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Abstract

Deep Neural Networks (DNNs) demonstrate excellent performance in many Computer Vi-
sion (CV) applications such as image classification. To meet storage/bandwidth requirements,
the input images to these CV applications are compressed using lossy image compression stan-
dards, among which JPEG is the most common. Classical JPEG is designed to consider Human
Vision (HV) and pays a little attention to CV, resulting in classification accuracy drop of DNNs,
especially at high Compression Ratios (CRs). This work presents Deep Selector-JPEG, an adap-
tive JPEG compression method that simultaneously targets both image classification and HV. For
each image, Deep Selector-JPEG selects a Quality Factor (QF) adaptively to compress the im-
age so that a good trade-off between the Compression Ratio (CR) and DNN classifier Accuracy
(Rate-Accuracy performance) can be achieved over a set of images for a variety of DNN classi-
fiers while the PSNR of such compressed image is greater than a threshold value predetermined
by HV with a high probability.

Towards this end, Deep Selector-JPEG first defines a set of feasible QFs such that an image
compressed at any QF within this set has PSNR greater than a predetermined threshold value
with a high probability. For some images, multiple QFs within this set are suitable (ON) for
compressing for a DNN classifier, which means compressing at these QFs at least maintains
the ground truth rank of the original input for the DNN classifier. For a given image, Deep
Selector-JPEG first determines the QFs that are ON among the set of feasible QFs. This problem
is represented as a Multi-label Classification (MLC) problem since each image has multiple
corresponding suitable QFs. We solve MLC using a binary relevance procedure, which involves
training an independent binary DNN classifier for each QF within the feasible set to predict the
ON/OFF labeling for each input image. Given a target CR, we empirically derive a subset of
feasible QFs for this target CR and select the least QF that is ON in this set.

Experimental results show that in comparison with the default JPEG, Deep Selector-JPEG
indeed achieves better Rate-Accuracy performance over the entire ImageNet validation set for
all tested DNN classifiers with gains in classification accuracy up to≈1% at the same CRs, while
satisfying HV constraints and keeping complexity under control.
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Chapter 1

Introduction

1.1 Thesis Motivation and Research Question

Recent forecasts from Cisco reveal that there will be large amounts of images by 2022 that
needs to either be stored for or exchanged among Computer Vision (CV) applications. [1] Deep
learning (DL) is a key to these CV applications due to its ability to extract desired features from
raw pixels of input images without any domain knowledge [14]. To extract these features in
the task of image classification for instance, deep neural networks (DNNs) learn the parameters
of non-linear activation functions using a backpropagation learning algorithm. These functions
progressively transform raw pixels of the input image to produce the output predicted label [14].
With this capability, DL proved a noticeable success in image classification with a steady Top-
1 accuracy improvement on the large-scale and high-quality ImageNet dataset from 63.3% to
88.5% [14].

Raw pixels of these large-scale image datasets fed to underlying DNNs typically come from
the pipeline of image acquisition, encoding, storage/transmission, and decoding. see Figure 1.1
This implies that these raw pixels are indeed compressed in a lossy manner to meet the storage
and bandwidth requirements. Since the late 1980s, a range of image and video lossy codecs
from JPEG to HEVC and beyond have been introduced to obtain a better trade-off between
compression rate and human perceived quality for images. However, these standard codecs pay
a little attention to CV [30]. For example, JPEG is a widely-used image codec that controls
the trade-off between compression rate and human’s perceived quality of the input image via a
parameter called Quality Factor (QF). We have conducted an experiment which shows that if QF
= 10 is used to compress all images in ImageNet validation set, a Compression Ratio (CR) 11.1x
can be achieved at the expense of a drop of ≈8-10% in terms of classification accuracy of DNN
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classifiers. Even if the image perceptual quality at QF=10 is deemed acceptable according to
Human Vision (HV), the ≈8-10% drop in classification accuracy may be too significant to be
absorbed for CV. Therefore, it would be desirable to improve the trade-off between the JPEG CR
and DNN classification Accuracy (Rate-Accuracy (RA) performance) while maintaining certain
perceptual quality for HV. The question is, of course, how? This thesis answers this question.

Encoder Channel/storage Decoder

Information
source

 Computer Vision
(DNNs)

Human Vision

Figure 1.1: Pipeline of image acquisition, encoding, storage/transmission, and decoding for both
human and computers.

1.2 Thesis Contributions

In this thesis, we introduce Deep Selector-JPEG, an adaptive JPEG compression method that si-
multaneously targets both HV and CV by DNN classifiers. For each image, Deep Selector-JPEG
selects adaptively a QF from a set of feasible QFs to compress the image. The JPEG compressed
image with the selected QF is then fed to a DNN classifier and viewed by humans. The set of
feasible QFs is determined according to a PSNR threshold so that the JPEG compressed image
with any feasible QF has its PSNR value greater than or equal to the PSNR threshold with a high
probability, where the probability is calculated as if the image is taken randomly and uniformly
from an image set, say, the ImageNet validation set.

The adaptive selection of a suitable QF from the set of feasible QFs by Deep Selector-JPEG is
motivated by the observation that for any original image from the image set, its JPEG compressed
images with some feasible QFs, once fed into a given DNN classifier, may actually maintain
or even improve the ground truth (GT) rank of the original image for the DNN classifier [8].
Such JPEG compressed images with such feasible QFs are labeled “ON”, meaning that they are
suitable as an input image to the given DNN classifier. Other JPEG compressed images with the
remaining feasible QFs are labeled “OFF”. For each original image in the image set, the first step
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of Deep Selector-JPEG is to determine the “ON/OFF” label for each JPEG compressed image
with a QF from the set of feasible QFs. Afterwards, the second step of Deep Selector-JPEG is to
select the least QF labeled ON for the original image, and use the selected QF to compress the
original image.

To solve the first step, we formulate a Multi-Label Classification (MLC) problem, where each
original image is associated with a vector of labels that consists of an ON/OFF label of each QF
from the set of feasible QFs. This problem is solved via Binary Relevance (BR), which involves
training one independent binary DNN classifier for ON/OFF label of each QF from the set of
feasible QFs. These binary classifiers have two forms in Deep Selector-JPEG. In the first form,
we freeze all layers of a DNN architecture except its last two layers and use the frozen part as a
common feature extractor for all binary classification problems. The last two layers of the same
architecture are trained to predict the ON/OFF label of each QF inside the feasible set for each
binary classification problem. To further increase the RA performance, the second form utilizes
the entire DNN architecture to train each binary classification problem. In the first form, we
use MobileNet-V2 as a representative of a light-weighted architecture or Inception V3 (IV3) as
a representative of a heavy-weighted architecture. The second form utilizes MobileNet-V2 as
well.

In the second step, for a target CR, a subset of the feasible QFs is empirically obtained.
Compressing all images with each QF member in this subset will lead to a CR near to the given
target CR. For each unseen image at test time, Deep Selector-JPEG selects adaptively the least
QF that is ON from this subset to obtain an improved RA performance over the default JPG.

Experimental results show that in comparison with the default JPEG, Deep Selector-JPEG
with either the light-weighted or heavy-weighted DNN architecture indeed achieves better RA
performance over the entire ImageNet validation set for all tested DNN classifiers with gains in
classification accuracy up to≈1% at the same CRs, while satisfying HV constraints. In summary,
our contributions are listed below:

• We present Deep Selector-JPEG which selects adaptively a QF from a set of feasible QFs
for each input image to serve CV in addition to HV while preserving compliance to the
widely-used JPEG standard.

• Given the same PSNR threshold, the RA performance gain offered by Deep Selector-JPEG
over the default JPEG is consistent across 10 different image classification DNNs which
were tested, and the top-5 classification accuracy gain at the same CR can be as high as
1.07%.

3



1.3 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides some core concepts used in this thesis. First, we provide an overview of
JPEG compression. Then we review the concept of computer vision and, specifically, the task
of classification. We describe the architectures of two popular DNNs, Inception Version3 (IV3)
and MobileNetV2, utilized in the Deep Selector-JPEG design.

Chapter 3 presents Deep Selector-JPEG formation and architecture. Formulation of selection
as an MLC problem is discussed. This problem is solved using binary relevance. The proposed
solution and architecture are presented. We present the consideration of CV jointly with HV in
this chapter. Our training methodology and hyper-parameter tuning are explained.

Chapter 4 explores the RA performance of Deep Selector-JPEG by presenting the exper-
imental results of applying the selector on a set of ten most popular DNNs in the literature
for four PSNR constraint. This set includes IV1[27], IV3[28], IV4[26], Resnet-50, Resnet-101
[9], InceptionResnetV2[26], MobileNetV1[10], MobileNetV2[20], Pnasnet-Large [16], Nasnet-
Mobile[33]. The experimental training setup, GPU and CPU utilization, and complexity of our
architecture are discussed. An example of applying the selector for a specific image illustrates
the application of Deep Selector-JPEG.

Chapter 5 concludes the thesis and presents some possible directions to pursue in the future.
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Chapter 2

Background

This chapter covers the core concepts used in this research thesis. Section 2.1 reviews JPEG
image compression standard; The most widely used image compression standard in the litera-
ture. Section 2.2 introduces the computer vision concept and the specific task of classification.
Sections 2.3 and 2.4 reviews architecture and details of two popular neural network families used
in our design. Last but not least, section 2.4 summarized this chapter.

2.1 Overview on JPEG image Compression Standard

Every day more number of images is being generated, stored, and transmitted. These images are
encoded using different compression standards to facilitate the process of storage and transmis-
sion. JPEG compression is the most popular one to compress images for Human Vision among
different image compression standards. [19], [30] The pip-line of encoding transmission/storage
and decoding of data for HV via JPEG compression is shown in Figure. 2.1

JPEG Encoder Channel/storage Human VisionJPEG Decoder

Information
source

Figure 2.1: Pipeline of encoding transmission/storage and decoding using JPEG
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Qtable

Block Based 
DCT

RGB  YCbCr

Quantization ZigZag
Scanning

Huffman
Encoding Bit Stream

Figure 2.2: JPEG Compression Pipeline.

The pipeline of JPEG compression is shown in Figure 2.2. First, the RGB channels of the
input image convert to YCbCr channels to decorrelate intensity information from color infor-
mation. Y channel represents Luminance, and Cb, Cr channels represent Chrominance. Each
channel is divided into 8x8 non-overlapping blocks. The human visual system is more sensi-
tive to Luminance(intensity) than Chrominance (color); thus, CbCr are subsampled, and fewer
number of bits are allocated to them. This process is called chroma subsampling.

Each 8x8 block of all channels converts to the frequency domain through Discrete Cosine
Transform(DCT) and generates 64 DCT coefficients to exploit spatial redundancy. DCT trans-
form reduces the correlation among pixels inside each 8x8 block in the spatial domain by deco-
rating them to orthogonal basis functions. Equation 2.1 shows the DCT transform.

Fu,v =
1

4
α(u)α(v)

7∑
x=0

7∑
y=0

fx,ycos[
2x+ 1

u
π16]cos[

2y + 1

v
π16] (2.1)

Where Fu,v is the DCT coefficient at frequency coordinate (u, v), u ∈ [0, 7] and v ∈ [0, 7], and
fx,y is pixel value at spatial coordinate (x, y), and α(.) is a normalizing scale factor which is 1√

2
if its argument equals 0 and 1 otherwise.

DCT transform provides energy compaction that means most of the block’s energy resides
in low-frequency components; thus, maintaining this component saves most of the information.
Removing higher frequency components results in minor distortion in the reconstructed image.
Keeping or removing the DCT coefficient through quantization controls the quality of the recon-
structed image.

Quantization is a nonlinear, none-invertible operation that adds some distortion to the recon-
structed image. JPEG compression utilizes uniform scalar quantization to quantize each of 64
DCT coefficients. A quantization for a DCT coefficient at frequency coordinate (u, v) is specified
by its quantization step size qu,v. The process of quantization is shown in Equation 2.2.
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16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99





17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99


Figure 2.3: Left: JPEG default quantization table for Y, Right: JPEG default quantization table
for Cb, Cr [8].

F ′u,v = b
Fu,v
qu,v
e (2.2)

Where Fu,v is DCT coefficient at frequency coordinate (u, v) and F ′u,v is its corresponding
quantized value. Each qu,v, i, j ∈ [0, 7] for each frequency coordinate is tailored based on HV for
all Luminance and Chrominance channels in JPEG compression, and all of them together form
default quantization tables of JPEG. These tables for Luminance and Chrominance are shown in
Figure 2.3 Left and Right, respectively.

Different quality version of the image can be generated by tuning default quantization tables
via a parameter called Quality Factor (QF) Equation 2.3. shows how to tune the quantization
table for different QFs.

q′u,v = round(
50 + S × qu,v

100
) (2.3)

Where q′u,v, u, v ∈ [0, 7] are entries of tuned quantization table to create quantization table at tar-
get QF, based on default quantization table entries qu,v shown in Figure 2.3, and S = 5000/QF .

After quantization, each 8x8 block will be converted to a 1D array using a zig-zag pattern,
such that low-frequency content will appear at the beginning of the sequence, and high-frequency
content will appear at the end of the sequence to conduct Run-Length Coding. At the end of the
encoding process, each zig-zag ordered sequence would be encoded using the Huffman coding
algorithm to produce the final bitstream.

The decoding performs all processes done in encoding in reverse order.
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2.2 Overview on the Classification Task in Computer Vision

Computer Vision is the science of enabling computers to gain a high-level understanding of dig-
ital image and video data[4][24]. This field of science aims to enable computers to performs
tasks that the human visual system does. Computer Vision tasks include processing and ana-
lyzing the digital images to extract image descriptors that can turn into decisions. [13], [21].
Some examples of these tasks are Image Classification, Object Detection, Image Segmentation,
Visual Relationship Detection, Image Captioning, etc. Among all computer vision tasks, Image
Classification is a core problem that forms a basis for many other tasks like object detection and
segmentation. Image Classification is the problem of assigning an image to a category among k
different categories.

Deep Neural Networks exhibit excellent performance in different areas of Artificial Intelli-
gence, specifically Computer Vision. Their ability to extract high-level features from raw pixels
of images makes them universal approximators that can learn any function from a training dataset
[7]. For instance, in the task of classification, given a set of training images X = {x1, x2, ..., xn}
with their corresponding labels Y = {y1, y2, y3, ..., yn} where xi is the vector of all pixels of an
image, and yi is the corresponding class, DNN learns the correspondence of X, Y by learning
parameters of nonlinear activation functions that progressively transform pixels of xi to predicted
label yi through a backpropagation algorithm. Using the learned function, DNN can predict the
class of a new image instance.

Through years of research, different types of DNNs have been developed for different AI
applications. The most popular DNN structure to tackle image classification is Convolutional
Neural Networks (CNNs). CNNs consists of several convolution layers that act as feature extrac-
tors, followed by several fully connected layers in the tail to perform classification.

Since the beginning of the ImageNet Large Scale Visual Recognition Challenge in 2012,
many advancements in designing CNN architectures have been introduced. ImageNet is a large
dataset of annotated images introduces as a resource for computer vision research. ImageNet
training set consists of 1.2 million images categorized by an expert human to 1000 different
classes. The validation set contains 50000 images, with 50 images per category, and the test set
contains 150000 images.

In our experiments, we use the ImageNet data set to train and test our methodology. As
mentioned in chapter 1.2, We use Inception V3 and MobileNetV2 architectures to train both
Selector-JPEG forms. The structure and performance of these architectures are discussed in the
following sections.
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2.3 Inception Architecture

The Emergence of the Inception architecture in 2014 was a breakthrough in designing more
efficient CNN architectures with higher classification accuracies. Since its introduction as In-
ception Version1 (IV1), Inception architectures developed trough time via batch normalization
in Inception Version2 (IV2), optimization of inception module in Inception Version3 (IV3), and
combination with residual networks in Inception Version4 (IV4). Each of these architectures is
discussed in the following subsections.

2.3.1 IV1

IV1 [27] is the first CNN from the inception architecture family. This architecture is a revolution-
ary model that introduces the concept of modular layers to CNN design. Before Inception, the
easiest and safest way to improve a CNN model’s performance was stacking more convolutional
layers. Although this method was able to produce acceptable results, it suffered from three main
problems:

• More number of layers means more parameters that will result in over-fitting, specifically
in the case of a limited dataset.

• Training for more number of parameters requires higher computational resources. If the
added parameters are used inefficiently (e.g., in cases that most of the weight ends up to
be zero), the extra resources are practically wasted.

• Deeper networks face the problem of vanishing gradient. As the gradient backpropagates
to deeper layers, its value will gradually decrease, resulting in the intermediate layers not
being affected by the network’s loss.

IV1 addresses these problems by moving from dense connections to sparse connections, sup-
ported with the Heppian principle - neurons that fire together, wire together[3]. Authors of [27]
introduce an inception module that is consists of three convolutions with different filter sizes
(1x1, 3x3, 5x5) for different levels of spatial concentration, and then combine this information
by concatenating the output vector of each convolution to form the final output vector that serves
as an input vector to the next layer. To alleviate the extra complexity of 5x5 and 3x3 convolu-
tions, IV1 utilizes dimension reduction and projection whenever the computational cost is high
by utilizing 1x1 convolution before expensive 3x3 and 5x5 convolution. Figure 2.4 Left shows
the inception module’s naive version, while the Right part of the figure shows the inception mod-
ule after applying reduction/projection layers. Inception V1 is a network consisting of staked
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layers of inception modules. Lower layers of the architecture stay as traditional convolutional
layers, and the inception modules are added to higher layers. IV1 achieves 89.9 Top-5 and 69.8
Top-1 accuracy performance in ImageNet classification challenge.

Figure 2.4: Left: Inception module Naive version, Right: Inception module with dimension
reduction [27]

2.3.2 IV2

IV2 is an update on IV1 that solves the internal covariate shift problem by utilizing batch
normalization[12]. The covariate shift problem happens when the distribution of inputs to a
learning system changes, and the learning system has to adapt to this change. While a neu-
ral network is training, the parameters change at each step that causes a change in the dis-
tribution of output values of each layer that practically are the inputs to the next layer. This
problem is called the internal covariate shift. The DNN should adapt itself to the new distri-
bution; this requires a lower learning rate that results in a lower training speed. Batch normal-
ization normalized each scalar features in each dimension of a layer of DNN over a batch of
inputs to have zero mean and variance one that reduces the internal covariate shift and speeds
up the training process. Another benefit of batch normalization is making the gradient value
more independent of initial values and the scale, though the gradient flows through the net-
work easier. Batch normalization prevents the network from stocking in saturation areas since
the normalized values are guaranteed to have zero mean and variance. Hence, batch normal-
ization solves the vanishing gradient problem and allows the network to use saturation nonen-
tities like sigmoid. Simple normalization of each layer’s input reduces the representational
power of the network. To prevent this, authors in [12], introduce two learnable parameters γ
and β for each activation x, that scales and shifts the normalized value. BN is summarized
in Algorithm 1. IV2 achieves 91.8 % and 73.9 % Top-5 and Top-1 accuracy respectively.
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Algorithm 1: BN algorithm [12]
Input: Input batch B = x1, x2, ..., xn, trainable parameter β and γ
Output: Normalazed output batch {yi = BNβ,γ(xi)}
µB ← 1

m

∑m
i−1 xi

σ2
B ← 1

m

∑m
i−1(xi − µB)2

x̂i ← xi−µβ
σ2
B+ε

yi ← γx̂i + β ≡ BNβ,γ(xi)

2.3.3 IV3

IV3 introduces three optimization ideas to optimize inception architectures efficiently. These
ideas consist of factorized convolution, Utilizing auxiliary classifiers, and efficient grid size re-
duction. We explain each of these ideas in the following paragraphs.[28]

IV3 factorizes the convolution in two manners to reduce the computational costs. The first
way is factorizing a convolution into two smaller ones. Inception utilizes convolution with a large
kernel size, 5x5, to capture the similarity between input units that are far away from each other,
but these convolutions are computationally not efficient. IV3 proposes replacing a convolution
with a large kernel size with two progressive convolutions with smaller kernel size and argues
that the receptive filed stays the same. Replacing 5x5 convolutions with two 3x3 convolutions,
IV3 reduces the complexity by 9+9

25
x that means 28% gain in computational reduction. Figure 2.5

(a) shows the original inception module introduced in [28]. Figure 2.5 (b) shows the optimized
inception module by replacing 5x5 convolution with two 3x3 convolutions.

The second approach is spatial factorization to asymmetric convolution. Authors of [28]
argue that any nxn convolution layer can be factorized to two layers of nx1 and 1xn convolution
resulting in the same receptive field as nxn layer and less number of parameters. For example,
factorizing a 3x3 convolution to two layers of 3x1 and 1x3 is 33% cheaper than a 3x3 convolution
layer for the same number of input/output filters. Figure 2.6 shows the inception module after
factorization of nxn convolutions.

Another optimization method that [28] uses is an auxiliary classifier to improve the gradient
flow, specifically at the last training stages. Although the notion of auxiliary classifiers was
introduced in [28], to improve the convergence and combating vanishing gradient problem, [28]
have shown that auxiliary classifiers act more like a regularize and using auxiliary classifiers in
the lower layer does not make any difference.

The third optimization idea proposed in [28] is an efficient grid size reduction. Conven-
tional CNN models use pooling operation to reduce the grid size of feature maps. Typically the
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(a) Original Inception Module (b) Optimized Inception Module

Figure 2.5: Optimizing Inception module: a) Original Inception Module, b) Replacing 5x5 con-
volution by two progressive 3x3 convolutions [28]

Figure 2.6: Inception module after factorization of nxn convolutions; n chose to be 7 [28]
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number of output filter banks increases after a pooling layer to maintain the network’s expres-
siveness, therefore utilizing pooling after a convolution layer increases the network’s complexity;
On the other hand, applying pooling before the convolution layer reduces the expressiveness of
the network. Authors of [28] propose two parallel blocks, one with pooling and the other with
convolution with the same number of filters, and then concatenate these two streams to create the
final output and decrease the network’s complexity together with maintaining its expressiveness.
This solution is shown in Figure 2.7 Left. Figure 2.7 Right shows the applied solution to an
inception module.

Figure 2.7: Left: Inception module with efficient grid size reduction and expanded filter banks.
Right: Convolution stream and pooling that together double output filter bank size.[28]

IV3 architecture consists of layers of convolution in the head of network followed by staked
layers of inception modules shown in Figure 2.5 (b), 2.6, and 2.7 and archives 93.8%, 77.6%
Top-5 and Top-1 accuracy on ImageNet classification challenge respectively. We have used IV3
architecture to train our Selector-JPEG framework.

2.4 MobileNet Architecture

MobilNets are a class of small and efficient architectures designed for mobile, and embedded
vision applications [10]. They have low complexity and are suitable to be implemented on edge
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devices for Internet of Things (IoT) applications. The details of MobileNetV1 and MobileNetV2
are presented in the following subsections.

2.4.1 MobileNet V1

MobileNetV1 utilizes depthwise-separable convolution instead of standard convolutions to re-
duce complexity and increase the speed of CNNs [10]. This type of convolution is a factorized
version of standard convolution that results in fewer parameters and higher speed. Standard con-
volutions simultaneously filter and combine different channels of input feature maps to create
output feature maps. The standard convolution filters with kernel size DK and M number of in-
put and N number of output channels is shown in Figure 2.8 (a). Applying standard convolution
on input feature maps with spatial dimension DF results in complexity shown in Equation 2.4.

DK .DK .M.N.DF .DF (2.4)

Depthwise-separable convolution split standard convolution into two steps, first filtering each
channel and then combining each filtered channel’s output to create the output feature map chan-
nels. The first step is called depth-wise convolution. The filters of the depth-wise convolution is
shown in Figure 2.8 (b). A linear combination of depth-wise convolution outputs through a 1x1
convolution will result in a final output feature-map. This process is called point-wise convolu-
tion. Its convolutional filters are shown in Figure 2.8 (c). The complexity of Depthwise-separable
convolution applied on feature map with spatial dimension DF and M, N number of input and
output channels is the summation of the complexity of depthwise and point-wise convolution as
in Equation 2.5.

DK .DK .M.DF .DF +M.N.DF .DF (2.5)

The computational cost of depth-wise separable convolution compared to standard convolu-
tion is shown in Equation 2.7

DK .DK .M.DI .DI +M.N.DI .DI

DK .DK .M.N.DI .DI

(2.6)

=
1

N
+

1

D2
k

(2.7)
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(a) Standard Convolution

(b) Depthwise Convolution (c) Pointwise Convolution

Figure 2.8: Standard convolution in (a) is replaced by two steps: (b) depth-wise convolution and
(c) point-wise convolution. Rearranged from [10]

MobileNetV1 utilizes 3× 3 kernel for depth-wise separable convolution, resulting in 9 times
less computational cost than standard convolutions. The building block of MobileNetV1 using
depthwise-separable convolution is shown in Figure 2.9 Right. MobileNet consists of 28 layers
of depthwise separable convolutions.

Figure 2.9: Left: Normal convolution with batchnorm and RELU, Right: Depth-wise separable
convolution with batchnorm and RELU [10]
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MobileNets utilizes two hyperparameters to customize the architecture based on the use case.
Tuning these hyperparameters makes it possible to go beyond base MobileNet and achieve lighter
and faster models. The first parameter is called ”Width Multiplier.” This parameter scale the size
of each layer. Setting Width multiplier to α scales number of input, and output channels from M
and N to αM and αN , which result in computational cost as Equation 2.8

DK .DK .αM.DF .DF + αM.αN.DF .DF (2.8)

Choosing α ∈ (0, 1] results in α2 times less computational cost than base MobileNet with α = 1.
The second parameter is Resolution Multiplier ρ, which controls the input image’s resolution
and spatial dimensions of subsequent layers. Using width multiplier α and Resolution Multi-
plier ρ results computational cost as Equation 2.9. Where ρ ∈ (0, 1] result in ρ2 reduction in
computational cost.

DK .DK .αM.ρDI .ρDI + αM.αN.ρDI .ρDI (2.9)

MobileNetV1 base acheives 89.9%, 70.9% Top5 and Top-1 accuracy on ImageNet classification
challenge.

2.4.2 MobileNet V2

Inspired by the idea of depthwise separable convolution in [10], MobileNetV2 introduces bot-
tleneck residual blocks to further reduce the complexity of a MobileNetV1. This block mainly
consists of a depthwise separable convolution, same as MobileNteV1, preceded by an extra 1x1
convolution layer. In MobileNetV1, the pointwise convolution either keeps or increases the
number of output channels; however, in MobileNetV2, this layer reduces the number of output
channels creating a bottleneck layer. The last 1x1 convolution in bottleneck residual block is
called a projection layer. On the other hand, the first 1x1 convolution layer plays the opposite
role and expand the number of channels; this layer is called an expansion layer. The idea behind
expansion and projection layers is to keep the low flow of parameters through the network while
keeping the network’s capacity since the filtering and processing step (depth wise convolution)
is done on the expanded data. Another idea proposed in [10] adds residual connections between
input and output of the block that allows the gradient flow easier through the network and speed
up the training process.

Authors of [20], propose two types of bottleneck blocks: stride one and residual connection
and the other with stride two and no residual connection. These two blocks are shown in Figure
2.10. MobileNetV2 consists of 17 of these building blocks in a row followed by a regular 1×1
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convolution, a global average pooling layer, and a classification layer. MobileNetV2 achieves
92.5%, 74.9% Top-5 and Top-1 accuracy on ImageNet classification challenge. We used Mo-
bileNetV2 as one of our base architectures for designing Deep-Selector-JPEG

Figure 2.10: MobileNetV2 buildingc blocks Left:Stride 1 and residual connection, Right:Stride
2, no residual connections. [20]
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2.5 Summary

This chapter covered an overview of the JPEG compression standard and pointed out that this
standard is designed for human vision. We reviewed computer vision and specifically the clas-
sification task and introduced the ImageNet dataset, which is the most widely used computer
vision research dataset. We covered the architecture and performance of two widely used CNN
architectures in computer vision applications used in our Deep Selector-JPEG design, a com-
pression method based on the JPEG standard that considers both human and computer vision.
The details of this design are discussed in the next chapter.
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Chapter 3

Adaptive JPEG Image Compression for
Image Classification and Human Vision

3.1 Overview

As discussed in chapter 1.1, classical compression methods are designed for Human Vision (HV)
and pay little attention to Computer Vision (CV). In this chapter we introduce Deep Selector-
JPEG, an adaptive JPEG compression method that considers both HV and CV in the image
classification task. Section 3.3 provides a case study that motivates our framework, while section
3.2 reviews the literature. Our methodology and design of Deep Selector-JPEG to consider CV
are presented in section 3.4. The consideration of HV is discussed in section 3.5. Section 3.6
demonstrates our training methodology and hyper-parameter tuning for the framework. Finally,
section 3.7 summarize this chapter.

3.2 Literature Review

Classical compression methods are mostly designed for the HV. With the rapid growth of deep
learning-based vision tasks, digital images target CV applications as well as HV. [23]. The
classical compression method shows significant degradation in Deep Neural Networks (DNNs)
performance, specifically in high Compression Ratios (CRs). Adapting to the rapid growth of
CV applications, designing a new compression method, or adapting the existing ones to consider
CV perspective becomes critical.
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In the literature, there are two directions to address the degradation problem caused by clas-
sical compression methods. The first direction is utilizing a compact representation of images to
compress for both CV and HV. The second direction adapts the classical compression method
for considering the only CV without investigating the effect of new compression on HV. In addi-
tion, authors in [32], [8] shows the possibility of improving the classification accuracy of a DNN
model by using information from the original image and its compressed version. We review these
works in the following paragraphs.

Compress compact representations of images for both computer and human utilization:

Authors in [22] aimed for joint image compression and understanding. They utilized an eight-
layer deep residual network to derive a set of feature maps that can be used for both purposes.
These feature maps are quantized through a scalar quantizer and entropy coded to derive the
bitstream. On the decoder side, the binary stream is decoded, and a DNN is utilized to reconstruct
the original image from the encoded feature maps. They trained this framework end-to-end for
rate-distortion optimization. A classifier network is then used to perform image understanding.
Fixing the compression network, they trained the classifier network on quantized feature maps.
Their framework provides the ability to perform classification without decoding the image.

Another approach in [11] introduced vision-driven compact representations of images. These
compact representations include sparse edges and color information of reference pixels randomly
selected around edges. They compressed this information using entropy coding methods to de-
rive the bitstream. On the other end, a generative model is trained to reconstruct the original
image from this compact representation. This reconstructed image is fed for both humans and
computers, which in their method they consider face landmark detection as the CV application.
They trained the generative model to achieve a specific performance for face landmark detection
while satisfying some HV criteria.

Adapt Classical compression for only computer vision utilization: Another line of re-
search is adapting classical compression methods for CV applications. DeepN-JPEG introduced
a rectified JPEG Q-table for all images based on frequency component analysis [17]. As a result,
a CR=3.5x was obtained while achieving a classification accuracy near the original accuracy of
underlying classifier DNNs. Furthermore, authors in [31] modeled the perception of a given
DNN classifier via spatial frequency and color information of the input image using the gra-
dient of loss of this DNN w.r.t the input. They proposed GRACE, a DNN aware compression
algorithm, based on this perception model that successfully generated one JPEG Q-table for all
images to minimize image size with bounded DNN perception loss constraint. However, their
experimental classification results were conducted on a small subset of classes of the ImageNet
dataset. Authors in [5] designed a bandwidth-efficient quantization for discrete wavelet trans-
form coefficients in JPEG-2000 standard [29] to minimize the image size while minimizing the
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loss of a specific DNN over a dataset. Authors in [15] trained a reinforcement learning agent to
choose the best Quality Factor (QF) of JPEG among a set of QFs to minimize the overall input
size while minimizing the accuracy degradation of a cloud-based CV application.

Design new CNN topology using the compressed image information to enhance classifi-
cation performance:

Authors in [8], [32] have shown the possibility of improving classification accuracy of a DNN
model over original accuracy by designing a new CNN topology based on underlying DNN that
takes the original input image and its 10 JPEG compressed versions as parallel inputs. The new
CNN topology consists of 11 parallel architectures that share the same DNN structure. Each
parallel architecture takes a version out of the 10 compressed versions, including the original
version itself as input. The last logits block of all parallel architectures are concatenated to
form the final logits, which is the input to the fully connected layer with 1000 classes to derive
each class’s output probabilities in the ImageNet classification challenge. Using IV3 as their
underlying DNN, they achieve around 0.4% and 0.3% increase in Top-1 and Top-5 classification
accuracy over the original accuracy of IV3 architecture; on the other hand, applying their method
using Resnet-50 results in around 0.4% and 0.2% Top-1 and Top-5 accuracy improvement over
Resnet-50 original architecture. These results showed the possibility of improving classification
accuracy using the information from compressed images and the original image. Their method
requires the storage of 11 compressed versions of dataset, which reduces the ability of applying
this DNN topology in practice.

Deep Selector-JPEG presents a new compression method based on JPEG compression that
jointly serves both human and computer vision. Selector-JPEG adaptively selects a QF for each
input image such that gains in overall classification accuracy go up to ≈1% at the same CR of
JPEG together with satisfying HV constraints. In addition, although Deep Selector-JPEG and
the new CNN topology presented in [32] are motivated by the same observation that several QFs
of an image can be suitable for a DNN classifier, the goal of Deep Selector-JPEG is designing a
new adaptive compression method while the new CNN topology targets showing the possibility
of improving classification accuracy of a DNN by using the information of compressed versions
of images in the dataset. This observation is discussed in the following section.

3.3 Motivation: Case Study

This section provides observations that motivate us to design Deep Selector-JPEG. First, we
review the conventional understanding that feeding a specific DNN classifier with a compressed
image at low JPEG QFs always results in worst classification performance than feeding the DNN
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with the original image. Then we present some image examples for which compression will
maintain or even improve classification performance.

The conventional understanding is based on the fact that classifier DNNs are typically trained
and tested on high-quality image datasets, and feeding a compressed dataset at low QFs degrades
their classification accuracy. Our experiments confirm this phenomenon; feeding Inception V3
with a dataset consists of images in the validation set of the ImageNet dataset all compressed at
QF=10 results in ≈8% drop in classification accuracy.

It worth noting that classification accuracy is a group notion. If we focus on a specific image,
compressing with low QFs may not result in lower DNN classifier performance. The perfor-
mance of a DNN classifier on a particular image is measured by the rank of the Ground Truth
(GT) label of the input image in the sorted output probability vector of the DNN. The best per-
formance is achieved if the GT rank is 1. We have observed that there exist some images that
compressing them with lower QFs can achieve similar or better classification performance than
the original image while feeding to a classifier DNN; in fact, several JPEG QFs are suitable
(”ON”) for compressing these images for feeding to a given classifier DNN. A QF is suitable
(ON) for an image if the corresponding JPEG compressed version with this QF at least main-
tains the Ground Truth (GT) rank of the original image. For instance, the rank of GT lable
of original image #651 in ImageNet dataset on IV3 is 2. Compressing this image at differ-
ent QFs inside set L = {10, 20, 30, 40, 50, 60, 70, 80, 90} results in corresponding set of ranks
{1, 2, 1, 2, 1, 1, 1, 2, 2}. For this image, all QFs are either keeping the original rank or increasing
it, which means all QFs are suitable (ON) for feeding to IV3. Other examples are image numbers
300 and 898 in the validation set of the ImageNet dataset. The GT rank of their original version
when applied to IV3 is 1 and 2, respectively. The GT rank outputted by IV3 in response to their
compressed versions with QFs inside L, are {1, 1, 1, 1, 1, 1, 1, 1, 1}, {2, 2, 2, 2, 2, 1, 1, 1, 1, 1} re-
spectively. Same as image number 651, all QFs are ON for these two images.

It worth mentioning that different QF versions of these images have different sizes and per-
ceptual qualities. Figure 3.1, 3.2, 3.3 shows the PSNR, GT rank, and CR of QF10, QF40, QF60,
and the original version of image number 651, 300, 898 respectively. This observation suggests
different QFs could be suitable for compressing an image for a DNN classifier and by selecting
a suitable QF to compress an image one can improve the Rate Accuracy (RA) performance of
a DNN classifier. For example, selecting QF=10 for images number 651, 300, and 898 in the
ImagNet validation set saves bandwidth and achieves the same classification performance as the
original image. The adaptive selection process for improving RA performance is discussed in
the following section.
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Compressed at QF10
GT rank on IV3 = 1
PSNR = 29.92 dB

CR=11.8x

Compressed at QF40
GT rank on IV3 = 2 
PSNR = 33.47 dB

CR = 6.4x

Compressed at QF60
GT rank on IV3 = 2 
PSNR = 35.18 dB

CR = 4.96x

Original 
GT rank on IV3 = 2 

PSNR = Inf
CR = 1 

Figure 3.1: GT ranks, PSNRs and CRs of image number 651 in validation set of ImageNet
dataset for original version and compressed versions at QF60, QF40, QF10.
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Original 
GT rank on IV3 = 2 

PSNR = Inf
CR = 1 

Compressed at QF60
GT rank on IV3 = 1 
PSNR = 35.18 dB

CR = 5.88x

Compressed at QF40
GT rank on IV3 = 1 
PSNR = 33.47 dB

CR = 8.6x

Compressed at QF10
GT rank on IV3 = 1
PSNR = 29.92 dB

CR=28.27x

Figure 3.2: GT ranks, PSNRs and CRs of image number 300 in validation set of ImageNet for
original version and compressed versions at QF60, QF40, QF10.
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Original 
GT rank on IV3 = 2 

PSNR = Inf
CR = 1 

Compressed at QF60
GT rank on IV3 = 2
PSNR = 36.17 dB

CR = 2.73x

Compressed at QF40
GT rank on IV3 = 1 
PSNR = 34.74 dB

CR = 3.75x

Compressed at QF10
GT rank on IV3 = 1
PSNR = 30.14 dB

CR=11.65x

Figure 3.3: GT ranks, PSNRs and CRs of image number 898 in validation set of ImageNet for
original version and compressed versions at QF60, QF40, QF10.
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3.4 Deep Selector-JPEG: Formation, Architecture and Con-
sidering Computer Vision

Deep selector-JPEG goal is to adaptively select a QF for each image among a set of feasible QFs
to improve Rate Accuracy (RA) performance of a set of images over the default JPEG. For each
image it first detects the QFs that are ON and then among the set of ON QFs selects the one that
provides a target CR.

To determine the ON QFs for each original image, Deep Selector-JPEG formulates an MLC
problem where each original image is associated with a binary vector of labels that consists of
an ON/OFF label of each QF from a finite and non-empty set of feasible QFs,
L = {QF1, · · · , QFj, · · · , QFn}. Deep Selector-JPEG tackles this MLC problem using BR
learning. This learning method decomposes the given MLC problem with n QFs into n binary
classification problems. Thus, each hypothesis yj among n hypotheses y1, · · · , yn is induced to
predict the ON/OFF of each QFj , j = 1, 2, · · · , n, for each original image x ∈ X , where X
denotes the set of all original images. In this way, each yj: X −→ {0, 1} is learned independently.

As shown in Figure 3.4, Deep Selector-JPEG determines each yj: X −→ {0, 1} via “deep”
supervised learning, using two forms of DNN architectures. Form One freezes a pretrained image
classification DNN S except for its last two blocks and uses the frozen section as a common
Feature Extractor (FE) for all binary classifiers. Based on the common features, each yj then
makes its own independent binary classification decision. In this case, only the function from
the common feature to the binary decision (hj) is learned independently from the training. To
further improve RA performance, in the form two DNN architecture, the entire S is learned for
each yj independently.

For training, our training set is T = {(x1, q1), · · · , (xN , qN)}, where {x1, · · · , xN} is the set
of all original images in the ImageNet training set, and for each original image xi, qi is a binary
vector qi = (qi,1, · · · , qi,n) with qi,j = 1 indicating that QFj is ON for the original image xi.
Ideally, the ground truth label qi,j should be determined by humans. That is, given the original
image xi and its JPEG compressed image with QFj , a human should determine whether the
compressed image would lead the human to believe that the GT rank is still at least maintained
(i.e ON) with respect to its original image. Because of the sheer size of the image set, such a task
is daunting. To overcome this difficulty, we instead replace human labellers with the underlying
pretrained DNN classifier S in the Form One DNN architecture. Thus, in our training set, each
ON/OFF label qi,j is determined as follows:

qi,j =

{
1 RGT (xiQFj ;S) ≥ RGT (xi;S)

0 otherwise
(3.1)
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where 1 means ON, and RGT (xi;S) and RGT (xiQFj ;S) are the ranks of the GT label in the
sorted probability vectors produced by S in response to the input image xi and its corresponding
compressed version at QFj , xiQFj , respectively.

To induce each yj: X −→ {0, 1}, the following binary cross-entropy loss function for training
is utilized to obtain optimized weights W ∗

j :

W ∗
j =argmin

Wj

− 1

N

N∑
i=1

prj ∗ qi,j log(pj(xi))+

(1− qi,j) log(1− pj(xi)) (3.2)

where prj is the precision constant, a hyper-parameter to tune the trade-off between the recall
and precision of yj . Lower prj implies higher precision and lower recall for yj . pi(xi) is the
output of sigmoid function (σ(.)) and has two forms:

Form One: pj(xi) = σ(hj(FE(xi);W
T
j )) (3.3)

Form Two: pj(xi) = σ(hj(xi;W
T
j )) (3.4)

From either (3.3) or (3.4), the predicted ON/OFF for a QFj for each image xi denoted by
yj(xi) is:

yj(xi) =

{
1 pj(xi) ≥ DTj

0 otherwise
(3.5)

where DTj is another hyper-parameter called the decision threshold for QFj . Higher DTj im-
plies higher precision and lower recall for yj . Our training methodology and tuning the hyper-
parameters to achieve different CRs are discussed in section 3.6.
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3.5 Considering Human Vision

To consider HV into account, the feasible set of QFs, L, discussed in section 3.4 is defined to
satisfy a minimum HV criteria. We use classical distortion measure, PSNR as the measure of
HV satisfaction. To derive L, we first analyze the effect of QF on PSNR on ImageNet validation
dataset. Toward this end, we create a set of QFs between 2 and 30 with step size 2 and between 30
and 90 with step-size 10, L′ = {QF = 2k | 2 ≤ QF ≤ 30, k ∈ N} ∪ {QF = 10k | 30 ≤ QF ≤
90k ∈ N}. We start with a small step size for lower QFs and increase the step size for higher
ones since in higher QFs, the differences in PSNR is smaller. We created a cluster of compressed
images for each QF inside L′. For all images inside each cluster, the PSNR is calculated. For a
target PSNR, we define Hit-Rate as the number of images that have higher PSNR than the target
value and calculate the Hit-Rate for each QF.

The Hit-Rate of each QF for target PSNR 26dB, 28dB, 30dB, 32dB are shown in table 3.1,
3.2, 3.3 and 3.4 respectively. For each target PSNR, we choose QFS , the starting QF in set L, to
be the lowest QF with corresponding Hit-Rate higher than≈90%. For target PSNR 26dB, 28dB,
30dB and 32dB, QFs are 10, 20, 40, 60 respectively. These are pointed out as the green cells
in each table. For each PSNR constraint, the set L is defined as L = {QF = QFs + kr | k ∈
N, QFs + kr < m}. The parameter r is the step size between QFs in set L and m is the maxi-
mum QF. In our experiments we choose m to be 90, and r to be 10. Therefore, for target PSNRs
26dB, 28dB, 30dB and 32dB the feasible set of QFs are L = {10, 20, 30, 40, 50, 60, 70, 80, 90},
L = {20, 30, 40, 50, 60, 70, 80, 90}, L = {40, 50, 60, 70, 80, 90} and L = {60, 70, 80, 90} re-
spectively.
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Table 3.1: Hit-Rate of each QF for PSNR
≥ 26

PSNR QF PSNR QF
2 41.10 24 98.21
4 62.37 26 98.55
6 79.99 28 98.90
8 87.21 30 99.15
10 90.91 40 99.80
12 93.22 50 99.96
14 94.75 60 100.00
16 95.85 70 100.00
18 96.64 80 100.00
20 97.22 90 100.00
22 97.79 100 100.00

Table 3.2: Hit-Rate of each QF for PSNR
≥ 28

PSNR QF PSNR QF
2 11.64 24 92.19
4 29.81 26 93.19
6 54.77 28 94.09
8 67.54 30 94.86
10 74.77 40 97.49
12 79.71 50 99.04
14 83.14 60 99.84
16 85.73 70 100.00
18 87.89 80 100.00
20 89.44 90 100.00
22 90.90 100.00 100.00

Table 3.3: Hit-Rate of each QF for PSNR
≥ 30

PSNR QF PSNR QF
2 2.15 24 78.87
4 7.41 26 80.72
6 26.37 28 82.47
8 41.43 30 84.00
10 51.33 40 89.92
12 58.42 50 93.89
14 63.69 60 96.98
16 67.95 70 99.63
18 71.42 80 100.00
20 74.11 90 100.00
22 76.71 100.00 100.00

Table 3.4: Hit-Rate of each QF for PSNR
≥ 32

PSNR QF PSNR QF
2 0.46 24 59.38
4 1.32 26 61.79
6 7.55 28 64.34
8 17.67 30 66.46

10 26.46 40 74.86
12 33.84 50 81.43
14 39.91 60 89.68
16 45.08 70 95.00
18 49.48 80 99.94
20 53.11 90 100.00
22 56.44 100.00 100.00
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3.6 Training Strategies

3.6.1 Training Methodology

We trained our proposed Deep Selector-JPEG with its two forms using stochastic gradient de-
scent via TensorFlow machine learning platform. Our Deep Selector-JPEG used multi-GPU
training via two NVIDIA GeForce RTX 2080 Ti GPUs that evenly splits a training batch size
of 100 for 2 epochs, where each epoch consists of 20000 steps. In training, we chose S to be
the publicly available IV3 and MobileNet V2 pretrained on ImageNet classification. IV3 is a
representative for heavy-weighted DNN architectures and MobileNet-V2 is a representative for
light-weighted ones. Precision constants from 0.2 to 0.7 and decision thresholds from 0.5 to 0.9
were tried.

For the Form One DNN architecture of Deep Selector-JPEG, we produced two selectors,
namely IV32L and M2L, with the underlying DNN S to be IV3 and MobileNet V2, respectively.
In each of these selectors, we froze all layers except for the last two blocks, which we progres-
sively trained for 2 epochs. For each selector and each yj , we initialized the learning rate to 0.001
to train the last logits layer with random weights while freezing all its previous layer. Using the
same learning rate, we unfreeze the previous layer and initialize it with pre-trained weights while
using the weights of the previously trained layer.

For the Form two DNN architecture of Deep Selector-JPEG, we choose S to be MobileNetV2
for each yj and initialize it with its pre-trained weights except for the last logits block that’s
initialized with random weights. We call this selector MFull, where training each yj is done
independently for 2 epochs with a learning rate set to 0.01. In both forms of Selector-JPEG,
Inception V3 and MobileNet V2 model evaluations are performed using a running average of the
parameters computed over time.

3.6.2 Hyper-parameter tuning

We tune the precision constants (prj) and the decision threshold (DTj) introduced in Equation
(3.2) and (3.5) for each yj to achieve a trade-off between accuracy and compression ratio. As
discussed in section 3.4, lower prj and/or higher DTj implies higher precision and lower recall
for hj .

To improve the accuracy of S at a target CR (CR∗), we tune prj and DTj and then select the
least QF that is ON for each xi from an empirically obtained set of QFs, G ⊆ L. To define G
for CR∗, let QFk be the QF inside L that has the closest CR ≤ CR∗. G is empirically derived
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as G = {QF ∈ L| QF ≤ QFk+1}. It is worth noting that selectors for lower j need higher
precision because a false positive at lower QFs causes more accuracy drops on a DNN than
higher ones. As a result, we choose low prj and high DTj for ∀QF∈G : QFj < QFk to ensure
high precision for these selectors. For an input image, we select the least QF that is ON from G,
but if none of the QFs inside G is selected, we finally select QFk+2.

We present the tuned hyper-parameters for two target CRs for PSNR≥ 26 dB to illustrate this
process. For target CR=3x corresponding QFk is 70 since compressing all images on validation
set of ImgeNet at QF=70 results in average CR=2.89x. Therefore, the emperically derived set
of QFs is G = {10, 20, 30, 40, 50, 60, 70, 80}. The tuned parameters for each QFj inside G is
shown in table 3.5. For QFs less than 70, the parameters are tuned to achieve high precision,
while for QFj = 70, QFj = 80 parameters are tuned to have a higher recall. The resulting
precision and recall percentage of these chosen parameters for each binary classification for each
of M2L, MFull, and IV3-2L are presented in table 3.6. It can be seen from the table that as
QFj increases, recall increases, and precision decreases. In the test time, for each image, Deep
Selector-JPEG selects the least QF that is ON among QFs inside G =. If none of QFs inside G
are ON Deep Selector-JPEG selects QF90. The distribution of selected QFs for all QFs inside G
is shown in Figure 3.5 (a) and confirms the high recall at QF90 and QF80 as well as low recall,
thus high precision at QFs less than 70.

To acheive higher target CRs, there is no need to include high QFs that result in low CR
in the selection. For example for target CR=5.5x, QFk is equal to 30 and corresponding G is
G = {10, 20, 30, 40}. Tuned hyper-parameters are shown in table 3.7. The resulting precision
and recall percentage for these parameters for M2L, MFull, and IV3-2L are shown in table 3.8.
All QFj have relatively high precision to ensure correct prediction of turned ON QFs. Although
the precision constant and decision threshold for allQFj is almost similar, recall increase asQFj
increase since typically more number of images are turned ON for higher QFs. The distribution
of selected QFs is shown in Figure 3.5 (b).
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Table 3.5: Hyperparameters at CR=3x and PSNR ≥ 26 =⇒ QFs = 10 : QFk = 70,
G = {10, 20, 30, 40, 50, 60, 70, 80}; If nothing inside G is ON, QF=90 is selected.

QF M2L MFull IV32L
DT pr DT pr DT DT

10 0.9 0.4 0.9 0.2 0.9 0.2
20 0.9 0.4 0.9 0.3 0.9 0.2
30 0.9 0.3 0.9 0.3 0.9 0.2
40 0.9 0.3 0.9 0.4 0.9 0.2
50 0.9 0.4 0.9 0.4 0.9 0.3
60 0.9 0.4 0.9 0.5 0.9 0.3
70 0.9 0.4 0.8 0.5 0.8 0.5
80 0.7 0.7 0.7 0.4 0.7 0.7

Table 3.6: Precision and Recall Percentages based on ImageNet validation set at CR=3x and
PSNR ≥ 26.

QF M2L MFull IV32L
Precision Recall Precision Recall Precision Recall

10 97.25% 1.52% 96.58% 12.50% 98.99% 16.65%
20 96.07% 11.73% 97.08% 18.52% 99.28% 26.81%
30 96.71% 10.20% 97.79% 17.94% 99.07% 30.22%
40 96.42% 14.16% 97.88% 20.75% 99.31% 29.79%
50 94.40% 52.45% 97.61% 29.88% 98.81% 41.31%
60 94.08% 62.91% 97.49% 32.50% 98.77% 44.041%
70 94.91% 60.60% 95.17% 71.59% 96.50% 81.79%
80 93.41% 97.66% 93.09% 99.77% 95.33% 98.23%
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Table 3.7: Hyperparameters at CR=5x and PSNR ≥ 26 =⇒ QFs = 10 : QFk = 30, G =
{10, 20, 30, 40}; If nothing inside G is ON, select QFk+2 = 50.

QF M2L MFull IV32L
DT pr DT pr DT DT

10 0.9 0.3 0.9 0.2 0.8 0.2
20 0.8 0.3 0.8 0.3 0.8 0.2
30 0.8 0.6 0.8 0.3 0.8 0.5
40 0.7 0.7 0.8 0.4 0.8 0.5

Table 3.8: Precision and Recall Percentages based on ImageNet validation set at CR=5x and
PSNR ≥ 26.

QF M2L MFull IV32L
Precision Recall Precision Recall Precision Recall

10 97.25% 1.52% 97.35% 9.75% 98.11% 28.74%
20 92.81% 46.26% 95.66% 33.94% 98.36% 39.69%
30 92.75% 58.71% 92.60% 68.86% 95.58% 73.36%
40 91.12% 84.46% 92.05% 82.21% 96.078% 74.11%
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(a) CR = 5x

(b) CR = 3x

Figure 3.5: Distribution of Selected QFs based on ImageNet validation set for CR = 5x (Top)
and CR=3x (Bottom) at PSNR ≥ 26.
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3.7 Summary

This chapter introduced Deep Selector-JPEG, an adaptive JPEG compression method tailored
for both HV and CV. The architecture and consideration of CV and the consideration of HV
were discussed. Our training methodology and the hyper-parameter tuning was presented, and
an example of a tuned parameter with their selected distribution illustrated this process.
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Chapter 4

Experimental Results

4.1 Overview

In this chapter, we demonstrate the effective ability of the proposed Deep Selector-JPEG to
achieve a better Rate Accuracy (RA) trade-off than that of the default JPEG compression while
considering human vision. The generality of the proposed method on different Deep Neural
Networks (DNNs) is demonstrated by applying the selector on the ten most popular DNNs in
the literature. Our experiment setting for training and evaluating Deep Selector-JPEG for four
different PSNR constraints is presented in 4.2. Section 4.3 presents the experimental results of
applying Deep Selector-JPEG on the tested DNNs for target PSNRs. Section 4.4, discusses the
complexity of our design. A demo of applying Deep Selector-JPEG on a specific input image
example is presented in section 4.5. Finally, section 4.6 summarize this chapter.

4.2 Experiment Setup

This section demonstrates our experimental set up for training two forms of Deep Selector-JPEG
and evaluating its performance for the ten most popular DNNs in the literature.

4.2.1 Training Experiments Pipeline

This subsection reviews our training procedure and pipeline for the two forms of Deep Selector-
JPEG. We utilize the ImageNet training dataset to conduct all of our training experiments. Each
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Binary Relevance (BR) problem introduced in 3.4 is trained independently for each QF inside
the feasible set of QFs as a binary classification problem. Our training pipeline for two forms
of the selector is shown in Figure 4.1. The training pipeline’s first step is to determine the”
ON/OFF” labels for each BR for all images in the training dataset. We use MobileNetV2 to
derive ON/OFF labels for training M2L and MFull, the selector form one and two based on
MobileNetV2 architecture. Moreover, Inception V3 (IV3) is used for deriving ON/OFF labels
for training IV3-2L, the selector form one based on IV3 architecture. All of the training dataset
images are first compressed for each QF inside L = {10, 20, 30, 40, 50, 60, 70, 80, 90} to create
nine compressed clusters. We run inference on MobileNetV2 and IV3 for each cluster and label
the original image based on Equation 3.1.

In the selector form one, we use a large portion of the MobileNetV2 and IV3 as a common
feature extractor for all BR problems and train the last two layers of these architectures to create
M2L and IV32L selectors, respectively. The training process for this form is shown in Figure
4.1 right branch. Training the last two layers is done in two runs progressively. In the first run,
we train the last logits block (Fully Connected (FC) layer) of each architecture, initialized with
random weights. For each BR problem, FC layer training is done for different precision constants
(pr) from 0.2 to 0.7 with a learning rate of 0.001 for two epochs. In the second run, for each
precision constant, we add an extra block to the training process and load the trained weights
from the first training run to initialize the FC layer. The last two layers are trained together with
a learning rate of 0.001 for two epochs. In both runs, all layers before the trained layers are kept
constant. There are two possible methods to keep part of a DNN constant while training the rest.
The first method is to freeze the constant portion, run inference on each batch of training data
through the frozen parts at each training step, and train the unfrozen layers. This method adds
the overhead of inferencing time through frozen layers at each step of training.

On the other hand, it is possible to run inference on frozen layers once and store the outputs
of the last layer of the constant part, called the bottleneck layer. These stored bottleneck layers
are then used as the input to the training process. We use the second method to speed up the
training process during training selector form one. During each training run, the bottleneck
layers for IV3-2L and MobileNetV2 are first stored. To store them, we run inference on IV3 and
MobileNetV2 for a certain number of images and store their corresponding bottleneck layers at
each training run. During training, stored bottleneck layers are loaded and fed to the training
process as the input. Each of these bottleneck layers has numerous parameters and requires a
huge storage space. We use the TRrecord file format introduced by the TensorFlow organization
to store these bottlenecks.

TFRecord is a binary file format that serializes data and speeds up the reading process signif-
icantly. This is beneficial during the training process, specifically when we want to minimize the
waiting time caused by reading data from memory. This file format is also compatible with batch
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training as it provides the ability to load only the required portion of the data. Therefore, there
is no need to load the entire dataset to memory, and only the batch of data used for the current
training step will be loaded that saves up Central Processing Unit (CPU) memory. Moreover,
storing in binary format using TFRecords reduces the required storage space and makes the data
portable. Saving the layer” expanded-Conv-16” as the bottleneck layer of MobileNetV2 for 100
images as a NumPy file takes 34Mb space on disk while saving the same bottleneck layer of 125
images through the TFRecord format takes 17Mb. The last two layers of each architecture are
trained for each BR. At last, the hyperparameters are tuned based on the process discussed in
3.6.2 to meet the PSNR and CR constraints.

In the second form of the selector, using ON/OFF labels from MobileNetV2, we train all
layers of the MobileNetV2 architecture for each BR problem to predict ON/OFF labels of each
QF within a set of feasible QFs for each input image. We call this selector MFull. The training
process for this form of the selector is shown in Figure 4.1 left branch. We first generate inputs
for training in TFrecord file format and load it partially for each training step. We train MFull
for all precision constants from 0.2 to 0.7. For a target PSNR and CR, precision constant and
decision threshold are tuned based on the procedure described in 3.6.2.
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Figure 4.1: Training Pipeline for two forms of the selector
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4.2.2 Efficient Implementation of the Training Procedure

This subsection reviews some methods for implementing training procedures efficiently. We
implement our training on Graphic Processing Units (GPUs) to speed up the training process.
GPUs are comprised of hundreds of cores and can handle hundreds of threads simultaneously.
The GPU is ideal for processing graphical data and video rendering, where different tasks need to
be performed at the same time. Training and inferencing neural networks involve many complex
computations, such as big matrix multiplication, that must be done simultaneously to provide
efficient training and inference time. Conduction these computations on the CPU, on one sin-
gle thread, would be very slow. However, GPUs can provide parallel computing and make it
possible to perform different matrix multiplications tasks simultaneously, resulting in a signifi-
cant improvement in training and inferencing speed. For further speed improvement, we utilized
multi-GPU processing. Two NVIDIA GeForce RTX 2080 Ti GPUs are used. Each GPU con-
tains a replica of the weights of the Deep Neural Network (DNN) model. A batch of the input
data is divided into two groups; each group goes through one GPU during the forward pass. The
gradient of the loss with respect to the DNN parameters for each group is calculated on each
GPU; at the end of one forward pass, these two sets of gradients are averaged on the CPU to
derive the final gradient of the input batch. The final gradient is used in the backward pass, and
all wights on both GPUs are updated accordingly. [6]. This process is shown in figure 4.2.

As TFRecord provides the ability to load data partially, the loading and preprocessing of data
for training is done on the CPU. Typically, data preparation and training are done sequentially,
which means the GPUs should wait for the CPU to load and process data; thus, the CPU becomes
the bottleneck for training time. We configure a pipeline to allocate the tasks of training and data
preprocessing simultaneously. While training is performed on GPUs for step k, CPU prepares the
data for step k+1, which provides parallel processing in task allocation. [32]. To further decrease
the waiting time for GPUs, we use multi-threaded queues in TensorFlow. The GPUs take the
inputs from a queue, and meanwhile, they do the training process, the new inputs would be
inserted into the queue. Ensuring that the queue is never empty decreases GPUs’ idle time to wait
for inputs. Multiple threads prepare the training examples and enqueue them, while a training
thread dequeue batches of training data from the queue. [18]. A process called Queue Runner
implemented by Tensorflow is used to properly handle the queues to start and stop simultaneously
and capture errors. [32]
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Figure 4.2: Multi-GPU Utilization[6]

4.2.3 Performance evaluation of Deep Selector-JPEG

After the training is finished, we use the validation set of the ImageNet dataset to evaluate Deep
Selector-JPEG performance for different test DNNs. Each image is passed through IV32L, M2L,
and MFull to select the proper QF. The compressed image using this selected QF is fed to each
test DNN to derive the final classification performance. We compare Rate Accuracy (RA) per-
formance of Deep Selector-JPEG with default JPEG for four PSNR constraints. The details of
these experiments are discussed in the following paragraphs.

To create the RA curve of default JPEG for a test DNN, we first create nine compressed data
clusters. To create each cluster, a constant QF inside L = {10, 20, 30, 40, 50, 60, 70, 80, 90} is
used to compress all images in the validation set of ImageNet dataset. Each cluster is passed
through a test DNN, corresponding classification accuracy and average Compression Ratio (CR)
over all images in the cluster is recorded. The resulting accuracy and CR for all clusters are
plotted to create RA curves of default JPEG.

We create four sets of RA curves for four PSNR constraints to evaluate the performance
of Deep Selector-JPEG for both Human Vision (HV) and Computer Vision (CV). These PSNR
constraints are PSNR ≥ 26dB, PSNR ≥ 28dB, PSNR ≥ 30dB, PSNR ≥ 32dB. They correspond
to the four sets of feasible QFs, L1 = {10, 20, 30, 40, 50, 60, 70, 80, 90},
L2 = {20, 30, 40, 50, 60, 70, 80, 90}, L3 = {40, 50, 60, 70, 80, 90} and L4 = {60, 70, 80, 90}.
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The union of these four sets is L1, which means there is no need to train new QFs for each
PSNR constraint. We train the nine QFs in L1 once, and limit the selection to the other target
PSNRs corresponding feasible sets to meet their constraint. For each target PSNR, we use Deep
Selector-JPEG to adaptively select the proper QF among its corresponding feasible set for each
input image such that the average CR of all images in the dataset reaches a target CR value. The
compressed dataset using the selected QFs for each CR passes through the test DNNs to derive
the classification accuracy. The resulting CRs and classification accuracies are plotted to achieve
RA curves.

We use IV3 and MobileNetV2 to derive ON/OFF labels for our training set. Moreover, their
architectures are used as a base for training the two forms of Deep Selector-JPEG. We apply
the QF selections of IV32L, M2L, and MFull at each PSNR and CR constraint to the ten most
popular DNN classifiers in the literature [2]. The set of test DNNs includes, IV1, IV4, IV3,
ResNet-50, ResNet-101, Inception-ResnetV2, MobileNetV1, MobileNetV2, nasnet-mobile and
Pnasnet-Large.

In order to quantify gains of the selector, for each PSNR constraint, we present the accuracy
gain at the highest and lowest achievable CRs within the set of valid QFs for the PSNR for M2L,
MFull, and IV3-2L on all test DNNs in Tables 4.1, 4.2, 4.3, 4.4. Numbers between parenthesis
indicate Top-1 and Top-5 percentage gains, respectively, with respect to JPEG over DNNs under
test. An average accuracy gain over all DNNs at target CR is shown in the last row of tables.

The results for each PSNR constraint is discussed in the following section.

4.3 Experimental Results and Discussion

This section discusses our experimental results for each PSNR constraint and compares our re-
sults with DeepNJPEG [17].

Discussion of results for target PSNR ≥ 26 dB:
The Top-5 and Top-1 vs CR performances of Deep Selector-JPEG for PSNR≥ 26 are shown

in 4.3, 4.4 respectively. The dotted black curves represent JPEG, while the red, green, and blue
curves represent IV32L, MFull, and M2L, respectively. The legend of each subfigure outlines the
order of test DNNs from top to bottom. For example Figure 4.3 (b) shows Top-5 performance
of Deep Selector-JPEG for Pnasnet-Large, InceptionResnetV2, nasnet-mobile in the order of
legend, the first set of curves on top shows results on Pnasnet Large, and the last set of curves on
the bottom shows results on nasnet-mobile.

Looking at Figure 4.3 and 4.4, we can observe the consistent RA performance gains at PSNR
≥ 26, which can also be confirmed by Table 4.1. For instance, 0.89%, Top-5 accuracy gain can be
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achieved using IV32L at CR=10.05x when applied to one of the top-performing DNN classifiers,
Pnasnet Large (see Table 4.1). It is worth noting that test DNNs have different classification
accuracy levels and robustness, yet the accuracy gains are consistent. For instance, accuracy
gain on MobileNetV2 with 92% original Top-5 accuracy and ≈7% drop in original accuracy at
high CRs is comparable to the accuracy gain of Pnsanet Large with 96% original Top-5 accuracy
and ≈3% drop in accuracy at high CRs. Overall, the average accuracy gain on all architectures
reaches 1% at high CRs (10.05x).

An interesting observation can be made that IV3-2L achieves a better trade-off over MFull
and M2L for most test DNNs. This observation is consistent among different PSNR constraints,
which reveals that using DNN with higher classification performance for ON/OFF labeling pro-
vides better RA performance. (see IV32L vs. other selectors) Due to MFull’s high capacity, we
can observe that MFull achieves slightly more accuracy gains than M2L.

We can also notice that the performance gain of Deep Selector-JPEG increases slightly when
the selector trained via the ON/OFF labelling of the DNN, S, is applied to the same DNN classi-
fier compared to other DNNs. M2L on MobileNet-V2 achieves 0.17%, 0.11% Top-1 and Top-5
accuracy gains at CR=3.53x respectively. At CR=10.05x, M2L attains 0.58%, 1.04% Top-1,
Top-5 accuracy gains for MobileNetv2. MFull achieves slightly higher Top-1 and Top-5 accu-
racy gains of 0.17%, 0.15% on MobileNet-V2 at CR=3.53x . It also achieves 0.79%, 1.34%
Top1, and Top-5 accuracy gains at CR=10.05x, respectively. Similar RA performance for IV32L
on IV3 can be achieved. AT CR=3.53x both Top-1 and Top-5 gains reach ≈0.1%. On the other
hand, Top-1 and Top-5 accuracy gains of 0.84%, 1.28% are achived at CR=10.05x. Table 4.1,
green cells point out the accuracy gains of M2L, MFull on MobileNetV2 as well as accuracy
gains of IV3-2L on IV3.

Discussion of results for target PSNR ≥ 28 dB:
For target PSNR≥ 28, the set of feasible QFs is L = {20, 30, 40, 50, 60, 70, 80, 90}. Limiting

the range of PSNRs limits the range of achievable CRs. The highest achived CR with this setting
is 6.9x (see Table 4.2) Top-5, Top-1 performances of Deep Selector-JPEG on all tested DNNs for
PSNR≥ 28 are shown in Figures 4.5 and 4.6 respectively. Consistent accuracy gains are achieved
among different test DNNs. Table 4.2 presents accuracy gains for this PSNR. These observations
show that considering PSNR constraint; Deep Selector-JPEG improves RA performance w.r.t
default JPEG for different classification DNNs. The green cells of table 4.2 point out each
selector’s performance on the DNN classifiers, which is used for deriving ON/OFF labeling for
training. Looking at these cells confirms the slight increase in accuracy for these DNNs.

Discussion of results for target PSNR ≥ 30 dB , PSNR ≥ 32 dB:
For PSNR≥ 30 and PSNR≥ 32 the set of feasible QFs are L = {40, 50, 60, 70, 80, 90}, L =

{60, 70, 80, 90} respectively. These sets limit the performance of the selector. Deep Selector-
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JPEG is limited to QFs of JPEG, thus it can not go beyond the original accuracy. For high
PSNRs compressed images using JPEG itself have high quality and most of them are suitable
for DNNs. However, gains up to 0.1% in classification accuracy are still achieved using Deep
Selector-JPEG when PSNR≥ 30 or ≥ 32. The Top-5, Top-1 performance on all tested DNNs
for PSNR ≥ 30 are shown in Figure 4.7, 4.8. Moreover, Top5, Top1 performances on all tested
DNNs for PSNR ≥ 32 are shown in Figure 4.9, 4.10. The accuracy gains for PSNR ≥ q 30 and
PSNR ≥ 32 are shown in Tables 4.3 and 4.4 respectively. The green cells of these tables shows
the accuracy gains on the DNNs used for deriving ON/OFF labelling.

Comparison with DeepNJPEG:

We compare our results with DeepNJPEG [17] reviewed in chapter 3.2 that maintains original
classification accuracy at CR 3.5x. Similarly, Deep Selector-JPEG achieves Top-5 accuracy near
the original accuracy of the underlying DNN classifiers at CR=3.5x. More specifically, for IV1
and ResNet-50 that are the test DNNs in DeepN-JPEG, we achieve the same Top-5 performance
as the original for PSNR ≥ 26. (see Figure 4.3 d). It is worth noting that Deep Selector-JPEG
improves the overall RA performance of JPEG over different DNNs and achieves Top-5 accuracy
near to the original accuracy while taking the human vision into account.
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Figure 4.3: RA of Deep Selector-JPEG when applied to all DNNs under test; Top-5 accuracy,
PSNR ≥ 26. (Solid: Ours, Dotted: JPEG)
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(b) Pnasnet Large, InceptionResNetV2, Nasnet Mobile
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Figure 4.4: RA of Deep Selector-JPEG when applied to all DNNs under test; Top-1 accuracy;
PSNR ≥ 26. (Solid: Ours, Dotted: JPEG)
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(b) Pnasnet Large, InceptionResnetV2, nasnet mobile
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(c) IV4, ResNetV2-101, MobileNetV1
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Figure 4.5: RA of Deep Selector-JPEG when applied to all DNNs under test; Top-5 accuracy;
PSNR ≥ 28. (Solid: Ours, Dotted: JPEG)
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(b) Pnasnet Large, InceptionResnetV2, nasnet mobile
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(c) IV4, ResNetV2-101, MobileNetV1
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Figure 4.6: RA of Deep Selector-JPEG when applied to all DNNs under test; Top-1 accuracy;
PSNR ≥ 28. (Solid: Ours, Dotted: JPEG)
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(b) Pnasnet Large, InceptionResnetV2, nasnet mobile
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(c) IV4, ResNetV2-101, MobileNetV1
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Figure 4.7: RA performance of Selector-JPEG vs JPEG on unknown DNN classifiers; Top5-
accuracy; PSNR ≥ 30.
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(a) IV3, MobileNetV2
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(b) Pnasnet Large, InceptionResnetV2, nasnet mobile
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(c) IV4, ResNetV2-101, MobileNetV1
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Figure 4.8: RA of Deep Selector-JPEG when applied to all DNNs under test; Top-1 accuracy;
PSNR ≥ 30. (Solid: Ours, Dotted: JPEG)
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Figure 4.9: RA of Deep Selector-JPEG when applied to all DNNs under test; Top-5 accuracy;
PSNR ≥ 32. (Solid: Ours, Dotted: JPEG)
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Figure 4.10: RA of Deep Selector-JPEG when applied to all DNNs under test; Top-1 accuracy;
PSNR ≥ 32. (Solid: Ours, Dotted: JPEG)
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4.4 Complexity Analysis

To analyze the complexity of Deep Selector-JPEG, we calculate the number of Multiply-Accumulate
(MACs) operations for each form of Deep Selector-JPEG, which is the standard way to measure
the DNN complexity. We train only the last two layers of MobileNetV2 architecture for our M2L
selector for each binary relevance problem, while a large part of the architecture is frozen and
used as a common feature extractor for all binary relevance problems. The complexity of trained
two layers is 47488 MACS, which is not significant compared to the common feature extractor’s
complexity, which is 541.06 Million MACS(M MACS). Therefore, the complexity of our M2L
selector is comparable with the complexity of MobileNetV2. Comparison of the complexity of
M2L with MobileNetV2 architectures is presented in table 4.5. The first column shows the num-
ber of MACS for the original architectures with 1000 classes, while the second column shows
the complexity of Binary MobileNetV2 that has two output classes instead of 1000 classes, and
the third column shows the complexity of Deep Selector-JPEG for M2L. This table confirms that
the complexity of M2L is comparable with the original MobileNetV2.

The complexity of IV3-2L is higher than the complexity of the original IV3 architecture. We
trained the fully connected layer plus the mixed-10 block of IV3 for each binary relevance prob-
lem. The complexity of these two layers is 388.50 M MACS. The comparison of the complexity
of IV3 original architecture with Binary IV3 that replace 1000 classes with two classes and IV3-
2L is shown in table 4.7. The number of binary relevance problems varies with the PSNR and CR
constraints as discussed in 3.5 and 3.6.2. Therefore, for different applications with their PSNR
and CR constraints, Deep Selector-JPEG provides different complexity levels. Table 4.6 and 4.8,
show the overall complexity of M2L and IV3-2L with increasing number of binary relevance
problems from 1 to 9 QFs. Increasing the number of QFs, has a minor effect on the complexity
of M2L, while the complexity of IV3-2L increases with more trained QFs.

Training all layers of MobileNetV2 as MFull selector results in nine times higher complexity
than M2L and contains 541.11*9 M MACs since all layers of the architecture are used for each
binary relevance training. Although all layers of MobileNetV2 are trained for MFull selector,
its complexity is less than the complexity of IV3-2L. Based on the application and the allowed
complexity and accuracy loss, one may choose one of M2L, MFull, or IV3-2L selectors. For
example, the complexity of M2L is relatively low; although its RA performance is slightly less
than the performance of MFull and IV3-2L, it can be used in employment on edge devices.
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Table 4.5: Comparison of complexity of original MobileNetV2 architecture with Binary Mo-
bileNetV2 and M2L

MobileNetV2 Binary MobileNetV2 M2L
582.19 M MACS 541.11 M MACS 541.49 M MACS

Table 4.6: Impact of number of trained QFs on Complexity of M2L

num QFs Number of MACS
1 QFs 541.11 M MACCs
2 QFs 541.16 M MACCs
3 QFs 541.21 M MACCs
4 QFs 541.26 M MACCs
5 QFs 541.30 M MACCs
6 QFs 541.35 M MACCs
7 QFs 541.40 M MACCs
8 QFs 541.45 M MACCs
9 QFs 541.49 M MACCs

Table 4.7: Comparison of complexity of original IV3 architecture with Binary IV3 and IV3-2L.

IV3 Full Binary IV3 IV3-2L
5713.23 M MACS 5711.17 M MACS 8819.18 M MACS
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Table 4.8: Impact of number of trained QFs on Complexity of IV3-2L

num QFs Number of MACS
1 QFs 5711.17 M MACCs
2 QFs 6099.67 M MACCs
3 QFs 6488.18M MACCs
4 QFs 6876.68 M MACCs
5 QFs 7265.18 M MACCs
6 QFs 7653.68 M MACCs.
7 QFs 8042.18 M MACCs
7 QFs 8430.68 M MACCs
9 QFs 8819.18 M MACCs
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4.5 Deep Selector-JPEG Output QF Selection Demonstration

This section demonstrates the performance of Deep Selector-JPEG on image number 651 in the
validation set of the ImageNet dataset as an example input image. We compress the original
image with the selected QF by Deep Selector-JPEG and present the corresponding PSNR and
CR of the compressed image and the Ground Truth (GT) rank of the compressed image on test
DNNs.

Output QF Selection for PSNR ≥ 26dB:

For target PSNR ≥ 26 dB, we present selection for two target CRs. For target CR = 10x,
all M2L, MFull and IV3-2L select QF=10 which results in PSNR = 29.92 dB, CR=11.8x for
this image. The GT rank of the original image and the compressed version on all test DNNs are
shown in table 4.9. We can see that for IV3, using the compressed version improved the GT rank.
For other DNNs, the GT rank of the original is kept while CR is significantly increased.

For target CR = 3x, M2L and MFull select QF = 20 that results in PSNR 31.24 dB and CR
8.98x, while IV3-2L choose QF=50 resulting in PSNR 34.27 dB and CR 5.64x. The GT rank of
compressed version using the selector’s output for all test DNNs is shown in table 4.10. While
M2L and MFull maintain the original GT rank, IV3-2L selection improves GT rank.

Output QF Selection for PSNR≥ 28 dB:

For PSNR ≥ 28 dB, we demonstrate the selection for two target CRs. For target CR = 7x, all
three selectors select QF=20, resulting in PSNR = 31.24 dB and CR = 8.98x. On the other hand,
for this PSNR and target CR = 3x, MFull and M2L select QF20, and IV3-2L selects QF=50. The
GT rank of the original image and the compressed image for all test DNNs for these settings are
shown in 4.11 and 4.12.

Output QF Selection for PSNR ≥ 30 dB, PSNR ≥ 32 dB:

For PNSR≥ 30 dB and PNSR≥ 32 dB, due to the limited range of CR, we only present selec-
tion for target CR=3x. For PNSR≥ 30 dB, all selectors select QF=40 that result in PSNR=33.47
dB and CR=6.39x. The original and selected image’s GT ranks are presented in 4.13. On the
other hand, for PNSR ≥ 32 dB, QF=60 is selected by all selectors resutling in PSNR=35.18 dB
and CR=4.96x. The GT ranks are presented in table 4.14. These two PSNR constraints’ rank
tables reveal that the selected QF always keeps the original GT rank.

These results confirm that for image number 651, for different settings of PSNR and CR,
Deep Selector-JPEG always either keeps or improves the original GT rank.
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Table 4.9: The GT ranks of the original image and compressed image at the selected QF, output
of selection using M2L, MFull, IV3-2L for target PSNR ≥ 26 and CR=10x

DNN
Selector

ORG M2L MFull IV3-2L

IV3 2 1 1 1
ResNet-V2-50 1 1 1 1

InceptionResnetV2 1 1 1 1
MobileNetV1 1 1 1 1

IV1 1 1 1 1
IV4 1 1 1 1

ResNet-V2-101 1 1 1 1
MobileNetV2 1 1 1 1
Pnasnet Large 1 1 1 1
nasnet Large 1 1 1 1

Table 4.10: The GT ranks of the original image and compressed image at the selected QF, output
of selection using M2L, MFull, IV3-2L for target PSNR ≥ 26, CR=3x

DNN
Selector

ORG M2L MFull IV3-2L

IV3 2 2 2 1
ResNet-V2-50 1 1 1 1

InceptionResnetV2 1 1 1 1
MobileNetV1 1 1 1 1

IV1 1 1 1 1
IV4 1 1 1 1

ResNet-V2-101 1 1 1 1
MobileNetV2 1 1 1 1
Pnasnet Large 1 1 1 1
nasnet Large 1 1 1 1
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Table 4.11: The GT ranks of the original image and compressed image at the selected QF, output
of selection using M2L, MFull, IV3-2L for target PSNR ≥ 28 and CR=9x

DNN
Selector

ORG M2L MFull IV3-2L

IV3 2 2 2 2
ResNet-V2-50 1 1 1 1

InceptionResnetV2 1 1 1 1
MobileNetV1 1 1 1 1

IV1 1 1 1 1
IV4 1 1 1 1

ResNet-V2-101 1 1 1 1
MobileNetV2 1 1 1 1
Pnasnet Large 1 1 1 1
nasnet Large 1 1 1 1

Table 4.12: The GT ranks of the original image and compressed image at the selected QF, output
of selection using M2L, MFull, IV3-2L for target PSNR ≥ 28, CR=3x

DNN
Selector

ORG M2L MFull IV3-2L

IV3 2 2 2 1
ResNet-V2-50 1 1 1 1

InceptionResnetV2 1 1 1 1
MobileNetV1 1 1 1 1

IV1 1 1 1 1
IV4 1 1 1 1

ResNet-V2-101 1 1 1 1
MobileNetV2 1 1 1 1
Pnasnet Large 1 1 1 1
nasnet Large 1 1 1 1
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Table 4.13: The GT ranks of the original image and compressed image at the selected QF, output
of selection using M2L, MFull, IV3-2L for target PSNR ≥ 30 dB and CR=3x

DNN
Selector

ORG M2L MFull IV3-2L

IV3 2 2 2 2
ResNet-V2-50 1 1 1 1

InceptionResnetV2 1 1 1 1
MobileNetV1 1 1 1 1

IV1 1 1 1 1
IV4 1 1 1 1

ResNet-V2-101 1 1 1 1
MobileNetV2 1 1 1 1
Pnasnet Large 1 1 1 1
nasnet Large 1 1 1 1

Table 4.14: The GT ranks of the original image and compressed image at the selected QF, output
of selection using M2L, MFull, IV3-2L for target PSNR ≥ 32 and CR=3x

DNN
Selector

ORG M2L MFull IV3-2L

IV3 1 1 1 1
ResNet-V2-50 1 1 1 1

InceptionResnetV2 1 1 1 1
MobileNetV1 1 1 1 1

IV1 1 1 1 1
IV4 1 1 1 1

ResNet-V2-101 1 1 1 1
MobileNetV2 1 1 1 1
Pnasnet Large 1 1 1 1
nasnet Large 1 1 1 1
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4.6 Summary

This chapter demonstrated the capability of Deep Selector-JPEG to achieve better RA perfor-
mance than the default JPEG compression on a set of tested DNNs for different human vision
constraints. The selector complexity has been discussed. Moreover, it has been shown that the
complexity of M2L is comparable to the complexity MobileNetV2 original architectures while
its RA performance is comparable to the RA performance of MFull and IV3-2L. That makes it
efficient for employing on edge devices.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This work presents Deep Selector-JPEG, an adaptive JPEG compression method that serves both
image classification and Human Vision (HV). Towards this end, for each original image, Deep
Selector-JPEG selects adaptively a Quality Factor (QF) to compress the image with its gains
in classification accuracy at the same compression ratios as high as ≈1% in comparison with
the default JPEG. These gains are achieved while preserving compliance with JPEG standard,
showing consistent performance across different DNNs, and satisfying HV.

The adaptive selection happens within a predetermined set of feasible QFs to meet a certain
PSNR threshold with a high probability to serve HV. Multiple QFs within the feasible set can be
suitable (ON) for compressing an image for a Deep Neural Network (DNN). A QF is suitable
(ON) to compress an image for a DNN if compressing at this QF maintains the ground truth
rank of the original input for the DNN classifier. For a given image, Deep Selector-JPEG first
determines the QFs that are ON among the set of feasible QFs by solving a Multilabel Classifi-
cation Problem (MLC) through Binary Relevance (BR) and then select the least QF that is ON to
maintain a certain Compression Ration (CR) constraint. The Binary relevance involves training
an independent binary DNN classifier for each QF within the feasible set to predict the ON/OFF
labeling for each input image. We have presented two forms of Deep Selector-JPEG; The first
form freezes a large portion of a DNN architecture and uses it as a common feature extractor
for all binary classification problems, while the rest of the architecture is used for training each
binary classification problem. The second form utilizes the entire architecture for training each
binary classification problems. MobileNetV2 and Inception V3 are used in the design of the first
form. Moreover, MobileNetV2 is used for designing the second form. Given a target CR, we
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empirically derive a subset of feasible QFs for this target CR and select the least QF that is ON
in this set.

For a given PSNR constraint, our results show classification accuracy gains up to ≈1% over
default JPEG on the same CR. Applying both forms of Selector-JPEG using both IV3 and Mo-
bileNetV2 on different DNN models in the literature shows consistent accuracy gains over default
JPEG at the same CR, which reveals generality of Selector-JPEG. This shows that considering
computer vision as well as human vision in designing a compression method can achieve general
RA improvement on different DNNs.

5.2 Future Work

This work can be extended in several ways. We discuss some of these possible extensions in the
following subsections.

5.2.1 Reducing Complexity of Deep Selector-JPEG

One of Deep Selector-JPEG’s limitations is its complexity, especially for employment on edge
devices and the Internet of Things (IoT) applications. Although the M2L presented in chapter
3.6.1 produces acceptable RA results with reasonable complexity 541.11 MACs, the complex-
ity of Deep Selector-JPEG still needs to be decreased for better employment on edge devices.
Comparing the RA performance of M2L and MFull shows that comparable RA performance
is achieved with less complexity. Since each binary relevance problem is practically a binary
classifier, we believe an architecture with fewer parameters would be enough to achieve similar
performance. This opens a direction of seeking efficient architectures that fits the Deep Selector-
JPEG framework. One possible suggestion is to build up this architecture based on the currently
used MobileNetV2. One may freeze the first n layers of MobileNetV2 as a common feature
extractor and, instead of training the rest of the architecture, add a fully connected layer after
these n layers to reduce the number of parameters. One can decrease n until the lowest number
of parameters is achieved, and the RA performance is acceptable.

5.2.2 Applying on Other Codecs, and CV tasks

Deep Selector-JPEG is adaptable for any compression method with a parameter to control the
quality of images. That means for a given compression method X with quality parameter y, we

67



can train our architecture to create a selector, called Deep Selector-X to derive ON/OFF labels
for a range of y values and select the lowest y that is ON among a set of empirically derived y
values for a target CR that is suitable for computer vision and satisfy a HV criteria. (see Figure
5.1). For example, this X can be HEVC [25], one state of the art compression methods for video
coding to select the best Quantization Parameter (QP) for each image under a certain PSNR and
CR constraint. This may result in better RA performance than Deep Selector-JPEG since HEVC
provides better rate-distortion trade off than JPEG; also, it is possible to apply our method on top
of tailored compression methods for computer vision, like DeepNJPEG [17] and GRACE [31]
introduced in chapter 3.2 and further improve their performance.

DNNs are used for different computer vision tasks like segmentation, object detection, image
localization, face detection, etc. Our experiments are limited to classification, which is one
popular example of computer vision applications. Our methodology can further be extended to
other computer vision tasks like segmentation and object detection to show its generality for
different computer vision tasks. This extension is simply done by changing ON/OFF labeling
from classifier DNN to ON/OFF labeling based on other computer vision tasks.

Combining these two extensions, the target of Deep Selector-X , would be both human vi-
sion and different computer vision applications such as segmentation, object detection etc. This
framework is shwon in Figure 5.1.

Classification

Segmentation

Object Detection

 

X 
Encoder Channel/storage X

Decoder

Information
source

 Computer
Vision Task 

Human
 Vision

Deep
Selector-X

X = { HEVC, JPEG-2000, DeepNjpeg, GRACE, ... }
 

Figure 5.1: Extended frame work of our methodology

5.2.3 Training DNN with the output of Deep Selector-JPEG

For a target CR, Selector-JPEG provides a compressed version of the ImageNet validation dataset
that performs better than the compressed dataset with default JPEG at the same CR while infer-
encing a classifier DNN. One interesting question is the effect of training a classifier DNN with
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the compressed version of images at selected QF from Deep Selector-JPEG. Authors in [17]
showed that training a neural network using a dataset compressed by a specific JPEG QF will
increase the inference performance on the dataset that is also compressed with the same QF.
We expect that training a DNN using the dataset that is the output of selection done by Deep
Selector-JPEG will further improve the RA performance of DNN.
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