reaction of the robot to feeling sad or hurt. The question com-
binations generated by the robot were limited to a maximum of 4 questions and they were
generated at random. Answers to the validation question depended on the group rather
than the robot’s actions (e.g types of questions the robot asked, as detailed in Table 3.1 in
Chapter 3) and they remained similar regardless of the robot’s characteristics (e.g. asked
different questions, learned faster or slower, showed more or less curiosity). Considering
the results, the final version of the Curiosity Notebook didn’t include validation questions.

Additionally, over time we saw children focused more on the Curiosity Notebook and
less on the robot, reducing the outside-notebook interactions with the robot, such as talking
directly to the robot, giving the robot touch feedback and showing objects to the robot.
This observation led to changes in the system such as removing spoken sentences of the
robot from the chat log (adding a repeat button instead) and improving the synchronization
of the Curiosity Notebook and the robot (the Curiosity Notebook only updates after the
robot is done speaking or moving). The students also rarely used the tactile touch feedback.

5.2 Simulations

Simulations to test the adaptive learning algorithm were conducted by assuming a simpli-
fied model of a pair of participants. The simulations were used to validate the learning
code and select learning hyper-parameters. Two models of the participants were tested
and the results are explained in this section.

Simple Dyad Model: The model (also described in Algorithm 2) generated values for
voice activity for both hypothetical participants that start from a random value between
0 to 1 second in the 10-second measurement interval. The simulated participant’s voice
activity in the next measurement interval is generated based on the action of the adaptive
learning algorithm. If the algorithm picks the action of encouraging participant #1, the
voice activity of that participant would be increased between .5 to 2 seconds, we call this
the growth rate. Likewise, if participant #2 is selected, the corresponding voice activity
increases. If the algorithm chooses to encourage both participants, the voice activity of
both participants will grow with different random growth rates. Any other action results
in a growth rate of 0. Random noise was also added to the participants’ voice activity,
ranging between -1 to 1 second in each measurement interval. The interaction consists of
40 measurement interval. The upper-bound for the growth rate has a natural decay, given
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that the participants might talk less as the time passes, the decay 0.01 second for each
measurement interval (e.g. participants’ voice activity growth rate can only be between 0.5
and 1.99 seconds after the first round). The model also makes sure the generated values for
each participant are within acceptable limits of time, no generated voice activity value can
be less than 0, or more than 5 seconds for each participant. This dyad model favours the
action of encouraging both participants and then the action of encouraging any of them, as
expected the algorithm trained with this model converges to picking one of these actions
over and over again.

Algorithm 2 Simple Dyad Model

Require: speakerl,_q, speaker2,_q,action;_1,round

noisey <— random(—1to 1)

noiseg < random(—1to 1)

decay < 0.01 * round

growthy < random(0.5 to 2 — decay)

growthy < random(0.5 to 2 — decay)

if action;_1 = encouraging speaker 1 then
speakerl; <— speakerl,_y + growth, + noise;

else if action;_; = encouraging speaker 2 then
speaker2; <— speaker2;, 1 + growthy + noises

else if action, | = encouraging both speakers then
speakerl; < speakerl,_y + growth, + noise;y
speaker2; < speaker2;_1 + growthy + noises

end if

return speakerl;, speaker;

As explained in Chapter 4, Equation (4.5), the desired value for the cost (reward) in
our adaptive learning algorithm is 0. The value of the cost (total reward) is plotted based
on an average of 100 trials. To tune the adaptive learning algorithm, we ran 100 trials
for each value of the learning rate (\), the discount rate (), and the exploration rate (¢)
between 0.1 and 0.9, in 0.1 increments. The results of the grid search for (A), () and (¢)
are shown in Figure 5.2, Figure 5.3 and Figure 5.4 respectively.

As we see in the simulation results, the highest exploration rate performed the best,
because when the interaction is short (40 intervals) and the costs are always negative,
the algorithm won’t explore the Q-Table at all if the Q-Table is initialized with values
less than the highest possible cost (-2 in our algorithm) as they will appear to be worse
choices than the already explored actions. When the Q-Table is initialized with values that
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Cost Over Time with Changing Learning Rate
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Figure 5.2: Simulation Results of Grid Search for The Learning Rate (\), using Simple
Dyad Model
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Cost Over Time with Changing Discount Rate
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Figure 5.3: Simulation Results of Grid Search for The Discount Rate (), using Simple
Dyad Model
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Cost Over Time with Changing Exploration Rate

0.01 —— 0.1 —
0.2 S e
—4— 0.3 S S —=
_o] —* 0.4 =
—— 0.5 AT
—— 0.6 7
— 0.7 /
-0.21+ —+— 0.8 p
) 0.9
2 ’
[}
= -0.3 Z
8
I
@
o
© -0.41
-0.5
-0.6

0 5 10 15 20 25 30 35
Figure 5.4: Simulation Results of Grid Search for The Exploration Rate (¢) with Q-table
initialized at 0, using Simple Dyad Model
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Cost Over Time with Changing Exploration Rate
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Figure 5.5: Simulation Results of Grid Search for The Exploration Rate (¢) with Q-table
initialized at random, using Simple Dyad Model
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encourage exploration, the performance improves and the exploration rate doesn’t affect
the performance of the algorithm as much. This can be seen by comparing Figure 5.4
(Q-Table is initialized with -100) and Figure 5.5. Similar to Figure 5.5, in the user study,
the Q-table was initialized by positive values between 0 and 0.5 at random while the best
possible value for the cost is 0.

The simple dyad model assumes that the voice activity of participants monotonically
increases except when the noise has a negative value or decays after each round. This
creates a dependency between the voice activity at different time intervals. Based on
the real experiments, how much the participants talked in a 10-second interval was not
dependent on how much they talked in the last one and the voice activity of a participant
could go to 0 suddenly, for example, if they were typing in that 10-second interval. The
second limitation of this model is the 5-seconds upper limit for each participant. This limit
is not realistic, one participant could spend 0 seconds talking in an interval while the other
participant will talk all of the 10 seconds in the measurement interval.

Independent Dyad Model: To address the limitations of the simple dyad model, we
can assume participants’ voice activity is unrelated to how much each participant talked
previously, therefore the voice activity of the first participant is a random value between 0
and 10 seconds (which we call the initial estimate), and the second participant is 0 to 10
minus the initial estimate of the first participant, which also addresses the second limitation
of the simple dyad model. The model is described in Algorithm 3. After the initial estimate
value is generated, voice activity will either be equal to the initial estimate or 0 based on
the action selected by the adaptive learning algorithm. If the algorithm only encouraged
participant #1 then the value of voice activity for participant #2 is set to 0. To make the
voice activity response to each action more realistic, we added a few possible scenarios in
response to each. If the algorithm does nothing or says something that is not encouraging
group work, there is a probability of 0.1 that the voice activity for both participants is
equal to their initial estimate instead of 0. If the algorithm encourages participant #1 to
speak, there is a 0.1 probability participant #2 also speaks, therefore their voice activity
equal to their initial estimate instead of 0. If the robot encourages both participants, with
a probability of 0.8 both of their voice activity is equal to their initial estimate, otherwise,
with 0.2 probability only one of the participants has a voice activity equal to their initial
estimate (0.1 probability participant #1 is 0, 0.1 probability participant #2 is 0). Figure
5.6 shows the performance of the algorithm is stable using this model. As expected, there
is significant noise due to the randomness of the user model, however on average, the cost
lowers overtime. Figure 5.7 and Figure 5.8 also show the talking time of both participants
and their ratio, which we see mostly remain unchanged, with the ratio slightly improving
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Figure 5.6: Simulation Results: Cost of Adaptive Learning Algorithm, using Independent
Dyad Model

over time.

5.2.1 Lessons Learned

The simulation results show that the adaptive algorithm is not sensitive to the hyper-
parameters when the Q-table is initialized at random. For the final user study, the learning
rate for Q-Learning (\) was set to 0.6 based on simulation results (Figure 5.2). The values
of the discount rate () and exploration rate (e) were also selected based on simulation
results. The value of the discount rate controls how much current audio input matters
versus how much the next audio inputs will matter, set to 0.2 (Figure 5.3). The exploration
rate, €, was chosen to be 0.5 (Figure 5.4).
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Algorithm 3 Independent Dyad Model

Require: action,_q, round
decay < 0.01 * round
estimate; <— random(0 to 10 — decay)
estimates <— random(0 to 10 — decay)
noise; < random(—1to 1)
noiseg <— random(—1to 1)
probability < random(0to 1)
if action,_1 = encouraging speaker 1 then
speakerl; < estimate; + noise;
if probability < 0.1 then
speaker2, <— estimates + noises
end if
else if action, | = encouraging speaker 2 then
speaker2; < estimates + noises
if probability < 0.1 then
speakerl, <— estimate, + noise;
end if
else if action, | = encouraging both speakers then
if probability < 0.8 then
speakerl, < estimate; + noisey
speaker2; <— estimates + noises
else if probability < 0.9 then
speakerl; < estimate; + noisey
else if probability > 0.9 then
speaker2, <— estimates + noises
end if
else if action,_, = encouraging none OR action;_; = nothing then
if probability < 0.1 then
speakerl; < estimate; + noisey
speaker2; <— estimates + noises
end if
end if
return speakerl;, speaker2;
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Chapter 6

Adaptive Teachable Robot User
Study!

The goal of the experiment is to study the effect of adaptive social engagement encour-
agement on social engagement, task engagement, enjoyment and learning. This chapter
discusses the experimental design, the recruitment and demographics of participants, the
metrics and measures used, and finally the results of the user study.

6.1 Experimental Design

To study the effects of teamwork and how the robot can encourage teamwork, our user
studies are done in dyads (two participants). A dyad is a special form of a group, research
in psychology highlights the difference between the relationships formed in a dyad versus
in a group [15,53]. However, there is also research in psychology showing the results
from dyadic studies could be scaled to larger groups [74,81]. The curiosity of the robot,
its learning speed, emotions and the questions it asked were kept constant across all the
studies. The experiments were carried out between subject and in two conditions, baseline
or adaptive. In the baseline condition, the robot does not encourage teamwork. In the
adaptive condition, the robot encourages teamwork based on the audio input from the users.
The user study was initially scheduled to be run in a physical school setting; however, due

'Results discussed in this Chapter have been submitted to the IEEE Conference on Robotics and Au-
tomation (Effects of an Adaptive Teachable Robot Encouraging Teamwork on Students’ Learning Process,
Baghaei Ravari, Lee, Law, Kuli¢)
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to Covid-19 restrictions, the study was modified to be conducted remotely with 34 pairs
of adult participants. The teaching/learning material was unmodified as the task of rock
classification and the twelve rock articles were unfamiliar to most adults. A geologist at
the University of Waterloo provided consulting during the material development phase.
However, in the future, the material should be more carefully adjusted to different age

groups [9, 17].

6.2 Participants

The user study was reviewed and received ethics clearance through the University of Wa-
terloo Research Ethics Committee (ORE#40392). The participants were recruited through
emails from the University of Waterloo and the social networks of the researchers. They
were asked to sign up for a time slot, so they were randomly matched with other par-
ticipants that signed up for the same time slot, except three pairs who knew each other
and chose to sign up for the same time slot. After signing up, the participants received
instructions to join a Zoom call. A total of 68 participants were recruited for this study,
forming 34 dyads. However, two dyads were excluded from analysis due to system lags
and errors, whereas two more dyads were excluded due to one of the participants arriving
significantly later than the scheduled time. T'wo more dyads were excluded after analyzing
the data for technical issues and missing data. Of the remaining dyads, 15 dyads were
randomly assigned to the adaptive condition, and 13 dyads were assigned to the base-
line (non-encouraging) condition. The participants were all adults between ages 20 to 35.
Table 6.1 summarizes the dyad-wise demographics. The individual demographics are not
relevant to our analysis as they are done with dyad units(a pair of participants), however,
Table 6.2 summarizes the individual statistics of participants to give you a general overview
of our participants. Additional information about the participants was capture through
pre-study surveys (explained in Section 6.4) are stated in Appendix A and are similar for
the participants in both conditions.

6.3 Procedure

On the scheduled date and time, Gamma (the humanoid robot) and the researcher were
both in the Zoom call (Figure 6.1) waiting for the participants. The experimental condition
was assigned beforehand, and the participants were not aware of the condition assigned.
Participants were given their login credentials for the Curiosity Notebook after they joined
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Table 6.1: Dyad-wise Demographics and Measurements

Adaptive Baseline

(n = 15) (n = 13) p-value
gender combinations MM=2, FF=5 Mix = 8 MM=2, FF=4 Mix = 7 2~ 0.14 p=0.98
age difference (years) 4.13(£3.38) 3.46(£3.13) t = 0.54, p= 0.6
dyad age sum (years) 51.47(£4.6) 52.23(£5.33) t =-0.40, p = 0.69
started speaking English  11.8(+9.21) 12.92(£10.2) t=-0.31 p=0.76
prior knowledge on topic 4.27, SD=1.22 6, SD=2 t=-2.81, p=0.01

Table 6.2: Mean demographics and measurements between conditions

Adaptive Baseline

(n = 30) (n = 26) p-value
age (years) 25.73(£3.50) 26.12(£3.50)  t=-0.25 p=0.8
gender (m/f) W=18, M=12  W=15, M=11 %~ 1073 p=1
major 4 non-stem 4-non-stem Y’ ~ 0 p=1
native English-speaker No=15, Yes=15 No=18, Yes=8 \? = 1.41 p=0.24
started speaking English 5.9(£7.76) 6.46(46.09) t =-0.3,p=0.77
prior knowledge on topic 2.13, SD=0.9 3, SD=1.5 t =-2.67,p=0.01

the call. All usernames were the preferred first name of the participants and it was the
name Gamma used to address them. Upon logging-in, they had to sign the consent form,
after which they proceeded to fill in the pre-study surveys (described in the next section 6.4
Measures). After the pre-study survey, the participants watched a three-minute instruc-
tion video, in which they learned about the Curiosity Notebook buttons and how to teach
Gamma. After the video, participants arrived at the teaching interface, they were asked to
wait for their partners to also finish all the previous steps. Before they started teaching,
they were offered the chance to ask clarification questions from the researcher, as no ques-
tions would be answered during the teaching period. The participants’ audio was recorded
throughout the experiment. The duration of the experiment was up to the participants
and it varied between 25 minutes and 69 minutes. After deciding to stop teaching Gamma,
the participants were taken to the post-study questionnaires.
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Figure 6.1: Zoom Call Interface, with two participants and Gamma

6.4 Measures

The pre-study surveys included demographics, familiarity and interest in robots, conver-
sational agents and the topic of rock classification. They also included questions regarding
the participant’s interest in group work, and whether they knew their co-participant (group
familiarity). The group familiarity survey was designed to measure some of the group char-
acteristics that influence group work [33,37]. In this study, the task was identical for all
the participants, with no roles assigned, and no participant having prior experience with
the system, therefore the focus was on group familiarity. We asked about the participants’
familiarity with their co-participants in the study, both at an in-class and outside-class
interaction level, and their interest in group work, both measured on a 4-point Likert scale
to be consistent with the scale of the other questions in the familiarity survey. The 4-point
Likert scales (odd-scaled) eliminate the neutral option, forcing the participants to lean
toward either positive or negative responses [16], therefore it was deemed appropriate for
this survey. Participants also answered a questionnaire on their feelings towards, and per-
ception of Gamma (Godspeed Questionnaire [1]), in addition to their mood (Pick-A-Mood
survey [21]). The last pre-study questionnaire was a knowledge test on rocks.

Post-study surveys included a questionnaire on the participants’ experience. The par-
ticipants answered questions on how much they enjoyed their experience, their interest in
participating again, learning more about the topic they taught, and how much they enjoyed
working with their partner. They were asked if they thought the robot was giving both
of the participants a fair chance and encouraging group work. Other post-study surveys
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include another questionnaire on participants’ perception of Gamma, another knowledge
test, their motivation behind task completion (Intrinsic Motivation Inventory (IMI) [20]
and Types of Motivation [27]).

6.5 Results

The results directly related to our hypothesis (as stated in Section 4.5), such as the time
participants spent talking and the comparison between each participant’s activity are elab-
orated upon in this section. Furthermore, we discuss the effects of group engagement on
task engagement, enjoyment and learning gains. All the other data was captured prior to
the experiment and after the study with surveys were examined, and we report no signif-
icant difference between the two conditions. All supplementary results from surveys are
detailed in Appendix A.

6.5.1 Talking Duration

As the participants decided themselves when to end the experiment, talking time is nor-
malised by the experiment’s overall duration. Figure 6.2 shows the normalised talking time
for both conditions. The average ratio of talking time to total experiment time was signif-
icantly larger for dyads in the adaptive condition, confirming H1 (£(26) = 2.24, p = 0.03).
There was no statistically significant difference in overall experiment duration between
the two conditions (Mugepr = 2539(s), SD = 511.8, Myse = 2684.39(s), SD = 622.69,
t(26) = —0.66, p = 0.51).

The ratio of talking time to total time also depended on the gender (highest when both
group members were female § = 0.13, ¢(17) = 2.46, p = 0.03), and the group’s interest
in conversational agents (8 = 0.03, t(17) = 2.2, p = 0.04), which are both stronger than
the correlation with the experimental condition (Byase = —0.1, t(17) = —2.09, p = 0.05).

The dyads in the adaptive condition also spend more time talking between 20 to 30
minutes into the teaching interaction, which could show that the adaptive encouragement
of group collaboration helped in maintaining higher levels of communications in compassion
to the baseline condition (Mygap: = 163.7,5D = 91.12 and My, = 148.27,SD = 62.59,
t(26) = 2.88, p = 0.008).
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6.5.2 Talking Trend

To analyze the effect of the encouragement over time, we can compare the trends of talking
time between two conditions, shown in Figure 6.3. The adaptive condition results in higher
talking time on average for the duration, but the trend is downward for both conditions
and the slopes are not significantly different (Mygop = —0.81,5D = 0.75 and Mp,se =
—0.72,SD = 1.27, t(26) = —0.23, p = 0.82). Qualitatively, the initial conversations were
mostly questions on how the system works or wondering about the functionality of different
buttons, regardless of the condition. Those types of conversations faded as the participants
learned how to use the system.

6.5.3 Relative Participation

We hypothesized that the adaptive condition would result in a more equal division of
speaking between participants (H3). To investigate our hypothesis, we define the speaking
percentage of each user at any given period by the ratio of their speaking activity duration
to the overall speaking activity in that period. The ideal value of speaking percentage
is 50%, which means both group members contributed equally to the conversation. Fig-
ure 6.4 illustrates how much the speaking percentage of one participant (in each dyad)
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Figure 6.3: Slope of Talking Time

deviates from the 50% (calculated in (6.1)), where a lower deviation indicates more equal
contribution. As shown in Figure 6.4, the average percentage difference is higher in the
adaptive condition at the start, but it moves toward 0. In the baseline condition, however,
the difference starts at a more desirable value but remains nearly constant, showing that
the robot does not influence the balance between the two participants in the baseline con-
dition. In the adaptive condition the slope is M = —0.13, SD = 0.25 while in the baseline
condition slope is M = —0.002, SD = 0.17. The difference in slope is not statistically
significant with #(26) = —1.55, p = 0.13.

(spk1)
1 —_— 0. Nl
1100 (spk1 + spk2) 0.5] (6.1)

6.5.4 Other Effects of the Experimental Condition

Task engagement, defined as the number of interactions participants had with the Curiosity
Notebook, was higher in the adaptive condition. The number of buttons participants
clicked (F(1,20) = 4.79, p = 0.04), how many times they taught something (F'(1,26) =
3.09, p = 0.06), and how many articles they clicked (F(1,25) = 8.15, p = 0.01) all are
greater in the adaptive condition. The number of articles clicked was also correlated to
participants’ self-declared desire to teach (from the pre-study questionnaire) (F'(1,25) =
6.29, p = 0.02).
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Figure 6.4: Distance (6.1) of Participants’ Speaking Percentage from 50%

To compare learning gains, we have to consider that despite the random assignment,
the participants in the baseline condition reported higher knowledge about rocks (refer to
Table 6.1). To evaluate if there was any learning gain, we compared the score improve-
ment (pre-score - post-score). The difference in learning gain between conditions was not
significant, shown in Figure 6.5 (Mugape = 1.74, SD = 3.47 |, Myyse = 2.38, SD = 2.53
, t(23) = —0.56, p = 0.58). The improvement in the score was highly and negatively
correlated with the pre-study test score(8 = —0.76, t(23) = —6.29, p = 0), which means
the participants with less knowledge showed higher learning gains. Secondly, as expected,
the improvement was positively correlated with participants’ interest in rocks (5 = 0.37,
t(23) = 2.62, p = 0.02). There was a weaker negative correlation between how much
the participants thought they knew about rocks and their score improvement (f = —0.4,
t(23) = —1.71, p = 0.1). Regardless of condition, the average knowledge test score
improved after the study by 1 point.

Examining our second hypothesis (H2b) on increased dyad enjoyment (how much the
participants enjoyed working with their partner), we report no significant difference be-
tween the conditions.
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Figure 6.5: Knowledge Test Improvement in Both Conditions

6.5.5 Participants’ Perception of the Robot and Qualitative Data

Qualitative results are captured through 2 different methods, survey and audio coding.
Survey questions were the same for all participants, however, some questions were open
ended, for example, a yes/no question such as “Do you think the robot was encouraging
teamwork?” was followed by “Please explain why”. The survey also included open ended
questions on what the participants would like to change or any other feedback/comment
they have. The second part of the qualitative data comes from the participants’ conversa-
tion through the study, for example, “Gamma’s laugh is funny”.

Post-Study Survey

From the post-study Godspeed questionnaire, one characteristic of the robot differed sig-
nificantly between the two conditions. The participants in the adaptive condition found
Gamma less pleasant (sum of the dyad’s perception on a 5-point Likert scale), and this
is affected by both the experimental condition and their interest in rocks (Mugept = 7.47,
SD = 1.36 and My, = 8.46, SD = 0.88, p = 0.03). For the other Godspeed measures,
despite the online user study and users only observing a video of the physical robot, they
reacted positively to the humanoid robot. The users also anthropomorphised the robot
during the teaching by commenting on its laugh, looks and intelligence. The rest of the
results from the Godspeed questionnaire are documented in Appendix A.
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From the post-study experience survey (section 6.4), most participants in both condi-
tions considered the robot to be fair, in the baseline condition this was due to the turn-
taking mechanism, and how the robot gave both participants their turns (Mg, = 1.93,
SD = 0.26 and My,se = 1.58, SD = 0.79, t(25) = 3.13, p = 0.11). In the adaptive condi-
tion, prompts for discussion among group members were considered a sign of fairness in 8
instances. For example, one participant wrote “it was fair because he told my partner to
explain himself more”. In the adaptive condition, there was one instance of the robot being
deemed as unfair, because it kept interrupting the participant’s ongoing discussion with its
next prompts. In the baseline condition, 5 participants thought the robot was not fair, 2
of which were due to the robot interrupting them. Turn-taking and instance of the robot
talking over participants are some of the current challenges of human-robot-collaboration
and many of the cues used in face-to-face interaction were not applicable in the virtual
setting of our experiment [2].

When it comes to participants’ perception of whether the robot was encouraging of
teamwork, the participants in the adaptive condition found the robot more encouraging
(Magapr = 1.93 ,SD = 0.28 and My, = 1.33, SD = 0.65, t(24) = 3.13, p = 0.004) in the
survey. Students in the adaptive condition found the statements robots said to be encour-
aging of teamwork in 27 instances. Only 2 students in the adaptive condition perceived
the robot as not encouraging, the participants knew each other well before the experiment,
they could have collaborated without any encouragement from the robot and hence didn’t
recognize the encouragement. Participants in the baseline condition interpreted forced
turn-taking as encouragement of teamwork in 6 instances, while others cited unrelated
reasons, such as the experiment being fun, or the need to figure out how the system works
initially. 9 participants in the baseline condition stated the robot was not encouraging
teamwork.

Results from the survey about the teaching experience and mood show that the majority
(37) of participants in both conditions enjoyed their teaching experience (Mygopr = 2.9,
SD = 0.9 and Myese = 2.8, SD = 1, on a 4 point Likert scale). In both conditions, the most
frequently mentioned reason for enjoyment was that it was an “exciting experience”. Some
characteristics of voice and appearance of the humanoid robot (Gamma) were mentioned
in the participants’ elaboration, such as “enthusiastic robot”, “fun movements”, “sense of
wonder in Gamma’s face”, in addition to some non-physical characteristics such as “good
notes” and “fast learner”. In both conditions, “slow” and “repetitive prompts” were the
most common reason behind participants’ dissatisfaction.

There is little difference between the two conditions in terms of the participants’ per-
ception of their teaching level, or whether they thought of Gamma as a good student. The
encouragement of collaboration was mentioned as a characteristic by one participant in
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Figure 6.6: Participants’ Mood Before and After the Experiment

the adaptive condition. A participant in the baseline condition called the robot socially
unaware and “as if there were no humans in the interaction”.

The results from the Pick-A-Mood scale [21] shows the 20% of participants in the
adaptive condition felt tense before the experiment (as seen in Figure 6.6), and the numbers
dropped to 10% after the experiment. However, in the baseline condition feeling tense
increased from 8% before the experiment to 19% afterward. Feeling excited went from 0%
to 33% in the adaptive condition and 8 to 23% in the baseline condition. Lastly, more

participants in the adaptive condition thought Gamma was excited (83%) in comparison
to the baseline (53%) as seen in Figure 6.7.

In participants’ general feedback on what they wanted to change, recurring requests
were to make the interaction faster, make the Curiosity Notebook easier to interact with,
and allow participants more freedom or give them more options. Feedback related to
changes in the robot were similar in both conditions, mostly to tone down the excitement

especially laughing. There were also a few reports of Gamma being hard to hear over the
call or the voice getting interrupted.
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Figure 6.7: Perception of Robot’s Mood Before and After the Experiment

Participants’ Audio Recordings

The conversations between the participants were coded in 10 different categories, 12 sessions
were randomly selected to be coded. The categories are summarized in Table 6.3. Short
term plans for teaching can happen in every step of the teaching and included letting the
other participant know of the chosen rock or sentence or the immediate next action. Short
term plans only happened in the adaptive condition as they were reactions to encouraging
statements by the robot. However, in the adaptive condition, participants showed the habit
of discussing short term plans after a few times of being encouraged to do so, even when the
robot didn’t use an encouraging statement. Despite the lack of robot encouragement in the
baseline condition, there was still some planning and collaboration between the participants
(in 5 out of 6 sessions). Some participants (2 sessions) in the baseline condition chose to
discuss long term plans on how they will approach teaching before they start, for example,
“You can teach first”, “I think we should first teach all igneous rocks”, or “We should
describe all of them first and then compare”. One dyad in the baseline condition asked
before the study if they are allowed to talk to each other before they start so they can come
up with a strategy. Long-term plans involved general statements, as opposed to short-term
plans, which include the immediate action the user is intending to take. In the baseline
condition, sometimes one participant would ask a question (e.g. “What rock did you pick”)
that would be similar to a short term plan, or a participant would suggest an action for the
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other (e.g. “You should teach Garbbro now”) but these scenarios didn’t present the same
opportunity for discussion or collaboration as the robot’s explicit encouragement did. In
2 instances in the adaptive condition, one participant’s comment or question was ignored
by the other participant, resulting in termination of all further communications. In 2
instances (in the baseline condition), one user dominated the conversation and made most
of the teaching decisions. Three dyads in the adaptive condition showed curiosity about
what if they teach something wrong or spell wrong. In 2 of the dyads that didn’t create
any conversation, all four participants struggled to learn how to work with the Curiosity
Notebook but that wasn’t enough for them to start talking to their group-mate. Generally,
for the participants who had a hard time figuring out how to work with the Curiosity
Notebook (3 instances, 1 in the adaptive condition) their experience was negatively affected
and one participant of a dyad in the adaptive condition expressed signs of frustration
during the experiment such saying “I hate this robot”. It appears that students who
communicated for longer (most of them in the adaptive condition) felt more comfortable
sharing their opinions such as comments on Gamma (“It’s such a cute robot”), comments
on articles (“didn’t know this about slate”) and the experience with their group-mates.
All but one of the dyads discussed when it came to ending the experiment.

6.5.6 Q-Learning Results

As discussed in Chapter 4, the exploration rate of the algorithm was set to 0.5, this means
that 50% of the time the robot would select a response according to the maximum value
of the Q-table and the other 50% of the time, it would select a random response. In 12
of the 15 groups in the adaptive condition, on average, the adaptive choice performed
better (led to better reward) in comparison to the random choice. However, the difference
between the average reward resulting from the two types of choice was not significantly
different. To further study the significance of the adaptive condition, the experiment
should include an additional condition (besides adaptive and baseline) in which the robot
randomly encourages the participants to collaborate. Additionally, the adaptive condition
and the random condition could become more distinct if the robot is given more freedom
in its behaviour, and has a bigger action repertoire. The action repertoire limitations are
discussed in more detail in the next chapter (Chapter 7).

52



Table 6.3: Teaching Session Audio Coding

Category Meaning Example

teaching plans - long term | Overall plans for how to proceed with | “I think we’re not teaching enough sen-
the teaching tences”

teaching plans - short term | Discussions around the next action “obsidian, I wanted to describe obsidian”

Questions about Interface | How and why questions about the in- | “Oh is it my turn now?”
terface

Discussion on articles Discussing the information read in any | “It says Quartz can have different colours
of articles depending on the beach location”

Comments on Gamma Comments about robot’s behaviour “why is he sneezing? bless you”

Comments on teaching Giving feedback on teaching action of | “I think he wanted a different sentence
their teammate after the action from the one you selected”

Unrelated Comments that are not about the ex- | — didn’t happen in any of the sessions —
periment or teaching

Unanswered Any of the above that goes unanswered | — no acknowledgement or answer from
by the other participant their partner —

Ending Conversations around when to end the | “should we finish now?”
teaching session

6.6 Summary

We ran a user study (n = 68), where a pair of participants work together to teach a
humanoid robot about rocks and minerals. The experiment was between subjects consisted
of two conditions. In the adaptive condition, the robot uses reinforcement learning to
maximise interaction between the students. In the baseline (control) condition the robot
does not encourage group/social engagement. The studies were conducted online and on
a Zoom call, with two participants, the humanoid robot Gamma, and the researcher.

The results of our user study confirmed our first hypothesis (H1), robot encouraging
teamwork increased team communication. The results also show the potential for an adap-
tive encouraging robot to create more balanced participation between the group members
however we can’t confirm (H3) as the result is not statistically significant. The results
were aligned with (H2a) as the participants in adaptive condition clicked on more articles,
and thought more to the robot. The results, however, were not consistent with (H2b) and
(H2c), as there was no significant difference in enjoyment and learning gain between the
participants in the two conditions.

The participants in the adaptive condition also perceived the robot as more excited
and reported feeling less tense after the experiment. They also recognized the robot was
encouraging of teamwork. The participants of both conditions reported similar levels of
enjoyment from the experiment and considered the robot to be fair. The most common
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feedback for improvement of the system was related to making the interaction faster and
give users more flexibility in how they go teaching the robot.

54



Chapter 7

Conclusions

The results of our user study showed that encouraging group engagement increased com-
munication as well as participants’ task engagement and exploration. The results also show
the potential for an adaptive encouraging robot to create more balanced participation be-
tween the group members. However, we were not able to show any effect of increased
communication on learning outcomes. When it comes to participants’ perception, they
noticed the encouragement by the robot to collaborate (no significant difference between
conditions) and they perceived the interaction as more fair in the adaptive condition.

7.1 Limitations and Future Work

Our study has several limitations. First, participants’ group engagement was only mea-
sured through their verbal communication and didn’t include factors such as emotions and
non-verbal behaviour that could be measured in an in-person study. The communication
was also not categorized based on the subject of discussion to differentiate between on-task
and off-task communication. Work by Sinha et. al. [63] defined social engagement in groups
involving two concepts, the first one was group cohesion, and the understanding that the
task was a shared activity, and the second was equitable participation. In their study,
social group engagement was measured from videotapes and offline. Some behaviours were
marked as positive socio-emotional, such as respectfulness, cohesiveness, responsiveness,
and some as negative socio-emotional behaviour such as attempts to dominate or ignor-
ing and excluding other group members which resulted in lower social engagement scores.
Future systems equipped with online speech recognition, facial expression recognition or
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audiovisual emotion recognition could categorize the group conversations and user’s emo-
tions as positive or negative socio-emotional behaviour. Including other measures of en-

gagement will improve the adaptive learning algorithm by providing it with more accuracy
and feedback (reward).

Secondly, the robot’s action repertoire could be expanded by including other forms of
encouragement, for example, non-verbal behaviours such as eye contact, or other verbal and
non-verbal behaviours such as back-channelling. Back-channeling includes active listening
techniques such as a glimpse, using expressions such as “hmm” or Chameleon effect which is
when one interaction partner mimics the other [(9].° Supporting the participants’ answers
and ideas has also been shown to increase group cohesion which could increase engagement
[64]. The reinforcement learning algorithm used for adaptation could also be improved by
using a dynamic/decaying learning rate [30], discount rate [55] and exploration rate [23,78].

There is a lack of long-term studies when it comes to social robots in education, even
though they are necessary to show the feasibility of integrating robots into everyday life [15].
Performing a long-term study will allow for more accurate measurements of the learning
gain, fosters stronger social bonds and interactions, and studies show it is possible to
maintain long-term engagement [7, 18, 16]. At the same time, one of the challenges of
introducing robots in education is the novelty effect (the initial high response to new
technology). This issue could be addressed with long-term studies, which successfully
maintained interest and engagement over long-term interaction [73] and some of the long-
term studies have shown promising result despite the drop in interest [11,12].

The suitability of the system for the tested age-group also needs to be further validated.
It is not yet clear if the systems that are appropriate for children can be used for adults

and most of the research in social robots for education involves children [7]. The existing
studies with adults use different approaches from studies with children, making it difficult
to compare the performance of teachable robots between age-groups [73]. Additionally,

as discussed in Chapter 6, the learning materials themselves could be changed to more
appropriate levels for different age groups.

Additionally, due to Covid-19 restrictions, our study was performed remotely, intro-
ducing the possibility of delays and poor quality audio/video that could have affected
the engagement negatively. The experience of the users could be improved by integrating
strong video streaming services into the Curiosity Notebook, reducing the probability of
the users missing out on the humanoid robot’s actions and behaviours. The results might
differ for an in-person study. The participants also couldn’t get the full benefits of physical
robots such as their capability to display more social behaviours during the interaction
and additional learning gains from interacting with robots with a physical embodiment [7].
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However, the remote study approach could be deployed more broadly in future studies,
given the emergence of online learning platforms.

One possible direction for feature work that could improve the results and study the
effects of adaptability separate from the effects of group engagement, is to include a third
experimental condition, in which the robot encourages group engagement but does so
randomly without considerations for the current group engagement levels. Further, the
adaptive algorithm could be expanded to include other forms of rewards such as task
engagement. In that case, the robot will learn the best encouragement techniques for
group engagement that lead to the highest task engagement (such as user responsiveness,
completion time).
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Appendix A

Detailed User Study Results

A.1 Demographics and Pre-study Survey Results

The results reported from surveys before the start of the teaching interaction are shown
in this section. Figure A.1 shows the distribution of various degrees is similar between
the participants of the adaptive and the baseline condition. Figure A.2 compares the
participants’ prior knowledge and exposure to rocks, robots and conversational agents
(CA) and their interest in each. As previously discussed, the only statistically different
measure is Figure A.2b. The participants’ fluency in English, their familiarity with their
co-participants and their desire to teach Gamma is presented in Figure A.3.

A.2 Curiosity Notebook Engagement and Post-study
Survey Results

The participants’ perception of Gamma surveyed by Godspeed questionnaire is shown in
Figure A.4, Figure A.5 and Figure A.6. The rest of the post-study survey measures such
as how much they enjoyed working in a team, how much they enjoyed teaching, and their
desire for participating in a similar study is demonstrated in Figure A.7 and Figure A.8.
The score from both IMI and Motivation Questionnaire in the respective subclasses are
shown in Figure A.9 and Figure A.10
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Figure A.6: Pre-study and Post-Study Godspeed Scores: Perceived Intelligence

75



Average value for the group
35 4.0 45
I

3.0

25

T
Adaptive

(a) Godspeed Scale

Foolishness (Pre)

T
Baseline

i T T
Adaptive Baseline
(d) Enjoyment from

Working  with
participant

Figure A.7: Perception, Enjoyment and Contribution

°
@ ° -
w ]
< T
s
3 2
g <
A
£
K
°
2
3
g
s
g o
2 o 7 n
z i
< '
o :
& D E—
©
o4 o
T T
Adaptive Baseline

(b) Godspeed Scale

Foolishness (Post)

o
< 7 o —_—
w
o
a
Er
e
>
o
£
2
@
=
g
°
>
s
s
2
<
<
©
w PR
o
T T
Adaptive Baseline

(e) Contribution Per-
centage to the Team-

work

76

Average value for the group
25 3.0 35 4.0

20

T
Adaptive

T
Baseline

(c) Gamma’s Evaluation
as a Student

3.0 35 4.0

25

Average value for the group

(f)

Ada‘plive Bas‘eline
Enjoyment from

Teaching the Robot



Average value for the group

(a) Self-evaluation as a

35

3.0

25

20

T T
Adaptive Baseline

Teacher

Figure A.8:

3.0 35 4.0
I

Average value for the group
25

20

(b) Interest in Teaching
Gamma Again

_ o
o
R — °
T T
Adaptive Baseline

Average value for the group

4.0

3.0 35

25

T T
Adaptive Baseline

(c) Interest in Learning

Interest in Repeated Participation

7

More about Rocks



?- i i i

i i o - : § 7 §

3 n : : : | :

Q Q Q ‘

g o | 3 § ©-

g " H H
K E : E

z < : ; < : -

.- i :

T T T T T T T

Adaptive Baseline Adaptive Baseline Adaptive Baseline
(a) Pressure/Tension (b) Interest/Enjoyment (c) Effort/Importance

Figure A.9: Intrinsic Motivation Inventory Results shown in 3 Subscales on 7 Point Scale
Likert

78



~ o
~ o R R R R
: : © o © : : © ; _—
© - H | i : | |
- " | 1
o n o H o a w -
3 : 3 : S o 3
g o E— g : g 8
o o | o o
@ @ : @ @
£ £ : £ £
2 o <« H h k] 2
o o H o o
=2 2 i 2 =2
g S JR S g 1 g
° ° ° : °
S S S : S
g ; g g : g <«
g 77 ; g g < ; g
z : z z | ES
; ° ° : ;
o ! !
o - | | |
: ® : |
« : | H
o H : ;
o4 P - N N .
T T T T T T o T T
Adaptive Baseline Adaptive Baseline Adaptive Baseline Adaptive Baseline

(a) IM-Curiosity ~ (b) IM-Accomplish  (c) IM-Stimulation  (d) EM-Identified

© o i —
; < o o < o
w —
o o a
5 5 5
8 8 8
g g g
s s s
£ - 4 £ o o £ o o
£ £ £
A A A
= = El
g g g
g g g
g g g
I H H
' o o
& :
- o - —_ — - —_— o
T T T T T T
Adaptive Baseline Adaptive Baseline Adaptive Baseline

(e) EM-Introjected  (f) EM-Regulation (g) Amotivation

Figure A.10: Intrinsic Motivation (IM), Extrinsic Motivation (EM) and Amotivation Ques-
tionnaire Result on 7 Point Scale Likert

79



	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis Outline

	Literature Review
	Social Robots in Education
	Teachable Robots
	Adaptive Teachable Robots
	Group Interaction
	Summary

	Experimental Setup
	Curiosity Notebook
	Curiosity Notebook, Early Version

	User Audio Input
	The Humanoid Robot
	The Humanoid Robot for the In-Person Pilot


	Adaptive Encouragement
	Q-Learning Background
	Q-Learning for Encouragement
	Reward Calculation
	Encouraging Statements
	Research Questions

	Pilots and Simulations
	Elementary School Pilot
	Study Design
	Lessons Learned

	Simulations
	Lessons Learned


	Adaptive Teachable Robot User Study
	Experimental Design
	Participants
	Procedure
	Measures
	Results
	Talking Duration
	Talking Trend
	Relative Participation
	Other Effects of the Experimental Condition
	Participants' Perception of the Robot and Qualitative Data
	Q-Learning Results

	Summary

	Conclusions
	Limitations and Future Work

	References
	APPENDICES
	Detailed User Study Results
	Demographics and Pre-study Survey Results
	Curiosity Notebook Engagement and Post-study Survey Results


