
Trajectory Planning and
Subject-Specific Control of a Stroke

Rehabilitation Robot using Deep
Reinforcement Learning

by

Arash Hashemi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2021

c© Arash Hashemi 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

There are approximately 13 million annual new stroke cases worldwide. Research has
shown that robotics can provide practical and efficient solutions for expediting post-stroke
patient recovery. Assistive robots provide automatic limb training, which saves a great
deal of time and energy. In addition, they facilitate the use of data acquisition devices.
The data is beneficial in terms of quantitative evaluation of the patient progress.

This research focused on the trajectory planning and subject-specific control of an
upper-extremity post-stroke rehabilitation robot. To find the optimal rehabilitation prac-
tice, the manipulation trajectory was designed by an optimization-based planner. A linear
quadratic regulator (LQR) controller was then applied to stabilize the trajectory. The
integrated planner-controller framework was tested in simulation. To validate the simu-
lation results, hardware implementation was conducted, which provided good agreement
with simulation.

One of the challenges of rehabilitation robotics is the choice of the low-level controller.
To find the best candidate for our specific setup, five controllers were evaluated in sim-
ulation for circular trajectory tracking. In particular, we compared the performance of
LQR, sliding mode control (SMC), and nonlinear model predictive control (NMPC) to
conventional proportional integral derivative (PID) and computed-torque PID controllers.
The real-time assessment of the mentioned controllers was done by implementing them
on the physical hardware for point stabilization and circular trajectory tracking scenarios.
Our comparative study confirmed the need for advanced low-level controllers for better
performance. Due to complex online optimization of the NMPC and the incorporated de-
lay in the method of implementation, performance degradation was observed with NMPC
compared to other advanced controllers. The evaluation showed that SMC and LQR were
the two best candidates for the robot.

To remove the need for extensive manual controller tuning, a deep reinforcement learn-
ing (DRL) tuner framework was designed in MATLAB to provide the optimal weights for
the controllers; it permitted the online tuning of the weights, which enabled the subject-
specific controller weight adjustment. This tuner was tested in simulation by adding a
random noise to the input at each iteration, to simulate the subject. Compared to fixed
manually tuned weights, the DRL-tuned controller presented lower position-error.

In addition, an easy to implement high-level force controller algorithm was designed by
incorporating the subject force data. The resulting hybrid position/force controller was
tested with a healthy subject in the loop. The controller was able to provide assist as
needed when the subject increased the position-error.

iii

Future research might consider model reduction methods for expediting the NMPC
optimization, application of the DRL on other controllers and for optimization parameter
adjustment, testing other high-level controllers like admittance control, and testing the
final controllers with post-stroke patients.

iv

Acknowledgements

Foremost, I would like to thank my supervisor, Prof. John McPhee, for his gracious
support, encouragement and invaluable insight throughout my Master’s degree. I am
indebted to his guidance. His careful editing contributed tremendously to the production
of this thesis.

I would like to thank my committee members, Prof. Katja Mombaur and Prof. James
Tung for their suggestions and intellectual contributions to the thesis improvement.

Finally, I would like to thank all the members of Motion Research Group for their help,
and advice. Being part of this team was, and will always be, my honour.

v

Dedication

This thesis is dedicated to my mother without whom I would not be able to start my
education and reach this level. No words can describe my gratitude for her sacrifices and
unconditional love.

vi

Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Thesis Organization . 2

1.3 Thesis Contributions . 3

2 Background and Literature Review 4

2.1 Overview . 4

2.2 Stroke and Rehabilitation . 4

2.3 Rehabilitation Robotics . 5

2.3.1 Rehabilitation Robotics Challenges 5

2.3.2 Control Strategies for Rehabilitation Robotics 6

2.4 Optimization Techniques for Solving Optimal Control Problems 8

2.4.1 Indirect Methods . 8

2.4.2 Direct Methods . 10

2.4.3 Dynamic Programming . 12

2.5 Reinforcement Learning . 14

2.5.1 Q-learning . 14

vii

2.5.2 Value Function Approximation Methods 16

2.5.3 Policy Gradient Methods . 17

2.5.4 Actor-Critic Methods . 18

2.6 Conclusion . 19

3 Robot and Human Arm Modeling 20

3.1 Overview . 20

3.2 Rehabilitation Robot . 20

3.2.1 Hardware and Design . 20

3.2.2 Software . 22

3.2.3 Robot Kinematics . 22

3.2.4 Robot Dynamics . 25

3.3 Human Arm Model . 28

3.4 Human-Robot Interaction Model . 29

3.5 Conclusion . 30

4 Human-Robot Interaction Trajectory Planning 32

4.1 Overview . 32

4.2 Trajectory Planning . 32

4.2.1 Problem Formulation . 33

4.2.2 Simulation Results . 36

4.3 Trajectory Stabilization . 40

4.3.1 Linear Quadratic Regulators (LQR) 41

4.3.2 Simulation Results . 43

4.4 Experimental Implementation . 44

4.5 Conclusion . 45

viii

5 Comparative Study of the Rehabilitation Robot Control Algorithms 47

5.1 Overview . 47

5.2 Controller Design . 47

5.2.1 Proportional-Integral-Derivative (PID) Controllers 48

5.2.2 Computed-Torque PID Controllers 49

5.2.3 Sliding Mode Control (SMC) . 51

5.2.4 Nonlinear Model Predictive Control (NMPC) 54

5.3 Simulation Results . 60

5.4 Experimental Results . 64

5.4.1 Comparison Criteria and Implementation 65

5.4.2 Tuning Process . 65

5.4.3 Point Stabilization Results . 65

5.4.4 Tracking Results . 71

5.5 Conclusion . 75

6 Deep Reinforcement Learning Tuning of the Model-based Controllers 77

6.1 Overview . 77

6.2 Deep Deterministic Policy Gradient (DDPG) 78

6.2.1 Problems of DDPG . 81

6.2.2 Twin-Delayed Deep Deterministic Policy Gradient (TD3) 82

6.3 Implementation . 82

6.3.1 Algorithm Validation . 83

6.3.2 Tuner Structure . 84

6.4 Simulation Results . 86

6.5 Conclusion . 87

ix

7 Subject in the Loop Experimental Implementation 88

7.1 Overview . 88

7.2 Experimental Considerations . 89

7.3 Implicit Force Control . 89

7.4 Experimental Results . 91

7.5 Conclusion . 94

8 Conclusion and Future Work 95

8.1 Thesis Summary . 95

8.2 Recommendations and Future Work . 97

References 99

APPENDICES 114

A Stability Proof of Sliding Mode Control 115

B Controller Parameters 117

C TD3 Networks and Hyperparameters Information 119

x

List of Tables

3.1 Hardware Specification . 21

3.2 Link Lengths . 22

3.3 Link Mass and Moment of Inertia . 26

4.1 Optimization Inequality Constraints . 36

4.2 LQR Weights . 45

5.1 RMSE Simulation . 61

5.2 Control Point Results . 67

5.3 Control Tracking Results . 72

B.1 Controller Parameters in Simulation . 117

B.2 Controller Parameters in Hardware Implementation 118

C.1 Neural Network Parameters . 119

C.2 TD3 Hyperparameters . 119

xi

List of Figures

2.1 Robot example . 13

2.2 RL scheme . 15

3.1 Stroke rehabilitation robot (top view) . 21

3.2 Stroke rehabilitation robot kinematics . 24

3.3 Control-oriented model validation. The end-effector X and Y positions in
the workspace are shown. 28

3.4 Human-robot interaction model [49] . 30

4.1 End-effector desired path in the workspace. 37

4.2 Robot state trajectories in the jointspace. 38

4.3 Input trajectories. The left plot depicts the robot torques and the right plot
shows the muscle activations. 39

4.4 Trajectory error results. The top row highlights the collocation error be-
tween the real dynamics (dx/dt) and the dynamics (f) at the collocation
points used. It depicts the resulting error due to the discretization. As
shown, this error is considerably low which suggests that the application of
the direct-collocation was successful. 40

4.5 Schematics of integrated planner and controller. The planner runs offline
and provides the desired values that the controller uses to stabilize the trajec-
tory. The resulting robot torques are then applied to the robot manipulator
to advance its state forward in time. 43

4.6 LQR control results in simulation. X and Y are end-effector positions. Ẋ
and Ẏ are end-effector velocities. Also, τ1 and τ2 are robot motor torques. 44

xii

4.7 Experimental implementation of the trajectory stabilizer on the robot. . . 46

5.1 PID block diagram . 49

5.2 Computed-Torque PID block diagram . 51

5.3 SMC block diagram . 54

5.4 MPC block diagram . 56

5.5 Maple-based NMPC scheme . 59

5.6 Comparison between the iteration turnaround time of CASADI and Maple
NMPC . 60

5.7 End-Effector position/velocity simulation comparison (2 ms sampling time) 62

5.8 Robot torques simulation comparison (2 ms sampling time) 63

5.9 NMPC implementations with increased sampling time (10 ms sampling time) 64

5.10 Robot schematics for point stabilization 67

5.11 Point stabilization results . 68

5.12 Point stabilization torque/current results 69

5.13 PID point inputs . 70

5.14 PID low inputs . 70

5.15 PID end-effector positions with lower inputs 71

5.16 Robot schematics for tracking . 72

5.17 End-effector X position result for tracking 73

5.18 End-effector Y position result for tracking 73

5.19 End-effector X velocity result for tracking 74

5.20 End-effector Y velocity result for tracking 74

5.21 Robot torques and current results for tracking 75

6.1 Actor-Critic schematics . 78

6.2 The TD3-controlled pendulum . 83

6.3 The whole-episode tuning strategy . 84

6.4 The iteration-based tuning strategy . 85

xiii

6.5 The controller-tuner scheme . 85

6.6 The SMC adaptive weights . 86

6.7 The SMC position comparison between fixed vs adaptive weights 87

7.1 The hybrid position/force control scheme 90

7.2 The local-global force relation. 90

7.3 SMC subject in the loop results for the circular trajectory. The top left plot
shows the end-effector position P and the desired value Pd. The top right
plot depicts the subject force in the global XY coordinates. The bottom
plots show the subject usubject, controller ucontroller, and final torques urobot. 92

7.4 LQR subject in the loop results for the circular trajectory. The top left plot
shows the end-effector position P and the desired value Pd. The top right
plot depicts the subject force in the global XY coordinates. The bottom
plots show the subject usubject, controller ucontroller, and final torques urobot. 93

7.5 LQR subject in the loop testing for tracking the planner trajectory. The top
left plot shows the end-effector position P and the desired value Pd. The
top right plot depicts the subject force in the global XY coordinates. The
bottom plots show the subject usubject, controller ucontroller, and final torques
urobot. 94

xiv

Chapter 1

Introduction

There are over 13 million annual new cases of stroke incidence worldwide [76], and 33%
of the survivors have reported limited or no use of their upper-limb. Extensive research
has been dedicated to finding practical approaches to aid the recovery of the post-stroke
patients. Interestingly, robotics has been proven to be one of the feasible solutions [68].
This thesis focused on an end-effector-based robot for post-stroke upper-extremity reha-
bilitation.

1.1 Motivation and Goals

This work examined the trajectory planning, comparative control implementation, and
automatic controller tuning of our experimental setup. The rehabilitation practice is one
of the most critical aspects of patient’s improvement; it determines the progress of their
motor recovery. Motivated by this fact, the goal of the first phase of the thesis was to design
a systematic approach for obtaining the optimal practice trajectory. Controller synthesis
was then required to maintain the robot on the desired trajectory. Various options could
be chosen for this purpose. Needless to say, each choice had its own advantages and draw-
backs. The goal of the second phase of the thesis was to evaluate and find the most suitable
controller among five well-known algorithms in the literature. The best controller candi-
dates included weights that required extensive manual tuning, which is a time-consuming
process and does not result in optimal weight settings. This issue motivated the third phase
of the thesis to focus on an automatic framework for judicious tuning of the parameters.
Finally, to incorporate the subject in the control loop, the fourth phase concentrated on
designing an intuitive and easy to implement high-level force controller.

1

1.2 Thesis Organization

• Chapter 1 states the thesis motivations and goals. It also presents the project orga-
nization and contributions.

• Chapter 2 provides the background. A detailed review of rehabilitation robotics is
presented and the challenges and control strategies are discussed. A comprehen-
sive section is dedicated to optimization techniques and their positive and negative
aspects. This information is useful when reading Chapters 4 and 5, where the opti-
mization techniques were extensively utilized. Finally, a summary of reinforcement
learning and its progress during recent years is presented. This part helps with the
grasp of the main DRL algorithms, namely Deep Deep Deterministic Policy Gradient
(DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3), in Chapter
6.

• Chapter 3 discusses the rehabilitation robot and human arm model. The low-fidelity
robot model was used in Chapters 4 and 5 for model-based controllers. The high-
fidelity model, used for controller testing in the aforementioned chapters, is also
presented. The integrated human-robot interaction model is then provided. This
model is utilized in Chapter 4 for trajectory planning.

• Chapter 4 outlines the trajectory optimization framework. The first section of this
chapter discusses the optimization method and the planner framework. The remain-
ing section outlines the trajectory stabilizer for maintaining the robot on the de-
sired trajectory. Simulation results are presented to evaluate the integrated planner-
controller. Lastly, experimental results are provided to validate the simulation.

• Chapter 5 introduces the comparative study of the controller algorithms on the robot.
The mathematical formulation of five controllers is presented. In addition, two meth-
ods of implementing symbolic-based model predictive control are examined. Later
in this chapter, comparative simulation results are presented. The final section of
the chapter focuses on experimental results of the controllers and providing the best
candidates.

• Chapter 6 discusses the formulation and implementation of the DRL algorithms. In
addition, the application of the tuner on the SMC candidate controller is presented.

• Chapter 7 describes the process for considering the subject in the control loop for
experimental evaluation. The high-level force controller is then presented. The ex-
perimental results for the hybrid position/force controller is provided.

2

• Chapter 8 outlines the conclusion of this research by reviewing the summary of the
work. The limitations and recommended future work are also discussed.

1.3 Thesis Contributions

• Development of a novel optimization-based trajectory planning framework with hy-
brid human-robot cost function for calculating the rehabilitation manipulation prac-
tice.

• Designing a LQR trajectory stabilizer to be integrated with the planner.

• Evaluation of the integrated planner-controller in simulation and real-time experi-
ments.

• Conducting a comparative study for finding the best controller candidates among
five well-known controllers.

• Development of a DRL tuner to be used with model-based controllers.

• Development of an easy to implement high-level force controller.

• Conducting subject-in-the-loop real-time tests by applying the final hybrid posi-
tion/force controller.

3

Chapter 2

Background and Literature Review

2.1 Overview

In this chapter, the literature review for the explored pathways in this thesis is pre-
sented. In addition, the foundation of the ideas, discussed in the subsequent chapters, is
outlined.

2.2 Stroke and Rehabilitation

Stroke is defined as “rapidly developing clinical signs of local (or global) disturbance of
cerebral function, with symptoms lasting 24 hours or longer or leading to death, with no
apparent cause other than of vascular origin” by The World health Organization (WHO)
[105]. As the leading cause of adult disability [112], and one of the prevalent causes of
global death [106], this disease has brought about physiological, psychological, social, and
economical impacts. A great portion of post-stroke patients live with long-term disabil-
ities which hamper the normal routine of their life and even interfere with their casual
daily activities. Given that more than two-thirds of post-stroke patients have upper limb
impairment [104], and considering that most daily activities are associated with utilizing
the upper limb, it is crucial to find methods that can help with the motor recovery of
post-stroke patients. Physiotherapists and chiropractors have been tremendously helpful
in terms of mitigating the negative effects of stroke. Having said that, there are practical
approaches that can increase the productivity of the rehabilitation even further.

4

2.3 Rehabilitation Robotics

Robot-assisted rehabilitation can improve the motor recovery process [51, 111, 136].
Generally speaking, rehabilitation involves employing daily repetitive practices, which are
done by patients and supervised/aided by post-stroke physiotherapists. Robots can show
utility by automating this process, hence saving a considerable time and effort. Moreover,
rehabilitation robots are (or can be) equipped with force/torque sensors, encoders, Elec-
tromyography (EMG), etc. The data can then be utilized to quantitatively analyze the
patient progress. For instance, EMG data could be mapped back to muscle activation
which can then be used to determine the progress of a particular muscle, or a group of
muscles. The positive effect of robot-assisted rehabilitation in the motor recovery of post-
stroke patients has been demonstrated in [15, 142, 68, 51]. It is worthwhile to note that
robot-assisted rehabilitation does not remove the need for physiotherapists, and chiroprac-
tors. The choice of practices which are directly associated with motor recovery, requires
clinical insight and should be selected adaptively. The robot operates as a tool to aid the
performance of the repetitive movements. Similar to other approaches, there are barriers
for the general employment of robotic rehabilitation. These challenges are studied in the
next section.

2.3.1 Rehabilitation Robotics Challenges

Similar to other branches of robotics, rehabilitation robotics possesses important chal-
lenges that need to be addressed for a productive motor recovery [149].

Safety

One of the cardinal factors to consider when designing, controlling, and working with
rehabilitation robots is the safety. As we enter the subbranch of Human-Robot Interaction
(HRI), the robots should be able to perform the given task successfully and at the same
time, minimize the probability of imposing any damage upon patients. On the design side,
this can be achieved by selecting the appropriate materials, adopting the appropriate design
strategy, and choosing the suitable electrical hardware. Low-power motors can ensure that
damage to the subject is almost prohibited even when exerting the maximum input. Also,
using online protective devices, like emergency push buttons, is a necessity, as they enable
emergency shut down of setup whenever unstable robot behavior is observed. There are
strategies on the software side as well that have proven helpful. Restricting the controllers

5

to a maximum torque/current can be achieved on the software side by adopting saturation
functions or current limits. Interestingly, the limit on the hardware and motor power calls
for better high-level and low-level controllers that motivates research in this field.

User-Interface

As mentioned before, rehabilitation practices often include repetitive tedious activities
which are not always compelling to stick to. Adding the fact that the majority of post-
stroke patients are elderly, we can conclude that we are in need of mechanisms to make these
practices more engaging and fun for the patients. Developing appropriate user-interfaces
for robots by taking advantage of gamification and Virtual Reality (VR) can be a suitable
mechanism. In addition, Artificial Intelligence (AI) can be integrated in these interfaces
for patient language processing, emotion recognition, etc.

Ethical Aspects

Working with a robotic device that imposes artificial interaction with a subject can have
ethical and social impacts, especially on the elderly population because of their specific
physical and mental levels; the robot intelligence and autonomy can potentially cause
alienation in patients. With this regard, the ethical constraints and possible repercussions
of the HRI should be considered. On top of that, the legal aspects of interaction should be
clarified. It should be noted that the User-Interface and Ethical Aspects topics are beyond
the scope of this thesis and are only mentioned for the sake of completeness; hence, these
topics are not investigated in other chapters.

2.3.2 Control Strategies for Rehabilitation Robotics

There are various categorizations of control strategies for rehabilitation robots in the
literature. Here, the focus is mostly on the ones presented in [89, 100]. Generally, control
strategies are divided into High-Level and Low-Level. High-level control strategies are
“explicitly designed to provoke motor plasticity”. On the other hand, low-level strategies
strive to “control the force, position, impedance, or admittance factors of high-level control
strategies”.

6

High-Level Control Strategies

1. Assistive Control Strategies: These approaches help the patient in terms of complet-
ing the repetitive practices, and are divided into Impedance-based, Counterbalanced-
based, EMG-based, and Performance-based Adaptive controllers. Impedance control
which is a force controller strategy, applies a restoring force when the patient devi-
ates from the desired trajectory. Counterbalanced-based methods provide passive, or
active limb weight counterbalance, hence make the exercise easier and more focused
on following the desired trajectory. In this regard, we used a passive upper-limb
weight counterbalance during subject testing in Chapter 7. EMG-based methods
take advantage of patient sEMG signals to determine/trigger the assistance. Finally,
performance-based adaptive controllers use the performance data of the patient, in-
cluding the sum of deviations from the desired trajectory to adapt the assistance
(force, impedance parameters, etc.) or to reset the practice (trajectory, time, admit-
tance parameters, etc.).

2. Challenged-based Control Strategies: These methods include Resistive, Error-Amplified,
and Constraint-Induced. Resistive approach, which is the primary strategy in challenged-
based approaches, adopts an opposite mechanism to assistive strategies and resists
patient motion (instead of accommodating it). Error-amplified methods increase the
deviation error. It has been shown that this approach can lead to faster improve-
ments [109]. Finally, constraint-induced methods limit the use of the non-affected
limb so that the affected-limb does most of the practice without extra help.

3. Haptic Simulation Strategies: As mentioned in the previous section, the User-Interface
is an essential part of robot-assisted rehabilitation. Haptic Simulation methods uti-
lize haptic devices and tactile sensors, along with virtual reality (VR) technology to
create an immersive and realistic environment for post-stroke patients and improve
their engagement.

4. Non-contacting Coaching Strategies: These approaches are different from other cate-
gories in that there is no contact-based HRI. The patient performs a predefined prac-
tice and a system monitors his/her movement. AI-based vision systems are highly
effective in this application. By detecting posture and identifying joint positions, the
deviation from the desired joint trajectory can be calculated and the corrective visual
signal can be provided for the patient to correct the practice.

The aforementioned strategies can be modified and combined for particular applica-
tions.

7

Low-Level Control Strategies

Low-level control strategies assist the employment of high-level controllers, and are com-
monly used in general control tasks. These approaches are divided into position, force, or
hybrid position-force controllers. Various categories can be assigned to low-level controllers
like model-free versus model-based, linear versus nonlinear, optimization-based versus non-
optimization-based, etc. In order to address the safety issues, impedance/admittance con-
trollers are also implemented along with the low-level ones. As many of the low-level
strategies take advantage of optimization, it is imperative to know about various optimiza-
tion techniques, their advantages, and drawbacks.

2.4 Optimization Techniques for Solving Optimal Con-

trol Problems

Optimal control problems include solving for some decision variables, such that a per-
formance index is minimized (for cost functions) or maximized (for reward functions).
Depending on the problem formulation, the output of the optimizer may be the unknown
parameters (function optimization), or the input function (functional optimization). In the
case of the former, the problem is usually referred to as “optimal control” and in the case
of the latter, it is referred to as “trajectory optimization” [118]. Generally speaking, opti-
mization methods for optimal control divide into three major categories: indirect, direct,
and dynamic programming. All three methods, or their modified versions, are actively
used in optimal control and sequential decision-making problems. Needless to say, each
approach has its own positive and negative aspects. In what follows, each approach and
its potential application is discussed [118]:

2.4.1 Indirect Methods

In these methods, the problem is “first optimized, then discretized”. Calculus of vari-
ations is utilized to derive the Karush-Kuhn-Tucker (KKT) optimality conditions. The
optimization problem then turns into a mutiple-point boundary value (BV) problem. An-
alytical or (in most cases) numerical recipes are then exploited to solve the resulting BV
problem. The optimal control is turned into solving a system of nonlinear algebraic equa-
tions. Various classes of methods for solving Nonlinear System of Equations and Dif-
ferential Equations and Function Integration have been studied in indirect methods.

8

Two main numerical approaches for solving differential equations are Time-Marching
and Collocation methods. Time-marching methods divide into Multiple-Step and Multiple-
Stage categories. In multi-step methods, the solution of the current time-step is acquired
by using the solution of n previous time-steps. Depending on the formulation of steps and
the choice of n, different well-known numerical integration methods are obtained. The
simplest multi-step method is the forward Euler approach; only the previous time-step’s
solution is utilized for finding the current time-step’s solution (n = 1):

x(tk+1) = x(tk) + ∆tkf(xk, tk)

∆tk = tk+1 − tk
(2.1)

In Eq. 2.1, x(tk) and f(xk, tk) are the solution and the derivative of the solution at time
tk, respectively. In multi-stage approaches, the solution interval [t0, tf] is divided into K
subintervals [τn,τn+1], at which the integral is approximated by a quadrature:

∫ tf

t0

f(x(t), t)dt ≈ ∆t
K∑
n=1

βnf(xn, τn)

x(tf) ≈ x(t0) + ∆t
K∑
n=1

βnf(xn, τn)

∆t = tf − t0

(2.2)

βn are the problem coefficients and are found by calculating the states x(τi) and
f(x(τi), τi) at each subinterval points. In collocation methods, the interval is again di-
vided into subintervals; however, the states themselves are approximated by piece-wise
polynomials of degree K. The accuracy of the solution depends on the choice of K:

Xapprox(t) =
K∑
n=0

cn(t− t0)n t ∈ [t0, tf] (2.3)

The resulting coefficients cn are then found. This is done by equating the approximate
states to the states at t0. Also, the derivative of the approximate states should match the
derivative of the states (the right-hand side of the differential equation):

Xapprox(t0) = x(t0)

Ẋapprox(τj) = f(τj)
(2.4)

9

As seen later in the chapter, collocation methods have the advantage of solving for all
the unknowns simultaneously. In addition, the dynamics is simulated in parallel since the
states are found at the same time with the coefficients. On the contrary, in time-marching
methods, the inputs and states are found sequentially.

2.4.2 Direct Methods

In direct methods, instead of checking for first-optimality conditions and then solv-
ing the resulting system of nonlinear equations, the controls (control parametrization) or
states/controls (state-control parametrization) are approximated directly. In other words,
the direct methods are “discretize first and then optimize” classes of approaches. Instead
of reaching a system of nonlinear algebraic equations, the discretization leads to a non-
linear optimization problem or a nonlinear program (NLP). Here, we briefly mention the
direct methods for solving optimal control problems and discuss the advantages and disad-
vantages of each method. It is worthwhile to note that the aforementioned methods have
indirect versions as well. These versions are not described since they were not applied in
this thesis.

Direct Single-Shooting Methods

Single-shooting is a control parametrization approach where only the controls are ap-
proximated by functions:

u(t) =
K∑
n=0

cnφn(t) (2.5)

where u(t) is the control function, cn are the unknown parameters, and φn are the known
function approximators. The states and the cost function are found by integrating (simu-
lating) the dynamics forward (model roll-out) using a time-marching approach. An initial
guess for the unknown parameters is used and modified, by evaluating the terminal cost
and the cost function, until the minimum is acquired. While simple and intuitive, simple-
shooting methods suffer from several numerical issues that lead to the ill-conditioning of
the Hamiltonian [118, 132]. One of these issues is that this method is too sensitive to the
initial guess and can go unstable when it is far from the answer. This problem is mitigated
by using a modified version of single-shooting which is called multiple-shooting.

10

Direct Multiple-Shooting Methods

In this method, the interval [t0,tf] is divided into subintervals [τj,τj+1] where the direct
single-shooting algorithm is performed in each of them. Each subinterval has its own
unknown parameters. The continuity condition in Eq. 2.6 enforces that the last state of
each interval is the same as the first state of the next interval.

x(τj−)− x(τj+) = 0 (2.6)

Multiple shooting method alleviates the numerical issues of single-shooting; by de-
creasing the integration interval, the error of initial conditions decreases. Despite this
improvement, there are other fundamental issues with shooting methods that make the
next method, Direct Collocation, favorable in many robotic applications. The following
briefly mentions these issues [132]:

• Since the states are not part of the decision variables, in problems with state con-
straints, each constraint needs to be simulated again, hence making the optimization
slower.

• Using the time-marching approach in single-shooting methods enforces a sequential
solution (finding u and rolling out the dynamics and cost). This inhibits the optimizer
to calculate the dynamics and the decision variables in parallel, hence hindering the
use of parallel computing in large and nonlinear problems.

Direct Collocation

Direct collocation resolves all the aforementioned issues by considering the states in
the decision variables (state-control parametrization). The problem is discretized by ap-
proximating the state and control using appropriate functions. This process is also called
“Transcription”. Various choices can be implemented for the state-control function ap-
proximators and that leads to the multiple existing transcription methods. One of these
methods, namely Trapezoidal Transcription is discussed in Chapter 4, where the direct
collocation was implemented for trajectory planning. The procedure is similar to the col-
location approach for integration in Section 2.4.1. Due to having the states as decision
variables, adding state constraints is more computationally tractable. In addition, states
and inputs are calculated in parallel. Although the size of the problem increases by adding
the states to the decision variables, the resulting nonlinear program is sparse usually and
appropriate sparse solvers, like SNOPT [52], can be exploited for this matter.

11

2.4.3 Dynamic Programming

First introduced by Bellman [12], dynamic programming (DP) provides a new perspec-
tive on solving optimization problems and has been in the spotlight for optimal control
problems in the last two decades [124]. As in the other two methods, the aim is to min-
imize a cumulative cost (or maximize a cumulative reward). The major requirement in
DP is that the problem should be represented as a multi-stage optimization problem. The
more concrete mathematical requirement for this process is that it should have the Markov
Property. This property states that: given the state xk and action ak at the kth stage,
the next stage state xk+1 can be calculated independent of the previous history of states
and actions. The process with this property is called a Markov Decision Process (MDP).
Dynamic Programming is a great candidate for sequential decision making fields, including
control, machine learning, shortest path problems (SPP), etc. The core idea of DP which is
called The Principle of Optimality is fairly simple and highly intuitive. This principle
states that the tail portion of the main problem should also be optimal. In other words,
if we split the main N-stage problem into multiple k-stage problems, the solution for all
of those k-stage problems should also be optimal. This notion can be readily followed
by intuition. If the solution of the k-stage problem is not optimal, there exists a better
solution that can replace it. DP assigns a value metric to each state at each stage, Jk(xi),
where k = 0, ..., N − 1 and i = 1, ..., ns with N being the number of stages and ns being
the number of states. Roughly speaking, the value metric of a state at a particular stage
k shows how much cost (or reward) is accumulated starting from that state onward until
the end of the sequence; the value shows how “good” it is to be in a particular state. This
is different from the immediate cost gk(xi, uj) that is received by taking action uj at state
xi.

More elaboration is presented with an example, as the understanding of this concept is
crucial for following the subsequent sections. Suppose we have a robot in a grid (Fig 2.1).
Starting from the initial condition, the goal is to control the robot to the desired point
(green square) with N moves (stages). The robot can employ “up”, “down”, “left”, and
“right” commands. In this example, entering each square has an immediate cost gk(xi).
The “cost to go” for each square, after employing i moves and ending up at that square, is
the summation of all the costs that are accumulated from that square after commanding
N − i moves.

12

Figure 2.1: Robot example

The cost to go function, which is a common term in the nomenclature of optimal
control, is substituted with value function in the nomenclature of AI. Value functions are
discussed in the Reinforcement Learning section. The solution of the optimal control is
found implicitly by finding the optimal costs to go J∗k (xi). The solution is divided into
backward and forward passes. The backward pass includes starting from the tail section
backwards to the initial stage; this part is demonstrated below:

The last stage:

J∗N(xi) = gN(xi) for all xi

and for k=0,..., N-1:

J∗k (xi) = min
uj

[gk(xi, uj) + J∗k+1(fi(xi, uj)]

(2.7)

The cost to go in the last stage is similar to the immediate cost since the terminal stage
is reached. For other stages, the optimal cost to go is found by the Bellman update (Eq.
2.7). This equation is solved iteratively until the initial state is reached. Note that the
dynamics (transition) model of the system is required to find the next state cost to go
J∗k+1(fi(xi, uj). DP is able to work with both discrete and continuous dynamics. With
few modifications, it can also handle stochastic problems. As the optimal costs to go are
obtained, the forward pass is initiated to find the optimal inputs.

13

Initial Step:

u∗0 = argmin
u0

[g0(x0, u0) + J∗1 (f0(x0, u0)]

Subsequent Steps (k = 1, 2, ..., N − 1):

u∗k = argmin
uk

[gk(xk, uk) + J∗k+1(fk(x
∗
k, uk)]

(2.8)

where u∗k is the optimal input at stage k. The presented algorithm is the Exact Dy-
namic Programming. In subsequent sections, the approximate version of this algorithm is
presented.

2.5 Reinforcement Learning

Reinforcement Learning (RL) is an optimization tool for solving real-world problems.
It is considered as approximate DP ([16]) since it uses Bellman equation and the same DP
formulation at its core. During recent years, researchers have implemented approximations
on the original formulation of DP to make it practical for higher-space problems and
problems related to physical systems, in particular. The schematics of RL is depicted in
Fig. 2.2 [128]. At each iteration, the RL agent interacts with the environment by choosing
an action at, which causes the transition of the environment from its previous state st to its
next state st+1; an immediate reward rt is then obtained. The goal of RL is to modify the
agent so that it produces actions that maximize the cumulative reward. In this section, the
minimization of cost is substituted with maximization of the reward and hence, the term
“value function” is used instead of cost-to-go function. RL is a semi-supervised learning
algorithm. Unlike supervised-learning methods, optimal targets, or labels in the field of
supervised learning, are not available before training. The generated sub-optimal output
during the training process is used instead.

2.5.1 Q-learning

DP algorithm is model-based in the sense that a dynamics model is required to go
from state-dependent J∗k to optimal inputs u∗k. Inspired from DP, a model-free algorithm

14

Figure 2.2: RL scheme

called “Q-learning” was introduced [46]. In this algorithm, instead of defining a state-
dependent cost to go, state-action value functions q(s, a) which are dependent on both the
state and the action, are defined. Loosely speaking, q(s, a) determines how good it is to
be in state s and execute action a. Using this method, there is no need for a dynamics
model and state-action pairs are sufficient for training the agent. The Bellman update
in this case is represented as Eq. 2.9, where Qk(xi, aj) is the kth-stage state-action value
function at (xi, aj), and Vk−1(xi+1) is the (k − 1)th-stage state value function at xi+1; αk
determines the effect of Q values of the previous time-step on the current Q value, and
γ determines the discount factor on the Bellman update. Similar to DP, Q-learning is an
iterative algorithm. With this regard, Q values for each state-action pairs can be stored in
a table and get updated according to Eq. 2.9.

15

Qk(xi, aj) = (1− αk)Qk−1(xi, aj) + αk[rk + γVk−1(xi+1)]

Vk−1(xi+1) = max
a
Qk−1(xi+1, a)

i = 1..ns ns = number of states

j = 1..na na = number of actions

k = 1..N N = number of stages

(2.9)

The subtle differences between DP and Q-learning has made the latter a strong model-
free algorithm which has been useful for solving problems in a variety of topics. Having
said that, storing Q values in a table is not a practical strategy in more complex problems
with higher state-action spaces. In addition, solving the maximization is more difficult.
These issues called for modifications and approximations to this algorithm, especially for
real-world problems. There are two major perspectives for applying approximations to the
original RL formulation. Value Function Approximation and Policy Approxima-
tion. Since both of these perspectives were applied in the DRL algorithms presented in
Chapter 6, they are briefly introduced in the following section.

2.5.2 Value Function Approximation Methods

In order to make RL a feasible solution for large MDPs, approximations are applied to
it during recent years. One perspective is to approximate the value functions, or Q values,
and then find the actions implicitly. A Parameterized value function approximation is a
method in which the value/Q function is defined as a function of a set of parameters w and
the best w that can describe v(s) or q(s, a), are found by solving an optimization problem:

v̂(s, w) ≈ v(s)

q̂(s, a, w) ≈ q(s, a)
(2.10)

where v̂(s, w) and q̂(s, a, w) are the parameterized approximate state value functions
and state-action value functions, respectively. There are a myriad of function approxi-
mations that can be utilized for this purpose. Linear function approximators (like least
square methods), nonlinear function approximators (like neural networks), decision trees,
and Fourier/wavelet bases just to name a few. Generally speaking, C2-continuous func-
tion approximators are preferred. Due to their mathematical features and their success in

16

approximating complex function in recent years, deep neural networks (DNNs) are prefer-
rred mostly in the literature. Value functions can be approximated by finding the optimal
parameters of a neural network. This can be done by structuring the problem as an
optimization. Incremental methods, like Gradient Descent, are usually utilized to solve
the optimization problem. Combining DNN-based value function approximation with Q-
learning has resulted in a phenomenal success in the field of RL. The outcome, which is
called deep Q networks (DQNs), has been able to present human-level performance in Atari
games [98, 99]. After the optimal value function is approximated, the action (policy) can
be obtained by:

a∗ = argmax
w

[q̂(s, a, w)] (2.11)

Another popular method for finding the actions is called “epsilon-greedy” in which a
random number is generated and compared to a predefined parameter ε. If the number
is greater than ε, then Eq. 2.11 is used for finding the action. If not, a random action is
taken, within the bounds of the action space. This approach allows for more exploration
and circumvents getting stuck in local maximums.

2.5.3 Policy Gradient Methods

Another idea for making RL practical for complex problems is to explicitly approximate
the final action (policy), instead of deriving it from the approximated value function with
an ε-greedy approach. Policy-based RL methods have better convergence features. They
are more sample-efficient in high-dimensional state-action spaces, and can learn stochastic
policies, which is necessary in many applications like games. It is also sometimes a good idea
to employ a stochastic policy to improve robustness, for instance, for control applications.
On the other hand, policy-based methods are more prone to convergence to local optimum,
and they often have high variance. The policy πθ(s) is now a function of parameter θ; the
optimal θ is found similar to value function approximation approaches. By defining an
optimization metric J(θ), the parameters are adjusted in the direction that maximizes J
and provides optimal policy. The formulation of an one-step MDP is shown in Eq. 2.12:

17

J(θ) = Eπθ [r]

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Rs,a

∆θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∆θlogπθ(s, a)Rs,a

= Eπθ [∆θlogπθ(s, a)r]

(2.12)

J is defined as the expectation of the one-step reward for different policies. d(s) is the
probability distribution of the states in stochastic problems. Rs,a is the received reward
at the state s after taking the action a. In order to find the gradient of J , the “policy
gradient trick” is used:

∆θπθ(s, a) = πθ(s, a)
∆θπθ(s, a)

πθ(s, a)
= ∆θlogπθ(s, a) (2.13)

The gradient of an expectation in Eq. 2.12 is itself an expectation using this simple
mathematical trick; this equation can be expanded to multi-step MDPs (Eq. 2.14). Using
stochastic gradient descent, the parameters are adjusted at each iteration. This way, we can
replace Qπθ(s, a) with rt, which is the immediate reward of that iteration. This approach
leads to an algorithm called REINFORCE [145]. Another approach is to use Value Function
Approximation techniques to approximate Qπθ(s, a). This method is the topic of the next
section.

∆wJ(w) = Eπw [∆wlogπw(s, a)Qπw(s, a)] (2.14)

2.5.4 Actor-Critic Methods

Policy-gradient methods have their own drawbacks, like high-variance gradient approx-
imations. Instead of using the immediate reward, action value functions can be approxi-
mated directly. Actor-critic methods [67] use a Critic to approximate the Qπθ(s, a) and
an Actor to approximate the πθ. In other words, the actor maps states to actions and
the critic updates this mapping to produce actions that increase the Q values. Neural
network function approximators can be utilized for both the actor and the critic. With
neural networks, the critic updates the action-value function parameters w and the actor
updates policy parameters θ. Actor-critic removes the drawbacks of previous methods but

18

adds the approximation error due to the application of neural networks. The approximate
policy gradient algorithm is as follows:

Qw(s, a) ≈ Qπθ(s, a)

∇θJ(θ) ≈ Eπθ [∇θlogπθ(s, a)Qw(s, a)]

∆θ = α∇θlogπθ(s, a)Qw(s, a)

(2.15)

There have been many variations of actor-critic algorithms in the literature [17, 53, 110]
The two main DRL algorithms in this thesis, namely DDPG and TD3, also employ an
actor-critic scheme. We discuss the details of these algorithms in Chapter 6.

2.6 Conclusion

In this chapter, we presented the background and literature on rehabilitation robotics,
optimization techniques, and reinforcement learning. The information helps with the grasp
of next chapters where we use some of the aforementioned approaches.

19

Chapter 3

Robot and Human Arm Modeling

3.1 Overview

In this chapter, the modeling of the rehabilitation robot and the human arm is discussed.
Developing a good model is of utmost importance in model-based control. The model
should be detailed enough to capture the system’s inherent dynamics, and computationally
tractable to enable fast simulations and real-time experimental implementation. To this
end, both control-oriented and high-fidelity models were developed.

3.2 Rehabilitation Robot

Our rehabilitation robot was developed by Quanser Inc., the Toronto Rehabilitation
Institute (TRI), and the Motion Research Group (MoRG) at University of Waterloo to
expedite upper extremity motor recovery. It is an end-effector-based robot and operates in
the horizontal plane. The patient does the repetitive practices by grabbing the end-effector
and moving it in the desired manipulation direction. The robot helps the patient for this
purpose by providing assistive/resistive forces on the user’s hand.

3.2.1 Hardware and Design

The robot is a 2 degrees of freedom (DOF) fully actuated planar parallelogram mech-
anism and comprises four Aluminum links (Fig. 3.1). It is equipped with two DC motors

20

and two optical encoders, which are connected to the actuated joints driving l1 and l2 by
disc-and-timing belt mechanisms. In addition to the original hardware from Quanser, the
robot is equipped with a six axis force/torque sensor (ATI Industrial Automation F/T
Sensor: Nano25) on the end-effector. The specification of the motors, encoders, and the
force sensor is shown in Table 3.1.

4l

3l

2l
1l

Figure 3.1: Stroke rehabilitation robot (top view)

Table 3.1: Hardware Specification

Motor Torque Constant KT = 0.115 Nm/Amp
Gear Ratio r=16:307
Motor Rate 115 mN-m

Motor Encoder Resolution 4000 count/revolution
Force Sensor Limit 250 N (Horizontal) , 1000 N (Normal)

Force Sensor Resolution 1/24 N (Horizontal) , 1/48 N (Normal)

21

3.2.2 Software

The robot uses QUARC real-time control software, which generates code from Simulink
models and runs them on the Windows target in real-time. The software utilizes a Q8
Quanser Data Acquisition (DAQ) card. The encoder data is read by including a HIL
Read block in the Simulink model. The force sensor data is acquired using a National
Instruments (NI) card, and a HIL Analog Read block. The motor current is calculated
by dividing the controller torque by the torque constant. The HIL Write block is then
utilized for sending the command to the motors. In order to transfer the data between
multiple Simulink models, the QUARC communication API is taken advantage of by in-
corporating Server/Client blocks. Moreover, QUARC stream functions enable the data
transfer between MATLAB scripts and Simulink models. Before deploying the software
on the robot, it is built in Simulink. The generated C code is then sent to the RAM for
implementation in the external mode. Depending on the application, some files can run in
the normal simulation mode. This mode is usually used when there are multiple Simulink
models. The normal simulation models calculate the controller torque and send them to
the primary model in the external mode for robot deployment.

3.2.3 Robot Kinematics

Before delving into the dynamic modeling of the robot, the forward and inverse kine-
matics is presented. Trigonometry was used to derive the kinematic equations. The link
length information, which was required for deriving the kinematics, is represented in Table
3.2.

Table 3.2: Link Lengths

l1 0.100 m
l2 0.310 m
l3 0.310 m
l4 0.375 m

Forward Kinematics

The forward kinematics of the robot transformed the robot joint-space to the end-
effector work-space. Eq. 3.1 represents the forward kinematics of the robot.

22

PR =

[
xe
ye

]
θR =

[
θR1

θR2

]
[
xe
ye

]
=

[
l2cos(θR1) + l4cos(θR2)
l2sin(θR1) + l4sin(θR2)

] (3.1)

where PR is the end-effector position in the workspace, and θR is the column matrix
of the driven joint angles. The relation between velocity and acceleration levels in the
jointspace and workspace is found in Eq. 3.2. JR is the robot geometric Jacobian.

ṖR = JRθ̇R

P̈R = J̇Rθ̇R + JRθ̈R

JR =

[
−l2sin(θR1) −l4sin(θR2)
l2cos(θR1) l4cos(θR2)

] (3.2)

Inverse Kimematics

A trigonometric approach was utilized to find the closed-form inverse kinematic solution
of the robot. The corresponding points and vectors are shown in Fig 3.2, from the top
view. Pb is the origin of the base coordinate frame of the robot, and Pe is the end-effector
position with respect to the origin. ~E connects the Pb to Pe. Pm is the position of the
intersection point of link 2 and link 4 with respect to the origin. m1, m2, and m3 are
scalars. Eq. 3.3 is used to find the magnitude of ~E and relate its value to scalars m1, m2.

23

eP

bP

Y

X

mP

E

2l

4l

3m

2m

1m

Figure 3.2: Stroke rehabilitation robot kinematics

|E| =
√
~E · ~E

m1 +m2 = |E|
(3.3)

Using the Pythagorean theorem in the two right triangles:

24

m2
1 +m2

3 = l22
m2

2 +m2
3 = l24

m2
1 −m2

2 = l2 − l24

m1 −m2 =
l22 − l24
|E|

m1 +m2 = |E|

m1 =

l22−l24
|E| + |E|

2

m2 = |E| −
l22−l24
|E| + |E|

2
m3 = l22 −m2

1

n̂x =
~E

|E|
Pm = Pb +m1n̂x +m3(Ẑ × n̂x)

(3.4)

Finally, the robot angles were calculated as follows:

θ1 = tan−1
Pe(2)− Pm(2)

Pe(1)− Pm(1)

θ2 = tan−1
Pm(2)− Pb(2)

Pm(1)− Pb(1)

(3.5)

3.2.4 Robot Dynamics

The high-fidelity robot model was designed by a previous research [47] in MapleSimTM,
which takes advantage of graph-theoretic modeling approaches and symbolic computing to
produce fast simulations. This model is utilized for control algorithm testing in simulation.
The control-oriented model was developed by setting friction and joint stiffness terms to
zero in MapleSim. This model was used in all the model-based controllers. The robot’s
mass, inertia, and center of gravity (CG) locations were required for modeling and is shown
in Table 3.3.

25

Table 3.3: Link Mass and Moment of Inertia

link i mass (kg) moment of inertia (kg.m2) CG X CG Y
1 m1=2.578 J1=0.022 x1=-0.005 y1=0
2 m2=3.399 J2=0.061 x2=0.001 y2=0
3 m3=0.062 J3=0.001 x3=0.158 y3=0
4 m4=1.083 J4=0.010 x4=0.274 y4=0.008

High-Fidelity Model

The high-fidelity model of the robot is as follows:

MRθ̈R + CRθ̇R +KR(θR − θR0) = −JTRfRE − fRJ + τR (3.6)

where MR is the inertia matrix, CR is the Coriolis or centrifugal matrix, and KR is
the joint stiffness matrix. fRE and fRJ are end-effector and joint frictions, respectively.
Friction terms were modeled using a continuous-velocity friction model [26]. Finally, τR ∈
R2 is the robot motor torque. The motor current was then obtained by using I = τR/KT

where KT is the DC motor torque constant.

Control-Oriented Model

The control-oriented model of the robot was derived by omitting friction and joint-
stiffness terms in Eq. 3.6. The model is shown in Eqs 3.7-3.10. The parameters in Eq. 3.10
are shown in Table 3.3.

MRθ̈R + CRθ̇R = τR (3.7)

MR(q) =

[
α1 α2c12 + α3s12

α2c12 + α3s12 α4

]
(3.8)

CR(q, q̇) =

[
0 (α2s12 − α3c12)q̇2

(α3c12 − α2s12)q̇1 0

]
(3.9)

26

c12 = cos(q1 − q2)
s12 = sin(q1 − q2)

α1 = (x21 + y21)m1 +m3l
2
1 + (x24 + y24)m4 + J1 + J4

α2 = m3l1x3 +m4l2x4

α3 = m3l1y3 −m4l2y4

α4 = (x22 + y22)m2 +m4l
2
2 + (x23 + y23)m3 + J2 + J3

(3.10)

Model Validation

To validate the control-oriented model, a PD controller was applied to this model and
the high-fidelity model for tracking a piecewise constant reference trajectory. Both models
were extracted from MapleSim and exported to MATLAB for controller implementation.
The results in Fig. 3.3 show good agreement between the control-oriented and high-fidelity
models.

27

0 5 10 15 20

Time(s)

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

E
nd

-e
ffe

ct
or

 X
(m

)

Control-Oriented
High-Fidelity
Desired

0 5 10 15 20

Time(s)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

E
nd

-e
ffe

ct
or

 Y
(m

)

Control-Oriented
High-Fidelity
Desired

Figure 3.3: Control-oriented model validation. The end-effector X and Y positions in the
workspace are shown.

3.3 Human Arm Model

In the subsequent chapter, the trajectory planning of the integrated human-robot in-
teraction model was examined. To this end, a model of the human arm was required. This
section examines a planar arm model, developed by [49]; this model is a two-dimensional 2
DOF linkage (Fig. 3.4); it includes one degree of freedom for elbow flexion/extension and
one degree of freedom for shoulder rotation. The relation between the human arm joint
and the hand position in the work space is shown below:

ṖA = JAθ̇A

P̈A = J̇Aθ̇A + JAθ̈A
(3.11)

where PA is the hand position, JA is the human arm geometric Jacobian matrix, and

28

θA ∈ R2 is the column matrix of human arm elbow and shoulder joint angles. The equation
of motion (EOM) of this mechanism is shown in Eq. 3.12.

MAθ̈A + CAθ̇A = τA(ua) (3.12)

In this equation, MA is the arm inertia matrix, and CA is the arm Coriolis matrix.
τ(ua) ∈ R2 is the arm joint torque. The arm model is muscle-driven and the τ(ua) is a
function of muscle activations ua.

For the muscle dynamics, we used a 2D muscle model developed by [49] which was
derived from a 3D model; 29 muscles of this model were lumped into 6 final muscles,
namely shoulder and elbow mono-articular and bi-articular muscles. The Thelen muscle
model was utilized to represent Hill-type muscle dynamics [134].

3.4 Human-Robot Interaction Model

The human arm interacts with the robot by grabbing the end-effector, and the robot
performs rehabilitation practices in the horizontal plane. A passive revolute joint on the
end-effector was utilized to integrate the two systems by using the interaction force FI
between the robot and the human arm:

MRθ̈R + CRθ̇R +KR(θR − θR0) = −JTRfRE − fRJ + τR − JTRFI (3.13)

MAθ̈A + CAθ̇A = τA(ua) + JTAFI (3.14)

Using a kinematic constraint (Eq. 3.15) to equate the position of the end-effector and
the arm, and by equating the internal interaction force, the final human-robot interaction
model is presented in Eq. 3.16. The robot angles θR and angular velocities θ̇R were con-
sidered as the states and the robot torques τR and human arm muscle activations ua were
considered as the inputs.

PR = PA (3.15)

29

Figure 3.4: Human-robot interaction model [49]

τA(uA) + JAJ
−T
R (τR − [MRθ̈R + CRθ̇R+KR(θR − θR0) + fRJ + JTRfRE])−MAθ̈A − CAθ̇A = 0

states: x =

θR1

θR2

θ̇R1

θ̇R1

 ∈ R4

inputs: u =

[
τR
ua

]
∈ R8

(3.16)

3.5 Conclusion

The kinematic and dynamic model of the robot was presented in this chapter. Friction
and joint stiffness terms were removed to derive the control-oriented dynamic model; this
model was validated by applying a PD controller to it and comparing the results with the

30

high-fidelity model. We also provided the human arm and the final human-robot interaction
model which was utilized in the next chapter in our planner optimization formulation.

31

Chapter 4

Human-Robot Interaction Trajectory
Planning

4.1 Overview

In recent years, the primary focus within the field of rehabilitation robotics has been
hardware design and control [68]. The trajectories, which are the paths followed by the
patient’s upper/lower limb for rehabilitation exercises, are usually chosen heuristically or
manually by general physiotherapy principles [151, 148]. In this chapter, we discuss our
approach to the trajectory planning for the HRI model presented in the previous chapter.
Briefly, an optimization-based framework was used to systematically calculate the opti-
mal manipulator trajectory for upper limb planar practices; this framework will benefit
clinicians as well as rehabilitation robot specialists to set the exercises. Additionally, a tra-
jectory stabilizer was designed to keep the robot on the desired trajectory. The integration
of the planner and stabilizer leads to closed-loop tracking with optimal trajectories.

4.2 Trajectory Planning

Trajectory planning is an essential consideration in HRI research [95, 152]. The goal
is to obtain some desired robot trajectory that is both feasible for the controller and safe
for the human operator. The latter feature becomes even more critical in rehabilitation
robotics due to the sensitive characteristics of the problem and patient involvement; an
inappropriate rehabilitation trajectory exacerbates the patient’s condition and might even

32

lead to aggressive robot torques. Previous research on model-based rehabilitation/assistive
robot trajectory generation has either not considered human dynamic/biomechanical mod-
els [152, 119, 141, 125], or has used kinematic level models only [131]. Another line of
research has focused solely on trajectory planning for the upper/lower extremity. Here,
the research aim is to derive mathematical models that sufficiently describe natural human
movements [14]; this approach typically involves consideration of the human skeletal dy-
namics [103]. Papers that have studied trajectory planning by including muscle dynamics
in their human model have utilized only first and second-order approximate muscle models
[14, 13]. The primary focus of the aforementioned research area is on human movements
and hence, the robot is excluded in the models designed and employed for trajectory plan-
ning. Moreover, few studies in this area of literature have taken advantage of optimization
techniques for trajectory planning [95, 141, 125, 64]. For instance, extensive research has
been conducted on trajectory interpolation approaches [41, 107], in which the target points
of the trajectory are set manually by rehabilitation robot specialists and then approxima-
tion functions are defined to interpolate between target points.

4.2.1 Problem Formulation

For the trajectory planning phase, the direct-collocation method was used to address the
ensuing optimal control problem. In this method, the problem, including the cost function,
dynamics (human-robot interaction model presented in Section 3.4), and constraints, are
discretized; the discrete optimization problem is subsequently solved, resulting in trajectory
points. Interpolation approaches are then exploited to come up with the final continuous
trajectories. This is different from using trajectory interpolation as in [41, 107], since the
target points in our approach are the output of the discrete optimization, rather than
manual setting of the robot specialists. The trajectory planning framework runs offline
since no online update is required. Hence, computational issues are less important in
this phase. In order to formulate and solve the optimization, OptimTraj, an open-source
optimization library in MATLAB developed by Kelly [65], was used. This library is capable
of solving C2 continuous (smooth) problems with linear and/or nonlinear cost/constraint
functions. More specifically, problems with continuous dynamics, boundary constraints,
path constraints, integral costs, and boundary costs are under the branch of problems this
library can solve. OptimTraj also supports the provision of analytic gradients, with respect
to the cost function, for improved convergence times, hence warranting the use of symbolic
gradients as produced by Maple R©.

Four optimization methods are available in the OptimTraj library: Trapezoidal Direct
Collocation, Hermite-Simpson Direct Collocation, Runge-Kutta 4th Order Multiple Shoot-

33

ing, and Chebyshev-Lobatto Orthogonal Collocation. A GPOPS wrapper is also provided
if the user wishes to take advantage of adaptive mesh refinement; in this approach, vari-
able mesh size and approximate polynomial degree is provided [108, 77]. Once the problem
has been transcribed according to the methods listed prior, OptimTraj calls MATLAB’s
fmincon as the NLP solver; the interior-point method is used within fmincon to solve the
final discretized optimization. In order to evaluate the performance, OptimTraj then re-
ports the total time required for NLP (nlpTime), the optimum value function (ObjVal),
the integral of collocation constraint error at each segment (error), and the maximum of
this error during the entire duration (maxError).
In the current study, the Trapezoid transcription method was chosen for problem dis-
cretization. In this method, the time histories of the states and control inputs (over a
given horizon) are approximated as quadratic splines and linear splines respectively. In
other words, the controls and dynamics are assumed to be linear between grid (colloca-
tion) points. For the discretized version to be a sufficient representation of the continuous
system, the derivative of the continuous and discretized systems must match at each grid
point; this is how the corresponding polynomials are constructed. After the nonlinear
program is solved at the collocation points, spline approximations are used to find the
continuous state-input trajectories. The discrete optimization method is shown below:

min
x0...xN ,u0,...uN

N−1∑
N0

hk
2

(Jk + Jk+1)

hk = tk+1 − tk
(4.1)

subject to:

x[0] = x0

x[N] = xf
(4.2)

collocation constraints(dynamics):

hk
2

(fk+1 + fk) = xk+1 − xk k = 1...N (4.3)

34

inequality constraints:

xmin ≤ xi,k ≤ xmax i = 1...ns k = 1...N − 1

umin ≤ ui,k ≤ umax i = 1...nu k = 1...N − 1
(4.4)

integration:

For tk ≤ t ≤ tk+1 k = 1...N − 1

control (linear spline):

u(t) = uk + (t− tk)β k = 1...N − 1

βk =
−1

hk
(uk − uk+1)

state (quadratic spline):

x(t) = xk + (t− tk)fk + (t− tk)2γk k = 1...N − 1

γk =
−1

2hk
(fk − fk+1)

(4.5)

where J is the cost function, hk is the stage time-step, x is the HRI state, and u is the
HRI input. For the cost function J , robot inputs and input rates along with muscle acti-
vation and arm joint accelerations were selected. Robot inputs were chosen to reduce the
DC motor currents required for torque generation; this effect improves hardware durabil-
ity. Robot input rates are also correlated with trajectory smoothness and patient comfort,
hence their inclusion. The last two terms were adopted from [13], in which the authors
used inverse optimal control to find the cost function minimized by the central nervous
system in upper-arm reaching movements. It was suggested that in this case, minimization
of mechanical energy expenditure and human arm joint acceleration best describes human-
like motor behaviours. Using this hybrid human-robot cost function is a novel approach
in optimization-based rehabilitation robot planners and is an advance in determining the
optimal trajectory. The mathematical representation of the cost function is shown in Eq.
4.6. τR is the robot input torque, and ua is the arm muscle activation. The cost function
itself is quadratic since the squared version of each term is set. However, the nonlinear
dynamic constraint in Eq. 4.3 makes the overall optimization non-convex and an NLP.

Boundary constraints were defined on states and inputs (Eq. 4.4), which represented the
joint-space limits of the robot angles, hardware limits of robot motors, and physiological
limits of human arm musculature (Table 4.1). The final time value was set to 2 seconds;

35

this was approximately the required time to finish the trajectory. Moreover, the initial
and final end-effector positions were set such that internal rotation of the shoulder joint
was prohibited; this movement has reportedly been ineffective in patient motor recovery.
These positions were mapped to robot initial and final joint-space states by using inverse
kinematics.

Table 4.1: Optimization Inequality Constraints

Bounds Minimum Maximum
joint angle (θR) -5 rad 5 rad

joint angular velocity (θ̇R) -10 rad/s 10 rad/s
robot torque (τR) -10 N.m 10 N.m

muscle activation (uA) 0 1

J =
N−1∑
k=1

(W1τR
2(tk) +W2 ˙τR

2(tk)) +W3u
2
A(tk) +W4θ̈

2
A(tk))hk (4.6)

Also seen in Eq. 4.6 are the weights associated with each term: W1, W2, W3, and
W4. These are notable as they can be varied as the rehabilitation period progresses. For
example, less weight might need to be provided to muscle activations as the patient’s motor
function improves and practices transition from passive to active rehabilitation. In this
case, the patient is able to apply more muscle activation, and thus the optimization should
put less emphasis on minimizing this value such that the new trajectory is well-suited to
the patient’s current status. The weight adjustment can be done by testing multiple weight
settings and comparing the experimental and simulated muscle activations.

4.2.2 Simulation Results

The offline NLP computational time was 86.122 seconds. The desired end-effector path
is shown in Fig. 4.1. Also, the calculated robot joint trajectories along with the open-loop
inputs are presented in Figs. 4.2 and 4.3. The initial spike in the inputs is necessary to
overcome the robot inertia at the beginning of the trajectory. Note that as angular velocity
increases in the joints, less torque is required from the motor for trajectory-tracking.

36

-0.3 -0.2 -0.1 0 0.1 0.2

X (m)

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Y

 (
m

)

Start Point

End Point

Figure 4.1: End-effector desired path in the workspace.

37

0 0.5 1 1.5 2
Time(s)

20

30

40

50

60

70

80

R
ob

ot
 J

oi
nt

 1
 A

ng
le

 (
de

g)

0 0.5 1 1.5 2
Time(s)

100

120

140

160

180

200

R
ob

ot
 J

oi
nt

 2
 A

ng
le

 (
de

g)

0 0.5 1 1.5 2
Time(s)

-40

-20

0

20

40

60

R
ob

ot
 J

oi
nt

 1
 A

ng
ul

ar
 V

el
. (

de
g/

s)

0 0.5 1 1.5 2
Time(s)

-60

-40

-20

0

20

40

60

R
ob

ot
 J

oi
nt

 2
 A

ng
ul

ar
 V

el
. (

de
g/

s)

Figure 4.2: Robot state trajectories in the jointspace.

38

0 0.5 1 1.5 2

Time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
ob

ot
 T

or
qu

es
 (

N
.m

)

0 0.5 1 1.5 2

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

M
us

cl
e

A
ct

iv
at

io
ns

Figure 4.3: Input trajectories. The left plot depicts the robot torques and the right plot
shows the muscle activations.

The collocation error for the robot joint angles was used to estimate how much accuracy
was lost after the discretization; this was done by checking whether the generated solution
satisfied the system dynamics. The error is defined as calculating the difference between
the derivative of our state trajectory after interpolation and the collocation (dynamic)
constraints between the grid points:

ε(t) = ẋ(t)− f(x(t), u(t)) (4.7)

The error estimate for each optimization segment was acquired by integrating the col-
location error at each segment:

ηk =

∫ tk+1

tk

ε(τ)dτ (4.8)

As most interest is in regard to the joint angles, it is important to note that the segment
error is within the acceptable range, which is 2 deg/s. Fig. 4.4 plots the errors for the robot
joint angles.

39

0 0.5 1 1.5 2

Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

R
ob

ot
 J

oi
nt

 1
 (

de
g/

s)

Collocation Error: dx/dt - f(t,x,u)

0 0.5 1 1.5 2

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

R
ob

ot
 J

oi
nt

 2
 (

de
g/

s)

Collocation Error: dx/dt - f(t,x,u)

0 5 10 15 20 25 30

Segment Index

0

2

4

6

8

R
ob

ot
 J

oi
nt

 1
 (

de
g/

s)

10-3 Segment Collocation Error

0 5 10 15 20 25 30

Segment Index

0

0.005

0.01

0.015
R

ob
ot

 J
oi

nt
 2

 (
de

g/
s)

Segment Collocation Error

Figure 4.4: Trajectory error results. The top row highlights the collocation error between
the real dynamics (dx/dt) and the dynamics (f) at the collocation points used. It depicts
the resulting error due to the discretization. As shown, this error is considerably low which
suggests that the application of the direct-collocation was successful.

4.3 Trajectory Stabilization

Under ideal conditions, the motion planner discussed in Section 4.2 would provide the
desired human/robot state and control trajectories; the former pertaining to the rehabil-
itation practice/exercise kinematics and the latter being the open-loop inputs necessary

40

to drive the system’s motors. However, this approach cannot work in a practical (exper-
imental) setting. Concerns such as unmodeled dynamics, disturbances, and sensor noise
would degrade the performance of an open-loop controller. On top of that, there is no
guarantee that the patient applies the same muscle activations as given by the open-loop
values. Consequently, a trajectory stabilizer is required.

The online use of the HRI model for the implementation of the stabilizer on the rapidly-
updated robot dynamics would cause computational issues. Instead, we only considered
the robot model online and neglected the human arm model for the stabilizer; the stabilizer
calculated the robot torques, and the patient contribution was recorded by force sensor
data. We should mention that both using the robot model and the HRI model online
result in sub-optimal trajectories, because the inputs will not be exactly the same as the
simulated planner results.

4.3.1 Linear Quadratic Regulators (LQR)

In the current thesis, an LQR algorithm was utilized as the trajectory stabilizer for
closed-loop control during rehabilitation robot operation. LQR controllers are one of the
most effective existing optimization-based algorithms and have been implemented in many
control fields including robotics [126], autonomous cars [102], and aerospace [78]. Briefly,
this approach uses indirect optimization methods and calculus of variations to solve the
infinite-horizon problem shown in Eq. 4.10, where Q (semi-positive definite) and R (posi-
tive definite) are weight matrices applied to the states and inputs respectively. The same
feedback control solution can be found by using continuous dynamic programming equa-
tion, also known as the Hamilton-Jacobi-Bellman (HJB) equation (Eq. 4.11), with a
quadratic cost function:

J∗(x̃) = x̃TSx̃, S = ST � 0 (4.9)

where x̃ is the state error and S is a positive definite matrix. The application of this
cost in the HJB results in an algebraic Riccati equation (Eq. 4.12) from which the optimal
S can be obtained:

J =

∫ ∞
0

[x̃TQx̃+ uTRu] dt, Q = QT � 0 R = RT � 0 (4.10)

∀x, 0 = min
u

[x̃TQx̃+ uTRu+
∂J∗

∂x
](Ax+Bu)] (4.11)

41

0 = SA+ ATS − SBR−1BTS +Q (4.12)

where A and B are linear dynamics matrices. The solution of the Riqatti equation
leads to the feedback control solution:

u = −R−1BTSx = −Kx̃ (4.13)

A caveat of LQR is that it only works for linear system dynamics. Hence, the application
of this algorithm to nonlinear systems requires linearization of the dynamics f(.) about
the desired points as demonstrated in Eq. 4.14.

˙̃x =
∂f

∂x̃
|x∗x̃+

∂f

∂u
|u∗u

∂f

∂x̃
|x∗ = A(t)

∂f

∂u
|u∗ = B(t)

(4.14)

Generally, this linearization is only valid in the vicinity of the desired state and input.
This vicinity is often called the region of attraction, outside of which the LQR will not
perform well. Often times, use of additional controllers is necessary to bring the system to
its region of attraction where the LQR can be activated. Research using Lyapunov-based
methods has estimated the region of attraction for underactuated robotic systems [132].
Planar mechanisms, however, possess the robust characteristic of having an infinite region
of attraction within their workspace [132]. Since the gravity is counterbalanced by the
surface, any point can be chosen for linearization and it will be valid. Our rehabilitation
robot shares this same feature. The dynamics of the robot was thus symbolically linearized
using Maple R©. The resulting time-dependent symbolic linear dynamic matrices A(t), B(t),
C(t), and D(t) were then exported to MATLAB code. This code was structured such that
the desired trajectories could be substituted in the symbolic matrices iteratively to produce
the online matrices. The schematics of the integrated planner and LQR controller can be
found in Fig. 4.5. Recall that the human dynamics was not considered in the linearized
model to improve computation speeds in the controller’s online implementation.

42

Figure 4.5: Schematics of integrated planner and controller. The planner runs offline and
provides the desired values that the controller uses to stabilize the trajectory. The resulting
robot torques are then applied to the robot manipulator to advance its state forward in
time.

4.3.2 Simulation Results

The LQR trajectory stabilization results are shown in Fig. 4.6. The controller was able
to successfully stabilize the trajectory at position and velocity levels. Note that due to
excluding human muscle activations within this portion of thesis, the input robot torques
required were higher than the open-loop torques.

43

0 0.5 1 1.5 2

Time(s)

-0.2

-0.1

0

0.1

0.2
Controlled
Desired

0 0.5 1 1.5 2

Time(s)

0.3

0.35

0.4

0.45

0.5
Controlled
Desired

0 0.5 1 1.5 2

Time(s)

-0.4

-0.2

0

0.2
Controlled
Desired

0 0.5 1 1.5 2

Time(s)

-0.2

-0.1

0

0.1

0.2
Controlled
Desired

0 0.5 1 1.5 2

Time(s)

-1

-0.5

0

0.5

1

R
ob

ot
 T

or
qu

es
 (

N
.m

)

0 0.5 1 1.5 2

Time(s)

0

1

2

3

R
ob

ot
 T

or
qu

es
 (

N
.m

)

Figure 4.6: LQR control results in simulation. X and Y are end-effector positions. Ẋ and
Ẏ are end-effector velocities. Also, τ1 and τ2 are robot motor torques.

4.4 Experimental Implementation

For the final portion of this chapter, the controller was physically implemented on
the rehabilitation robot hardware. Note that the user was not integrated in the loop for
this section. A secondary LQR was first utilized to move the end-effector to the start
point of the planned trajectory. The controller was then switched to the primary LQR
which handled tracking of the end-effector along the manipulation trajectory. For con-

44

troller switching, a mechanism was necessary to turn the secondary LQR off as an 1 cm
position-error threshold was reached. Although this switching can be readily implemented
using MATLAB functions or condition blocks in Simulink, problems were encountered: ac-
tivation of the primary LQR shifts the end-effector away from the start, which reactivates
the secondary LQR. To avoid this process, the system’s behaviour was set such that the
secondary LQR deactivates once the threshold is met, staying deactivated from then on.
To this end, we took advantage of StateFlow blocks in Simulink, which are typically used
in Finite-State machines. The LQR weights are tuned online to acquire the best trajec-
tory tracking and acceptable input values; the weights are reported in Table 4.2. Fig. 4.7
plots the experimental end-effector position and velocity results. Although performance
degradation was observed in the velocity level, the overall tracking was successful, which
confirmed the potential for implementing the stabilizer with a subject.

Table 4.2: LQR Weights

Weights Value
Q Diag(9200,9200, 300, 300)
R Diag(50,50)

4.5 Conclusion

In this chapter, we discussed the importance of having a systematic design approach
in rehabilitation practice. We adopted an optimization-based trajectory planning process
to obtain the optimal manipulation trajectory. An LQR controller was then designed to
stabilize this trajectory. The results of simulation and experimental tests for LQR were
positive showing successful movement of the end-effector along the given path. The subject
is integrated in the loop in the last chapter by utilizing the force sensor data and calculating
the patient torque contribution.

45

2.5 3 3.5 4 4.5 5
Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
E

nd
-E

ffe
ct

or
 X

 P
os

iti
on

 (
m

)
Controlled
Desired

2.5 3 3.5 4 4.5 5
Time (s)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

E
nd

-E
ffe

ct
or

 Y
 P

os
iti

on
 (

m
)

Controlled
Desired

2.5 3 3.5 4 4.5 5
Time (s)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

E
nd

-E
ffe

ct
or

 X
 V

el
oc

ity
 (

m
/s

)

Controlled
Desired

2.5 3 3.5 4 4.5 5
Time (s)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

E
nd

-E
ffe

ct
or

 Y
 V

el
oc

ity
 (

m
/s

)

Controlled
Desired

Figure 4.7: Experimental implementation of the trajectory stabilizer on the robot.

46

Chapter 5

Comparative Study of the
Rehabilitation Robot Control
Algorithms

5.1 Overview

One of the challenges of rehabilitation robotics is the choice of the control algorithm
[89]. To the best of our knowledge, there is no published study on the comparison of
multiple control algorithms on a rehabilitation robot. The purpose of this chapter was to
evaluate the capabilities of multiple well-known controllers on our robot. These controllers
were applied in simulation for a trajectory tracking problem. After designing a comparison
criteria, the performance of each controller was assessed. The controllers were then tested
on the robot hardware in real-time. Two of the best candidates were selected to be used
with a human subject in subsequent chapters. Based on our particular investigation,
general guidelines were proposed for selecting a controller for rehabilitation robots and
assistive devices with similar DC actuators.

5.2 Controller Design

In this section, we discuss the features and formulation of the each control algorithm.
Five controllers were proposed and tested on the robot:

47

1. Proportional-Integral-Derivative

2. Computed-torque Proportional-Integral-Derivative

3. Linear Quadratic Regulator

4. Sliding Mode Control

5. Nonlinear Model Predictive Control

Since we discussed the formulation of LQR in Chapter 4, we only focus on the other
four controllers in this section.

5.2.1 Proportional-Integral-Derivative (PID) Controllers

PIDs are one of the most common algorithms in industry [10]. These model-free con-
trollers are more computationally tractable than model-based approaches and are robust
in most applications. The final control input is dependent only on the state-error and the
weights, as demonstrated below:

e(t) = θRd(t)− θR(t) (5.1)

u(t) = Kpe(t) +Ki

∫ t

0

e(t) dt+Kd
de(t)

dt
(5.2)

where e(t) is the error between the reference robot joint angle θRd(t) and the measured
robot joint angle θR(t). Kp, Ki, and Kd are the controller weights for finding the input
u(t). Though simple, there are some drawbacks associated with PID formulation:

• PID is completely reactive and does not include any predictive element; sudden
disturbances and/or path change can degrade its performance.

• The weights have direct effect on the inputs; extra care is required to avoid high-input
values in the weight tuning process.

• PID is often associated with high-overshoot results, which calls for extensive weight
adjustment. Tuning approaches like Ziegler Nichols mitigate the direct weight effect
on the input and overshoot problems to some extent [153].

48

• PID is usually used in an independent-joint approach, i.e. an independent controller
is set for each robot joint. This method neglects the dynamic coupling of the system;
reducing the state error in one joint may create a negative offset on the other one.
The dynamic coupling problem is exacerbated in high-speed trajectory tracking.

The schematic of PID controller is shown in Fig. 5.1. The encoder angle values are
used at each iteration within the controller.

∑

()e t

P ()pK e t

0

I ()

t

iK e d

()
D d

de t
K

dt

Controller

()
dR t

∑

()u t

+

-

()R t

Figure 5.1: PID block diagram

5.2.2 Computed-Torque PID Controllers

To some degree, a PID’s performance is improved by utilizing a feedforward term. In
computed-torque PID, a model-based hierarchical controller structure is used; the nonlinear
dynamics of the robot is cancelled by using the inverse dynamics in the inner-loop; the
outer-loop feedback PID term is then utilized to correct for the errors of the resulting linear
system. This approach is an anticipatory controller (instead of a totally reactive one) that
has better performance characteristics. Instead of the coupled nonlinear system, PID is
applied to a decoupled linear system.

The feedforward input term is shown in Eq. 5.3. uModel was obtained by using the inverse
dynamic model of the robot. The feedback PID term formulation in Eq. 5.4 is similar to

49

the previous section. The final control input is demonstrated in Eq. 5.5; applying this
input to the nonlinear dynamics of the robot resulted in a linear control problem in the
Eq. 5.6. Note that as the mismatch between the model of the system and the real dynamics
increases, error terms are added to Eq. 5.6. The performance degrades drastically when the
mismatch is high; that is to say, computed-torque PID is only applicable when an accurate
model of the dynamical system is available. The schematic of this controller is depicted in
Fig. 5.2.

uModel(t) = M(θR)θ̈Rd(t) + C(θR, θ̇R)θ̇R(t) (5.3)

uPID(t) = Kpe(t) +Ki

∫ t

0

e(t) dt+Kd
de(t)

dt
(5.4)

u(t) = M(θR)(θ̈Rd(t) + uPID(t)) + C(θR, θ̇R)θ̇R(t)

= uModel(t) +M(θR)uPID(t)
(5.5)

ë(t) = uPID(t) (5.6)

50

∑

Outer-loop PID

+
-

()PIDu t

() () () (,) ()
dModel R R R R Ru t M t C t

()
dR t

()R t

() ()(() ()) (,) ()
dR R PID R R Ru t M t u t C t

Inner-loop Inverse Dynamics

()u t

Figure 5.2: Computed-Torque PID block diagram

5.2.3 Sliding Mode Control (SMC)

SMC is a powerful nonlinear control method [123, 36], which permits the direct con-
sideration of the uncertainty in control design, and therefore provides stronger robustness
characteristics than other feedback control algorithms. The uncertainty is broadly divided
into perturbations and robot plant uncertainty. In the scope of our research, perturba-
tion is imposed by the patient. Moreover, plant uncertainties are caused by inaccurate
model parameters which stem from errors in system parameter identification (SPI). These
include any errors in the mass, length, and moments of inertia properties. Roughly speak-
ing, patient perturbations are higher than the robot plant uncertainty. In general, SMC
can alleviate the negative impact of uncertainties.

51

Formulation

The general form of the robot model is shown below, where f(θR, θ̇R, t) is the dynamics
model, and uR(t) is the input part. The disturbance term d(t) is added to the equation for
the sake of completeness.

θ̈R = f(θR, θ̇R, t) + d(t) + uR(t) (5.7)

A sliding surface S was defined as Eq. 5.9. ε(t) in Eq. 5.9 is the error between the
desired joint angles and the measure joint angles, which converges to zero as S = 0 (Eq.
5.10). λ is a tunable weight and determines the speed of convergence.

ε(t) = θRd(t)− θR(t) (5.8)

S =
d

dt
(ε(t) + λ) = 0 (5.9)

ε̇(t) = −λε(t)
ε(t) = e−λ(t−t0)ε(t0)

(5.10)

In order to find the control input, the first derivative of the sliding surface was calcu-
lated. Since the control input appears in the first derivative of the sliding surface, it is said
to have a relative degree of one. The resulting low-frequency input uLF control input was
then found by setting Ṡ = 0:

Ṡ = f(θR, θ̇R, t) + d(t) + u(t)− θ̈Rd(t) + λε̇(t)

uLF (t) = −f(θR, θ̇R, t)− d(t) + θ̈Rd(t)− λε̇(t)
(5.11)

On the other hand, uncertainties exist in the model dynamics and the disturbance
model in Eqs. 5.12 and 5.13:

f(θR, θ̇R, t) = fm(θR, θ̇R, t) + ∆f(θR, θ̇R, t) (5.12)

d(t) = dm(t) + ∆d(t) (5.13)

52

where fm(θR, θ̇R, t) is the modeled part of the system dynamics and ∆f(θR, θ̇R, t) is the
uncertainty term associated with system dynamics. Similarly, dm(t) is the modeled part
of the disturbance and ∆d(t) is the uncertainty term of disturbance. A higher frequency
term was added to the control input for robustness. The derivation of this term, which
comes from Lyapunov stability theorem, is discussed in Appendix A:

uHF = −Ksign(S/ψ) (5.14)

where K, and ψ are other tunable weights. It is worthwhile to mention that the
discontinuous uncertainty input term uHF may lead to a phenomenon called chattering,
in which the input switches between positive and negative S values on the sliding surface.
Chattering damages the hardware and should be circumvented. There are multiple methods
to address this negative effect. We replaced the discontinuous term with the continuous
tanh function to solve this issue. Eq. 5.15 describes the final control input. The schematic
of this controller is displayed in Fig. 5.3.

uHF = −Ktanh(S/ψ)

uSMC = uLF + uHF
(5.15)

53

 ∑

Low Frequency Input

+ -

∑

High Frequency Input

()LFu t

()HFu t

()R t ()
dR t

()u t

Figure 5.3: SMC block diagram

5.2.4 Nonlinear Model Predictive Control (NMPC)

Generally, all the aforementioned controllers lead to acceptable results in many ap-
plications. However, it is not possible to explicitly include constraints in their design.
Constraints are imposed in almost all the control fields; motors should not surpass their
power limit; a robotic arm’s end-effector should stay in its workspace; an autonomous car
should avoid obstacles in its path, and so on. To this end, MPC utilizes online constrained
optimization. The nonlinear version of MPC (NMPC) allowed for the use of nonlinear dy-
namics in the optimization. Interestingly, the unconstrained version of MPC with quadratic
stage-cost and linear model reduces to the LQR formulation.

Formulation

At each timestep, MPC solves a finite-horizon constrained optimal control problem to
find the control inputs on the Prediction Horizon. Then, only the first input is applied

54

on the dynamics; the horizon moves forward and the same procedure repeats for the next
timestep. This is known as Receding Horizon procedure, which adds the predictive element
to MPC. Fig. 5.4 displays the general scheme of MPC.

The optimization problem is shown in Eqs. 5.16-5.20. H is the prediction horizon,
`(x(t), u(t), t) is the stage cost, and `T (x(H), H) is the terminal cost. The optimization
included state-input inequality, dynamics, and initial condition constraints. Since obstacles
were not considered in the trajectory, path constraints were not used.

min
X,U

∫ H

0

`(x(t), u(t), t) dt + `T (x(H), H) (5.16)

umin ≤ u(t) ≤ umax for t ∈ [0, H] (5.17)

xmin ≤ x(t) ≤ xmax for t ∈ [0, H] (5.18)

ẋ(t) = f(x(t), u(t), t) for t ∈ [0, H] (5.19)

x(0) = x0 (5.20)

There are multiple numerical recipes for discretizing and solving the infinite-dimensional
optimization problem of Eq. 5.16. A review on this matter was presented in Chapter
2. In this regard, indirect methods have led to Newton/GMRES recipes for solving the
optimization [130]. On the other hand, we made use of direct collocation to obtain the
solution. Similar to Chapter 4, both inputs and states were decision variables.

Applying direct-collocation to the continuous optimization problem led to a nonlinear
program (NLP), which is much harder to solve than Quadratic Programs (QP) or Linear
Programs (LP) that result from linear MPCs [62]. As we see in the subsequent sections,
the complexity of the NLP caused problems in real-time deployments of NMPC. The
discretized NLP is shown below:

min
X,U

H−1∑
k=1

`(x(tk), u(tk), tk)(tk − tk−1) + `T (x(tH), H)

U = [u(0), u(1), ..., u(H − 1)]

X = [x(0), x(1), ..., x(H)]

(5.21)

55

umin ≤ u(tk) ≤ umax for k = 1, 2, ..., H − 1 (5.22)

xmin ≤ x(tk) ≤ xmax for k = 1, 2, ..., H (5.23)

x(tk+1) = f(x(tk), u(tk), tk) for k = 1, 2, ..., H − 1 (5.24)

x(t0) = x0 (5.25)

+
Optimizer

Control-Oriented

Model

Reference

∑

-

predicted error

Cost Constraints

torque

state

predicted output

output

u

x

y

e

Figure 5.4: MPC block diagram

For optimal control problems with large state-input space, finding the Lagrangian and
Hessian of the cost function is computationally demanding and this process hinders the
real-time application of NMPC. As a result, solvers like fmincon that utilize numerical
recipes for finding these values will face computational issues in real-time. To mitigate this
problem, research has been conducted on symbolic differentiation for speeding up NMPC
[57, 83, 8]. These methods posit that the symbolic gradients and Hessians can be calculated
offline; the numerical values then replace the symbols during the online computation. This

56

idea changes the numerical differentiation problem to a numerical substitution one, and
hence expedites the online optimization. In this thesis, we applied two of these approaches
on the robot dynamics: CasADI-based and Maple-based methods. In what follows, a
comparison of these methods is presented.

CasADI-based NMPC

CasADI is an open-source software framework for nonlinear optimization algorithmic
differentiation [9]. This algorithm takes advantage of forward and reverse modes of algo-
rithmic differentiation of expression graphs to produce gradients and Hessians. CasADI
can be used in Octave/MATLAB, Python, and C++. Also, stand-alone C code can be
generated from all these platforms. CasADI offers multiple NLP solvers; based on our
problem, we used the sequential quadratic programming (SQP). The differentiation was
done offline.

Maple-based Symbolic NMPC

Developed by Maitland et. al [84], this idea suggests using Maple R© for producing
symbolic gradients and Hessians. Maple takes advantage of extensive code optimization
routines and consequently, is a great candidate for symbolic differentiation. Using Maple’s
code generation, the gradients and Hessians were exported to MATLAB, where they were
filled with values at each time-step. Similar to CasADI, the process of symbolic differ-
entiation in Maple was offline and its computation did not affect the online turnaround
time.

The stage and terminal costs are defined below. The square of the tracking error, input,
and input rate were chosen as the cost, to penalize the state error and high robot motor
torques and input jerks.

`(x(tk), u(tk), tk) = (x(tk)− xref (tk))
TQ(x(tk)− xref (tk)) + u(tk)

TR1u(tk)

+ u̇(tk)
TR2u̇(tk)

`T (x(tH), H) = (x(tH)− xref (tH))TQ(x(tH)− xref (tH))

(5.26)

where Q, R1, and R2 are the weights associated with state errors, inputs, and input
rates, respectively. Equality and inequality constraints were added to the stage cost using
Lagrange multipliers and slack variables, respectively. Moreover, log barrier functions were

57

utilized to penalize solutions with zero slack variables [146]. The resulting unconstrained
optimization problem, displayed in Eq. 5.27, ensured that the stage cost was minimized
while meeting both the equality and inequality constraints. States, inputs, Lagrange mul-
tipliers, and slack variables were the final decision variables z = [x(tk), u(tk), lm(tk), s(tk)].
The nonlinear equations were obtained by applying Karush-Kuhn-Tucker (KKT) optimal-
ity conditions to Eq. 5.27; these equations were then solved to acquire z∗.

min
X,U

H−1∑
k=1

(`+ `T + `eq + `ineq − µ`barrier) (5.27)

where:

`eq = lm(tk)[ẋ(tk)− f(x(tk−1), u(tk−1, tk))] (5.28)

`ineq = [umin(tk)− u(tk) + sumin(tk)] + [u(tk)− umax(tk) + sumax(tk)]

+ [xmin(tk)− x(tk) + sxmin(tk)] + [x(tk)− xmax(tk) + sxmax(tk)]
(5.29)

`barrier = log(−sumin(tk)) + log(−sumax(tk)) + log(−sxmin(tk)) + log(−sxmax(tk)) (5.30)

Newton’s root-finding method was utilized to solve the final nonlinear equation. This
method is an iterative approach that starts from an initial guess zk and applies updates
until a convergence criteria is met. Loosely speaking, this method is the second-order
version of gradient-descent. The update rule uses the Lagrangian and Hessian of the cost
function (Eq. 5.31). Scalar αk is the update step and was found using a line-search method.
Since Newton’s root-finding method is sensitive to the initial guess, MATLAB’s fmincon
was used only for the first iteration to give an accurate solution, which was then used as
the initial guess for the Newton’s solver. This process was implemented offline to avoid
the computational costs of fmincon in real-time. The scheme of the Maple-based NMPC
is shown in Fig. 5.5.

HL(zk)∆zk = −∆L(zk)

zk+1 = zk + αk∆zk
(5.31)

58

Figure 5.5: Maple-based NMPC scheme

Comparison Between Maple-based and CasADI-based NMPC

After implementing both controllers in MATLAB, they were transfered to Simulink for
performance comparison. To this end, we used the MATLAB Systems block for implemen-
tation. Using this option, the loading of symbolic values ran only once, while the main
loop ran at each iteration; this option was useful for efficient implementation of symbolic
NMPCs. In both controllers, some of the functions were not compatible with QUARC’s
code-generation. As a result, QUARC’s communication API was utilized. The controllers
were placed in the first Simulink file which ran in normal simulation mode; the second
Simulink file, which included the robot dynamics, ran in the external mode. The states
and inputs were transferred between these two files via a TCP/IP communication proto-
col. Before we implemented the NMPC controllers on the experimental setup, we evaluated
them in simulation. The model sampling time was set to 2 ms (500 Hz frequency), sim-
ilar to the hardware sampling rate. This way, we could test the real-time practicality of
the controllers in simulation. It is worthwhile to mention that due to the rapid update
frequency of the robot, online computational time was our primary challenge in NMPC
implementation. Timer functions were used to check the turnaround time for each control
iteration. The results are shown in Fig. 5.6. The CasADI turnaround time was higher
than Maple-based NMPC. In fact, CasADI’s computation time was even higher than the

59

model sampling time and hence, it could not be applied in real-time. Overall, the Maple-
based NMPC provided a lower turnaround time, which made it more suitable for physical
implementation. Having said that, we can see from Fig. 5.6 that its computation time was
just slightly lower than model sampling-time. The rule of thumb in control is that the
frequency of the controller should be 5-10 times higher than the frequency of the model.
As a result, future research should focus on speeding up the optimization or the solver. For
instance, [85] has examined model reduction methods within MPC. Notably, the iteration
time only included the solver, not the other sections of the code. Specifically, the QUARC
communication API added a considerable delay to each iteration.

To sum up, despite the improvements in the turnaround time by taking advantage of
algorithmic and symbolic differentiation, due to implementation limitations and the delay
in communication API, NMPCs were not able to provide fast enough solutions. As seen in
subsequent sections, this problem hurt their performance compared to other controllers.

0 0.5 1 1.5 2

Simulation Time (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

Ite
ra

tio
n

T
ur

na
ro

un
d

T
im

e
(s

)

CasADI
Maple

X 1.46
Y 0.001118

Figure 5.6: Comparison between the iteration turnaround time of CASADI and Maple
NMPC

5.3 Simulation Results

All the aforementioned controllers were applied to the robot in simulation (MATLAB
2019b). A circular desired trajectory was set for assessment. The 2 ms sampling time,
same as the hardware sampling time, was set. The control-oriented robot model was

60

selected for all the model-based controllers and the robot motor torque was applied to the
high-fidelity model to evaluate the performance. A prediction horizon of H = 10 was set
for both NMPCs. The root mean square error (RMSE) was calculated to evaluate the
position/velocity performance of the controllers (Eq. 5.32). ẑi and zi are the desired and
observed variables (position/velocity), respectively; n is the number of data points. The
results are shown in Table 5.1. The tracking errors were close in simulation. Velocity
performance degradation was observed in NMPCs due to the high sampling time.

RMSE =

√∑n
i=1(ẑi − zi)2

n
(5.32)

Table 5.1: RMSE Simulation

Controller ex(m) ey(m) eẋ(m/s) eẏ(m/s)
PID 0.027 0.054 0.085 0.102

Comp PID 0.030 0.061 0.074 0.092
LQR 0.030 0.060 0.096 0.106
SMC 0.042 0.081 0.053 0.081

CasADI-based NMPC 0.049 0.086 0.049 0.065
Maple-based NMPC 0.026 0.046 0.102 0.136

The end-effector position and velocities are shown in Fig. 5.7. Also, the inputs are
depicted in Fig. 5.8. LQR displayed the fastest tracking response. In addition, PID had
the highest input. In fact, PID exceeded the torque limit in the beginning of simulation.
As discussed in Chapter 4, the spike in the inputs is for overcoming the robot inertia
and is an important factor for evaluating the controller performance; it shows how much
acceleration the controller induces in robot joints. High acceleration results in more jerk
on the end-effector and less patient comfort at the beginning of rehabilitation. It may even
lead to damage to the upper-arm in extreme cases.

It was again validated that the Maple-based NMPC presents a faster response than the
CasADI-based NMPC. Having said that, it was observed that despite abiding by imposed
input constraints, Maple-based NMPC required a high torque for maintaining the robot
on the trajectory. Upon further investigation, it was found that increasing the sampling
time to 10 ms greatly improved the performance of both NMPCs. The results for the new
NMPCs are shown in Fig 5.9.

61

Figure 5.7: End-Effector position/velocity simulation comparison (2 ms sampling time)

62

0 2 4 6 8 10

Time (s)

-1

0

1

2

3

4

5

6

R
ob

ot
 T

or
qu

e
1

(N
.m

)

PID

CompPID

LQR

SMC

mpcCasADI

mpcMaple

0 2 4 6 8 10

Time (s)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

R
ob

ot
 T

or
qu

e
2

(N
.m

)

PID

CompPID

LQR

SMC

mpcCasADI

mpcMaple

Figure 5.8: Robot torques simulation comparison (2 ms sampling time)

63

Figure 5.9: NMPC implementations with increased sampling time (10 ms sampling time)

5.4 Experimental Results

To further investigate the performance of the controllers on real hardware, all of them,
except for CasADI-based NMPC, were implemented on the experimental setup. The goal
of this section was to do a comparative study on the advantages and disadvantages of
each controller and to make generalizations on the best controllers to use on rehabilitation
robots. This study can potentially help the rehabilitation robotics community to choose
the suitable controller for their application. To review, we were limited to use Simulink
to connect to QUARC interface. In contrast to utilizing ROS or stand-alone C code, this
approach is not common in real-time control, and is slower than other methods. Also, note
that the subject was not considered in the comparative study and the pure robot control
was examined. Having said that, the comparison criteria included both the control and

64

rehabilitation aspects.

5.4.1 Comparison Criteria and Implementation

Two control scenarios were considered for comparison, namely Point Stabilization
and Tracking. In the former, the robot should reach a certain point in the workspace and
the controller stabilized the end-effector about the point. This scenario is very common
in point-to-point reaching movements in rehabilitation, when the focus is only on the final
point. For point stabilization, we considered the end-effector velocity, the norm of robot
input vector, the norm of robot input rate vector, and the overall controller speed as the
comparison criteria. The end-effector velocity and input rate norm are correlated to the
end-effector jerk and patient comfort. Due to the high use frequency of rehabilitation
robots, the norm of the input vector was chosen to improve DC motor durability. In other
words, the same performance with lower input was preferred.

5.4.2 Tuning Process

In order to have a fair comparison, it is imperative to apply a generalized tuning process
for all methods. However, this process is highly time-consuming and requires extensive
research. In fact, to the best of the author’s knowledge, none of the comparative control
studies in the literature have used this strategy [69, 79, 120, 61, 32, 33]. Therefore, we
adopted another strategy to make the comparison valid. Knowing that all of the controllers
were capable of producing near-perfect tracking, the position weights were adjusted to reach
just below 1% position error. All the other weights were tuned manually as long as the
former error bound was valid. By this approach, position error was set highly similar
for all the controllers and the primary focus was set on other criteria for comparison.
Notably, due to this tuning strategy, the resulting controllers were highly aggressive and
were not suitable for rehabilitation purposes. These set of weights were only useful for the
comparison study and another set should be selected when working with patients. The
tuning was conducted online on the point stabilization; the same weights were then utilized
for tracking. The weights for all the controllers are presented in Appendix B.

5.4.3 Point Stabilization Results

The final point of the robot is displayed in Fig. 5.10. A 3 Ampere saturation block was
put on the final current to circumvent the motors overload. Distance from the final point

65

|d|, input norms |u|2 (Eq. 5.33), and input rate norms |u̇|2 (Eq. 5.34) were selected as the
quantitative metrics for comparison.

|u|2 =

√√√√ 2∑
j=1

n∑
i=1

u2i,j (5.33)

|u̇|2 =

√√√√ 2∑
j=1

n−1∑
i=1

(
ui+1,j − ui,j

∆t
)2 (5.34)

The results are shown in Table 5.2 and Figs. 5.11, 5.12. The tuning process made the
final distance from the target relatively low for all the controllers. Maple-based NMPC
had the least input norm and LQR had the least input rate norm. NMPC and SMC
were associated with the least end-effector velocities in X and Y directions, respectively.
The inputs for PID were much higher than the input limit and are hence shown in a
separate figure (Fig. 5.13); the damage to the DC motors was avoided by using the current
saturation block. We tried to constrain the PID torques to the input limits [−10, 10] N.m
by dividing all the weights by a constant value (Fig. 5.14). The results were not satisfactory
and the controller could not reach the desired point in the assigned 5 second time limit
(Fig. 5.15).

PID and computed-torque PID provided the fastest responses. Upon further investi-
gation, it was found that these controllers reached the maximum current; they presented
a pseudo bang-bang control behavior which is associated with minimum time solutions.
Their fast response is explained with this effect. Considering the fact that response speed
was our last metric and considering the high input requirements of these controllers, they
were not considered as the best candidates.

Maple-based NMPC presented the same computational deficiency in real-time imple-
mentation. The NMPC delay in reaching the desired point is evident in Fig. 5.11.

66

Y

X

0.4

0.4
fp

Figure 5.10: Robot schematics for point stabilization

Table 5.2: Control Point Results

Controller |d|(cm) |u|2 (N.m) |u̇|2 (N.m
s

)
PID 0.650 360.873 0.120

Comp PID 0.590 76.834 0.007
LQR 0.640 50.756 0.004
SMC 0.370 42.494 0.012

NMPC 1.430 35.841 0.015

67

0 1 2 3 4 5

Time (s)

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15
PID
ComputedTorquePID
LQR
SMC
mpcMaple
Desired

0 1 2 3 4 5

Time (s)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

PID
ComputedTorquePID
LQR
SMC
mpcMaple
Desired

0 1 2 3 4 5

Time (s)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

PID
ComputedTorquePID
LQR
SMC
mpcMaple

0 1 2 3 4 5

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
PID
ComputedTorquePID
LQR
SMC
MPC

Figure 5.11: Point stabilization results

68

0 1 2 3 4 5

Time (s)

-2

-1

0

1

2

3

4

5

6

R
ob

ot
 T

or
qu

e
1

(N
.m

)

compPID
LQR
SMC
mpcMaple

0 1 2 3 4 5

Time (s)

-10

-8

-6

-4

-2

0

2

R
ob

ot
 T

or
qu

e
2

(N
.m

)

compPID
LQR
SMC
mpcMaple

0 1 2 3 4 5

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

R
ob

ot
 C

ur
re

nt
 1

 (
A

)

PID
compPID
LQR
SMC
mpcMaple

0 1 2 3 4 5

Time (s)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
ob

ot
 C

ur
re

nt
 2

 (
A

)

PID
compPID
LQR
SMC
mpcMaple

Figure 5.12: Point stabilization torque/current results

69

0 1 2 3 4 5

Time (s)

-150

-100

-50

0

50

100

R
ob

ot
 P

ID
 T

or
qu

es
 (

N
.m

)

1

2

Figure 5.13: PID point inputs

0 1 2 3 4 5
Time (s)

-8

-6

-4

-2

0

2

4

R
ob

ot
 L

ow
 P

ID
 T

or
qu

es
 (

N
.m

)

1

2

Figure 5.14: PID low inputs

70

0 1 2 3 4 5

Time(s)

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

E
nd

-E
ffe

ct
or

 X
(m

)

X
X

d

0 1 2 3 4 5

Time(s)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
nd

-E
ffe

ct
or

 Y
(m

)
Y
Y

d

Figure 5.15: PID end-effector positions with lower inputs

5.4.4 Tracking Results

The same circular trajectory as the simulation was defined for physical testing (Fig.
5.16). The norm of position (|ed|2) and velocity (|ev|2) errors along with input and input
rate norms are presented in Table 5.3. SMC and LQR had the least input and input
rate norms, respectively. The tracking results are shown in Figs. 5.17-5.20. PID, LQR,
and SMC had the best position tracking performance; Note that the fact that computed-
torque PID had a lower position error than the advanced controllers is because of its faster
response at the beginning, when the error values are very high. It is evident from Figs.
5.17, 5.18 that this controller does not outperform other algorithms in tracking. Overall,
SMC and LQR represented the best position/velocity tracking performance.

The high turnaround time of NMPC stymied the successful tracking in position and
velocity levels, hence stressing the need for expediting the optimizer to be used in rapidly-
updated systems. The torque/current results are depicted in Fig. 5.21. Again, the PID
torques were much higher than the limit and therefore, was not shown. In addition, it was
observed that computed-torque PID exceeded the torque limits, as well.

71

Y

X

Figure 5.16: Robot schematics for tracking

Table 5.3: Control Tracking Results

Controller ed(m) ev(m/s) |u|2 (N.m) |u̇|2 (N.m
s

)
PID 3.510 19.104 514.062 0.169

Comp PID 3.688 16.019 124.945 0.008
LQR 4.295 12.855 75.424 0.006
SMC 4.825 10.048 56.484 0.013

NMPC 5.395 13.606 65.269 0.009

72

Figure 5.17: End-effector X position result for tracking

Figure 5.18: End-effector Y position result for tracking

73

Figure 5.19: End-effector X velocity result for tracking

Figure 5.20: End-effector Y velocity result for tracking

74

0 2 4 6 8 10
time (s)

-4

-2

0

2

4

6

8

R
ob

ot
 T

or
qu

e
1

(N
.m

)

compPID
LQR
SMC
mpcMaple

0 2 4 6 8 10
time (s)

-15

-10

-5

0

5

R
ob

ot
 T

or
qu

e
2

(N
.m

)

compPID
LQR
SMC
mpcMaple

0 2 4 6 8 10
time (s)

-2

-1

0

1

2

3

R
ob

ot
 C

ur
re

nt
 1

 (
A

)

PID
compPID
LQR
SMC
mpcMaple

0 2 4 6 8 10
time (s)

-3

-2

-1

0

1

2

3
R

ob
ot

 C
ur

re
nt

 2
 (

A
)

PID
compPID
LQR
SMC
mpcMaple

Figure 5.21: Robot torques and current results for tracking

5.5 Conclusion

In this chapter, we tested five controllers on the robot. The simulation results showed
that the CasADI-based NMPC solver was not fast enough for real-time application. Hence,
we focused on comparing the other controllers in real-time. The resulting high inputs and
high input rates of PID, and computed-torque PID justified the use of more advanced
controllers. Despite the improvement in the turnaround of Maple-based NMPC by utilizing
symbolic gradients, the need for further expediting the optimization was observed. All in

75

all, it was concluded that SMC and LQR were the best candidates for our rehabilitation
robot. It is hypothesised that the success of the SMC is due to its capability to handle
nonlinear systems and the success of LQR is because of its good performance on planar
mechanisms.

Our comparative study showed that for desirable rehabilitation performance, advanced
controllers are necessary. SMC, as a nonlinear controller, provided promising results. We
suggest this controller for highly nonlinear assistive robots but with further study on the
chattering when experiencing high disturbances, as in patient forces. The successful per-
formance of LQR made it a potential candidate for rehabilitation robots as well; having
said that, it should be noted that the planar mechanism of our robot contributed to the
performance of LQR. It is hypothesized that performance degradation is observed if LQR
is applied on non-planar robots like exoskeletons. For these systems, we suggest either
SMC or NMPC but with extra care on the computational time. It is worthwhile to review
that part of the problem with the high turnaround time of NMPC was the limitation with
implementation. The QUARC communication API introduced an extra delay to each it-
eration which further made the controller slower. This problem is not observed on other
robots which enable ROS implementation or stand-alone C code generation. It should be
noted that findings in this chapter cannot be generalized to all rehabilitation robots and
assistive devices. For instance, robots with pneumatic and hydraulic actuators present very
different characteristics compared to robots with electrical actuators. Having said that,
this comparative study can be useful for DC-actuated robots with similar complexity of
dynamics as our setup.

76

Chapter 6

Deep Reinforcement Learning Tuning
of the Model-based Controllers

6.1 Overview

In the previous chapter, we tested multiple controllers on the robot; all of these con-
trollers have a firm theoretical foundation. For instance, much progress has been made
on their convergence [19, 45]. On the other hand, not much theoretical insight have been
gathered about deep learning or DRL controllers. Hence, except for special applications
like end-to-end control from pixels to torques [98], the well-known controllers are proba-
bly the first choice. Nevertheless, extensive manual tuning is required for each controller.
DRL help promote a generalized strategy to tune the weights of a controller; this method
is not limited to controllers. Any problem that can be formulated as a sequential decision
making is a valid application for this framework. For instance, DRL can be used to tune
the weights of a parameter identification optimization. RL and DRL have been utilized
before for tuning the weights of a controller. However, these methods have either used a
discrete set of weights [60, 137], or have focused on a specific high-level controller [144]. In
contrast, the tuner presented in this chapter is able to choose from the infinite continuous
space. Moreover, this method is applicable to all low-level and high-level controllers. In
what follows, the DRL algorithms that have been utilized are explained. A review on
reinforcement learning and actor-critic method was presented in Section 2.5.

77

6.2 Deep Deterministic Policy Gradient (DDPG)

DDPG is an actor-critic DRL method [75]. The actor uses its policy to map the
states to the actions, and the critic updates the actor’s policies to produce actions that
maximize the cumulative reward. The schematics of actor-critic are shown in Fig. 6.1,
where S is the state, A is the action, and Q(S,A) is the state-action value function. Unlike
Asynchronous Advantage Actor Critic (A3C) methods [97], DDPG produces the action
instead of its probability. The algorithm makes use of the deterministic policy gradient
(DPG) algorithm [122] to update the actor.

Critic Actor

Figure 6.1: Actor-Critic schematics

The following explains the characteristics of DDPG algorithm:

1. Off-policy: instead of using recent data to update the policy, DDPG records the

78

data in a buffer, to be used later for the policy update. The latest update to the
policy always comes from the previously recorded data.

2. Model-free: the algorithm does not require any transition model of the environment
to find the optimal policy. It only needs the (state, action, next-state, reward) tuples.
A model can be utilized if it is available to produce the tuples. For instance, the
openAI API has coded the dynamics of most of its environments [23]. However, it
is not necessary to have the model. Often times, when the model is not available or
it is rather difficult and time-consuming to derive it, an approximate representation
of the model is used to generate the tuples. This includes, but is not limited to,
Fourier-Wavelet Bases, Decision Trees, Least Square Approximations, and Neural
Networks. Unlike model-based controllers like LQR or MPC, we are not bound to
represent the physical transition model of the system. Any approximation of it, as
long as it produces accurate enough tuples, can be utilized.

3. Continuous-Space: one of the main advantages of DDPG is that it can handle
continuous state-action space problems. As a result, it is a valid candidate for dealing
with physical system problems, namely robotic applications. In our application,
there is no need to discretize the weight parameter space. Having access to infinite-
dimensional parameter spaces enables better tuning strategies.

Contrary to Deep Q Networks (DQN), DDPG can handle continuous-state spaces.
Nevertheless, multiple ideas were inspired from DQN in the derivation of DDPG:

• Replay Buffer: the acquired samples from the environment are highly correlated
physical states and are not independent and identically distributed (non iid). Train-
ing the agent with these samples leads to divergence [98]. To alleviate this issue, a
replay buffer is defined, in which the samples are recorded. When the buffer reaches a
certain size, a random batch of samples are collected to train the agent. This process
continues until the end of the training epochs. The random sampling from the buffer
removes the non iid sample problem.

• Target Network: as mentioned in Chapter 2, RL is a semi-supervised algorithm; i.e.
the targets are generated during training. In DDPG, a one-step Temporal Difference
(TD) approach is used to calculate the target value for the critic, which requires next
state-action value function Q(s

′
, a
′
). However, using the critic to produce Q(s

′
, a
′
)

results in a self-updating critic. Needless to say, this also leads to divergent behaviors
[98]. The solution is to use another network, called Target Critic, for producing

79

the Q(s
′
, a
′
). It is shown in [75] that by using a Target Action network to generate

the a
′

in Q(s
′
, a
′
), more accurate results are achieved. Overall, the DDPG algorithm

includes four neural networks: Critic, Actor, Target Critic, and Target Actor. A
soft policy update is used for changing the target network’s weights. By defining
a soft-update parameter τ � 1, a linear combination of the original networks and
target network weights will substitute the target network weights at each iteration

(Eq. 6.1). θQ, θµ
′
, θQ

′
, θµ

′
are critic, actor, target-critic, and target-actor network

weights, respectively.

θQ
′

← τθQ + (1− τ)θQ
′

θµ
′

← τθµ + (1− τ)θµ
′ (6.1)

• Exploration: approximations added to the Bellman equation remove the guarantee
for finding the global optimum. In fact, It is highly probable that the optimizer is
stuck in a local optimum. When training the agent, DQN adds a Gaussian noise to the
output to explore new areas of the search space other than the ones that the optimizer
suggests. This is called Exploration vs Exploitation Dilemma in RL literature
and is a hot topic in its community [113, 43]. DDPG utilizes Ornstein–Uhlenbeck
(OU), a correlated noise originally developed for explaining the Brownian motion of
particles in Physics [18].

DDPG is summarized in Algorithm 1.

80

Algorithm 1 DDPG

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

Initialize target network Q
′

and µ
′

with weights θQ
′ ←θQ, θµ

′
←θµ

Initialize replay buffer R
for episode=1, M do

Initialize a random process N for action exploration
Receive initial state si
while Termination Condition not Met do
Select action at = µ(st|θµ) +Nt according to the current policy and OU noise
Execute action at and observe reward rt, new state st+1, and done flag done
Store transition (st, at, rt, st+1, done) in replay buffer R
Sample a random mini-batch of B transitions (st, at, rt, st+1, done) from R

Set yi = ri + γQ(si+1, µ
′
(si+1|θµ

′
)|θQ′)

Update critic by minimizing the loss: L = 1
N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:
∇θµJ ≈ 1

N

∑
i∇aQ(si, µ(si)|θQ)∇θµµ(si|θµ)

Update the target networks:

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

end while
end for

6.2.1 Problems of DDPG

Function approximations in RL lead to errors and sub-optimal policies. These errors
exist in both value-based methods (like Q-learning) and actor-critic methods. In [44], the
problems of DDPG are mentioned as follows:

• Overestimation Bias: it is shown that the value function estimates Q in DDPG are
higher than the actual values. This fact introduces error in the critic’s output and
thus leads to overall error in the actor’s values.

• Variance: DDPG is reportedly known to lead to high-variance estimates [44, 29],
which is one of the causes of the aforementioned overestimation bias. In addition,
high variance produces noisy gradients for the policy update and reduces learning
speed [127].

81

6.2.2 Twin-Delayed Deep Deterministic Policy Gradient (TD3)

A modified version of DDPG called “Twin-Delayed Deep Deterministic Policy Gradi-
ents” (TD3) was introduced in [44]. This algorithm alleviates the above issues by applying
the following changes:

1. Double Critic: to reduce the overestimation, two critic and target critic networks are
used. The target is then calculated by taking the minimum between the Q values:
y = r+γmini=1,2Qθ

′
i
, where y is the target for the critic network, r is the immediate

reward, and 0 < γ < 1 is the discount factor hyperparameter. All the aforementioned
networks are updated separately similar to the formulation presented in Algorithm
1.

2. Delayed Actor: it is shown that high-error in the Q estimates from the critic will
exacerbate the errors in the actor, which then affect the efficiency of the critic. The
accumulation of error from both networks lead to high final errors. By updating the
critic with higher frequency than the actor, the latter is updated with more accurate
feedback from the former, hence reducing the overall error. To this end, we delayed
the actor by updating it every two iterations.

3. Target Policy Smoothing Regularization: target Q values are susceptible to function
approximation errors. This problem causes a part of the variance observed in DDPG.
The smoothing regularization adds an extra noise to the target action πφ′ (s

′
). The

target formulation then changes as follows, where ε is the newly introduced noise:

y = r + γ min
i=1,2

Qθ
′
i
(s
′
, πφ′ (s

′
) + ε) (6.2)

TD3 has outperformed many of the state of the art RL algorithms on multiple OpenAI
environments; the results in the original paper [44] has shown that this algorithm provides
a higher cumulative reward on all of the environments except for InvertedPendulum-v1
and InvertedDoublePendulum-v1. Even in these environments, TD3’s reward is very close
to the best candidate.

6.3 Implementation

Generally, DRL algorithms are applied in Python due to its extensive deep learning
libraries like Tensorflow or Pytorch. However, since our controllers were written in MAT-
LAB, writing the tuner in Python would be problematic. There are not any reliable

82

approaches to connect Simulink and Python for online data transfer. On top of that, we
predicted that the delay that would result from the Simulink/Python connection would
stymie the online implementation of the tuner on the hardware. Consequently, the tuner
is coded in MATLAB 2019b. Due to its current limitations to only DDPG, we did not
use the MATLAB’s reinforcement learning toolbox. In addition, MATLAB’s deep learning
toolboxes could not handle the policy gradient updates. Hence, the DRL program was
written from scratch as MATLAB script. Mini-batch learning was used to train the agent;
that is, a mini-batch of data was randomly extracted from the replay buffer and used for
training at each iteration. Instead of using loops in the mini-batch training implementa-
tion, we took advantage of vectorization which greatly expedited the training. The details
of networks and hyperparameters are presented in Appendix C.

6.3.1 Algorithm Validation

To validate the TD3 implementation, the algorithm was used as a controller on a
pendulum swing-up problem. The same reward function as the OpenAI Pendulum-v0
environment was set. The angle is shown in Fig. 6.2. The TD3 controller was able to swing-
up the pendulum in the assigned time. The switching between −180 and 180 degrees is
due to the fact that the absolute value of the target is used in the OpenAI reward function.

0 1 2 3 4 5

Time (s)

-200

-150

-100

-50

0

50

100

150

200

 (
de

g)

X 3.379
Y 180

Figure 6.2: The TD3-controlled pendulum

83

6.3.2 Tuner Structure

The tuner was implemented on the SMC to adjust the K, λ, and ψ weights. For the
reward function, the following formulation was considered:

r = −|d(t)| − 0.1|v(t)| − |u̇(t)|
|d(t)| = |p(t)− pd(t)|
|v(t)| = |ṗ(t)− ṗd(t)|

|u̇(t)| = |u(t)− u(t− 1)|
∆t

(6.3)

where |d(t)| is the iteration position error, |v(t)| is the iteration velocity error, and u̇(t)
is the iteration input rate. For the tuning strategy, we considered two general options:

1. Whole-episode strategy: in this method, the tuner sets the weights in the beginning of
the iteration (Fig. 6.3). The weights are fixed through the whole episode. The tuner
then adjusts them based on the cumulative reward of the whole-episode. This results
in an offline tuner. The final weights are set only once, at the beginning. Although
this approach is a valid tuning strategy and is used in the literature [60, 55], the
resulting controller will not be subject-specific. Hence, we adopted the next strategy.

Figure 6.3: The whole-episode tuning strategy

2. Iteration-based strategy: in contrast to the previous approach, this approach adjusts
the weights at each iteration (Fig. 6.4). This results in a subject-specific controller
that changes the weights based on patient conditions. The tuner reacts to the increase
in position/velocity error by increasing the corresponding weight. It is worthwhile
to mention that the same strategy can be applied in the force level. Instead of
calculating the end-effector position from encoder values, it is possible to record the

84

patient force and compare it to the healthy subject force. This method requires data
collection with a post-stroke and a healthy subject before training. Hence, the former
approach was adopted due to its ease of implementation.

Figure 6.4: The iteration-based tuning strategy

The schematic of the final controller-tuner is shown below:

Figure 6.5: The controller-tuner scheme

85

6.4 Simulation Results

The iteration-based strategy was applied on the SMC method for following a circular
trajectory. To simulate the patient in the testing stage, a random disturbance was added
to the input at each iteration. The manually-tuned SMC weights in Section 5.4 were set
as the initial values in training. The adaptive weights in the testing stage are shown in
Fig. 6.6. The tuner produced approximately constant weight values. It is hypothesized
that since SMC considers disturbance rejection in its formulation, constant weights were
enough for handling the added disturbance at each iteration.

0 20 40 60

time(s)

7.71

7.712

7.714

7.716

7.718

7.72

K

0 20 40 60

time(s)

9.82

9.822

9.824

9.826

9.828

0 20 40 60

time(s)

10.885

10.89

10.895

10.9

Figure 6.6: The SMC adaptive weights

To evaluate the adaptive weight adjustment, the results were compared with a fixed-

86

weight SMC, where the training initial values were assigned as the fixed parameters. The
end-effector position with fixed and adaptive weights are shown in Fig. 6.7. The simulation
results demonstrated that fixed weights led to high position errors when high disturbance
was imposed upon the robot; this can be similar to the effect of the subject in hardware
testing. We tested the tuner with the same reward function on LQR; the results were
unsatisfactory and hence, are not presented.

-0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25

x (m)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

SMCTuned
SMCFixed
Desired

Figure 6.7: The SMC position comparison between fixed vs adaptive weights

6.5 Conclusion

In this chapter, we implemented the TD3 DRL algorithm to adaptively tune the SMC
controller in simulation. An iteration-based strategy was adopted where the weights were
adjusted at each iteration. There was no limitations in weight selection as TD3 can handle
the infinite-dimensional continuous space. The simulation results showed considerably
lower position errors compared to manually-tuned fixed weights. The tuner did not present
successful weight adjustment when applied to LQR.

87

Chapter 7

Subject in the Loop Experimental
Implementation

7.1 Overview

Subjects play a cardinal role in rehabilitation robot control. Unless considered in the
control scheme, subjects might experience aggressive controller behavior as they resist the
robot torque. Moreover, subject consideration enables the online monitoring of subject
data and adaptively modifying the control strategy, based on patient progress. One may
approach this issue by integrating the upper-extremity model with the robot model and
considering the new integrated HRI model in the control design [50]. When coupled with
muscle-models (as discussed in Chapter 2), this strategy can benefit the clinicians by
monitoring the progress of the patient in the muscle-level and target specific muscle groups;
this data can be utilized to design better controllers. Nevertheless, this strategy puts
more burden on the model-based controllers, especially the ones with online optimization,
because the final control-oriented HRI model is much more complicated than its robot
model counterpart. Since our robot is equipped with a force/torque sensor, the patient force
was directly measured and incorporated in controller design. The muscle-level information
can later be obtained offline, from the force data, with forward static optimization that
solves for muscle redundancy. Due to COVID 19 situation, we were not able to incorporate
post-stroke patients in our experiments. Hence, we tested our controllers with healthy
subjects. Generally speaking, not much can be done for directly controlling the subject
behavior, i.e. the subject is not solving the inverse kinematics problem; this means that
despite the advanced control strategies, the subject may show unpredicted and undesired

88

behavior. One line of research in this regard has focused on deep learning methods for
patient pose detection [92]. A non-contacting coaching strategy can then be added to the
main control strategy to alert the patient if they are not maintaining the right pose while
doing the rehabilitation practices.

7.2 Experimental Considerations

The tests were performed on a healthy male subject (age: 25 years old, weight: 85 kg,
height: 171 cm). The following procedures were applied to best simulate the condition of
a post-stroke patient. The healthy subject was asked to use their non-dominant arm and
relax their hand to avoid full muscle contraction. A strap was utilized to counterbalance
the arm’s gravity force. The subject was asked to keep their shoulder as still as possible
to circumvent any undesired movements when doing the practice.

7.3 Implicit Force Control

We applied an intuitive force control approach on the robot. The controller calculated
the required torque ucontroller for reaching the desired trajectory, at each sample-time. The
patient force Fsubject was then mapped to robot torque usubject via the geometric Jacobian.
The difference of these values urobot was then applied to the robot. The mathematical
formulation of implicit force control is shown in Eqs. 7.1 and 7.2. The schematic of this
controller is shown in Fig. 7.1.

usubject = JT (θR)Fsubject (7.1)

urobot = ucontroller − usubject (7.2)

Note that the force sensor outputs the data in its local X ′Y ′Z ′ frame. As a result,
vector transformation was applied to acquire the global XY Z components (Fig. 7.2):

{F} = [R(θR1)]{F}
′

R(θR1) =

[
cos(θR1) −sin(θR1)
sin(θR1) cos(θR1)

]
(7.3)

89

Controller

∑

controlleru

+

-

State

Subject Force

Subject Torque

T

subject subjectu J F

finalu

subjectu

x

Figure 7.1: The hybrid position/force control scheme

XF

YF

XF

YF

1

X

Y

Figure 7.2: The local-global force relation.

90

7.4 Experimental Results

We implemented the final hybrid position/force controller on the experimental setup
for tracking a circular trajectory. The data was recorded for a 40 second test. SMC
and LQR position controllers were selected and implemented with the healthy user in
the loop. The results are depicted in Figs. 7.3 and 7.4. SMC (with 5,813 m position
error two norm) showed a better tracking performance than LQR (with 6.549 m position
error two norm). As shown, the horizontal subject force Fsubject was transformed to their
torque contribution usubject (Subject torque). As the subject exerts force in the direction
that reduces the tracking error, the robot exerts less torque urobot (Final torque) than the
calculated torque by the controller ucontroller (Controller torque). In contrast, the robot
exerts more torque as the subject increases the error. This simple strategy results in an
assist-as-needed rehabilitation. Moreover, a gain matrix can be applied to the subject
torque to emulate assistive/resistive control strategies.

The hybrid position/force controller was applied with LQR for tracking the system-
atically designed trajectory by the planner in Chapter 4. In contrast to Section 4.3, this
implementation is not just the robot control; the subject is also considered in the loop.
Fig. 7.5 plots the position, force, and torque results. Again, an assist-as-needed strategy
is presented. Note that the robot torques were not completely the same as the open-loop
torques in Section 4.2.2, but both the closed and open loop robot torques had the same
order of values. Also, there was no guarantee that the subject muscle activations during
the test were the same as the open-loop values in Section 4.2.2. Nevertheless, it is expected
that they show similar muscle contraction patterns since the human arm terms in the cost
function of the planner optimizer (Eq. 4.6) were chosen based on a study on human natural
reaching movements [13]. Due to these facts, the designed trajectory is not fully optimal
but is close to the optimal trajectory.

91

Figure 7.3: SMC subject in the loop results for the circular trajectory. The top left plot
shows the end-effector position P and the desired value Pd. The top right plot depicts the
subject force in the global XY coordinates. The bottom plots show the subject usubject,
controller ucontroller, and final torques urobot.

92

Figure 7.4: LQR subject in the loop results for the circular trajectory. The top left plot
shows the end-effector position P and the desired value Pd. The top right plot depicts the
subject force in the global XY coordinates. The bottom plots show the subject usubject,
controller ucontroller, and final torques urobot.

93

-0.2 -0.1 0 0.1 0.2 0.3

X (m)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Y
 (

m
)

P
Pd

0 1 2 3 4 5

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

S
ub

je
ct

 F
or

ce
 (

N
)

F
X

F
Y

0 1 2 3 4 5

Time (s)

-1

-0.5

0

0.5

1

1.5

T
or

qu
e

1
(N

.m
)

0 1 2 3 4 5

Time (s)

-1

-0.5

0

0.5

1

1.5
T

or
qu

e
2

(N
.m

)

Start Point

Figure 7.5: LQR subject in the loop testing for tracking the planner trajectory. The top
left plot shows the end-effector position P and the desired value Pd. The top right plot
depicts the subject force in the global XY coordinates. The bottom plots show the subject
usubject, controller ucontroller, and final torques urobot.

7.5 Conclusion

In this chapter, we presented the experimental results for the hybrid position/force
controller. The procedure was discussed for emulating a post-stroke patient in the experi-
ments, as we were confined to testing healthy subjects. The hybrid position/force control
scheme allowed for an intuitive high-level assist-as-needed framework.

94

Chapter 8

Conclusion and Future Work

8.1 Thesis Summary

This thesis investigated the modeling, planning, model-based control, and subject-
specific control tuning of a post-stroke upper extremity robot. The following presents the
summary of this project:

• The high-fidelity robot model was utilized in controller testing in simulation; this
model was extracted from the MapleSim model of the robot and exported to MAT-
LAB. The low-fidelity version was developed by removing friction and joint stiffness
terms and was used as the control-oriented model in our model-based controllers.
A PD controller was applied to both models for control-oriented model validation.
The results showed good agreement between the high-fidelity and control-oriented
models.

• A novel optimization-based trajectory planner was designed for defining the optimal
rehabilitation practice. The previously developed HRI model in MapleSim was used
within this framework; the muscle dynamics in this model helped promote clinically
plausible trajectories. Direct-collocation optimization was selected due to its capa-
bility for predicting the optimal states. The cost function included both the robot
terms and human arm terms. The weights for each term can be adjusted as the
rehabilitation period progresses; less weight might be needed for the human arm
terms as improvement is observed in patient motor function. An LQR controller
was integrated with the planner to stabilize the trajectory. Simulation and real-time

95

hardware implementation of the proposed approach showed successful tracking in
position and velocity.

• A comparative robot control study was conducted where five controllers were evalu-
ated in simulation and experiments. The tuning procedure was designed to remove
the bias that could potentially be caused by different position tracking performances.
Two scenarios of point-stabilization and circular trajectory tracking were chosen for
comparison. The results demonstrated that the use of more advanced controllers
than PID and computed-torque PID was justified as these two controllers showed
higher inputs, input rates, and end-effector velocities than the other three controllers;
potentially, these effects can reduce the hardware reliability, and patient comfort.
Compared to their numerical counterparts, symbolic NMPCs represented faster re-
sponses. However, despite their excellent performance in simulation with increased
sample-time (10 ms), they were still not fast enough for hardware testing with 2 ms
sample-time; this was caused by the delay in communication protocols and the online
optimization high turnaround time. Based on the proposed criteria, it was found that
SMC and LQR were the best two candidates, the former due to its application to
nonlinear systems and the latter due to its suitability for planar mechanisms.

• A DRL-based tuner framework was designed for automatic controller weight tuning.
The algorithm implementation was validated by using the DRL as a controller on a
pendulum swing-up problem. The tuner was implemented with the SMC controller
for subject-specific controller tuning. The weights were adjusted at each iteration.
To provide the patient’s force in simulation, a random input was added to the con-
troller. The application of the tuner on LQR was not satisfactory. In contrast to
previous research on discrete DRL tuners, our framework was able to search the
infinite-dimensional continuous space and was not limited to the discrete space. This
advantage increased the accuracy of the tuning process.

• To integrate the subject in the control loop, an implicit high level force control al-
gorithm was employed. The resulting hybrid position/force controller was tested
with SMC and LQR. Due to COVID 19, testing post-stroke patients was not possi-
ble. Several considerations were adopted to simulate post-stroke conditions by the
healthy subject; these included using the non-dominant hand and avoiding full mus-
cle contraction. The hybrid controller was used for tracking a circular trajectory and
the designed trajectory by the planner.

96

8.2 Recommendations and Future Work

The following topics are recommended for future research:

• The trajectory planner in Chapter 4 was offline, and the initial and final points
were chosen before the online testing. Future research can focus on expediting the
optimization. The study would enable the application of the planner in real-time
and setting multiple initial and final points during patient testing. To this end, ideas
from [86] can be adopted and applied to direct-collocation. Clinicians and specialists
would benefit from this research by being able to set multiple initial-final points
online while working with patients in experiments.

• The NMPC implementations on our setup with rapidly-updating dynamics suffered
from the high iteration turnaround time. A major part of the computational inef-
ficiency was due to the delay in the communication protocol; code generation tech-
niques can be investigated for obtaining direct stand-alone C code to remove the
need for the communication protocol. Also, the online optimizer needs to be faster.
In future research, POD model reduction ideas from [83] can be examined to re-
duce the size of the NMPC, and make the optimization fast enough for real-time
implementation.

• The final hybrid position/force controller can be applied to any assistive device
equipped with force sensors. This work can be extended to exoskeletons and other
rehabilitation robots in the future.

• A drawback of the high-level implicit force control is the desired trajectory enforce-
ment; that is, as the subject deviates from the desired trajectory, a corrective torque
is applied to reduce the error. The resulting behavior can lead to excessive torques
in high position-error scenarios. On the other hand, the relation between position
accuracy and the rehabilitation effect is not clear enough. Future work can investi-
gate this relation and design safer high-level controllers. For instance, it might be
beneficial to reset the trajectory itself based on patient performance. Using high-level
scenarios like admittance control enables the adaptive adjustment of the rehabilita-
tion practice.

• Due the time frame of the thesis, the comparative study in Chapter 5 was done
by manual online tuning of the controllers. In the future, the DRL tuner can be
debugged and applied to all of the controllers. Having a generalized tuning approach
with the same reward function could remove any bias in tuning and facilitate the

97

best controller comparison structure. This structure is applicable to any autonomous
dynamical system. The results can be utilized to test our current findings in Chapter
5.

• Tuner structure is not also limited to controllers. Future work could research the
feasibility of this method on optimization problems. For instance, the weights of all
optimizations in OptimTraj or GPOPS II can be potentially adjusted by DRL.

• Due to COVID 19 conditions, we were confined to test our controllers on healthy
subjects. Testing procedures were utilized to simulate a post-stroke patient but
having an actual one would be beneficial in terms of evaluating the practicality of
our approaches. Hopefully, when this period ends, we can test our controllers with
post-stroke subjects.

98

References

[1] Syed Faiz Ahmed, Athar Ali, Syed Yarooq Raza, Kushsairy A. Kadir, M. Kamran
Joyo, and Kanendra Naidu. Model predictive control for upper limb rehabilitation
robotic system under disturbed condition. AIP Conference Proceedings, 2129(July),
2019.

[2] Qingsong Ai, Chengxiang Zhu, Jie Zuo, Wei Meng, Quan Liu, Sheng Q. Xie, and
Ming Yang. Disturbance-estimated adaptive backstepping sliding mode control of a
pneumatic muscles-driven ankle rehabilitation robot. Sensors (Switzerland), 18(1),
2018.

[3] Noppadol Ajjanaromvat and Manukid Parnichkun. Trajectory tracking using online
learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait
rehabilitation. Mechatronics, 51(March):85–96, 2018.

[4] Alessandro Alessio and Alberto Bemporad. A survey on explicit model predictive
control. Lecture Notes in Control and Information Sciences, 384:345–369, 2009.

[5] Athar Ali, Syed Faiz Ahmed, M. Kamran Joyo, and K. Kushsairy. MPC-PID com-
parison for controlling therapeutic upper limb rehabilitation robot under perturbed
conditions. 2017 IEEE 3rd International Conference on Engineering Technologies
and Social Sciences, ICETSS 2017, 2018-Janua:1–5, 2018.

[6] Athar Ali, Syed Faiz Ahmed, Kushsairy A. Kadir, M. Kamran Joyo, and R. N.S.
Yarooq. Fuzzy PID controller for upper limb rehabilitation robotic system. 2018
IEEE International Conference on Innovative Research and Development, ICIRD
2018, (May):1–5, 2018.

[7] F Allg’ower, TA Badgwell, JS Qin, JB Rawlings, and SJ Wright. Advances in con-
trol/highlights of ecc’99//chapt. 12. nonlinear predictive controls and moving horizon
estimation, 1999.

99

[8] Joel Andersson, Johan Åkesson, and Moritz Diehl. Casadi: A symbolic package for
automatic differentiation and optimal control. In Recent advances in algorithmic
differentiation, pages 297–307. Springer, 2012.

[9] Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
Casadi: a software framework for nonlinear optimization and optimal control. Math-
ematical Programming Computation, 11(1):1–36, 2019.

[10] Karl Johan Åström and Tore Hägglund. PID controllers: theory, design, and tuning,
volume 2. Instrument society of America Research Triangle Park, NC, 1995.

[11] L. Beiner and S. W. Paris. Direct trajectory optimization using nonlinear program-
ming and collocation. Journal of Guidance, Control, and Dynamics, 10(4):338–342,
1987.

[12] Richard Bellman. The Theory of Dynamic Programming, 1954.

[13] Bastien Berret, Enrico Chiovetto, Francesco Nori, and Thierry Pozzo. Evidence for
composite cost functions in arm movement planning: An inverse optimal control
approach. PLoS Computational Biology, 7(10), 2011.

[14] Bastien Berret, Christian Darlot, Frédéric Jean, Thierry Pozzo, Charalambos Papax-
anthis, and Jean Paul Gauthier. The inactivation principle: Mathematical solutions
minimizing the absolute work and biological implications for the planning of arm
movements. PLoS Computational Biology, 4(10), 2008.

[15] Rachele Bertani, Corrado Melegari, C Maria, Alessia Bramanti, Placido Bramanti,
and Rocco Salvatore Calabrò. Effects of robot-assisted upper limb rehabilitation
in stroke patients: a systematic review with meta-analysis. Neurological Sciences,
38(9):1561–1569, 2017.

[16] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-Dynamic Programming : An
Overview. (December), 1995.

[17] Shalabh Bhatnagar, Mohammad Ghavamzadeh, Mark Lee, and Richard S Sutton.
Incremental natural actor-critic algorithms. In Advances in neural information pro-
cessing systems, pages 105–112, 2008.

[18] Enrico Bibbona, Gianna Panfilo, and Patrizia Tavella. The ornstein–uhlenbeck pro-
cess as a model of a low pass filtered white noise. Metrologia, 45(6):S117, 2008.

100

[19] Michelangelo Bin, Daniele Astolfi, Lorenzo Marconi, and Laurent Praly. About
robustness of internal model-based control for linear and nonlinear systems. In 2018
IEEE Conference on Decision and Control (CDC), pages 5397–5402. IEEE, 2018.

[20] Amy A. Blank, James A. French, Ali Utku Pehlivan, and Marcia K. O’Malley. Cur-
rent Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Pa-
tient Engagement in Therapy. Current Physical Medicine and Rehabilitation Reports,
2(3):184–195, 2014.

[21] Ruth Bonita, Alistair Stewart, and Robert Beaglehole. International trends in stroke
mortality: 1970-1985. Stroke, 21(7):989–992, 1990.

[22] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
2. Some Standard Problems Involving LMIs. 1994.

[23] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[24] Colin Brown. Predictive Forward Dynamic Simulation of Manual Wheelchair Propul-
sion by. (September), 2018.

[25] Peter Brown. Contact Modelling for Forward Dynamics of Human Motion. 2017.

[26] Peter Brown and John McPhee. A Continuous Velocity-Based Friction Model for
Dynamics and Control with Physically Meaningful Parameters. Journal of Compu-
tational and Nonlinear Dynamics, 11(5):1–6, 2016.

[27] Ming Kun Chang. An adaptive self-organizing fuzzy sliding mode controller for a
2-DOF rehabilitation robot actuated by pneumatic muscle actuators. Control Engi-
neering Practice, 18(1):13–22, 2010.

[28] Won Hyuk Chang and Yun-Hee Kim. Robot-assisted therapy in stroke rehabilitation.
Journal of stroke, 15(3):174, 2013.

[29] Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and
Joel W Burdick. Control regularization for reduced variance reinforcement learning.
arXiv preprint arXiv:1905.05380, 2019.

[30] Luigi del Re, Ilya Kolmanovsky, Maarten Steinbuch, and Harald Waschl. Introduc-
tion. Lecture Notes in Control and Information Sciences, 455 LNCIS, 2014.

101

[31] Christopher L Dembia, Amy Silder, Thomas K Uchida, Jennifer L Hicks, and Scott L
Delp. Simulating ideal assistive devices to reduce the metabolic cost of walking with
heavy loads. PloS one, 12(7):e0180320, 2017.

[32] Mouna Doghri, Sophie Duchesne, Annie Poulin, and Maxim Ouellet. Comparative
study of pressure reduction valve controllers in water distribution systems. In Euro-
Mediterranean Conference for Environmental Integration, pages 1001–1003. Springer,
2017.

[33] Minh Quan Duong, Sonia Leva, Marco Mussetta, and Kim Hung Le. A comparative
study on controllers for improving transient stability of dfig wind turbines during
large disturbances. Energies, 11(3):480, 2018.

[34] Nancy E. Mayo, Sharon Wood-Dauphinee, Sara Ahmed, Gordon Carron, Johanne
Higgins, Sara Mcewen, and Nancy Salbach. Disablement following stroke. Disability
and rehabilitation, 21(5-6):258–268, 1999.

[35] Russell Eberhart and James Kennedy. A New Optimizer Using Particle Swarm
Theory. Sixth International Symposium on Micro Machine and Human Science, 0-
7803-267:39–43, 1999.

[36] Christopher Edwards and Sarah Spurgeon. Sliding mode control: theory and appli-
cations. Crc Press, 1998.

[37] Aulia El Hakim, Hilwadi Hindersah, and Estiko Rijanto. Application of reinforcement
learning on self-tuning pid controller for soccer robot multi-agent system. In 2013
joint international conference on rural information & communication technology and
electric-vehicle technology (rICT & ICeV-T), pages 1–6. IEEE, 2013.

[38] Sascha E. Engelbrecht and Juan Pablo Fernández. Invariant characteristics of
horizontal-plane minimum-torque-change movements with one mechanical degree of
freedom. Biological Cybernetics, 76(5):321–329, 1997.

[39] Boudjema Fares. Robust Control via Sequential Semidefinite Programming. pages
2750–2755.

[40] Susan E Fasoli, Hermano I Krebs, Joel Stein, Walter R Frontera, and Neville Hogan.
Effects of robotic therapy on motor impairment and recovery in chronic stroke.
Archives of physical medicine and rehabilitation, 84(4):477–482, 2003.

102

[41] Yongfei Feng, Hongbo Wang, Yaxin Du, Fei Chen, Hao Yan, and Hongfei Yu. Tra-
jectory planning of a novel lower limb rehabilitation robot for stroke patient passive
training. Advances in Mechanical Engineering, 9(12):1–10, 2017.

[42] Rolf Findeisen, Lars Imsland, Frank Allgower, and Bjarne A Foss. State and out-
put feedback nonlinear model predictive control: An overview. European journal of
control, 9(2-3):190–206, 2003.

[43] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Os-
band, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al.
Noisy networks for exploration. arXiv preprint arXiv:1706.10295, 2017.

[44] Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approxima-
tion error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

[45] Olof Garpinger, Tore Hägglund, and Karl Johan Åström. Performance and robustness
trade-offs in pid control. Journal of Process Control, 24(5):568–577, 2014.

[46] Gregory R. Gay, Paola Salomoni, and Silvia Mirri. E-Learning. Encyclopedia of
Internet Technologies and Applications, 292:179–184, 2007.

[47] Borna Ghannadi. Model-based control of upper extremity human-robot rehabilitation
systems. 2017.

[48] Borna Ghannadi and John McPhee. Optimal impedance control of an upper limb
stroke rehabilitation robot. ASME 2015 Dynamic Systems and Control Conference,
DSCC 2015, 1:1–7, 2015.

[49] Borna Ghannadi, Naser Mehrabi, and John McPhee. Development of a human-robot
dynamic model to support model-based control design of an upper limb rehabilitation
robot. Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics
2015, Multibody Dynamics 2015, pages 999–1007, 2015.

[50] Borna Ghannadi, Naser Mehrabi, Reza Sharif Razavian, and John McPhee. Non-
linear model predictive control of an upper extremity rehabilitation robot using a
two-dimensional human-robot interaction model. IEEE International Conference on
Intelligent Robots and Systems, 2017-September:502–507, 2017.

[51] Borna Ghannadi, Reza Sharif Razavian, and John McPhee. Upper extremity reha-
bilitation robots: A survey. Handbook of Biomechatronics, page 319, 2018.

103

[52] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm for
large-scale constrained optimization. SIAM review, 47(1):99–131, 2005.

[53] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey
of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(6):1291–1307, 2012.

[54] Zenon Hendzel and Marcin Szuster. Discrete neural dynamic programming in wheeled
mobile robot control. Communications in Nonlinear Science and Numerical Simula-
tion, 16(5):2355–2362, 2011.

[55] Marco Herrera, Andrés Cuaycal, Oscar Camacho, and David Pozo. Lqr discrete
controller tuning for a twip robot based on genetic algorithms. In 2019 International
Conference on Information Systems and Computer Science (INCISCOS), pages 163–
168. IEEE, 2019.

[56] Bryce Hosking. Modelling and Model Predictive Control of Power-Split Hybrid Pow-
ertrains for Self-Driving Vehicles by. 2018.

[57] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. Acado toolkit—an open-
source framework for automatic control and dynamic optimization. Optimal Control
Applications and Methods, 32(3):298–312, 2011.

[58] Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Ontinuous learning control with deep reinforcement.
2016.

[59] Irina Ioachim, Sylvie Gélinas, François Soumis, and Jacques Desrosiers. A Dynamic
Programming Algorithm for the Shortest Path Problem with Time Windows and
Linear Node Costs. Networks, 31(3):193–204, 1998.

[60] P Travis Jardine, Michael Kogan, Sidney N Givigi, and Shahram Yousefi. Adaptive
predictive control of a differential drive robot tuned with reinforcement learning. In-
ternational Journal of Adaptive Control and Signal Processing, 33(2):410–423, 2019.

[61] S.K. Jha et al. Comparative study of different classical and modern control techniques
for the position control of sophisticated mechatronic system. Procedia Computer
Science, 93:1038–1045, 2016.

104

[62] Tor A Johansen. Introduction to nonlinear model predictive control and moving
horizon estimation. Selected topics on constrained and nonlinear control, 1:1–53,
2011.

[63] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan
Schaal. STOMP: Stochastic trajectory optimization for motion planning. Proceedings
- IEEE International Conference on Robotics and Automation, pages 4569–4574,
2011.

[64] Hadi Kalani, Alireza Akbarzadeh, S. Nader Nabavi, and Sahar Moghimi. Dynamic
modeling and CPG-based trajectory generation for a masticatory rehab robot. In-
telligent Service Robotics, 11(2):187–205, 2018.

[65] Matthew Kelly. An introduction to trajectory optimization: How to do your own
direct collocation. SIAM Review, 59(4):849–904, 2017.

[66] Matthew P. Kelly. Transcription Methods for Trajectory Optimization: a beginners
tutorial. pages 1–14, 2017.

[67] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014, 2000.

[68] Hermano Igo Krebs. Twenty + years of robotics for upper-extremity rehabilitation
following a stroke. Elsevier Ltd., 2018.

[69] N Senthil Kumar, V Sadasivam, and HM Asan Sukriya. A comparative study of pi,
fuzzy, and ann controllers for chopper-fed dc drive with embedded systems approach.
Electric Power Components and Systems, 36(7):680–695, 2008.

[70] Gert Kwakkel, Boudewijn J Kollen, Jeroen van der Grond, and Arie JH Prevo.
Probability of regaining dexterity in the flaccid upper limb: impact of severity of
paresis and time since onset in acute stroke. Stroke, 34(9):2181–2186, 2003.

[71] Clemente Lauretti, Francesca Cordella, Eugenio Guglielmelli, and Loredana Zollo.
Learning by Demonstration for Planning Activities of Daily Living in Rehabilitation
and Assistive Robotics. IEEE Robotics and Automation Letters, 2(3):1375–1382,
2017.

[72] G. Lee, J. Kim, F. A. Panizzolo, Y. M. Zhou, L. M. Baker, I. Galiana, P. Malcolm,
and C. J. Walsh. Reducing the metabolic cost of running with a tethered soft exosuit.
Science Robotics, 2(6):1–3, 2017.

105

[73] Frank L. Lewis and Draguna Vrabie. Adaptive dynamic programming for feedback
control. Proceedings of 2009 7th Asian Control Conference, ASCC 2009, pages 1402–
1409, 2009.

[74] Yiqing Li, Wen Zhou, Yan Cao B, and Feng Jia. Design of Embedded Structure
Variable, volume 1. Springer International Publishing, 2019.

[75] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[76] M Patrice Lindsay, Bo Norrving, Ralph L Sacco, Michael Brainin, Werner Hacke,
Sheila Martins, Jeyaraj Pandian, and Valery Feigin. World stroke organization (wso):
global stroke fact sheet 2019, 2019.

[77] Fengjin Liu, William W Hager, and Anil V Rao. Adaptive mesh refinement method
for optimal control using nonsmoothness detection and mesh size reduction. Journal
of the Franklin Institute, 352(10):4081–4106, 2015.

[78] Jian-xun Liu, YH Li, Yong-gang CHEN, and Cheng WANG. Aeroengine lqr control
based on fuzzy-neural networks. Journal of Aerospace Power, 19(6):838–843, 2004.

[79] XY Liu and AJ Forsyth. Comparative study of stabilizing controllers for brushless
dc motor drive systems. In IEEE International Conference on Electric Machines and
Drives, 2005., pages 1725–1731. IEEE, 2005.

[80] Zemin Liu, Qingsong Ai, Yaojie Liu, Jie Zuo, Xiong Zhang, Wei Meng, and Shane
Xie. An optimal motion planning method of 7-DOF robotic arm for upper limb
movement assistance. IEEE/ASME International Conference on Advanced Intelli-
gent Mechatronics, AIM, 2019-July:277–282, 2019.

[81] Cynthia Lyles-Scott. A slave by any other name: Names and identity in Toni Mor-
rison’s Beloved. Names, 56(1):23–28, 2008.

[82] Lalo Magni, Davide Martino Raimondo, and Frank Allgwer. Lecture Notes in Con-
trol and Information Sciences: Preface. Lecture Notes in Control and Information
Sciences, 384(May 2014), 2009.

[83] Anson Maitland. Nonlinear model predictive control reduction strategies for real-time
optimal control. 2019.

106

[84] Anson Maitland, Mohit Batra, and John McPhee. Nonlinear model predictive con-
trol reduction using truncated single shooting. In 2018 Annual American Control
Conference (ACC), pages 3165–3170. IEEE, 2018.

[85] Anson Maitland and John McPhee. Improving model predictive controller
turnaround time using restricted lagrangians. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pages 3811–3816. IEEE, 2017.

[86] Anson Maitland and John McPhee. Quasi-translations for fast hybrid nonlinear
model predictive control. Control Engineering Practice, 97:104352, 2020.

[87] Ian R. Manchester. Transverse dynamics and regions of stability for nonlinear hybrid
limit cycles. IFAC Proceedings Volumes (IFAC-PapersOnline), 44(1 PART 1):6285–
6290, 2011.

[88] Aitziber Mancisidor, Asier Zubizarreta, Itziar Cabanes, Pablo Bengoa, and Je Hyung
Jung. New Trends in Medical and Service Robots. New Trends in Medical and Service
Robots Design, Analysis and Control, 48(April 2017):117–130, 2018.

[89] Laura Marchal-Crespo and David J Reinkensmeyer. Review of control strategies for
robotic movement training after neurologic injury. Journal of neuroengineering and
rehabilitation, 6(1):1–15, 2009.

[90] Felipe N. Martins, Wanderley C. Celeste, Ricardo Carelli, Mário Sarcinelli-Filho, and
Teodiano F. Bastos-Filho. An adaptive dynamic controller for autonomous mobile
robot trajectory tracking. Control Engineering Practice, 16(11):1354–1363, 2008.

[91] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert.
Constrained model predictive control: Stability and optimality. Automatica,
36(6):789–814, 2000.

[92] William McNally, Kanav Vats, Alexander Wong, and John McPhee. Evopose2d:
Pushing the boundaries of 2d human pose estimation using neuroevolution. arXiv
preprint arXiv:2011.08446, 2020.

[93] Mohit Mehndiratta, Efe Camci, and Erdal Kayacan. Automated tuning of nonlinear
model predictive controller by reinforcement learning. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3016–3021. IEEE,
2018.

107

[94] Naser Mehrabi, Reza Sharif Razavian, and John McPhee. A Physics-Based Mus-
culoskeletal Driver Model to Study Steering Tasks. Journal of Computational and
Nonlinear Dynamics, 10(2):1–8, 2015.

[95] Qiaoling Meng, Qiaolian Xie, Zhimeng Deng, and Hongliu Yu. A general kinematics
model for trajectory planning of upper limb exoskeleton robots, volume 11745 LNAI.
Springer International Publishing, 2019.

[96] Michael A.Henson. Nonlinear model predictive control current states and future
directions.pdf, 1998.

[97] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937, 2016.

[98] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[99] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[100] Luke M Mooney, Elliott J Rouse, and Hugh M Herr. Autonomous exoskeleton reduces
metabolic cost of human walking during load carriage. Journal of neuroengineering
and rehabilitation, 11(1):1–11, 2014.

[101] Manfred Morari and Jay H Lee. Model predictive control: past, present and future.
Computers & Chemical Engineering, 23(4-5):667–682, 1999.

[102] Hafiz Muhammad Yasir Naeem and A Mahmood. Autonomous cruise control of car
using lqr and h2 control algorithm. In 2016 International Conference on Intelligent
Systems Engineering (ICISE), pages 123–128. IEEE, 2016.

[103] Arne J. Nagengast, Daniel A. Braun, and Daniel M. Wolpert. Optimal control
predicts human performance on objects with internal degrees of freedom. PLoS
Computational Biology, 5(6), 2009.

108

[104] Hirofumi Nakayama, Henrik Stig Jørgensen, Hans Otto Raaschou, and Tom Skyhøj
Olsen. Recovery of upper extremity function in stroke patients: the copenhagen
stroke study. Archives of physical medicine and rehabilitation, 75(4):394–398, 1994.

[105] World Health Organization. The world health report 2002: reducing risks, promoting
healthy life. World Health Organization, 2002.

[106] World Health Organization et al. The global burden of disease: 2004 update. World
Health Organization, 2008.

[107] Lizheng Pan, Aiguo Song, Suolin Duan, and Xianchuan Shi. Study on motion per-
formance of robot-aided passive rehabilitation exercises using novel dynamic motion
planning strategy. International Journal of Advanced Robotic Systems, 16(5):1–15,
2019.

[108] Michael A Patterson and Anil V Rao. Gpops-ii: A matlab software for solving
multiple-phase optimal control problems using hp-adaptive gaussian quadrature col-
location methods and sparse nonlinear programming. ACM Transactions on Math-
ematical Software (TOMS), 41(1):1–37, 2014.

[109] James L Patton, Mary Ellen Stoykov, Mark Kovic, and Ferdinando A Mussa-Ivaldi.
Evaluation of robotic training forces that either enhance or reduce error in chronic
hemiparetic stroke survivors. Experimental brain research, 168(3):368–383, 2006.

[110] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–
1190, 2008.

[111] David Pinto-Fernandez, Diego Torricelli, Maria del Carmen Sanchez-Villamanan,
Felix Aller, Katja Mombaur, Roberto Conti, Nicola Vitiello, Juan C Moreno, and
Jose Luis Pons. Performance evaluation of lower limb exoskeletons: a system-
atic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
28(7):1573–1583, 2020.

[112] Francesca Pistoia, Simona Sacco, Cindy Tiseo, Diana Degan, Raffaele Ornello, and
Antonio Carolei. The epidemiology of atrial fibrillation and stroke. Cardiology clinics,
34(2):255–268, 2016.

[113] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y
Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter
space noise for exploration. arXiv preprint arXiv:1706.01905, 2017.

109

[114] Warren B. Powell, Abraham George, Belgacem Bouzaiene-Ayari, and Hugo P. Simao.
Approximate dynamic programming for high dimensional resource allocation prob-
lems. Proceedings of the International Joint Conference on Neural Networks, 5:2989–
2994, 2005.

[115] S Joe Qin and Thomas A Badgwell. An overview of nonlinear model predictive
control applications. In Nonlinear model predictive control, pages 369–392. Springer,
2000.

[116] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive control
technology. Control engineering practice, 11(7):733–764, 2003.

[117] J. Randall Flanagan and David J. Ostry. Trajectories of human multi-joint arm
movements: Evidence of joint level planning. Experimental Robotics I, pages 594–
613, 2006.

[118] Anil V Rao. A survey of numerical methods for optimal control. Advances in the
Astronautical Sciences, 135(1):497–528, 2009.

[119] G Rosati, G Volpe, and A Biondi. Trajectory planning of a two-link rehabilitation
robot arm. IFYolVIM World Congress, 2007.

[120] Muhammad Ahsan Saeed, Nisar Ahmed, Mujahid Hussain, and Adnan Jafar. A
comparative study of controllers for optimal speed control of hybrid electric vehicle.
In 2016 International Conference on Intelligent Systems Engineering (ICISE), pages
1–4. IEEE, 2016.

[121] Yahaya Md Sam, Mohd Ruddin Hj Abdul Ghani, and Nasarudin Ahmad. LQR con-
troller for active car suspension. IEEE Region 10 Annual International Conference,
Proceedings/TENCON, 1(February), 2000.

[122] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. 2014.

[123] Jean-Jacques E Slotine. Sliding controller design for non-linear systems. International
Journal of control, 40(2):421–434, 1984.

[124] David K. Smith and Dimitri P. Bertsekas. Dynamic Programming and Optimal
Control. Volume 1Dynamic Programming and Optimal Control. Volume 2. The
Journal of the Operational Research Society, 47(6):833, 1996.

110

[125] Chun-Yi Su, Subhash Rakheja, and Honghai Liu. Intelligent Robotics and Applica-
tions Part 2. 2012.

[126] Liang Sun and Jiafei Gan. Researching of two-wheeled self-balancing robot base on
lqr combined with pid. In 2010 2nd International Workshop on Intelligent Systems
and Applications, pages 1–5. IEEE, 2010.

[127] Richard S Sutton and Andrew G Barto. Reinformcent learning: An introduction,
1998.

[128] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,
volume 135. MIT press Cambridge, 1998.

[129] M. Suzuki, Y. Yamazaki, N. Mizuno, and K. Matsunami. Trajectory formation of the
center-of-mass of the arm during reaching movements. Neuroscience, 76(2):597–610,
1997.

[130] Sadegh Tajeddin, Mahyar Vajedi, and Nasser L Azad. A newton/gmres approach
to predictive ecological adaptive cruise control of a plug-in hybrid electric vehicle in
car-following scenarios. IFAC-PapersOnLine, 49(21):59–65, 2016.

[131] Shangjie Tang, Lin Chen, Michele Barsotti, Lintao Hu, Yongqiang Li, Xiaoying Wu,
Long Bai, Antonio Frisoli, and Wensheng Hou. Kinematic synergy of multi-DOF
movement in upper limb and its application for rehabilitation exoskeleton motion
planning. Frontiers in Neurorobotics, 13(November), 2019.

[132] Russ Tedrake. Underactuated robotics: Algorithms for walking, running, swimming,
flying, and manipulation. Lecture Notes, 2016.

[133] Tatsuya Teramae, Tomoyuki Noda, and Jun Morimoto. EMG-Based Model Pre-
dictive Control for Physical Human-Robot Interaction: Application for Assist-As-
Needed Control. IEEE Robotics and Automation Letters, 3(1):210–217, 2018.

[134] Darryl G Thelen. Adjustment of muscle mechanics model parameters to simulate
dynamic contractions in older adults. J. Biomech. Eng., 125(1):70–77, 2003.

[135] Christoph Tillmann and Hermann Ney. Word reordering and a dynamic programming
beam search algorithm for statistical machine translation. Computational Linguistics,
29(1):97–133, 2003.

111

[136] James Y Tung, Brent Stead, William Mann, Ba’ Pham, and Milos R Popovic. As-
sistive technologies for self-managed pressure ulcer prevention in spinal cord injury:
a scoping review. J Rehabil Res Dev, 52(2):131–46, 2015.

[137] N Kemal Ure, M Ugur Yavas, Ali Alizadeh, and Can Kurtulus. Enhancing situational
awareness and performance of adaptive cruise control through model predictive con-
trol and deep reinforcement learning. In 2019 IEEE Intelligent Vehicles Symposium
(IV), pages 626–631. IEEE, 2019.

[138] Yasaman Vaghei, Ahmad Ghanbari, and Sayyed Mohammad Reza Sayyed Noorani.
Actor-critic neural network reinforcement learning for walking control of a 5-link
bipedal robot. 2014 2nd RSI/ISM International Conference on Robotics and Mecha-
tronics, ICRoM 2014, pages 773–778, 2014.

[139] R PS Van Peppen, Gert Kwakkel, Sharon Wood-Dauphinee, H JM Hendriks, Ph J
Van der Wees, and Joost Dekker. The impact of physical therapy on functional
outcomes after stroke: what’s the evidence? Clinical rehabilitation, 18(8):833–862,
2004.

[140] Oscar von Stryk and Roland Bulirsch. Direct and indirect methods for trajectory
optimization. Annals of Operations Research, 37(1):357–373, 1992.

[141] Ke Yi Wang, Peng Cheng Yin, Hai Peng Yang, and Xiao Qiang Tang. The man-
machine motion planning of rigid-flexible hybrid lower limb rehabilitation robot.
Advances in Mechanical Engineering, 10(6):1–11, 2018.

[142] Lynne M Weber and Joel Stein. The use of robots in stroke rehabilitation: A narrative
review. NeuroRehabilitation, 43(1):99–110, 2018.

[143] Yue Wen, Jennie Si, Andrea Brandt, Xiang Gao, and He Helen Huang. Online
reinforcement learning control for the personalization of a robotic knee prosthesis.
IEEE transactions on cybernetics, 50(6):2346–2356, 2019.

[144] Yue Wen, Jennie Si, Xiang Gao, Stephanie Huang, and He Helen Huang. A
New Powered Lower Limb Prosthesis Control Framework Based on Adaptive Dy-
namic Programming. IEEE Transactions on Neural Networks and Learning Systems,
28(9):2215–2220, 2017.

[145] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

112

[146] Stephen Wright. On the convergence of the newton/log-barrier method. In Preprint
ANL/MCSP681-0897, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, Ill. Citeseer, 1997.

[147] Jun Wu, Jian Huang, Yongji Wang, and Kexin Xing. RLS-ESN based PID control
for rehabilitation robotic arms driven by PM -TS actuators. 2010 International
Conference on Modelling, Identification and Control, ICMIC 2010, pages 511–516,
2010.

[148] Qingcong Wu, Bai Chen, and Hongtao Wu. Adaptive admittance control of an up-
per extremity rehabilitation robot with neural-network-based disturbance observer.
IEEE Access, 7:123807–123819, 2019.

[149] Fitri Yakub, Ahmad Zahran Md Khudzari, and Yasuchika Mori. Recent trends for
practical rehabilitation robotics, current challenges and the future. International
Journal of Rehabilitation Research, 37(1):9–21, 2014.

[150] Deokwon Yun, Abdul Manan Khan, Rui Jun Yan, Younghoon Ji, Hyeyoun Jang, Ju-
naid Iqbal, K. M. Zuhaib, Jae Yong Ahn, Jungsoo Han, and Changsoo Han. Handling
subject arm uncertainties for upper limb rehabilitation robot using robust sliding
mode control. International Journal of Precision Engineering and Manufacturing,
17(3):355–362, 2016.

[151] Mingming Zhang, Andrew McDaid, Allan J Veale, Yuxin Peng, and Sheng Quan
Xie. Adaptive trajectory tracking control of a parallel ankle rehabilitation robot
with joint-space force distribution. IEEE Access, 7:85812–85820, 2019.

[152] Shiyu Zhang, Andrea Maria Zanchettin, Renzo Villa, and Shuling Dai. Real-time tra-
jectory planning based on joint-decoupled optimization in human-robot interaction.
Mechanism and Machine Theory, 144:103664, 2020.

[153] Jinghua Zhong. Pid controller tuning: A short tutorial. Mechanical Engineering,
Purdue University, pages 1–10, 2006.

113

APPENDICES

114

Appendix A

Stability Proof of Sliding Mode
Control

As mentioned in Section 5.2.3, we defined a sliding surface with one relative degree:

S = ε̇+ λε (A.1)

Considering the general system dynamics with model and disturbance uncertainties:

ẍ = fm(x, t) + dm(t) + ∆f(x, t) + ∆d(t) + u (A.2)

The derivative of the sliding surface is as follows:

Ṡ = fm(x, t) + dm(t) + ∆f(x, t) + ∆d(t) + u− ẍd + λε̇ (A.3)

The u is then used to cancel out the known terms:

u = −fm(x, t)− dm(t) + ẍd − λε̇+ ν (A.4)

The term ν encompasses all the uncertain terms. Using the defined u, the derivative of
the sliding surface is shown below:

Ṡ = ∆f(x, t) + ∆d(t) + ν (A.5)

115

Considering upper bounds on the uncertain terms:

|∆f(x, t)| ≤ α(x, t) > 0

|∆d(t)| ≤ β(t) > 0
(A.6)

We select a Lyapunov function as below. The candidate is positive for all S:

V =
S2

2
(A.7)

Now, we should assure that the derivative of the Lyapunov function is negative definite
to confirm that the Ṡ is asymptotically stable:

V̇ = SṠ (A.8)

Hence, we need to calculated ν such that V̇ = SṠ < 0:

SṠ = S(∆f(x, t) + ∆d(t) + ν) ≤ S(α + β)sign(S) + Sν (A.9)

The application of the sign(s) function is because we have defined our bounds on the
absolute value of the ∆f(x, t) and ∆d(t). Then we can set ν as:

ν = −(ζ + α + β)sign(S)

ζ > 0
(A.10)

Defining ν as above results in a negative definite Lyapunov function:

SṠ = −ζSSign(S) < 0 (A.11)

By defining a new weight K = ζ + α + β and considering the boundary layer ψ, we
reach the same formulation as in Section 5.2.3.

116

Appendix B

Controller Parameters

In this section, we present the controller parameters used in Chapter 5. Table B.1 shows
the parameters of the simulation results presented in Section 5.3, and Table B.2 depicts
the parameters for experimental implementations in Section 5.4.

Table B.1: Controller Parameters in Simulation

Controller Parameters
PID kp = 15

kd = 7
ki = 0

Comp PID kp = 5
kd = 3
ki = 0

LQR Q = Diag(1000, 1000, 100, 100)
R = Diag(200, 200)

SMC K = [1, 1]T

λ = 5
ψ = 2

CasADI-based NMPC Q = Diag(5000, 5000, 50, 50)
R = Diag(2.5, 2.5)

Maple-based NMPC Q = Diag(250000, 250000, 500, 500)
R1 = Diag(20, 20)
R2 = Diag(0, 0)

117

Table B.2: Controller Parameters in Hardware Implementation

Controller Parameters
PID kp = 15

kd = 1.5
ki = 2

Comp PID kp = 60
kd = 10
ki = 5

LQR Q = Diag(12000, 12000, 300, 300)
R = Diag(50, 50)

SMC K = [4.5, 4.5]T

λ = 14
ψ = 2.5

Maple-based NMPC Q = Diag(33000, 33000, 3300, 3300)
R1 = Diag(50, 50)
R2 = Diag(20, 20)

118

Appendix C

TD3 Networks and Hyperparameters
Information

In this section, we are presenting the TD3 tuner information. The neural network layers
and hidden nodes are shown in Table C.1. The DRL configuration is depicted in the Table
C.2.

Table C.1: Neural Network Parameters

Parameter Value
Number of hidden layers 2

Hidden layer 1 nodes 400
Hidden layer 2 nodes 300

Table C.2: TD3 Hyperparameters

Parameter Value
Actor learning rate 10e-5
Critic learning rate 10e-4

τ 0.005
γ 0.99
λ 0.01

Mini-batch size 100
Target noise 0.1

119

	List of Tables
	List of Figures
	Introduction
	Motivation and Goals
	Thesis Organization
	Thesis Contributions

	Background and Literature Review
	Overview
	Stroke and Rehabilitation
	Rehabilitation Robotics
	Rehabilitation Robotics Challenges
	Control Strategies for Rehabilitation Robotics

	Optimization Techniques for Solving Optimal Control Problems
	Indirect Methods
	Direct Methods
	Dynamic Programming

	Reinforcement Learning
	Q-learning
	Value Function Approximation Methods
	Policy Gradient Methods
	Actor-Critic Methods

	Conclusion

	Robot and Human Arm Modeling
	Overview
	Rehabilitation Robot
	Hardware and Design
	Software
	Robot Kinematics
	Robot Dynamics

	Human Arm Model
	Human-Robot Interaction Model
	Conclusion

	Human-Robot Interaction Trajectory Planning
	Overview
	Trajectory Planning
	Problem Formulation
	Simulation Results

	Trajectory Stabilization
	Linear Quadratic Regulators (LQR)
	Simulation Results

	Experimental Implementation
	Conclusion

	Comparative Study of the Rehabilitation Robot Control Algorithms
	Overview
	Controller Design
	Proportional-Integral-Derivative (PID) Controllers
	Computed-Torque PID Controllers
	Sliding Mode Control (SMC)
	Nonlinear Model Predictive Control (NMPC)

	Simulation Results
	Experimental Results
	Comparison Criteria and Implementation
	Tuning Process
	Point Stabilization Results
	Tracking Results

	Conclusion

	Deep Reinforcement Learning Tuning of the Model-based Controllers
	Overview
	Deep Deterministic Policy Gradient (DDPG)
	Problems of DDPG
	Twin-Delayed Deep Deterministic Policy Gradient (TD3)

	Implementation
	Algorithm Validation
	Tuner Structure

	Simulation Results
	Conclusion

	Subject in the Loop Experimental Implementation
	Overview
	Experimental Considerations
	Implicit Force Control
	Experimental Results
	Conclusion

	Conclusion and Future Work
	Thesis Summary
	Recommendations and Future Work

	References
	APPENDICES
	Stability Proof of Sliding Mode Control
	Controller Parameters
	TD3 Networks and Hyperparameters Information

