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Abstract

Laminar separation bubbles (LSBs) are common features in low Reynolds number flows, and
can have considerable performance impacts in applications such as hydrofoils, small-to-medium
scale wind turbines, micro and unmanned aerial vehicles, glider planes, and aircrafts operating
at low speed or high altitude. In particular, the very presence of an LSB can cause loss in lift,
increase in drag, and/or unwanted noise emissions, while also leaving the flow in an unstable
configuration, as only slight changes in the environment or operating conditions can lead to further
detrimental effects, such as the sudden onset of stall. All of these performance impacts are rooted
in the laminar–turbulent transition process of an LSB, where disturbance growth in the unstable
shear layer leads to its roll-up and the formation of coherent shear layer vortices that govern
the reattachment process and are the source of unsteady loads and noise emissions. Therefore,
a comprehensive understanding of LSB transition and vortex dynamics is a prerequisite to the
development of effective control strategies. The work completed as part of this thesis is at the
forefront of this effort, as flow development in laminar separation bubbles is studied and a new
forcing technique is developed and tested. The supporting data is experimental and is collected
primarily by means of particle image velocimetry (PIV).

First, flow development in a nominally two-dimensional LSB formed over an airfoil is studied.
Forcing at the LSB fundamental frequency and the first subharmonic of this frequency are found to
inhibit and promote the prevalence of vortex merging in the LSB, respectively. When left to develop
naturally, the flow development is characterized by the periodic roll-up of the separated shear layer
upstream of the mean maximum height location. The vortices are strongly two-dimensional at
formation, but quickly develop spanwise deformations with downstream convection, leading to
their breakdown to smaller scales near the mean reattachment point. The deformations take the
form of spanwise undulations in the vortex filaments, which tend to develop at wavelengths ranging
between one and seven times the streamwise wavelength of the structures. These undulations
continually intensify, ultimately leading to the breakdown of the vortices, while re-orienting
vorticity from the spanwise direction into the streamwise and wall-normal directions, creating
hairpin-like structures.

An instability mechanism is hypothesized to be responsible for the development of these
spanwise undulations, and a new forcing technique is developed to target it. The technique
is capable of producing deterministic, three-dimensional disturbances modulated to a desired
spanwise wavelength, while holding all other parameters (amplitude, frequency, and streamwise
wavelength) constant. This is achieved using two alternating current, dielectric barrier discharge
(AC-DBD) plasma actuators arranged in streamwise succession, which are operated simultaneously.
The upstream actuator produces a spanwise uniform disturbance, which is then spanwise modulated
by the output of the downstream actuator, with a relative phase delay introduced in order to
spatially superimpose the two outputs. The technique is verified to produce the desired disturbance
characteristics through a detailed experimental characterization that considers both quiescent and
in-flow conditions.

The effects of this forcing technique and the subsequent growth in spanwise modes is studied
in an LSB formed over a flat plate subject to an adverse pressure gradient. Disturbance growth is
tracked throughout the LSB, identifying small amplitude disturbances of a frequency matching the
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primary Kelvin-Helmholtz instability that undergo convective amplification downstream of the
mean separation point. In comparing results from forcing the flow with two and three-dimensional
disturbances, with the latter modulated to a spanwise-to-streamwise wavelength ratio of 2 : 1,
disturbance amplitudes in this region are higher for the three-dimensional case, indicating a
preferential amplification of spanwise modes in the upstream boundary layer. While this growth
may result from the underlying stability of the upstream boundary layer, it could also stem from
a low frequency modulation of the base flow, as significant spanwise non-uniformities of the
same wavelength are found in the unforced natural flow. Nevertheless, stability predictions in
the LSB find that, regardless of the forcing scenario, the normal (two-dimensional) modes are
subject to the highest amplification rates throughout the length of the LSB, while disturbance
modes of an oblique wave angle of less than 30° experience comparable, yet reduced, growth rates.
Thus, disturbance growth in the LSB is confirmed to be spanwise wavelength dependent. The
effectiveness of the spanwise modulated forcing, in terms of effecting change in disturbance and
flow development, is justified, as its wavelength ratio (2 : 1) corresponds to a wave angle of 26.5°,
while the other three-dimensional forcing configurations considered are less effective on account
of their larger wave angles (33.7° and 45°).

The effect of unstable spanwise modal growth on the development of the LSB shear layer
vortices and the ensuing vortex dynamics is assessed. The small amplitude perturbations tracked
through the fore portion of the LSB manifest in the shear layer vortices, imparting a spanwise
wavelength, if present, in the vortex filaments. Thus, in the case of two-dimensional forcing, the
shear layer vortices remain largely two-dimensional until their breakdown, while for the three-
dimensional forcing case, significant spanwise undulations develop at the 2 : 1 ratio prescribed by
the forcing. The filaments surge forward in the streamwise direction downstream of the three-
dimensional actuator’s active regions, while lagging behind at spanwise locations downstream of
the actuator gaps. A continual intensification of vortex stretching ensues, leading to rapid filament
deformations. Through supporting observations from a simplified vortex filament model, the
undulatory shape of the vortex filament is shown to self-induce a net rotational motion, causing
the streamwise forward and rearward sections of the filament to tilt away and toward the wall,
respectively. This, coupled with the wall-normal velocity gradient, causes the continual stretching
of the filament. These vortex motions are observed consistently for all LSBs studied throughout
this thesis, and apply more broadly to all LSBs, since regardless of how a spanwise undulations
is initially produced, if present, a vortex filament will tend to develop in the way shown in any
near-wall shear flow. Thus, these dynamics are found to be intrinsic to the breakup process of
shear layer vortices in laminar separation bubbles.
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Chapter 1

Introduction
The laminar separation bubble is introduced. Pressing questions in the research community are
identified, which form the basis of this thesis and formulate its objectives.
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Laminar separation bubbles (LSBs) are a common feature in low Reynolds number flows, typically
characterized by a Reynolds number, based on the chord of an airfoil, of less than 5 × 105

[127]. Engineering applications that operate in this regime include hydrofoils, low-pressure
turbomachinery [74], small-to-medium scale wind turbines [62], micro and unmanned aerial
vehicles [166], glider planes, and aircrafts operating at low speed or high altitude [34, 127]. The
main impediment to performance for these applications is boundary layer separation, which brings
penalties so severe that its mitigation is typically one of, if not the, primary design consideration.
At low Reynolds numbers the boundary layer on the suction side of an airfoil often remains
laminar into the adverse pressure gradient region, and hence is likely to separate. In the event of
separation, the formed separated shear layer is unstable and undergoes transition to turbulence,
which enhances momentum exchange. The flow may remain separated or reattach to the surface
in the mean sense, with the latter forming a closed region of recirculating fluid, i.e., a laminar
separation bubble. The very presence of an LSB can be detrimental to performance, causing loss
of lift, increase in drag, and/or noise emissions [8, 34], while also leaving the flow in an unstable
configuration, as only slight changes in the environment or operating conditions can lead to further
unwanted effects, such as the sudden onset of stall [166].

In an effort to mitigate the undesirable effects associated with LSBs, recent research efforts
have been focused on its laminar–turbulent transition process so that, ultimately, the underlying
physics may be understood and effective control strategies developed. To this end, much progress
has been made in the last several decades [19], finding that the primary mode for disturbance
growth in LSBs is a Kelvin-Helmholtz type instability of the separated shear layer [47], leading
to its roll-up and the formation of coherent shear layer vortices [243]. All performance impacts
associated with LSB are rooted in the dynamics of these vortical structures, as they govern the
reattachment process [134] and are the source of unsteady loads and noise emissions [29]. Thus,
a comprehensive understanding of LSB stability and vortex dynamics is a prerequisite to the
development of effective control strategies.

The most effective control strategies developed to-date target the LSB shear layer vortices and
the associated Kelvin-Helmholtz instability [258]. Forcing at this ‘fundamental’ frequency has
significant impact on the ensuing vortex dynamics [135, 260], as the vortex shedding process
locks to the excitation frequency, vortex formation occurs farther upstream, and the spanwise
coherence of the structures is increased; all resulting in a reduction in the size of the LSB and
earlier mean reattachment. Lacking are studies examining the effects of forcing at subharmonics
of the fundamental frequency. Such an investigation has merit since forcing of this type has been
shown to have significant influence on the vortex dynamics of free shear layers [73], specifically
through promoting vortex merging and thus increasing the rate of momentum transfer across the
layer [72]. It remains to be determined if vortex merging plays a role of any significance with
regard to LSBs, through the influence of the reattachment process or otherwise, and whether
merging can be manipulated via forcing to the same effect seen in free shear layers.

Contributing to the difficulty in gaining a complete understanding of the structure and
development of the shear layer vortices in LSBs is the confluence of factors that can affect flow
development. In experiments, these include model imperfections [133], intrusive measurement
techniques [24], and the disturbance environment [174]. With respect to the latter, the sensitivity
of LSBs to the level of free-stream turbulence is well documented, with significant differences
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noted in the topology and development of the shear layer vortices when levels increase from near
zero to approximately 1% of the free-stream velocity [86, 125], while the underlying transition
process is altered altogether at higher levels (& 2%) [77]. Furthermore, a number of secondary
instabilities have been reported to be active in LSBs under certain conditions, including a Görter
type [138], elliptical and hyperbolic instabilities [92, 137], and absolute and/or global instabilities
[2, 201], all of which can interact with the primary Kelvin-Helmholtz instability. In studying
LSB stability and transition, the introduction of controlled periodic disturbances is often used as a
diagnostic tool, however, any study of this nature can be inherently problematic if the diagnostic
means modifies the base flow, and hence the transition process under consideration [140]. This is
particularly true of experimental investigations, with a significant portion of results collected for
which the baseline LSB has been modified due to high amplitude forcing [135, 260], or by elevated
turbulence intensity values [33, 69], all while being limited to two-dimensional assessments of
a flow field that is inherently three-dimensional. Thus, a study that simultaneously limits the
external factors known to influence LSBs while characterizing the three-dimensional development
of the shear layer vortices is warranted.

While widely ranging descriptions of vortex development in LSBs can be found across
the literature, a feature common to nearly all investigations is the development of spanwise
deformations/undulations in the shear layer vortices [113, 137, 153, 170], which tend to develop
over a relatively fixed range of spanwise wavelengths, found to range between one and seven times
the streamwise wavelength of the structures. This raises the possibility of an underlying instability
associated with vortex breakup in LSBs which, if present, could potentially be manipulated
through targeted, three-dimensional forcing. Precedence for three-dimensional forcing techniques
can be found in the literature, as key physical mechanisms have been elucidated in other canonical
flows through the use of such techniques [15, 107, 209], most notably in the seminal works of
Klebanoff et al. [107] on boundary layer transition. DNS studies have cross-examined two and
three-dimensional disturbance development in LSBs [137, 198], finding that disturbances with a
spanwise-to-streamwise wavelength ratio of approximately two can grow at comparable rates to
the two-dimensional mode, leading to modifications of the mean flow field through a spanwise
staggering of the vortex shedding process. Experimental studies of the same nature are scarce due
to the difficulty in implementing a reliable three-dimensional forcing technique, which is then
compounded by the need for three-dimensional flow field measurements.

1.1 Motivation and Objectives

The primary motivation of this work is the observation that spanwise undulations of a relatively
fixed wavelength tend to develop in the shear layer vortices of laminar separation bubbles. These
have been observed in a wide variety of LSBs [33, 92, 113, 137, 151, 153, 170], including those
formed over airfoils (of different geometries) and flat plates, at different Reynolds numbers, and
in cases of both natural and forced flow development. To the author, this raises the following
research questions:

• Is the development of spanwise undulations fundamental to the development and breakdown
of shear layer vortices in laminar separation bubbles?
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• Is there an underlying instability associated with these undulations?

• Can the process be manipulated by targeted, three-dimensional forcing?

Ancillary to the primary motivation is the consideration of vortex merging in LSBs, specifically in
terms of any influence the phenomenon may have in defining the mean flow topology, and whether
or not the process can be manipulated via subharmonic forcing.

The answers to these research questions are pursued through experimental means of inves-
tigation, with particular attention paid toward limiting the number of external factors known to
influence LSB flow development. In particular, this necessitates the use of carefully manufactured
models, minimally invasive measurements techniques, and wind tunnel facilities with low levels
of free-stream turbulence. Under these conditions, laminar separation bubble flow development is
studied and the following objectives are pursued:

• Establish if vortex merging in LSBs can be influenced through subharmonic forcing. If so,
assess the effects on the mean flow topology.

• Characterize the three-dimensional evolution of shear layer vortices in a laminar separation
bubble. Elucidate the role, if any, played by the development of spanwise undulations.

• Develop a forcing technique capable of producing disturbances of a desired spanwise
wavelength that holds all other parameters constant (amplitude, frequency, etc.).

• Establish if disturbance growth in an LSB is spanwise wavelength dependent. Evaluate the
presence of any instability mechanism that may lead to preferential modal growth.

• Link spanwise disturbance growth to changes in the ensuing vortex dynamics, and hence
changes in the mean flow topology.

1.2 Outline of the Thesis

This thesis is organized as follows. Chapter 2 presents a review of literature pertinent to laminar
separation bubbles, while the methods of investigation, including those used for data acquisition
and analysis, are discussed in Chapter 3. The core findings of this work are presented in Chapters
4 through 6. In Chapter 4, flow development in an LSB is examined, with a focus on the vortex
merging process and the spanwise undulations that develop as part of the ‘natural’ vortex breakup
process. Chapter 5 treats the characterization of the forcing technique developed as part of this
thesis, in addition to results from a preliminary study of its effect on LSB flow development. An
effective forcing configuration is identified from these results, which is then studied in detail
through the follow-up investigation presented in Chapter 6. Finally, Chapter 7 presents the major
conclusions drawn from this body of work, in addition to providing some suggestions for future
research.
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Chapter 2

Literature Review
A review of literature regarding laminar separation bubbles is given, from the seminal works of
the nineteen-fifties and sixties to recent developments. Particular attention is paid to fundamental
concepts of fluid mechanics that pertain to LSBs, the transition process of the separated shear
layer, and the ensuing formation of coherent structures. Flow control strategies for performance
improvement and diagnostics of LSB flows are also discussed.
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2.1 Fundamental Principles of Fluid Mechanics

The fundamental concepts presented in this section, namely the governing equations of fluid
mechanics, vortex dynamics, the boundary layer, flow separation, and laminar–turbulent transition,
are essential aspects of nearly all fluid fluids; the laminar separation bubble in particular. As such,
a brief review of each is provided.

2.1.1 The Governing Equations

Fluid flows, like all physical phenomena, are subject to the fundamental conservation of laws of
nature. In particular, the motion of a fluid are governed by the conservations of mass, momentum
and energy, which are mathematically formalized to give the governing equations for Newtonian
fluids with constant physical properties:

D𝜌

D𝑡
+ 𝜌 (∇ · ®𝑢) = 0, (2.1)

𝜌
D®𝑢
D𝑡

= −∇𝑝 + 𝜇∇2 ®𝑢 + 𝜌 ®𝐹, (2.2)

𝜌
Dℎ

D𝑡
=

D𝑝

D𝑡
+ ∇ · (𝑘∇𝑇) +Φ. (2.3)

Derivations of these equations may be found in Currie [42] and White [249]. D/D𝑡 is the
material derivative and encapsulates the change in a fluid property due to temporal and convective
acceleration. Equation 2.3 represents the conservation of energy, and relates changes in the
fluid enthalpy (Dℎ/D𝑡) due to pressure (D𝑝/D𝑡), thermal conduction [∇ · (𝑘∇𝑇)], and viscous
dissipation (Φ). Refer to White [249] for the definition of Φ.

If thermal effects are insignificant, then only Eqns. 2.1 and 2.2 need to be considered in
describing the fluid motion. These are the conservation equations of mass and linear momentum,
respectively, or the continuity and Navier-Stokes equations as they are more commonly referred.
The work in this thesis concerns flows that are incompressible, i.e., D𝜌/D𝑡 = 0, and therefore the
continuity equation reduces to:

∇ · ®𝑢 = 0, (2.4)

indicating that the velocity field is divergence-free. Physical interpretation of the Navier-Stokes
equations (Eqn. 2.2) reveals that acceleration in the fluid (D®𝑢/D𝑡) is dictated by the forces that act
on it, namely, pressure (−∇𝑝), viscous stresses (𝜇∇2 ®𝑢), and body forces (𝜌 ®𝐹).

Typically, the fluid properties (fluid density 𝜌, and dynamic viscosity, 𝜇) are known and the
body forces are negligible, leaving the system posed by Eqns. 2.2 and 2.4 with four unknowns:
the three components of velocity (𝑢, 𝑣, and 𝑤 in Cartesian coordinates), and pressure 𝑝. The
convective terms in Eqn. 2.2 are non-linear and therefore pose significant mathematical challenges
in determining a unique solution for a given set of initial and boundary conditions. As a result,
only a limited number of analytical solutions are known, all which are for relatively simple flow
configurations. As such, research efforts generally turn toward numerical and/or experimental
evaluations of the governing equations when flows of any real complexity are considered.
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In both numerical and experimental frameworks, it is convenient to decompose the unknown
parameters into time-averaged (steady) and fluctuating (unsteady) quantities:

𝑢 = 𝑢 + 𝑢′, 𝑣 = 𝑣 + 𝑣′, 𝑤 = 𝑤 + 𝑤′, 𝑝 = 𝑝 + 𝑝′.

The above constitutes the Reynolds decomposition and is a useful tool to both experimentalists
and numericists, as it forces one to consider the range of time scales that must be resolved in order
to produce accurate estimates of both the steady and unsteady terms. Therein lies one of the major
challenges every investigator faces, as flows can exhibit a staggering range of time and length
scales, and so trade-offs must be considered when selecting a method for investigation.

2.1.2 Vortex Dynamics

In fluid mechanics, the rotational motion of a fluid is quantified through vorticity, ®𝜔, and circulation,
Γ. The former provides a measure of the magnitude and direction of the local rate of rotation in the
fluid, while the latter gives a ‘macroscopic’ indication of rotation. When vorticity is everywhere
zero, except at permitted singularities, the flow is said to be irrotational, which can be shown to be
equivalent to invoking the inviscid assumption, as either lead to the reduction of the Navier-Stokes
equations into Euler’s equation.

The concept of a vortex is introduced through the consideration of vortex lines, which are
defined as lines that are everywhere locally tangent to the vorticity field. An arbitrary surface can
be chosen, through which all the vortex lines passing through its perimeter can be found. At some
other location in the fluid, a second surface can always be found that reconnects all the vortex
lines, thus forming a vortex tube. The process is analogous to the construction of a stream tube,
within which the mass flow is constant on account of its being constructed of streamlines. By
analogy, one might rightly conclude that circulation is then constant at all cross-sections of a
vortex tube, which can be proven rigorously by integrating the divergence of the vorticity field
over the volume of a vortex tube (e.g., see Currie [42]). A vortex tube whose area is infinitesimally
small is referred to as a vortex filament, and its vorticity is said to be concentrated at a point. In
the strictest sense these vortex tube and filament definitions are precise, while the term ‘vortex’
is used more freely across the research community, usually in reference to an area of coherent
rotational motional in a fluid, which almost always implies the presence of a vortex tube.

Constant circulation at all cross-sections of a vortex tube was first postulated by Helmholtz
[70] as part of his four theorems on vortex motions, which he developed for an assumed inviscid,
barotropic fluid subject to only conservative body forces. These assumptions are rather restrictive
given, for example, inviscid flow is rarely encountered in practice, however the theorems allow for
conclusions regarding vortex motions to be drawn when these conditions do and do not apply, both
of which are equally impactful. Given the above restrictions, the vortex theorems of Helmholtz
are:

1. The strength of a vortex is constant along its length.
2. A vortex tube cannot start or end within the fluid.
3. Vortex lines move with the fluid.
4. The strength of a vortex remains constant with time.
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The first of Helmholtz’s theorems was shown to be true through consideration of a vortex tube. The
second must hold true, as a vortex that begins or ends within the fluid would imply the presence of
a vorticity source or sink, respectively, which would violate Eqn. 2.4. While Helmholtz provided
justification for theorems 3 and 4 in his paper [70], a more satisfactory proof was provided by
Kelvin and his circulation theorem [103]. This theorem, developed under the same assumptions as
Helmholtz, postulates that the circulation around a closed curve moving with the fluid remains
constant with time [103]. Stated mathematically:

DΓ

D𝑡
= 0. (2.5)

For proof of the theorem, the reader is referred to Kelvin’s original paper [103], or alternatively
Karamcheti [99]. Kelvin’s theorem holds several important implications regarding vortex motions.
First, it unequivocally proves Helmholtz’s fourth theorem. Second, it verifies Helmholtz’s third
theorem, as one only need consider a closed contour on the side wall of a vortex tube. Since
there is no component of vorticity normal to the side walls, the circulation of the contour is zero.
Hence, under the conditions of Kelvin’s theorem, the circulation of this contour must always be
zero and therefore the contour must continue to lie on the vortex tube as the fluid moves. Third,
the circulation of a vortex tube, and hence the vorticity contained within, can only be changed by
the actions of viscosity, application of non-conservative body forces or density variations that are
not only related to changes in pressure, since, in the absence of all of these effects, circulation
remains constant (Eqn. 2.5). Fourth and finally, Kelvin’s theorem provides further confirmation
that an inviscid and incompressible flow remains everywhere irrotational if initially irrotational.
For example, consider a flow over a body (e.g., an airfoil). Far away from the body the vorticity is
zero. As fluid elements move toward the body, some will flow adjacent to it, where they must
remain irrotational by Kelvin’s theorem. Thus, the no-slip condition is violated, implying the
flow is inviscid. Therefore, Euler’s equation may be bypassed, and the irrotational condition and
continuity equation can be used to form a set of governing equations for inviscid flows, leading to
the study of potential flow.

The Biot-Savart Law

The Biot-Savart law finds its origins in the field of electromagnetism, as it describes the magnetic
field induced by a current flowing through a wire (e.g., see Grant & Phillips [65]). An analogy to
fluid mechanics can be drawn, allowing for prediction of the velocity induced at a point by a vortex
filament, when, like the magnetic field, the velocity field can be represented by a potential function.
Thus, the Biot Savart law applies when the velocity field is irrotational and divergence-free. For a
derivation, the reader is referred to Karamcheti [99]. Here, the following expression is accepted:

®𝑢 =
Γ

4𝜋

∫
dℓ̆ × ®𝑟
|®𝑟 |3

, (2.6)

which describes the velocity ®𝑢 induced at point ®𝑟 , found by integrating over the length of a vortex
filament of circulation Γ and arbitrary shape (defined by the differential length elements d𝑙). Note
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that the flow is assumed irrotational and therefore is inviscid, and thus Eqn. 2.6 does not apply to
viscous flows. This is clear as the predicted velocity distribution can never exist in any real flow,
as a singularity exists for ®𝑟 = 0. Instead, in this region (i.e., in the ‘core’ of the vortex), viscous
forces will lead to solid body rotation.

Generation and Decay of Vorticity

In the analysis of vortex dominated flow, it is often useful to recast the Navier-Stokes equations
(Eqn. 2.2) into a form in terms of vorticity, giving what is commonly referred to as the vorticity
transport equation:

D ®𝜔
D𝑡

= ( ®𝜔 · ∇) ®𝑢 + 𝜈∇2 ®𝜔, (2.7)

the derivation of which is available in many textbooks, including those of Currie [42] and White
[249]. The above expression applies to incompressible fluid flows of constant properties subject to
conservative body forces, for which it governs the conservation of vorticity. Equation 2.7 indicates
that rates of change in the vorticity field (D ®𝜔/D𝑡) can result from only two mechanisms; the
stretching and tilting of vortex filaments [( ®𝜔 · ∇) ®𝑢], and viscous diffusion (𝜈∇2 ®𝜔). The latter,
through analogy to the viscous term in the Navier-Stokes equations, reveals that the role of viscosity
is to spatially redistribute vorticity through a diffusive process, which has important implications
for the previously discussed vortex motion theorems of Helmholtz and Kelvin. Specifically,
viscous effects have no impact on the first three of Helmholtz’s theorems, while they do invalidate
the fourth, and therefore Kelvin’s circulation theorem as well (Eqn. 2.5). In the derivation of the
circulation theorem, it is necessary to assume that the velocity field is conservative, which does
not hold true for a viscous flow, as the inclusion of viscous effects allows for vorticity generation.

Indeed, viscous effects are essential to the process of vorticity generation. The vorticity
equation (Eqn. 2.7) does not contain any source or sink terms, and therefore vorticity can only be
generated from the initial and/or boundary equations applied to Eqn. 2.7. As laid out by Morton
[165], vorticity can only be generated at a fluid/solid interface, by the action of either tangential
acceleration of the boundary or tangential pressure gradients acting along the boundary. The
generation process occurs either instantly (‘fast’ vorticity generation, as in the Blasius boundary
layer), or continually (‘slow’ vorticity generation, as in Poiseuille flow). In either case, once
vorticity is generated, it is never lost by diffusion into or through another boundary. Rather, the
only path by which vorticity may decay is by its viscous diffusion away from the boundary, where it
will be cross-annihilated with vorticity of the opposing sense. Given enough time after a vorticity
perturbation is introduced into the fluid domain, the fluid must decay to a zero vorticity state.
Since the decay of vorticity can only occur by cross-annihilation, then any such perturbation must
generate equal amounts of positive and negative circulation. The most famous example of this
phenomenon is the ‘starting vortex’ that is shed from an airfoil as it begins to move, discovered by
Prandtl & Tietjens [187].
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2.1.3 The Boundary Layer and Flow Separation

As fluid flows next to a solid surface, frictional forces retard the fluid motion in a thin layer near the
wall. In that layer the velocity of the fluid increases from zero at the wall (the no-slip condition) to
its full value at some distance away, where the effect of friction is absent. This is the concept of
a boundary layer, and was discovered by Prandtl [186]. As the flow develops along the surface,
the height of the zone affected by friction, i.e., the boundary layer thickness (𝛿), increases, with
many factors influencing the rate at which this occurs [214]. One factor is the pressure gradient
acting in the direction of motion (𝑥, as defined in Fig. 2.1). Favourable (𝜕𝑝/𝜕𝑥 < 0) and adverse
(𝜕𝑝/𝜕𝑥 > 0) pressure gradients decrease and increase the rate at which 𝛿 grows relative to a
zero-pressure-gradient boundary layer (𝜕𝑝/𝜕𝑥 = 0), respectively.

When left to develop in an adverse pressure gradient, the momentum of the fluid elements in the
boundary layer will eventually be entirely consumed by the wall frictional forces and the pressure
gradient. At some point (or line), the boundary layer will depart from the wall and the flow is said
to separate, as depicted in Fig. 2.1. Prandtl [186], in the same paper in which he introduced the
boundary layer concept, described these mechanics of separation, while also providing a precise
criterion for its onset in a steady, two-dimensional boundary layer developing over a fixed wall. He
noted that near-wall fluid particles, originally travelling with the bulk fluid motion, must be brought
to rest at the separation point, while those downstream of separation move in a direction opposite
to the external flow. Thus, the gradient of the streamwise velocity in the wall-normal direction
evaluated at the wall (𝜕𝑢/𝜕𝑦 |𝑦=0) is positive upstream of separation, negative downstream of
separation, and exactly zero at the point of separation. Thus, separation can be located where the
wall shear stress (𝜏w = 𝜇𝜕𝑢/𝜕𝑦 |𝑦=0) is zero. Furthermore, at separation, the wall-normal velocity
gradient is zero at both the wall and far away from it, while the velocities in these two regions are
most certainly not equal, and therefore the velocity profile must contain an inflection point. This
has important implications for the stability of the flow, as is discussed in Section 2.1.4. A region
of re-circulating fluid is created when a flow separates, as the original boundary layer fluid passes
over the reverse flow region. From the separation point, a dividing streamline, depicted in Fig. 2.1,
can be identified that connects the points under which the streamwise mass flux is zero [58, 76].

Figure 2.1: Schematic of boundary layer separation.
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Flow separation is undesirable in a wide range of applications, bringing with it penalties so
severe to performance that mitigating separation is typically one of, if not the, primary consideration
driving the design of the device. For example, in flows over bluff bodies, delaying separation
leads to a reduction in both the mean and unsteady loads [254], allowing for more efficient
and/or safer designs for civil structures, and improved fuel efficiency for ground transportation
vehicles. In aviation, separation on the aircraft body increases drag, while causing a large loss
in lift and increase in drag if it occurs over the wings [34], i.e., stall, which presents significant
performance and safety concerns. Similarly, separation affects the performance and efficiency of
turbo-machinery [74] and wind turbines [226]. It is for these reasons that flow separation is an
important topic in fluid mechanics research, as many strategies aimed at mitigating its undesirable
effects have been and continue to be developed, as discussed in Section 2.3.

2.1.4 Laminar–Turbulent Transition

Among the multitude of their defining characteristics, laminar and turbulent flows can be separated
based on the behaviour of fluid motion in adjacent layers, with these layers following ‘smooth’
paths in laminar flow, while turbulent flows exhibit chaotic mixing across the layers. Then,
transition is the process by which a laminar flow becomes turbulent, or, as the flow changes from an
orderly state to one that is more chaotic. Much of the modern understanding of laminar–turbulent
transition is built upon the study of boundary layers, and as such it is reviewed here in that context.
The reader is referred to Schlichting & Gersten [214] for a full treatment on this topic.

A boundary layer’s transition process may take one of many paths to turbulence [163], the full
extent of which is discussed by Saric et al. [206]. The process begins with the laminar boundary
layer’s receptivity to free-stream disturbances [164], such as sound or vorticity, which establish
the initial conditions of disturbance amplitude, phase and frequency for the breakdown process.
Disturbances within the boundary layer undergo growth, governed by an instability whose nature is
dependent on Reynolds number, wall curvature, surface roughness, and initial conditions, among
others [206]. If the initial disturbance amplitude is sufficiently small, the process illustrated in
Fig. 2.2 is followed, which involves the growth of unstable waves due to the flow’s convective
instability [59, 82], followed by three dimensional breakdown. However, it is worth noting that
a vast number of flows do not follow this route to turbulence, as the slow convective growth
of disturbances can be bypassed [164], leading to the flow quickly becoming turbulent. Such
cases have been documented to occur in the presence of surface roughness or high free-stream
turbulence [6, 193].

Figure 2.2 shows the idealized progression of boundary layer transition over a flat plate, which
is described in Refs. [96, 208, 214, 249]. The unstable disturbances in the laminar boundary
layer are of relatively small amplitude and undergo weak growth that occurs over a relatively long
streamwise length scale, although the streamwise pressure gradient, among other factors, holds
considerable influence over these growth rates. This initial stage can be successfully described
by Linear Stability Theory (LST) (Section 3.3.1). As amplitudes grow, three-dimensional and
non-linear interactions begin to occur. This leads to the formation of characteristic Λ-structures.
Disturbance growth is very rapid in this stage, i.e. over a convective length scale, and the breakdown
to turbulence begins to occur as the Λ-vortices decay and are replaced by turbulent spots. These
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Figure 2.2: Idealized description of flat plate boundary layer transition, after White [249],
Schlichting & Gersten [214], and Kachanov [96]. 1 Stable laminar flow; 2 unstable TS waves;
3 three-dimensional waves and vortex formation (Λ-structures); 4 vortex decay; 5 formation

of turbulent spots; 6 fully turbulent flow.

turbulent spots increase in number, continue to spread, and lead to the completion of the transition
process.

The methods developed by Orr [175] and Sommerfeld [225] serve as the foundation upon
which the understanding of boundary layer transition is built. The flow is decomposed into a
mean/base flow and unsteady fluctuations, with the amplitude of the latter assumed infinitesimal.
Applying such assumptions to the governing equations (Eqns. 2.2 and 2.4) produces a set of
linearized equations, which if accompanied by the parallel flow assumption, give the famous
Orr-Sommerfeld equation (OSE) (Eqn. 3.6). Application of the OSE is commonly referred to
as LST, which is treated in Section 3.3.1. Understanding the process by which a laminar flow
begins to amplify unstable disturbances, as depicted in Fig. 2.2, began with the landmark work of
Tollmien [236], who solved the OSE for flat plate boundary layer flow. Tollmien found boundary
layer profiles with an inflection point to be inherently unstable and through this, computed the
neutral stability curve, thus identifying the unstable wave frequencies and Reynolds numbers at
which they are present. Schlichting [213] extended these results to include growth rates within the
curve of neutral stability. The two-dimensional waves modelled in their analyses are now called
Tollmien-Schlichting (TS) waves.

Experimental verification of TS waves was achieved by the investigation of Schubauer &
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Skramstad [216]. In their investigation, the disturbances were made detectable by reducing the
free-stream turbulence level and artificially disturbing the boundary layer by means of a thin
vibrating ribbon. The presence of TS waves in natural transition has since been experimentally
confirmed, e.g., Arnal et al. [9]. The results of Schubauer & Skramstad [216], and others [204,
229], have reported good agreement with LST within the frequency range generally associated with
the transition process, i.e., low frequencies, however, disagreement emerges at higher frequencies
where disturbance amplification is weak. The discrepancy has been attributed to the high sensitivity
of such measurements to experimental conditions [17, 207] and the effect of disturbances produced
by an oscillating band [10, 17].

Klebanoff et al. [107] were first to clearly show the deformation of amplified TS waves
into three-dimensional structures, which when visualized form a streamwise aligned pattern of
Λ-structures (e.g., see Fig. 3 in Ref. [71]). Further experiments [97, 209] showed another type
of three-dimensional deformation of TS waves, in which the Λ-structures align in a staggered
pattern (e.g., see Figs. 2 and 3 in Ref. [209]). Saric & Thomas [209] showed this modification of
the transition process occurred by varying the amplitude and frequency of the initial TS wave.
Theoretical explanation for the observed phenomena began with the works of Orszag et al. [176,
177], who unveiled the linear mechanism responsible for the growth of the three-dimensional mode.
Herbert [71] used this observation as the basis to develop secondary instability analysis, where the
solutions from LST are used as a new local base flow and three-dimensional perturbations are
superimposed. The resulting analysis successfully reproduced the experimental results [97, 107,
209], showing that, for relatively large initial amplitudes of the primary TS wave, harmonic and
subharmonic perturbations move in phase. The model of Craik [41], further developed by Zelman
& Maslennikova [267], considered the interactions between these perturbations, showing that the
harmonic mode forms a resonant triad with two of the subharmonic modes of equal but opposite
angles, thus creating the streamwise peak-to-peak alignment of Λ-structures. The aligned and
staggered Λ patterns are now referred to as K and H-type transition, after Klebanoff et al. [107]
and Herbert [71], respectively.

The onset of secondary instabilities coincides with rapid disturbance growth and interaction,
leading to significant non-linear effects, making the underlying assumptions of the OSE invalid.
As such, the scientific community has shifted focus to numerical solutions of the Navier-Stokes
equations to elucidate the ‘later’ stages of boundary layer transition. Early investigations [121,
228, 256] were successful in simulating incipient non-linear effects, showing that the onset of
disturbance three-dimensionality and spikes in streamwise velocity fluctuations coincide with
significant growth in local shearing, thus inducing the decay of the Λ-structures and the transition
to turbulence. However, due to the computational capabilities of the time, these investigations were
limited to a temporal formulation, where a spatially periodic domain travels with the disturbance
and the temporal evolution is evaluated. These implementations lack physical integrity and so
subsequent studies have focused on full spatial implementations [94, 192, 195]. In particular, Rist
& Fasel [195] compared their DNS results of K-type transition to experiments [97, 107], finding
good quantitative agreement up until the onset of non-linearities, and qualitative agreement on
the dynamical behaviour of the Λ-structures. However, due to the slow spatial evolution of the
primary TS wave, these DNS investigations employed large streamwise domains, and so suffered
from either convergence issues [192] or truncated spanwise domains [94, 195]. These issues still
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persist today and motivate the ongoing efforts of the research community [159].

2.2 Laminar Separation Bubble

For all fluid flows, the Reynolds number, Re, quantifies the relative importance of inertial and
viscous effects. In aviation, when considering the aerodynamic properties of a wing, the employed
length scale is the chord length of the wing cross-section (i.e., airfoil), giving the chord-based
Reynolds number, Re𝑐. The range of Re𝑐 in applications is impressively large, spanning from
102 to 109. At the lower end of this spectrum, Re𝑐 < 104, appreciable airfoil performance
is difficult due to dominating viscous forces, while the well-established general aviation finds
its home at Re𝑐 > 106 [34, 127]. In between these two is the low Reynolds number range
(104 < 𝑅𝑒𝑐 < 5 × 105), where both viscous and inertial effects play important roles. Common
engineering applications in this regime include hydrofoils, low-pressure turbomachinery [74],
small-to-medium scale wind turbines [62], micro and unmanned aerial vehicles [166], glider
planes, and aircraft operating at low speed or high altitude [34, 127].

The main impediment to aerodynamic performance in the low Reynolds number regime is
separation (Section 2.1.3), since the boundary layer on an airfoil’s suction surface often remains
laminar into the adverse pressure gradient region, and hence is likely to separate. In the event of
separation, the resulting detached shear layer is unstable and undergoes transition to turbulence,
which enhances momentum exchange. Depending on flow conditions, the shear layer may remain
separated or reattach to the airfoil surface in a mean sense, with the former leaving the airfoil
in a stalled state and the latter forming a closed region of recirculating fluid, referred to as a
laminar separation bubble (LSB) [58, 76, 232]. These two flow conditions are illustrated in
Fig. 2.3. While aerodynamic performance decreases dramatically for the stalled case (Fig. 2.3a),
reattachment (Fig. 2.3b) improves performance, but not to levels experienced in the absence of
laminar separation [166]. Furthermore, the transition process associated with LSBs is highly
susceptible to environmental disturbances, with only slight changes in the background disturbance
environment or operating conditions leading to undesirable effects, such as stall, loss of lift,
increase in drag, and/or noise emissions [8, 34]. As such, considerable research effort has been
put toward the study of LSBs over the last half century, the breadth of which is discussed in the
following sections. Although nearly all relevant applications relate to airfoil operation, LSBs

Figure 2.3: Low Reynolds number flow over an airfoil showing separation leading to (a) stall
and (b) laminar separation bubble formation, after Yarusevych et al. [262]. 1 Separation; 2
transition; 3 separated turbulent flow; 4 turbulent reattachment.
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formed over semi-infinite flat plates subject to an adverse pressure gradient exhibit the same
fundamental aspects and have been used as a suitable platform for both experiments [58, 243] and
simulations [2, 137].

2.2.1 Early Studies and Mean Characteristics

Early experimental characterization of LSBs focused on identifying the location and extent of the
bubble on the airfoil surface. Owen & Klanfer [178] were first to classify bubbles as short or long,
while Tani [232] extended this to distinguish short bubbles as those who have a minor effect on
the static pressure distribution, while long bubbles have a greater effect by diminishing the suction
peak. The now generally accepted time-averaged representation of the separation bubble was
first proposed by Horton [76] and is shown in Fig. 2.4, which describes a region of recirculating
fluid bounded by the airfoil surface and the dividing streamline. The latter is identified as the
closed contour formed with the surface, within which the streamwise mass flux is zero [58, 76,
172]. The upstream and downstream extents of the dividing streamline are the mean separation
and reattachment points, respectively. For convenience, a mean transition point is often identified,
however it should be noted that transition occurs over a region rather than at a given location. It
is important to note that these time-average characteristics of a separation bubble, while useful,
do not provide a complete description as the separated shear layer is, by nature, unsteady. The
unsteady features of a separation bubble are illustrated in Fig. 2.4 and are discussed from the
context of the separated shear layer transition process in Section 2.2.2.

Mean surface pressure measurements have proven to be reliable in estimating the mean
separation, transition, and reattachment points [34, 172, 232]. Tani [232] noted the presence of a
mean pressure plateau between the separation and transition points, and as such the start and end
of this region have been used to estimate these points [22, 172]. The pressure plateau is followed
by a region of rapid pressure recovery, with the mean reattachment location estimated from where
the rate of this pressure recovery decreases [172]. Velocity-based boundary layer parameters have
also been used to characterize LSBs [20, 24, 172]. Boundary layer displacement thickness, 𝛿1,
increases downstream of separation to a maximum approximately at the transition point and then
decreases to a local minimum near the reattachment point [20, 24], while momentum thickness,
𝛿2, is relatively constant in the separated region, but then begins to increase near the transition

Figure 2.4: Schematic of a laminar separation bubble.
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point [24, 172]. This has lead some investigators to use the displacement thickness or shape factor,
𝐻, to estimate the transition point [24, 143]. Other methods employed to estimate the transition
location include turbulence intermittency parameters [26, 144], Reynolds shear stress parameters
[32, 33, 69, 118, 173], and convective heat transfer rates [119, 156, 161, 257].

Given its importance related to airfoil performance and stall, much experimental effort has
gone into detailing separation bubble characteristics on airfoils for a wide range of flow conditions
and geometries [22, 34, 85, 114, 133, 183, 232], which have been successful in establishing
general trends across Reynolds numbers and angles of attack [166]. At low angles of attack and
sufficiently high Reynolds numbers, laminar separation is followed by reattachment, thus forming
an LSB. With the Reynolds number held constant, increasing the angle of attack causes the bubble
to move upstream and decrease in length, until some critical angle at which reattachment is not
possible and the airfoil stalls. Changes to the Reynolds number at a fixed angle of attack has a
less significant effect on the LSB location, however, decreasing the Reynolds number causes the
bubble to increase in length until a critical value on the order of 50 000 is reached [34, 166], at
which point the shear layer fails to reattach. At these conditions, and others, minor variations in
flow parameters (e.g., minor changes in 𝑅𝑒𝑐 or angle of attack), can cause a separation bubble to
suddenly elongate, forming either a longer bubble or a detached shear layer. This phenomenon
is called bursting and was first investigated in detail by Gaster [58]. Later studies would reveal
the physical mechanism responsible for bursting, relating it to the underlying stability of the flow,
which is discussed in Section 2.2.2.

In addition to the Reynolds number and angle of attack, low Reynolds flows over airfoils are
extremely sensitive to factors that are difficult to control or vary systematically, making their
study difficult. These factors include model imperfections [133, 168], free-stream turbulence
[85, 86, 133, 167, 173, 174], acoustic disturbances [44, 93, 189], and intrusive experimental
techniques [21, 24, 106]. Mueller et al. [167] found it difficult to relate the effect of free-stream
turbulence intensity to airfoil performance, as they found the accurate measurement of relatively
small aerodynamic forces to be further exacerbated by changes to the turbulence intensity. The
examination of the effects of the experimental setup in separation bubble studies has shown that
intrusive probes, e.g., hot-wires, can alter the flow topology when placed near the separation point
[24, 106]. Furthermore, Boutilier & Yarusevych [21] showed that end plates and corrections for
blockage effects should be employed in two-dimensional airfoil studies in order to avoid errors in
estimating separation bubble characteristics and lift forces, respectively. The extreme sensitivity
of flows involving separation bubbles is exemplified by the investigation of Ol et al. [173], who, in
compiling data from three different experimental facilities, found significant discrepancies in the
measured location and mean topology of the LSB for nominally identical experiments. Similarly,
Olson et al. [174] found it difficult to find agreement among experimental and computational
results for, again, largely similar flow conditions. The challenges in conducting low Reynolds
experiments therefore necessitates the careful documentation of free-stream conditions, as well as
the use of carefully manufactured models and minimally-invasive measurement techniques.
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2.2.2 Separated Shear Layer Transition

A schematic showing shear layer development in an LSB is presented in Fig. 2.4, which summarizes
the essential features captured in a number of flow visualization experiments [106, 115, 118, 219].
The initial conditions for the transition process are set by the small amplitude disturbances present
within the upstream boundary layer (Section 2.1.4). The disturbances convect into the fore portion
of the bubble, where the initially laminar shear layer begins to exhibit unsteadiness on account
of disturbance growth that occurs within a band of unstable frequencies [47, 197, 243]. This
initial stage of transition in LSBs has been examined extensively, both experimentally [20, 46, 122,
132, 243] and through DNS [2, 92, 139, 141, 196], with investigators concluding that disturbance
growth is primarily two-dimensional (i.e., of the normal mode) and due to a Kelvin-Helmholtz
type instability. This view of the initial stage in the transition process has become well accepted
among the research community as a result of excellent agreement between experimental and
numerical results with stability predictions [135, 136, 140, 261], with similarities to free shear
layers noted [243].

The success of stability predictions in the fore portion of the bubble are attributed to low
disturbance amplitudes, and the flow being two-dimensional and nearly wall parallel in this region,
making the process amenable to LST analysis. Early studies applied LST to analytical profiles
that resembled those measured in LSBs [45, 47, 66, 238], finding that the spectrum of growth
rates is roughly bounded between those of the Blasius boundary layer and a free shear layer [19,
238]. With increasing shaper factor, the shear layer thickens and departs further from the wall,
with the Rayleigh equation [215] providing accurate stability predictions in place of the OSE [20],
indicating that the effects of viscosity on stability diminish as an LSB thickens.

LST based predictions of three-dimensional disturbance growth based on analytical LSB
velocity profiles have shown that growth rates in the band of frequencies relevant to transition are
always highest for the normal mode (i.e., for a zero spanwise wavenumber, 𝛽 = 0) [47]. These
findings have been supported by both experimental [153, 198] and DNS [139, 141] studies, and are
aligned with the Kelvin-Helmholtz instability’s preferred amplification of two-dimensional modes
in free shear layers [149]. As noted by Dovgal et al. [47], the growth of spanwise modes is less,
yet comparable, to the normal modes in LSBs, while the amplification rates of three-dimensional
modes in attached boundary layers can be up to ten times that of the two-dimensional TS wave,
leading to the rapid three-dimensionalization noted in K and H-type transition (Section 2.1.4).
Thus, when considering an LSB in isolation, as is the case when analytical approximations and
simulations with prescribed in-flow conditions are utilized, three-dimensional disturbances appear
to be of little significance [141]. However, when the continuous stability spectrum is considered,
beginning from the upstream boundary layer and into LSB, the impact of three-dimensional
disturbance development can be significant, as noted by Michelis et al. [153] and Rist & Augustin
[198]. The specific effects, on both LSB topology and flow development are the subject of ongoing
investigations, including the one presented in Chapter 6.

Other instability mechanisms have been found to be active in separation bubbles, including
a Görtler type instability [138] associated with the formation of longitudinal vortices at the
beginning of the adverse pressure gradient region due to streamline curvature created by separation.
Additionally, Marxen et al. [137] suggests that two separate secondary instability may be present
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in LSBs, taking effect in the aft portion where vortex shedding occurs. One is reported to be an
elliptical instability [104], amplifying disturbances with spanwise wavelengths on the order of the
diameter of the shed vortices, leading to spanwise distortions and waviness in the vortex filament.
The second was found active in the braid region between consecutive vortices and occurred for
much higher spanwise wavenumbers. Both instabilities were found to be in action simultaneously
and of the fundamental and subharmonic frequency of the Kelvin-Helmholtz mode [92, 142],
however, their presence has yet to be experimentally confirmed.

Jones et al. [92] and Spalart & Strelets [227] provided evidence that the LSB transition
process can be self-sustaining. Modelled numerically, the transition process was found to continue
even after the initializing disturbances present in the background were removed. This cannot
be explained by convective instability mechanisms, which require constant disturbance input to
sustain the transition process. Thus, this evidence points toward an absolute instability mechanism
[82], where disturbances propagate in both the upstream and downstream direction, and are
amplified in time. Several numerical and theoretical studies have examined absolute instabilities
in LSBs [2, 52, 201], finding that the critical parameter for their onset is the strength of the reverse
flow. Alam & Sandham [2] reported reverse flow magnitudes between between 15% and 20%
of the local free-stream velocity are required, while a lower threshold of approximately 7% was
identified by Rodríguez et al. [201] through global stability analysis [233]. This has been termed a
centrifugal instability and was shown to incite spanwise waviness in the LSB through interaction
with the primary K-H instability [200]. It must be noted that these absolute and global instability
mechanisms stem from numerical investigations conducted in disturbance-free environments, and
so their presence and/or relevance in practice remains to be determined.

Activities at frequencies typically an order of magnitude lower than that of the primary
Kelvin-Helmholtz instability have been noted in flows involving LSBs. These included periodic
switching between stalled and unstalled states on airfoils [264, 266], stall in localized ‘cell’ regions
across the airfoil span [27], and significant oscillations in the overall length of the LSB [194, 205].
These have been associated with the phenomenon of bubble bursting proposed by Gaster [58],
with several criteria for bursting conditions proposed [46, 58, 220]. Marxen & Rist [140] proposed
the ‘mean flow deformation’ as the underlying casual mechanism for bubble bursting. They
describe bursting as a dynamic process, in which incoming disturbances are amplified, leading to
changes in the mean flow field (i.e., the mean flow deformation). This in turn changes the stability
characteristics of the flow, thus modifying the amplification of subsequent disturbances. This
is supported by the findings of Michelis et al. [152], who in applying impulsive forcing to an
LSB, caused an intense distortion of the mean flow field, leading to flow stabilization and bubble
bursting. Thus, bubble bursting and low frequency modulations in LSBs can be viewed to occur
over a spectrum that depends on incoming disturbance characteristics. If an intense change in
disturbance amplitude occurs, there is an intense distortion of the mean flow and the LSB bursts.
If the flow is forced in a periodic manner, then the stability characteristics become ‘pegged’ and
no modulations are observed. Natural disturbances fall in between these two extremes, providing
mild and intermittent changes in disturbances characteristics and so bursting events and/or other
low frequency activities are sporadic.
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2.2.3 Coherent Structures

A common feature of transitional shear flows, e.g., boundary layers [71], separated shear layers
formed on bluff bodies [254], and free shear layers [73], is the formation of coherent structures that
precede the production of small-scale turbulence. The most prominent coherent structures formed
during shear flow transition are elongated and two-dimensional spanwise-oriented vortices. Ho &
Huerre [73] attribute the formation of such structures in free shear flows to the continued growth
of the Kelvin-Helmholtz instability wave, leading to its saturation and the rise of harmonics and
subharmonics. Consecutive and spanwise-uniform vortices connected by thin filaments form, with
the process roughly completed at the location where growth in the main instability wave saturates.

A similar process has been observed in LSBs, regardless of whether the bubble is formed
over a flat plate subject to an adverse pressure gradient or over an airfoil [33, 92, 137, 243,
262]. Continued disturbance growth in the LSB eventually leads to non-linear wave interactions,
followed by shear layer roll-up and quasi-periodic vortex shedding in the aft portion (Fig. 2.4).
These structures dominate the flow development [124, 125] and have been argued to be responsible
for inducing mean reattachment [134, 260]. At formation, the vortices have been described as
spanwise uniform [106, 113, 115, 170] or highly deformed and arranged in a staggered pattern
[33, 69, 255]. Regardless of their characteristics at formation, the structures undergo further
three-dimensional deformations, followed by the breakdown to turbulence.

Vortex merging is an intrinsic process to shear flows, where the pairing of consecutive,
co-rotating vortices has been shown to play major roles in the decay of turbulence [38, 90, 145,
242] and in the growth of and momentum transfer across mixing layers [73, 83]. The fundamental
aspects of vortex merging have been investigated by Cerretelli & Williamson [35] and Meunier
et al. [148], with the initial stage of merging involving two vortices undergoing diffusive growth
while orbiting one another. When the size of the vortex cores exceeds a critical proportion of the
vortex spacing, the vortex centroids begin to approach each other. The cores eventually merge,
forming a single merged vorticity structure that continues to expand through diffusion. In regard
to free shear layers, the process of vortex merging has been captured in numerous investigations,
summarized in the review of Ho & Huerre [73]. Through consecutive merging of vortex pairs,
the vorticity contained within each structure is constantly redistributed into increasingly larger
vortices, resulting in an approximate doubling of their wavelength and circulation after each merge,
while their characteristic frequency is halved [105]. In contrast to free shear layers, while similar
vortex merging has been observed in LSBs [106, 113, 115], the number of studies is limited and
observations have been largely cursory and/or qualitative. A noted exception is the investigation of
Lambert & Yarusevych [116], who studied the associated vortex dynamics through simultaneous
time-resolved flow visualizations and surface pressure measurements. For an LSB formed over a
NACA 0018 airfoil at Re𝑐 = 100 000 and angle of attack of 8°, they found up to 15% of vortices
in the suction side LSB merge, with merging events occurring primarily upstream of the mean
reattachment location and in an aperiodic fashion.

As previously mentioned, varied topologies of the shear layer vortices have been observed
in LSBs at formation. In DNS studies, the prevailing observation is the formation of initially
spanwise-uniform vortices, however, disparate vortex breakup mechanisms have been put forward.
Brinkerhoff & Yaras [26] attributed the breakup of the spanwise rollers to an interaction with
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streamwise oriented, smaller scale vortices that originate in the boundary layer upstream of
separation, similar to the Görtler type instability observed by Marxen et al. [138]. This interaction
lead to spanwise non-uniformity, followed by the three-dimensional breakdown and the emergence
of hairpin-shaped structures in the reattached boundary layer. Balzer & Fasel [13] also noted
streamwise structures in the upstream boundary layer, which they referred to as Klebanoff modes,
finding that the transition process was governed by their interaction with the primary K-H instability.
In other work, Jones et al. [92] and Marxen et al. [137] ascribe vortex breakup to the development
of spanwise undulatory vortex filaments, followed by a rapid three-dimensionalization of the flow
in the braid region, actions which were associated with the elliptical and hyperbolic instabilities,
respectively, discussed in Section 2.2.2.

Much of the recent experimental progress in the study of separation bubbles is attributed
to particle image velocimetry (PIV). Planar PIV has been used to study the streamwise flow
development in the bubble, with the the quasi-periodic vortex shedding process identified through
both phase-averaged [118, 124, 219], and time-resolved measurements [33, 69, 113, 125, 151, 170].
The majority of these investigations also employed techniques to elucidate the three-dimensional
evolution of the structures, through either planar measurements in a second configuration [69,
113, 151], volumetric reconstructions [32, 33], or tomographic measurements [153, 170]. In
agreement with DNS findings, a subset of the experimental work has observed spanwise-uniform
vortices resulting from the two-dimensional roll-up of the separated shear layer, with the structures
quickly developing spanwise deformations as they breakdown to turbulence [113, 151, 170]. In
other studies, the observation of spanwise uniform structures in the formation region has been
sporadic [33, 69] or all together absent [255, 268]. Instead, ‘C-shaped’ vortices localized to
spanwise regions and arranged in staggered pattern have been observed [33]. No doubt, the
confluence of factors that affect LSB flow development, including external factors present in
experiments that cannot be controlled (Section 2.2.1), and the numerous instabilities that may be
active (Section 2.2.2) have lead to these disparate descriptions.

One such factor that has received considerable attention in recent years is the influence of
free-stream turbulence on LSB flow development and topology. For relatively low turbulence
intensity values (. 0.5% of 𝑢∞), vortex shedding has been observed to be largely two-dimensional
and highly periodic, producing filaments with a high degree of spanwise coherence [123, 144,
170]. As the turbulence intensity is increased up to values of approximately 1.5%, the shedding
process exhibits significant cycle-to-cycle variations and the vortices become increasing distorted
across the span at formation [33, 144, 173]. At levels above 2%, experimental findings confirm
that bypass transition can occur, characterized by the formation of streamwise streaks in the
boundary layer upstream of separation [86, 123, 222], which have been noted in the previously
discussed numerical studies [13, 26, 138]. Hosseinverdi & Fasel [77] summarize that these
streamwise structures result from the free-stream turbulence, with the transition process driven by
their interaction with the K-H mode. As the free-stream turbulence level is increased the process
is increasingly dictated by the streamwise streaks, with an approximate threshold of 1% identified
at which the spanwise coherence of the shear layer vortices is reduced to insignificant levels.
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2.3 Active Control of LSB Flows

Section 2.2 outlines the significant influence of the disturbance environment on LSBs, thus
making flow control an attractive and effective option for conditioning the LSB to some desirable
state. Typical flow control goals for flows involving LSBs include separation control/mitigation,
lift increase, drag reduction, and noise suppression. An introduction to the concepts of flow
control are provided by Gad-el-Hak [57], with general classification based on whether or not the
flow control device requires auxiliary power or not, referred to as active and passive methods,
respectively. Active control methods are employed in this thesis and as such are the focus of this
review. These methods primarily operate on the principle of introducing periodic disturbances
that exploit an underlying instability within the LSB. This type of forcing has been employed in
numerous experimental and numerical studies, with disturbances produced by various means,
including acoustic excitation [67], synthetic jet actuators [64], mechanical oscillations [118] and
surface-mounted plasma actuators [40].

Early studies established that improvements to airfoil performance could be realized through
acoustic forcing, with the source located either in the external flow [39, 171, 265], or internal to
the airfoil [36, 79, 80]. Regardless of the location of the acoustic source, at post stall angles of
attack the large scale vortices shed in the airfoil wake are the dominant feature of the flow, and
so forcing at a matching frequency can mitigate stall and recover lift [36, 79, 263]. At angles of
attack below and close to stall, the optimal forcing frequencies, in terms of mitigating stall and
moderate improvements to lift, were found to be an order of magnitude higher than those of the
post stall case [79, 171, 265], with this frequency range later linked to the unstable disturbances
present in LSBs [171, 258].

Synthetic jets effect flow changes by producing a train of vortices from alternating ejection and
suction of fluid across an orifice, imparting momentum to the main flow while maintaining a net
zero transfer of mass [64]. The emphasized control approach is the use of an actuation frequency
high enough such that the forcing effects are decoupled from the time scales of the considered flow.
Amitay et al. [5] describes this control approach as one that modifies the apparent aerodynamic
shape of the flow surface, thereby changing the pressure gradient and suppressing flow separation.
Amitay & Glezer [4] successfully applied this control approach to a low Reynolds number airfoil,
showing that flow separation could be delayed to angles of attack greater than the stall angle
of the baseline flow. However, although not expressly stated, the range of forcing frequencies
considered overlapped with that of the separated shear layer instability, thus making it unclear
when performance improvements were realized through targeting the unstable shear layer. Future
investigations would clarify that optimal excitation frequencies correspond to the separated shear
layer instability [16, 54, 63], finding that the threshold momentum required to reattach the flow is
an order of magnitude smaller at these frequencies compared to high frequency excitation [54].

Regardless of the control method employed, there is consensus across the literature linking
the optimal excitation frequency to that of the most amplified disturbances in the LSB [54, 171,
258, 265]. These investigations have shown that inducing flow reattachment on a stalled airfoil
through the formation of an LSB or reducing the size of an existing LSB is most effective when the
excitation frequency targets the natural K-H instability and the associated vortex shedding process.
It has been demonstrated that forcing at this ‘fundamental’ frequency has significant impacts
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on the ensuing vortex dynamics [112, 135, 260], as the shedding process locks the excitation
frequency, vortex formation occurs further upstream, and the spanwise coherence of the structures
is increased. This has been shown to have significant influence over the mean LSB topology
[134, 260], with the upstream advancement of vortex formation being the most significant factor
influencing the mean reattachment location [112].

While the topic of forcing an LSB at its fundamental frequency has been studied extensively, the
effects of forcing at subharmonic frequencies on LSB flow development and vortex merging remain
relatively unknown. In free shear flows, fundamental and subharmonic forcing has been shown to
have significant influence over on vortex dynamics, specifically through manipulation of the vortex
merging process. In particular, applying acoustic forcing at or near the fundamental frequency
synchronizes the initial roll-up process, creating a well defined maximum in the fundamental
perturbation mode at the streamwise roll-up location, at which point the subharmonic mode begins
to grow, reaching a maximum at a pairing location further downstream [73]. However, forcing in
the vicinity of the fundamental frequency inhibits merging with respect to the natural case [81].
Ho & Huang [72] showed that the process can be manipulated by altering the forcing frequency,
as after disturbance growth at the fundamental frequency saturates, a subharmonic resonance
mechanism gives rise to subharmonic disturbance growth [102, 160]. Thus, forcing applied at the
subharmonic frequency accelerates the growth of the subharmonic mode, which was found to
promote vortex merging and increase the rate of momentum transfer across the layer, relative to
the unforced case [72]. Similar to the roll-up location coinciding with the peak in the fundamental
mode, the pairing location occurs downstream where the subharmonic mode reaches a maximum.
It remains to be determined if vortex merging in LSBs has a significant effect on the mean flow
topology, through influence of the reattachment process or otherwise, and whether merging can be
manipulated via forcing to the same effect as seen in free shear layers.

Mechanical oscillations [118, 139], such as those created by a vibrating ribbon, and the
analogous numerical implementations [2, 141] have been primarily used a diagnostic tool to
investigate the LSB transition process. One aspect that has received considerable attention is the
relative influence of normal (two-dimensional) and oblique disturbances in LSB transition. Rist &
Augustin [198], in a DNS study of an LSB formed over a flat plate, found that weakly oblique
instability waves grew at lower but comparable rates to the normal mode, and when present lead
to an earlier onset of turbulent breakdown. Furthermore, the introduction of these oblique waves
caused a spanwise staggering of the LSB vortex shedding process, leading to a peak and valley
distribution in the mean flow field. Similar observations have been made in other DNS studies,
notably those of Marxen et al. [137] and Pauley [182]. Experimental studies of the same nature
are relatively scarce due to the difficulty in implementing a reliable three-dimensional forcing
technique, which is then compounded by the need for three-dimensional flow field measurements.
One such study was that of Lang et al. [118], who reported insignificant differences between
two and three-dimensional forcing, however the free-stream turbulence intensity of the employed
water tunnel facility was approximately 1% [230], which may have had significant influence as
discussed in Section 2.2.3.

Plasma actuators present a new avenue for LSB flow diagnostics, having only come into
focus within the flow control research community within the last two decades [40]. Their control
authority over LSBs has been demonstrated, with two-dimensional configurations employed in
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which the wall-parallel jet produced by the actuator is pulsed at a frequency matching the shear
layer instability [151, 199, 210, 260, 261]. The ensuing effects on the LSB are largely identical to
those reported for other forcing techniques, namely the vortex shedding process locking to the
forcing frequency, vortex formation at an earlier streamwise location and with a higher degree of
spanwise coherence, and an overall reduction in LSB size. Furthermore, actuators can be rapidly
prototyped due their mechanical simplicity and ease of manufacturing, allowing for a wide variety
of forcing configurations to be considered. For example, novel plasma forcing configurations have
been developed to investigate cross-flow instabilities on swept wings [221], drag reduction in
turbulent boundary layers [234], and noise suppression of cylinders in cross-flow [235]. Thus,
plasma actuators present themselves as an excellent diagnostic tool for examining the effects of
controlled two and three-dimensional disturbances on transition and flow development in LSBs.
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Chapter 3

Methodology
The methods of investigation are outlined, including the experimental facilities, models, and
measurement techniques employed. Methods for data analysis are discussed, with the theoretical
bases given for a select few, and the framework for uncertainty analysis is established.

24



3.1 Experimental Setup

The experiments conducted as part of this thesis were performed at the University of Waterloo and
Delft University of Technology, in the Fluid Mechanics Research Laboratory and the Low Speed
Laboratory, respectively. As such, a general overview of the relevant facilities and experimental
models is provided here, with details specific to each campaign provided in Chapters 4–6.

3.1.1 UW Recirculating Wind Tunnel

At the University of Waterloo, experiments were conducted using a recirculating wind tunnel,
shown in Fig. 3.1, located in the Fluid Mechanics Research Laboratory. The flow is circulated by
a six blade, vane axial fan coupled to a variable frequency, alternating-current motor. The flow is
conditioned in the settling chamber by an aluminum honeycomb grid and five wire mesh screens,
upstream of a contraction with a 9 : 1 ratio. The test section is 0.61 × 0.61 m in cross-section,
2.44 m long, and is fabricated from clear polycarbonate. The facility was characterized by Kurelek
[111]. At the investigated free-stream velocity (𝑢∞ = 9.6 m s−1), the free-stream uniformity is
within ±0.4%, while a minor favourable pressure gradient, equal to 𝜕𝑝/𝜕𝑥 = 0.4 Pa m−1, is present
over the length of the test section when empty. The free-stream turbulence intensity, as measured
by hot-wire anemometry, is 0.1% with an integral length scale of 40 mm with signals low-pass
filtered at 10 kHz. The free-stream has no significant spectral content within the frequency range
100 ≤ 𝑓 ≤ 2000 Hz, with the free-stream turbulence level reduced to 0.01% when bandpass
filtered to within this range. These free-stream characteristics, in addition to its recirculating
nature, make the facility well suited for investigations of laminar–turbulent transition by means of
particle image velocimetry.

Figure 3.1: University of Waterloo recirculating wind tunnel. 1 Motor and fan; 2 settling
chamber; 3 contraction; 4 test section.
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Figure 3.2: (a) Side view cross-section and (b) artist’s impression of the TU Delft A-Tunnel. 1
Settling chamber; 2 flow conditioning elements and contraction; 3 open jet test section/anechoic
plenum; 4 interchangeable nozzle and model mount; 5 return chamber; 6 motor and fan.
Reproduced with permission from Merino-Martínez et al. [147]. Illustration by Stephan Timmers.

3.1.2 TU Delft A-Tunnel

At Delft University of Technology, experiments were conducted in the Anechoic Vertical Low
Turbulence Wind Tunnel (A-Tunnel), depicted in Fig. 3.2. The facility is an open-jet, closed-circuit,
vertical wind tunnel that spans four stories at the Low Speed Laboratory. Spanning the first two
stories are the settling chamber and contraction, with flow conditioning performed by a stainless
steel honeycomb grid and four anti-turbulence wire mesh screens. Flow exits the contraction into
an open-jet test section located within an anechoic plenum on the third story. Interchangeable
nozzles are available for mounting flush to the contraction exit, with the particular nozzle employed
throughout featuring a 0.5 × 0.5 m exit area, resulting in a total contraction ratio of 17 : 1. Acrylic
walls were mounted to the nozzle exit (not depicted in Fig. 3.2), forming a 0.5 × 0.5 × 1.1 m test
section that housed the flat plate test model (Section 3.1.4). The flow is circulated by two motor
and centrifugal fan units, located on the fourth story in the return chamber.

A detailed characterization of the facility is presented in the work of Merino-Martínez et al.
[147]. At the investigated free-stream velocity (𝑢∞ = 5.75 m s−1), the free-stream uniformity is
within ±1%, the turbulence intensity is 0.09%, and no significant spectral peaks are found in the
free-stream velocity and pressure fluctuations within the frequency range 1 ≤ 𝑓 ≤ 1000 Hz. The
facility is particularly well suited for aeroacoustic investigations and studies of laminar–turbulent
transition, and can be equipped for a wide variety of measurement techniques, including hot-wire
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Figure 3.3: NACA 0018 airfoil model. All dimensions in millimetres.

anemometry and particle image velocimetry.

3.1.3 Airfoil Model

The employed airfoil model, Fig. 3.3, was designed and manufactured by Gerakopulos [61] and
has been used extensively in studies of LSB transition (e.g., Refs. [20, 86, 113, 115]), and hence
its aerodynamic characteristics are well-established. The model has a NACA 0018 profile with a
chord length, 𝑐, and span of 0.2 and 0.61 m, respectively, and thus spans the entire test section of
the UW recirculating tunnel (Section 3.1.1). The model is equipped with 95 static pressure taps of
0.4 mm diameter, 65 of which are divided between chordwise staggered rows on the pressure and
suction surfaces at the midspan plane (𝑧/𝑐 = 0). The remaining pressure taps are divided into three
spanwise rows on the suction surface at chordwise locations of 𝑥/𝑐 = 0.15, 0.30 and 0.60, and are
spaced to allow for an assessment of flow uniformity over the central 84% of the airfoil span. The
model is also equipped with 25 Panasonic WM-62C condenser microphones, embedded in the
airfoil suction surface under 0.8 mm ports, 22 of which are arranged in a chordwise staggered row
at 𝑧/𝑐 = −0.2.

3.1.4 Flat Plate Model

The employed flat plate model was developed by Michelis [150] and is manufactured from acrylic.
It measures 1000 × 500 × 20 mm (length × width × thickness), and has a modified super elliptical
leading edge [126], ensuring seamless curvature change and the development of a laminar boundary
layer on its top surface at appropriate Reynolds numbers. The trailing edge forms part of an
adjustable flap, which can be deflected upwards to locate the leading edge stagnation point on the
upper surface of the plate, thereby eliminating possible unsteady leading edge separation effects.
Integrated into the model are 30 static pressure taps (0.4 mm diameter), 22 of which are arranged
in a streamwise row at 𝑧 = 0, with the remaining 8 arranged in two spanwise rows located at
𝑥 = 20 and −160 mm that cover 40% of the plate’s span. The model can also be equipped with up
to 10 LinearX M53 condenser microphones to enable fluctuating surface pressure measurements.
These are installed under 0.4 mm ports, 8 of which are arranged in a streamwise row at 𝑧 = 30 mm.
A rectangular trench, 55 × 500 × 1 mm (length × width × depth), located 165 mm from the plate’s
leading edge allows for the installation of flush mounted plasma actuators, while a blank can be
inserted into the trench when no actuator is installed.
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Figure 3.4: Flat plate model. All dimensions in millimetres.

3.2 Experimental Techniques

While a number of experimental techniques are employed throughout, the main forcing technique
under consideration utilizes dielectric barrier discharge plasma actuators, while the vast majority
of results are derived from particle image velocimetry measurements. As such, brief introductions
to these techniques are provided, alongside some basic considerations when implementing them
in practice. Specifics on the other techniques employed are found in the relevant chapters.

3.2.1 Particle Image Velocimetry

Particle image velocimetry (PIV) was selected as the primary means of investigation throughout
this work since it provides velocity field measurements through optical means, and therefore is
minimally invasive. Overviews of the technique are available in the books of Adrian & Westerweel
[1] and Raffel et al. [191]. In essence, the technique involves the imaging of illuminated tracer
particles present in the flow, with the displacement, and hence velocity, of the particles estimated
through a statistical image matching process.

The three most common PIV configurations are planar, stereoscopic and tomographic, with
the first two providing two and three-component velocity measurements in a plane, respectively,
while tomographic provides three component velocity measurements in a volume. A simplified
schematic showing a planar PIV setup is provided in Fig. 3.5a. PIV measurements rely on seeding
the flow with tracer particles, which, ideally, would be free of inertia and therefore follow the
flow ‘faithfully’. For this reason, and to ensure the presence of the particles does not alter the
natural flow development, the seeding particle diameter should be minimized, however, this is
in direct opposition with their requirement to maximize light scattering. For low speed flows
in air, fog particles with a diameter on the order of 1 µm produced by vapourizing a mixture of
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Figure 3.5: (a) Schematic of a typical planar PIV setup, after Raffel et al. [191]. (b) Sample
particle image from flow over a flat plate with laminar separation and (c) resulting vector field.

water and glycol offer a good compromise. Particles with increasing oil content offer improved
scattering properties at similar particles sizes, however, they present maintenance and health
concerns, particularly when used in facilities with open test sections, e.g., the TU Delft A-Tunnel
(Fig. 3.2). Solid seeding particles, usually in the form a metal oxide powder, must be used for
measurements in compressible or reactive flows.

Particle illumination is achieved by a pulsed laser, typically an Nd:YAG or Nd:YLF type, with
the scattered light captured by one or more digital cameras. A similar spectacle can be observed
regularly on the island of Ibiza. The laser pulse duration is on the order of a few nanoseconds,
during which the particles are essentially motionless. An exemplary particle image is provided in
Fig. 3.5b, where light scattered by the particles is recorded as a distribution in pixel intensities
(i.e., a digital image). Image acquisition is performed with the laser and camera(s) synchronized,
with the repetition rate of the system dictating the acquisition frequency. Systems are generally
classified as either low or high speed based on their repetition rate. Low speed acquisition rates
are generally on order of 10 Hz, while current laser and camera technologies allow for high speed
acquisition rates of up to 20 kHz. While low speed PIV is usually insufficient in resolving relevant
time scales, in general, more powerful lasers and higher resolution cameras can be employed in
comparison to high speed PIV. Consequently, the investigated area and/or spatial resolution of the
measurement can be increased.

In planar PIV (Fig. 3.5a), the laser output is transformed by a set of optics, typically consisting
of spherical and cylindrical lenses, to form a sheet that is typically 1 to 2 mm thick. The camera is
oriented normal to and focused on the illumination plane. The relationship between the position
of the particles in the image and physical space is determined through a calibration process, in
which a target bearing marks at known locations in placed in the illumination plane and imaged.
Images are acquired at two successive time instances, separated by the laser pulse separation,
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Δ𝑡. In single frame operation, the acquisition frequency is equal to the inverse of the laser
pulse separation, 𝑓a = 1/Δ𝑡, and a series of images is acquired. In double frame operation, the
acquisition frequency and laser pulse separation are independent parameters, and a series of
images pairs separated by Δ𝑡 are acquired at 𝑓a. Regardless of single or double frame operation,
Δ𝑡 should be significantly smaller than the time scales of the fluid motion, such that the motion of
particles between successive images, i.e., the particle displacements, is approximately linear.

Estimation of the particle displacements is a statistical process that begins with dividing two
successive images into interrogation windows. From the images, two corresponding windows
are cross-correlated for variable overlap values. In the case of planar PIV, a two-dimensional
correlation map is produced containing a peak, whose location signifies the linear shift that
maximizes the cross-correlation between the windows, and hence gives a statistical estimate of the
average linear motion of the contained particles. Thus, a two-dimensional velocity vector local to
the windows can be estimated since Δ𝑡 is known. This process is repeated for all interrogation
windows and then all time realizations, thus giving a time series of velocity fields. An exemplary
velocity field is shown in Fig. 3.5c.

Based on these operating principles, several important practical guidelines can be formulated
for PIV. First, the imaged particles should be distinct (non-overlapping), with the number in
a given interrogation window maximized in order to maximize the statistical certainty of the
cross-correlation. Thus, smaller imaged particles are desired as this allows for smaller window
sizes, and hence improved spatial resolution. However, imaged particles should be larger than a
single pixel, otherwise ‘peak-locking’ will result and sub-pixel displacements will not be resolvable
[252]. This sets the practical limit for the minimum window size, with most investigators opting
for windows that are 16 to 32 pixels squared, containing, on average, 10 to 15 imaged particles
that are 2 to 3 pixels in diameter. Additionally, a laser pulse separation should be selected to
keep particles displacements less than the size of window, otherwise no peak will be found in
the correlation map and an erroneous estimate will result. In practice this is quite restrictive as
particle displacements must be kept relatively small, resulting in a limited dynamic range. This
is alleviated through an iterative vector calculation procedure [212], beginning with a relative
coarse window size that is successively reduced to the minimum size. Through this larger particle
displacements are possible, leading to an improved dynamic range of the measurement.

Tomographic PIV, developed by Elsinga et al. [51], is the extension of the planar approach
to volumetric measurements, providing estimates for all three components of velocity. The first
requirement is, therefore, that illumination is volumetric, achieved by the expanding the light sheet
about its thickness. The flow is again seeded with particles, which are imaged simultaneously by
a minimum of three, but typically four or more cameras. The cameras are arranged at different
viewing angles and are equipped with Scheimpflug adapters so that uniform focus may be achieved
within the volume. A calibration relationship to the physical space is determined by imaging
a target with marks at known locations across the three-dimensional space, which can then be
refined using the volume self-calibration technique [250]. A volume is reconstructed from the
camera images using this calibration relationship, locating the particles in space by constructing a
three-dimensional representation of the scattered light intensity. Different methods for volume
reconstruction are available, with the Simultaneous Implementation of Multiplicative Algebraic
Reconstruction Technique (SMART) [12] used throughout this work. The method for vector
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Figure 3.6: Cross-section of a typical asymmetric AC-DBD plasma actuator.

estimation is essentially preserved from planar PIV, with two successive volumes divided into
three-dimensional interrogation windows, which are then cross-correlated in three-dimensions to
give a local estimate of velocity.

3.2.2 Dielectric Barrier Discharge Plasma Actuators

Plasma is one of the four fundamental states of matter and is a gas of free floating ions that is
electrically conductive and greatly responsive to electromagnetic fields. Creating and maintaining
plasma requires input energy such that ionization overcomes recombination in the plasma medium.
Controlled generation is most commonly achieved by applying an electric field across a gas volume
by means of opposing electrodes driven by either DC or AC voltage. For a given gas and electrode
separation, a breakdown voltage exists that depends on factors such as temperature and pressure,
which if exceeded will lead to electrical breakdown of the gas, and thus the formation of plasma
arcs and the flow of current between the electrodes. For air at standard temperature and pressure
this voltage is on the order of several kV, with the formed plasma characterized by incomplete
ionization and a lack of thermal equilibrium, with most of the energy contained in free electrons.
Thus, its overall temperature is relatively low and the plasma is referred to as non-thermal, i.e.,
cold plasma. A full treatment of plasma physics is available in the works of Fridman [56].

If the two electrodes are separated by an insulating layer, then a dielectric barrier discharge
(DBD) is formed. During such a discharge, ions accumulate on the barrier, leading to a reduction
in the local electrical field and the discharge is quenched. This self-limiting nature of DBD is
a main feature and necessitates the use of AC voltage in order to sustain the plasma. Thus, the
configuration is referred to as an AC-DBD plasma actuator. In the context of flow control for
aerodynamic applications, a typical configuration featuring asymmetrically positioned electrodes
is shown in Fig. 3.6. During operation, heavy oxygen and nitrogen ions in the plasma are
driven back and forth between the high voltage and ground electrodes due to the alternating
current. Momentum is exchanged with the surrounding air through ion-neutral collisions, with the
asymmetrical positioning of the electrodes and the presence of the dielectric barrier leading to
unequal amounts transfered during the two AC half-cycles. Thus, a net body force directed from
the high voltage to the ground electrode is generated, giving rise to a relatively weak and nearly
wall parallel jet. The velocity of the jet depends on many factors, such as the AC peak-to-peak
voltage and frequency, electrode and dielectric materials and thickness, and actuator geometry,
among others, with maximum achievable velocities of approximately 10 m s−1 reported [162].

AC-DBD plasma actuators are electrical devices and therefore offer several advantages over
other flow control methods (e.g., synthetic jets, acoustics, mechanical oscillations) [40]. These
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include mechanical simplicity (no moving parts), relative ease of manufacturing, and fast response
times. What’s more, they offer a relatively wide range of operating frequencies free of resonance
restrictions, as the AC frequency (i.e., the carrier frequency, 𝑓c) can be modulated to produce
time-periodic forcing, with the duty cycle of this modulation providing control over the momentum
output per forcing cycle. In addition, based on the manufacturing method and electrode and
dielectric materials, total thicknesses of less than 1 mm, and even on the order of 10 µm, can be
achieved. Thus, a device can usually be integrated into a test model with relative ease and minimal
impact on skin friction and pressure drag. It is for these reasons that AC-DBD plasma actuators
are selected as the flow control method for flow diagnostics in Chapters 5 and 6.

The momentum imparted to the fluid by a plasma actuator is commonly expressed as a
momentum coefficient, as proposed by Amitay et al. [5]:

𝐶𝜇 =
𝑇

1
2𝜌𝑢∞

2𝑎
,

where 𝑇 is the generated sectional body/thrust force, 𝜌 and 𝑢∞ are the free-stream density
and velocity, respectively, and 𝑎 is an appropriate length scale. Determination of 𝑇 through
experimental means generally takes one of two approaches [109]: (i) direct force measurements
or (ii) control volume analysis of the generated velocity field (indirect). The second approach is
selected for this work, as characterization of both the imparted momentum and spatial topology of
velocity output are required given the novel configuration employed (Chapter 5). For this indirect
method, velocity field measurements in the cross-sectional plane of the actuator and near the
discharge area are required, for which planar PIV measurements are particular well suited. Then,
𝑇 can be calculated using a control volume based momentum balance, as described by Kotsonis
et al. [109]. The specifics of applying this method in the current work are discussed in Section 5.3.
Most notably, actuator output depends on the external flow [184], with most investigators relying
on characterization in quiescent conditions. Such an approach is insufficient for the current work,
and therefore a characterization approach that considers both quiescent and in-flow conditions is
taken (Sections 5.3 and 5.4, respectively).

3.3 Analysis Methods

While a number of analysis methods are employed throughout, linear stability theory, proper
orthogonal decomposition, and wavelet analysis are the three more specialized techniques employed,
and as such, a brief overview of each is provided.

3.3.1 Linear Stability Theory

The origins of Linear stability theory (LST) lie in the works of Orr [175] and Sommerfeld [225].
Here the fundamentals of LST are reviewed, while full treatments of the topic are provided by
Mack [131] and Schlichting & Gersten [214].
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LST concerns itself with the theoretical investigation of a laminar base flow acted upon by
small, wave-like perturbations. The aim is to determine if the amplitude of the perturbations
diminish or grow, corresponding to stable and unstable states of the flow, respectively. Here, the
framework for LST is formalized for an isothermal and incompressible flow absent of any body
forces, for which the governing equations (Eqns. 2.1 and 2.2) simplify to:

∇ · ®𝑢 = 0,
𝜕 ®𝑢
𝜕𝑡
+ ( ®𝑢 · ∇) ®𝑢 = −1

𝜌
∇𝑝 + 𝜈∇2 ®𝑢.

(3.1)

The flow is decomposed into a base flow (denoted by over-line quantities), whose stability is
studied, and superimposed perturbations (denoted by hat quantities). In order to ensure the
mathematics remain tractable, several assumptions must be invoked on the base flow, namely, that
it has no dependence on time, and is fully developed in and parallel to the streamwise direction, 𝑥.
Such assumptions are entirely valid in channel and pipe flows, and have been applied to boundary
layer flows with great success [18]. Thus, the velocity and pressure are:

𝑢 = 𝑢(𝑦) + 𝑢̂(𝑥, 𝑦, 𝑧, 𝑡), 𝑣 = 𝑣̂(𝑥, 𝑦, 𝑧, 𝑡), 𝑤 = 𝑤(𝑦) + 𝑤̂(𝑥, 𝑦, 𝑧, 𝑡),
𝑝 = 𝑝(𝑥, 𝑦, 𝑧) + 𝑝(𝑥, 𝑦, 𝑧, 𝑡),

(3.2)

which must satisfy the governing equations. To once again maintain tractability, the amplitude
of the perturbations is assumed infinitesimally small so that any non-linear perturbation terms
that arise from substitution into the governing equations may be ignored, effectively neglecting
disturbance interaction effects. Performing the substitution and making all the simplifications
afforded by the assumptions yields:

𝜕𝑢̂

𝜕𝑥
+ 𝜕𝑣̂

𝜕𝑦
+ 𝜕𝑤̂

𝜕𝑧
= 0,

𝜕𝑢̂

𝜕𝑡
+ 𝑢 𝜕𝑢̂

𝜕𝑥
+ 𝑤𝜕𝑢̂

𝜕𝑧
+ 𝑣̂d𝑢

d𝑦
= −1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈∇2𝑢̂,

𝜕𝑣̂

𝜕𝑡
+ 𝑢 𝜕𝑣̂

𝜕𝑥
+ 𝑤𝜕𝑣̂

𝜕𝑧
= −1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈∇2𝑣̂,

𝜕𝑤̂

𝜕𝑡
+ 𝑢 𝜕𝑤̂

𝜕𝑥
+ 𝑤𝜕𝑤̂

𝜕𝑧
+ 𝑣̂d𝑤

d𝑦
= −1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈∇2𝑤̂.

(3.3)

In order to solve the system of equations above, a trial solution for the perturbations is
employed:

𝑢̂ = 𝜑𝑢 (𝑦) exp [𝑖 (𝛼𝑥 + 𝛽𝑧 −Ω𝑡)] , 𝑣̂ = 𝜑𝑣 (𝑦) exp [𝑖 (𝛼𝑥 + 𝛽𝑧 −Ω𝑡)] ,
𝑤̂ = 𝜑𝑤 (𝑦) exp [𝑖 (𝛼𝑥 + 𝛽𝑧 −Ω𝑡)] , 𝑝 = 𝜑𝑝 (𝑦) exp [𝑖 (𝛼𝑥 + 𝛽𝑧 −Ω𝑡)] .

(3.4)

which assumes each perturbation to be sinusoidal and composed of a single frequency, streamwise
wavenumber, and spanwise wavenumber, i.e., a mode. Here, 𝜑 is the disturbance eigenfunction, Ω
is the angular frequency, and 𝛼 and 𝛽 are the streamwise and spanwise wavenumbers, respectively.
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If 𝛼 and 𝛽 are assumed real, then Ω is complex and so the temporal formulation of the problem is
employed, where disturbances grow or decay in time. Conversely, if the perturbation frequency
is assumed real, then 𝛼 and 𝛽 are complex (𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖, 𝛽 = 𝛽𝑟 + 𝑖𝛽𝑖) and the real and
imaginary components correspond to the wavenumbers and spatial growth rates of the mode,
respectively. In turn, the wave angle is defined as the angle between the streamwise and spanwise
wavenumbers, 𝜗 = tan−1(𝛽𝑟/𝛼𝑟). The sign of the growth rate indicates whether the perturbation
grows (𝛼𝑖, 𝛽𝑖 < 0), decays (𝛼𝑖, 𝛽𝑖 > 0), or remains invariant (𝛼𝑖, 𝛽𝑖 = 0). This spatial formulation
is well suited for the study of convectively amplified disturbances, such as those in separation
bubbles, and so is employed here.

Substitution of Eqn. 3.4 into Eqn. 3.3 yields a sixth-order set of ordinary differential equations
for the perturbation eigenfunctions, which can be reduced and combined to give a single fourth-
order equation in terms of 𝜑𝑣. The exact steps are outlined by Mack [131]. The final expression
is: [

d2

d𝑦2 −
(
𝛼2+𝛽2

)]2
𝜑𝑣 =

𝑖Re𝛿1

{
(𝛼𝑢 + 𝛽𝑤 −Ω)

[
d2

d𝑦2 −
(
𝛼2 + 𝛽2

)]
−

(
𝛼

d2𝑢

d𝑦2 + 𝛽
d2𝑤

d𝑦2

)}
𝜑𝑣,

(3.5)

where the equation has been non-dimensionalized by the local edge velocity, 𝑢e, and the
displacement thickness, 𝛿1, leading to the emergence of the Reynolds number based on these two
quantities, Re𝛿1 . Equation 3.5 is the stability equation for a three-dimensional wall-bounded flow
subject to the boundary conditions that disturbances vanish at and far away from the wall, i.e.,

𝜑𝑣 = 0, and
d𝜑𝑣

d𝑦
= 0, for 𝑦 = 0, and 𝑦 →∞.

If the flow and disturbances are assumed two-dimensional, then 𝑤 = 0 and 𝛽 = 0, respectively,
and Eqn. 3.5 reduces to:(

d2

d𝑦2 − 𝛼
2
)2

𝜑𝑣 = 𝑖Re𝛿1

[
(𝛼𝑢 −Ω)

(
d2

d𝑦2 − 𝛼
2
)
− 𝛼d2𝑢

d𝑦2

]
𝜑𝑣, (3.6)

which is the classic Orr-Sommerfeld equation for a two-dimensional boundary layer. Equations 3.5
and 3.6 are those employed for all stability calculations in this work. In solving either, Ω is specified
(and 𝛽 in the case of Eqn. 3.5) and the equation is solved numerically using Chebyshev polynomial
base functions, with the companion matrix technique used to treat eigenvalue non-linearity [25].
Details on the solution methodology can be found in van Ingen & Kotsonis [240].

As outlined by van Ingen [239], it is often convenient to quantify the ratio of amplitudes for a
two-dimensional disturbance (𝛽 = 0) at two arbitrary streamwise locations, 𝑥 and 𝑥 + d𝑥, which
may be expressed through Eqn. 3.4 as:

𝐴 + d𝐴
𝐴

=
𝑒−𝛼𝑖 (𝑥+d𝑥)

𝑒−𝛼𝑖𝑥
= 𝑒−𝛼𝑖d𝑥 ,
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which may be further manipulated:

ln (𝐴 + d𝐴) − ln (𝐴) = −𝛼𝑖d𝑥
d ln (𝐴) = −𝛼𝑖d𝑥,

and then integrated definitely to give:

𝑁 = ln
(
𝐴

𝐴cr

)
=

∫ 𝑥

𝑥cr

−𝛼𝑖d𝑥, (3.7)

where 𝑥cr is the location at which a perturbation of frequency Ω and amplitude 𝐴cr first becomes
unstable. 𝑁 is referred to as the amplification factor, and the Orr-Sommerfeld equation may be
solved for a range of disturbance frequencies producing an envelope of 𝑁-curves that indicates the
disturbances which are most destabilizing to the flow.

3.3.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a statistical method that utilizes the orthogonal
transformation in order to identify components of large variance in a system. Through this, a low
order approximation of the system can be constructed through identification of the most significant
modes. POD finds applications in many disciplines, such as random variables, image processing,
signal analysis, data compression, and oceanography, where it is more commonly referred to as
principal component analysis. In the context of fluid mechanics, it was first applied by Lumley
[128] in the study of turbulence, and has been used extensively since, primarily for identification
of coherent structures in a wide variety of flows [14]. POD can be formulated as the classical
direct method [14] or the snapshot method [223].

The snapshot method is employed throughout this work. It begins with constructing a snapshot
matrix, 𝑆, containing all realizations of a known/measured quantity. Commonly, the velocity
fluctuations are taken, ®𝑢′, which are arranged along the rows and columns of 𝑆 according to space
(®𝑟) and time (𝑡), respectively:

𝑆 =


®𝑢′(®𝑟1, 𝑡1) ®𝑢′(®𝑟1, 𝑡2) . . . ®𝑢′(®𝑟1, 𝑡𝑀)
®𝑢′(®𝑟2, 𝑡1) ®𝑢′(®𝑟2, 𝑡2) . . . ®𝑢′(®𝑟2, 𝑡𝑀)

...
...

. . .
...

®𝑢′(®𝑟𝑁 , 𝑡1) ®𝑢′(®𝑟𝑁 , 𝑡2) . . . ®𝑢′(®𝑟𝑁 , 𝑡𝑀)


, (3.8)

where 𝑁 and 𝑀 are the number of spatial locations and time snapshots, respectively. Then, an
eigenvalue problem may be formulated based on the autocovariance matrix of 𝑆, 𝑅 = 𝑆T𝑆. This is
expressed as:

𝑅𝑏 = 𝑒𝑏,
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where 𝑒 and 𝑏 are the eigenvalues and temporal coefficients, respectively, and are of the form:

𝑒 =


𝑒(1) 0 . . . 0
0 𝑒(2) . . . 0
...

...
. . .

...

0 0 . . . 𝑒(𝑀)


, 𝑏 =


𝑏 (1) (𝑡1) 𝑏 (2) (𝑡1) . . . 𝑏 (𝑀) (𝑡1)
𝑏 (1) (𝑡2) 𝑏 (2) (𝑡2) . . . 𝑏 (𝑀) (𝑡2)

...
...

. . .
...

𝑏 (1) (𝑡𝑀) 𝑏 (2) (𝑡𝑀) . . . 𝑏 (𝑀) (𝑡𝑀)


,

where the superscript denotes the mode number. For an individual mode, 𝑚, the spatial
eigenfunction, i.e., a POD spatial mode, 𝛾 (𝑚) , can therefore be found by considering the
contributions of the snapshots based on the associated temporal coefficients:

𝛾 (𝑚) (®𝑟) =
𝑀∑︁
𝑖=1

𝑏 (𝑚) (𝑡𝑖) ®𝑢′(®𝑟, 𝑡𝑖),

with the set of eigenfunctions being spatially orthogonal. The eigenvalues indicate the energy
content of the modes, and therefore the energy of a particular mode relative to the total energy of
the fluctuating flow field, 𝐸 (𝑚)R , can be quantified:

𝐸
(𝑚)
R =

𝑒(𝑚)

𝑀∑︁
𝑖=1

𝑒(𝑖)

.

Therefore, sorting the POD modes in order of decreasing eigenvalue reveals the most dominant
(i.e., energy containing) modes. Through this, POD analysis can identify dominant spatially
coherent patterns in a flow field, and an efficient reduced order model can be constructed if a small
number of modes contain a significant portion of the total fluctuating energy. This is often the case
for flows dominated by large-scale convective structures, such as LSBs, where the most energetic
POD modes are found to occur in pairs that represent the vortex shedding process [124, 130, 241].

3.3.3 Wavelet Analysis

Wavelets are useful in the analysis of non-stationary processes, as they can be used to estimate the
power of a given signal as a function of both frequency and position in time. An in-depth overview
of wavelet analysis is provided by Daubechies [43]. Analysis of a temporal signal of interest, 𝑢(𝑡),
begins with the selection of a baseline wavelet function, Ψ(𝑡), which must have a zero mean value
and be localized in time. Throughout this work, the Morlet/Gabor wavelet is used:

Ψ(𝑡) = exp
[
(−𝑡/𝑎)2

]
exp (𝑖2𝜋 𝑓𝑎𝑡) ,

which is plotted in Fig. 3.7 using arbitrary units. In order to satisfy the admissibility condition
[53], the wavelet central frequency, 𝑓𝑎, and damping parameter, 𝑎, are selected to be 5/2𝜋 rad s−1

and 2 s, respectively. The convolution of 𝑢(𝑡) with the complex conjugate of the baseline wavelet,
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denoted by Ψ∗, gives the wavelet coefficient function:

𝜓(𝜏, 𝑠) = 𝑠−1/2√︁
2𝜋 𝑓

∫ ∞

−∞
Ψ∗

( 𝑡 − 𝜏
𝑠

)
𝑢(𝑡)d𝑡

where 𝜏 and 𝑠 are the baseline wavelet translation and dilatation scales, respectively. Unit power per
scale is achieved by scaling the wavelet coefficients by

√︁
2𝜋 𝑓 , where 𝑓 is the sampling frequency

of 𝑢(𝑡). Thus, the wavelet coefficient function gives a measure of the power contained in 𝑢(𝑡) as a
function of the baseline wavelet’s dilatation and translation scales, which are directly related to
frequency and position in the time domain, respectively. Furthermore, the analysis is not limited
to the time domain, as spatial signals can be analyzed to infer power as a function of wavelength
and spatial position.

Figure 3.7: Form of the Morlet/Gabor wavelet.

3.4 Uncertainty Estimation

All uncertainties presented as part of this work are determined using the 𝑛th order uncertainty
methodology of Moffat [157], where the uncertainty in a particular quantity 𝑎 is the result
of the 𝑛 sources of error in the measurement, with the total uncertainty, 𝑈𝑎, estimated as the
root-sum-square of all the error estimates:

𝑈𝑎 =

(
𝑛∑︁
𝑖=1

𝑈𝑖
2

)1/2

. (3.9)

Inevitably, all 𝑛 sources of error cannot be accounted for, in which case the contributions are
evaluated in order of most to least significant, with a sufficient level of confidence achieved in
the uncertainty estimate once unambiguous observations and conclusions can be drawn from the
results.

Two approaches are taken with regards to the propagation of uncertainty. First, in the case
where the relationship between the desired quantity, 𝑎, and the measured quantities, 𝑏𝑖, is known,
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i.e., 𝑎 = 𝑓 (𝑏1, 𝑏2, . . . 𝑏𝑛), then the uncertainty in 𝑎 is determined as follows:

𝑈𝑎 =

[(
𝜕 𝑓

𝜕𝑏1
𝑈𝑏1

)2
+

(
𝜕 𝑓

𝜕𝑏2
𝑈𝑏2

)2
· · · +

(
𝜕 𝑓

𝜕𝑏𝑛
𝑈𝑏𝑛

)2
] 1/2

. (3.10)

This approach is employed when the function 𝑓 is known and evaluation of its partial derivatives is
straightforward. When this is not possible, e.g., in the application of advanced analysis techniques,
then the uncertainty in the final result is estimated by propagating the uncertainty in the input
quantities through the analysis. This is handled on a case-by-case basis based on the particulars of
the analysis method, with details provided in Appendix B.

Throughout this thesis, quantitative results are presented with uncertainty estimates produced
using this framework. Briefs descriptions of how the estimates are obtained are provided where
appropriate, while the reader is referred to Appendix B for more detailed information.
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Chapter 4

Laminar Separation Bubble Flow Develop-
ment
The vortex dynamics of an LSB formed over an airfoil at a low Reynolds number and in a low
free-stream turbulence environment are studied. Weak acoustic excitation that does not modify
the mean LSB topology is applied, allowing for conditional volumetric reconstructions of the flow
field. Forcing at the LSB fundamental frequency and the first subharmonic of this frequency are
found to inhibit and promote the prevalence of vortex merging in the LSB. When left to develop
naturally, vortex formation is found to be nominally two-dimensional, with spanwise undulations
developing as part of the vortex breakup process.

Parts of this chapter have been adapted from the following publications:

Kurelek, J. W., Yarusevych, S., & Kotsonis, M. 2019 Vortex merging in a laminar separation bubble under natural
and forced conditions. Phys. Rev. Fluids, 4 (6), 063903. DOI.

Kurelek, J. W., Tuna, B. A., Yarusevych, S., & Kotsonis, M. 2020 Three-Dimensional Development of Coherent
Structures in a Two-Dimensional Laminar Separation Bubble. AIAA J. Article in Advance. DOI.
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4.1 Introduction

The discussion presented in Section 2.2 established that the shear layer vortices formed in LSBs
are critical to the flow development and impact performance in a wide variety of engineering
applications operating at low Reynolds numbers [62, 75, 166]. In particular, these structures have
been argued to be responsible for inducing mean reattachment [134, 260] and can lead to the
production of sharp acoustic tones when LSBs form near the trailing edge of an airfoil [7, 44, 190].
Thus, in order to develop effective control strategies, a more comprehensive understanding of LSB
dynamics is needed, since the most effective strategies to-date have target the shear layer vortices
and the associated Kelvin-Helmholtz instability.

The prevailing control techniques found throughout the literature involve the introduction
of controlled periodic disturbances at the ‘fundamental’ frequency of the Kelvin-Helmholtz
instability. An in-depth discussion of this type of forcing and the effects on LSBs is provided in
Section 2.3. What lacks in the literature are studies examining the effect of forcing at subharmonic
frequencies on LSB flow development. Such an investigation has merit since, in the case of free
shear layers, subharmonic forcing has been shown to have significant influence over the vortex
dynamics, specifically through manipulation of the vortex merging process. In particular, applying
forcing at or near the fundamental frequency synchronizes the initial vortex roll-up, while also
inhibiting vortex merging in comparison to the natural case [81]. When forcing is applied at
the first subharmonic of the fundamental frequency, vortex merging is promoted and the rate of
momentum transfer across the shear layer increases [72]. Despite the major role played by vortex
merging in the development of free shear layers, there is a lack of insight in this area with respect
to laminar separation bubbles. It remains to be determined if vortex merging has a significant
effect on LSB mean topology, through the influence of the reattachment process or otherwise, and
whether merging can be manipulated via forcing to the same effect as seen in free shear layers.

Adding to the difficulty in gaining a complete understanding of the structure and development
of the shear layer vortices in LSBs are the confluence of factors that can affect flow development.
These are discussed in Section 2.2, and include the external disturbance environment, with
moderate to high levels of free-stream turbulence intensity causing the vortex shedding process to
exhibit significant cycle-to-cycle variations, with the vortices becoming increasingly distorted
across the span. Furthermore, a number of potentially active instabilities have been reported,
including Görtler type [138], elliptical and hyperbolic secondary instabilities [92, 137, 142],
absolute instability [2], and a global centrifugal instability [200, 201], all of which can interact with
the primary Kelvin-Helmholtz instability. The majority of studies to-date examining transition
and flow development in LSBs often ‘probe’ the flow using controlled periodic disturbances
(Section 2.3). However, any study of this nature can be inherently problematic if the introduction
of the disturbances modifies the base flow, since the stability and hence the transition process of
the flow being considered is modified. This is particularly true of experimental investigations,
with a significant portion of results collected for LSBs for which the base flow has been modified
due to high amplitude forcing [112, 260, 261], or by elevated turbulence intensity levels (> 1%)
[31, 33, 69, 255], all while being limited to two-dimensional assessments [69, 113, 124, 260]
of a flow field that is inherently three-dimensional. Thus, a study that simultaneously limits the
external factors known to influence LSBs while characterizing the three-dimensional development
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of the dominant coherent structures is needed.
In this chapter experimental results examining an LSB formed over a NACA 0018 at a low

Reynolds number are presented. The LSB is studied in a low free-stream turbulence facility
(< 0.1%) and is subject only to the primary convective Kelvin-Helmholtz instability. In addition to
leaving the flow to develop naturally, controlled disturbances are introduced through weak acoustic
excitation that do not significantly modify the mean topology of the flow. Two excitation cases are
considered: (i) tonal acoustic excitation at the frequency of the most amplified disturbances in the
natural flow, i.e., the fundamental frequency, and (ii) at the first subharmonic of the fundamental
frequency. These two cases, along side the natural flow, allow for the study of the vortex dynamics
in the LSB, with a focus on the three-dimensionality of the structures and the vortex merging
process.

4.2 Description of Experiments

Experiments were conducted in the University of Waterloo’s recirculating wind tunnel, described
in Section 3.1.1. The free-stream velocity was set based on the static pressure drop through the
wind tunnel contraction calibrated against dynamic pressure in the empty test section measured
via a Pitot-static tube, with uniformity verified to be within ±0.5% over 95% of the test section
span. As outlined in Section 2.2, LSBs are highly sensitive to free-stream disturbances. As such,
careful attention was paid to the frequency content of free-stream perturbations (Fig. 4.1), which
was measured in the empty test section with a hot-wire. Figure 4.1 compares velocity spectra
in the free-stream and LSB shear layer, each obtained at the conditions investigated throughout
this chapter via hot-wire and PIV measurements, respectively. It is apparent that the free-stream
velocity fluctuations are at least two orders of magnitude less than those present in the LSB, and in
particular no significant spectral peaks are present in the free-stream with the frequency range
of dominant fluctuations within the LSB, 2 ≤ St𝑐 ≤ 42 (100 ≤ 𝑓 ≤ 2000 Hz), where St𝑐 is the
Strouhal number based on the free-stream velocity and chord length. The resulting free-stream
turbulence intensity and integral length scale values are 0.07% and 0.2𝑐, respectively, with signals
low-pass filtered at 5 kHz.

The experiments were performed with using the NACA 0018 airfoil model described in
Section 3.1.3. An aerodynamic angle of attack of 4°± 0.1 was investigated at a free-steam velocity
of 𝑢∞ = 9.6 m s−1 ± 0.2, corresponding to a chord-based Reynolds number of Re𝑐 ≈ 125 000. The
solid blockage ratio at the investigated angle of attack is 6.1%. For the given flow conditions,
separation bubbles form on both the suction and pressure surfaces of the airfoil, with the latter
forming close to the trailing edge. To avoid tonal noise emissions due to the pressure side LSB
[190], the pressure side boundary layer was tripped at 𝑥/𝑐 = 0.4 by a 10 mm wide strip of
randomly distributed roughness elements with an average height of approximately 0.2 mm. For
surface pressure measurements, the model’s static pressure taps were connected to a Scanivalve
mechanical multiplexer and pressure were measured using Setra Model 239 pressure transducers
with a full range of ±250 Pa. The uncertainty in all measured mean static pressures is estimated to
be ±0.8% of 𝑞∞ (Section B.4). Fluctuating surface pressures were measured using the model’s
surface embedded microphone array. The microphones were calibrated in situ using a reference
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Figure 4.1: Spectra of streamwise velocity fluctuations.

Brüel and Kjær 4189 microphone, finding that the response of each microphone is flat within
±1 dB for the range of hydrodynamically relevant frequencies, 2 ≤ St𝑐 ≤ 42. All microphones
were sampled simultaneously at 25.6 kHz using two 16-bit National Instruments 9220 modules in
a CompactDAQ chassis. The estimated uncertainty in the measured pressure fluctuations ranges
between ±1% and ±3% of 𝑞∞ (Section B.4).

The flow was forced by means of acoustic excitation, with a sub-woofer placed in the wind
tunnel test section six chord lengths downstream of the airfoil trailing edge. The presence of the
sub-woofer was verified to have no measurable impact on the mean flow characteristics through
surface pressure measurements. A 4189 Brüel and Kjær condenser microphone was used to
characterize the acoustic environment, consisting of background noise and excitation at the airfoil
surface. In addition to the unperturbed case, where the flow was left to develop naturally, two
excitation cases were considered: (i) tonal excitation at the frequency of the most amplified
disturbances in the unperturbed flow (St0𝑐), and (ii) tonal excitation at the subharmonic of the
fundamental frequency (1

2St0𝑐). In order to ensure proper comparison between cases, care was
taken to ensure equivalent acoustic input levels within 2 ≤ St𝑐 ≤ 42. To this end, the sound
press level (SPL) within this frequency range was kept at 89.5 dB for both the fundamental and
subharmonic tone cases. In comparison, the SPL for the natural case was 87.1 dB. The spanwise
uniformity of the excitation was verified through microphone measurements at the airfoil surface,
with SPLs verified to be uniform within the uncertainty limits of the microphones (less than
±0.1 dB) across the centre 20% of the investigated span.

Excitation levels at the airfoil surface were also characterized using the airfoil’s embedded
microphone array (Section 3.1.3). Spectra of the fluctuating pressure measured near the natural
separation point are presented in Fig. 4.2. Figure 4.2a presents spectra corresponding to the two
types of excitation compared to the spectrum of background pressure fluctuations in quiescent
conditions. It can be seen that each excitation primarily produces elevated spectral content
at the intended frequency and does not incite any resonant modes in the test facility. For the
subharmonic case, peaks at higher harmonics are detectable, however, their amplitude are four
orders of magnitude less than that at the targeted frequency. Spectra corresponding to the same
location at Re𝑐 = 125 000 are presented in Fig. 4.2b. In comparison to quiescent conditions, all
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Figure 4.2: Spectra of fluctuating pressure near the natural separation point for the natural
(Nat.), fundamental (F) and subharmonic (SH) cases in (a) quiescent and (b) the investigated flow
conditions. Dashed and dotted lines denote St0𝑐 and 1

2St0𝑐, respectively. Gray shaded region
indicates frequencies associated with the test section standing wave.

spectra here show elevated energy content over a broad range of frequencies centred at St0𝑐, which
is attributed to transition occurring in the LSB. Furthermore, the spectra are devoid of significant
spectral peaks at extraneous frequencies, therefore ensuring no unexpected narrow-band acoustic
sources are influencing the transition process. However, relatively broadband acoustic activity is
present around St𝑐 ≈ 6 (grey shaded region in Fig. 4.2b), which is due to acoustic standing waves
that establish in all hard walled test sections [169, 179, 180]. The frequencies associated with
this standing wave are denoted by Stsw𝑐, and their effect on flow development and transition is
assessed in Section 4.3.2.

Two-component, planar PIV measurements were performed in the configurations shown in
Fig. 4.3. For both configurations, measurements were performed using a high-speed PIV system
for time-resolved measurements at a single plane, in addition to scanning measurements at multiple
planes using a low-speed system. Table 4.1 provides an overview of the salient measurement
parameters. For all measurements, the flow was seeded using a glycol-water based fog with a
mean particle diameter on the order of 1 µm, whose characteristic response frequency [146, 191]
is above the Nyquist limit of the time-resolved PIV sampling frequencies. The laser beam was
introduced through the side wall of the test section and conditioned into a sheet approximately
1 mm thick. Further conditioning oriented the sheet into 𝑥-𝑦 and 𝑥-𝑧 planes for the side and top
view configurations, respectively (Fig. 4.3). Synchronization between cameras and the laser was
handled by a timing unit controlled through LaVision’s DaVis 8 software, which was also used for
image acquisition.

For the time-resolved measurements, a Photonics Nd:YLF laser was used alongside two
Photron SA4 cameras. For the side view configuration (Fig. 4.3a), the cameras were fitted with
Nikon 200 mm focal length macro lenses set to an aperture number ( 𝑓#) of 4. The cameras’
sensors were cropped to 1024 × 512 px and the fields of view were selected to maximize the
spatial resolution in the aft portion of the LSB, while maintaining equal magnification factors
of 0.67. The fields of view were overlapped by 10%, covering a total area of 54 × 12.5 mm, and
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Figure 4.3: (a) Side and (b) top view configurations for time-resolved (TR) and scanning planar
PIV measurements. Coordinate system origin is located at the airfoil leading edge and midspan
point. Full spanwise extent not depicted.

Table 4.1: Parameters for PIV experiments.

Parameter Time-Resolved Scanning UnitSide Top Side Top

Laser Photonics 20 mJ/pulse Nd:YLF EverGreen 70 mJ/pulse Nd:YAG –
Cameras Photron SA4 LaVision Imager Pro-X 2M –
Lens focal length 200 105 200 200 mm
Lens 𝑓# 4 2.5 4 4 –
Mag. factor 0.67 0.33 0.62 0.37 –
Sensor resolution 1024 × 512 1024 × 1024 1600 × 860 1600 × 1200 px
Planes 1 29 11 –
FOVs per plane 2 3 6
Area/volume 54 × 12.5 54 × 102 52 × 10 × 140 30 × 5 × 134 mm
PIV mode Double-frame Double-frame –
Acquisition mode Indep. sampling Indep. sampling & phase-locked –
Sampling rate 3800 1950 15 (indep.), 14.4 (phase-locked) Hz
Laser pulse sep. 40 60 19 17–26 µs
Max. particle disp. 17 9 20 11 px
No. of samples 5000 2728 1000 (indep.), 250 (per phase) –
Final window size 16 × 16 (75% overlap) 24 × 24 (75% overlap) px
Vector pitch 0.12 × 0.12 0.24 × 0.24 0.07 × 0.07 × 5 0.12 × 0.5 × 0.12 mm
Avg. uncertainty 6 6.5 5 12 % of 𝑢∞

double-frame images were acquired at 3.8 kHz. For the time-resolved, top view PIV measurements
(Fig. 4.3b), the cameras were fitted with Nikon 105 mm focal length macro lenses set to 𝑓# = 2.8.
The streamwise extent of the FOV was set to match that of the combined side view FOV, with
the second camera employed to extent the FOV in the spanwise direction, while maintaining a
10% overlap. The full sensor resolution of 1024 × 1024 px and equal magnification factors of 0.33
were used for both cameras. The combined top view FOV for the time-resolved measurements is
54 × 102 mm, with double-frame images acquired at a rate of 1.95 kHz.

For the scanning PIV measurements, the measurement system equipment consisted of an
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EverGreen Nd:YAG laser, one LaVision Imager Pro-X 2M camera fitted with a Nikon 200 mm
macro lens set to 𝑓# = 4, and a timing unit; all controlled through LaVision’s DaVis 8 software.
For the side view configuration (Fig. 4.3a), the camera’s sensor was cropped to 1600 × 860 px and
the imaged field of view was set to 19 × 10 mm, resulting in a magnification factor of 0.62. For
the top view (Fig. 4.3b), the camera’s full sensor resolution of 1600 × 1200 px was used, and the
FOV was 30 × 24 mm, resulting in a magnification factor of 0.37. To achieve the desired spatial
resolution in the data, three and seven fields of view per plane were captured in the top and side
view configurations, respectively, with 10% overlap employed between adjacent views.

The flow field was volumetrically reconstructed using the scanning PIV measurements. For the
side view configuration (Fig. 4.3a), a total of 29 streamwise planes were measured, each spaced by
5 mm in the 𝑧-direction, resulting in a total measurement volume of 52 × 10 × 140 mm. For the
top view (Fig. 4.3b), 11 planes were measured each spaced by 0.5 mm in the 𝑦-direction, resulting
a measurement volume of 30 × 5 × 155 mm. The camera and laser were moved synchronously
using an automated traversing system, with calibration images taken at multiple planes. Vortex
shedding in a separation bubble is naturally quasi-periodic [20, 33, 113, 243] and therefore does
not lend well to phase-averaging. However, when excited using an acoustic tone, the shedding
process can lock to the excitation frequency, thus greatly reducing temporal variability [112]. This
technique was employed to enable phase-locked PIV measurements for the fundamental excitation
case. The excitation signal served as the phase-locking reference and therefore was split prior to
amplification and sent to the PIV timing unit. Independently sampled (non-phase-locked) scanning
PIV measurements were taken for the natural and fundamental cases. No scanning measurements
were performed for the subharmonic case.

All image processing and vector calculations were performed in LaVision’s DaVis 8 software.
All imaged particles were approximately 2 to 3 px in diameter. Iterative, multi-grid cross correlation
schemes with window deformation [212] were used to compute velocity fields. Final interrogation
windows sizes of 16×16 px and 24×24 px, both with 75% overlap, were used for the time-resolved
and scanning measurements, respectively. The resulting data vector pitches are reported in
Table 4.1. The results were post-processed using the universal outlier detection algorithm [247].
Individual velocity fields were then interpolated onto the common surface attached coordinate
system, with cosine weighted blending functions employed in the overlap regions. The random
errors in the PIV measurements were evaluated using the correlation statistics method [251], with
the average uncertainties associated with each configuration and measurement type reported in
Table 4.1, while higher uncertainties (approximately 10% of 𝑢∞) are present near the airfoil surface.
A full treatment of the uncertainty estimates related to the PIV measurements and quantities that
are subsequently derived from the PIV results is given in Section B.2.

4.3 Results

The results presented pertain to an LSB formed on the suction side of a NACA 0018 airfoil at an
angle of attack of 4° and chord-based Reynolds number of 125 000. In addition to leaving the flow
to develop naturally, tonal acoustic excitation is applied at the frequency of the most amplified
disturbances in the natural flow, i.e., the fundamental frequency, St0𝑐 = 15.6 ( 𝑓0 = 750 Hz), and
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at the first subharmonic of St0𝑐, 1
2St0𝑐 = 7.8 (1

2 𝑓0 = 375 Hz), which were determined a priori
via fluctuating surface pressure measurements (Fig. 4.2). The excitation amplitude for both the
fundamental and subharmonic cases is characterized by an increase in the SPL measured at the
airfoil surface of 0.6 dB over the natural case. This low excitation level was selected to avoid
any substantial mean flow modifications, while enabling assessment of the effects of forcing on
the ensuing vortex dynamics. In the discussion that follows, the flow development of the LSB is
first established, followed by an in-depth examination of the vortex merging phenomenon and the
three-dimensional development of the dominant coherent structures. Throughout the presentation
of results, the natural, fundamental, and subharmonic forcing cases are denoted by the shorthands
Nat., F, and SH, respectively.

4.3.1 General Flow Development

A two-dimensional view of flow development in the LSB is assessed from results of the time-
resolved PIV measurements, performed at the midspan plane for all cases. Time-averaged velocity
field statistics are plotted in Fig. 4.4 and are analyzed to identify the presence and extent of the
separation bubble. A region of reverse flow is identifiable in the mean streamwise velocity, 𝑢,
contours of the natural flow, indicating the presence of flow separation and subsequent reattachment
(in a time-averaged sense), and thus the formation of an LSB. The maximum reverse flow velocity
is approximately 4% of 𝑢∞, thus indicating the flow is convectively unstable and is not subject to a
local absolute instability [2] or global instability [200, 201], which have minimum reverse flow
velocity thresholds of 15% and 7%, respectively. The mean outline of the bubble is identified using
the dividing streamline, which forms a closed contour with the surface within which the streamwise
mass flux is zero [58, 76, 172]. The intersection points of the dividing streamline with the surface
are the mean separation and reattachment points, 𝑥s and 𝑥r, respectively, with the estimates of the
former lying upstream of the measurement domain for all cases. The maximum bubble height, 𝑦ℎ
and its streamwise position, 𝑥h, are also indicated and are found where the maximum wall-normal
distance between the surface and dividing streamline occurs. The uncertainties in determining
𝑥s, 𝑥h, and 𝑥r are indicated by the dotted lines in Fig. 4.4, whose determination is outlined in
Section B.2.

From Fig. 4.4, on accord of the relatively weak levels of forcing employed, neither type of
excitation results in significant changes in the mean topology of the bubble, with all changes
in mean separation, maximum bubble height, and reattachment falling within the experimental
uncertainty. Accordingly, the root-mean-square contours of streamwise and wall-normal velocity
fluctuations, 𝑢′rms and 𝑣′rms, respectively, are not appreciably altered by the excitation. Overall, all
rms contours closely match previous reports for naturally developing separation bubbles [113,
260]. The rising rms levels along the trajectory of the displacement thickness indicate that the
well-established process of streamwise disturbance amplification in the separated shear layer
leading to roll up and the formation of shear layer vortices [20, 243] occurs in a similar manner
for the cases presented in Fig. 4.4. However, subtle differences are detected in the rms contours,
in particular in the near wall region of the 𝑢′rms contours for the subharmonic case, and in the
𝑣′rms at 𝑥/𝑐 = 0.46 for both the fundamental and subharmonic cases, which indicates that flow
development may be affected by the excitation.
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Figure 4.4: Mean streamwise velocity (𝑢), and rms of fluctuating streamwise (𝑢′rms) and wall-
normal (𝑣′rms) velocity. Solid lines mark the dividing streamlines, whose uncertainty bounds are
indicated by the dotted lines. Triangle and square markers denote estimated mean maximum
bubble height and reattachment points, respectively. Dashed lines indicate displacement thickness.

Flow development in the LSB is assessed via the sequences of spanwise vorticity, 𝜔𝑧, contours
presented in Fig. 4.5. Contours of the 𝜆2-criterion [88] are added to aid in identifying coherent
structures. The natural flow development (Fig. 4.5a) is characterized by periodic roll-up of the
separated shear layer into vortices upstream of the maximum height location, 𝑥h/𝑐 = 0.52. These
structures interact and deform within 0.52 < 𝑥/𝑐 < 0.56, followed by the onset of breakdown to
smaller scales beyond mean reattachment, 𝑥r/𝑐 = 0.56. Dashed lines are used to track structures
frame-to-frame, with the slope and streamwise spacing of the lines representing convective velocity
and streamwise wavelength, respectively. The majority of structures in the naturally transitioning
flow are characterized by similar convective velocities and wavelengths; however, sporadic merging
between subsequent vortices can occur. This is capture for vortices A and B in Fig. 4.5a, where
the convective velocity of the downstream structure in the merging pair (B) decreases, while
that of the upstream vortex (A) remains constant. Consequently, the distance between the vortex
cores decreases and they merge, forming A+B, which is separated from the nearest downstream
vortex by approximately twice the average streamwise wavelength. The observed process is in
general agreement with the stages of vortex merging described by Cerretelli & Williamson [35]
and Meunier et al. [148].

Figures 4.5b and 4.5c show flow development in the LSB for the fundamental and subharmonic
excited cases, respectively, where similar to the natural case (Fig. 4.5a), the separated shear layer
rolls up to form periodic vortices upstream of the maximum bubble height location. The shed
structures then convect downstream, deform, and eventually begin to break down to smaller scales.
However, for the subharmonic case, vortex merging is observed regularly through the entire
recorded sequence. This is exemplified by the results in Fig. 4.5c, as all vortices initially identified
in the roll-up region (𝑥/𝑐 < 0.53) undergo merging. In stark contrast, Fig. 4.5b shows that forcing
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Figure 4.5: Sequences of instantaneous spanwise vorticity contours. Consecutive frames separated
by 𝑡∗𝑐 = 3.8 × 10−2. Solid black lines indicated 𝜆2 contours [88]. Solid grey lines mark the dividing
streamlines. Dashed lines trace the same vortices. Black and grey arrows mark 𝑥h/𝑐 and 𝑥r/𝑐,
respectively.

the flow at the fundamental frequency locks vortex shedding to the excitation frequency; evident
from the significantly reduced variability in the convective velocity and streamwise wavelength of
the shed structures. As such, vortex merging is difficult to identify through visual inspection and
thus is speculated to be inhibited by the forcing applied at the fundamental frequency.

To quantify and compare the frequency content and streamwise growth of flow disturbances
across the studied cases, spectra of wall-normal velocity fluctuations, 𝜙𝑣′𝑣′, in the separated
shear layer (along 𝑦 = 𝛿1) are computed. The results are presented in Figs. 4.6a–c, which
are computed using Welch’s method [245] by dividing signals into 7 windows containing 211

points with 75% overlap, resulting in a non-dimensional frequency resolution of 0.04. Plotted
alongside are spectra of surface pressure fluctuations, 𝜙𝑝′𝑝′, (Figs. 4.6d–f), computed from signals
divided into 255 windows each containing 215 points (50% overlap), resulting in a resolution
of ΔSt𝑐 = 0.03. Surface pressure fluctuations have the demonstrated capability of capturing
the development of hydrodynamic disturbances present within the flow [60], given disturbances
reach sufficient amplitudes to produce measurable surface pressure fluctuations. Such is the
case presented in Fig. 4.6, as the velocity and pressure spectra for any particular case provide
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Figure 4.6: Frequency spectra of wall-normal velocity (a–c) and surface pressure (d–f) fluctuations.
Velocity fluctuations measured within the separated shear layer (𝑦 = 𝛿1). Pressure measurement
points (microphone locations) indicated by arrow heads. Black and grey arrows mark 𝑥h/𝑐 and
𝑥r/𝑐, respectively.

largely similar descriptions of the streamwise disturbance development. Specifically, measurable
streamwise amplification of disturbances begins downstream of separation primarily in a band
centred on St0𝑐 = 15.6, followed by the redistribution of energy to a wide frequency range as a
result of transition to turbulence. Notable differences between the velocity and pressure spectra
include the earlier detection of disturbances in the pressure signals, which is a result of PIV’s
relatively high noise floor (Section B.2), and better resolved low frequency activity in the pressure
measurements, which is a result of significantly longer sampling. The activity at 𝑆𝑡 < 2.5 is due
to low frequency environmental noise (fan blade passage, etc.) and is largely irrelevant to the
investigated hydrodynamics. However, the activity associated with the test section standing wave,
Stsw𝑐 ≈ 6, is significant, as it is detectable in both the pressure and velocity spectra for all cases.
Therefore, this purely acoustic phenomenon results in the manifestation of velocity disturbances at
the same frequency (Figs. 4.6a–c) and therefore serves to influence the flow development in some
capacity. The extent of this effect and the relation to vortex merging is examined in Section 4.3.2.

The spectral results of the natural case (Figs. 4.6a and 4.6d) show that disturbances within
a band of frequencies centred on St0𝑐 are amplified and undergo convective growth within
0.4 . 𝑥/𝑐 . 0.5, i.e., upstream of the mean maximum height location. At 𝑥h/𝑐, the energy within
the unstable frequency band has begun redistribution to a wider range of frequencies, consistent
with the breakup of the rollers in the final stage of transition to turbulence observed in Fig. 4.5a.
The spectra for the fundamental and subharmonic cases (Figs. 4.6b and 4.6e, and Figs. 4.6c
and 4.6f) show no appreciable alterations to the natural band of amplified disturbances; while
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Figure 4.7: Wavenumber-frequency spectra of wall-normal velocity fluctuations. Velocity
fluctuations measured within the separated shear layer (𝑦 = 𝛿1). Dashed line is a linear fit estimate
the convective ridge.

significant velocity fluctuations are detected at the respective forcing frequencies (i.e., 𝑆𝑡0 for the
fundamental case, and 1

2St0𝑐 for the subharmonic case; see zoomed in region in Figs. 4.6e and 4.6f).
Thus, each forcing technique is successful in promoting the growth of velocity disturbances at the
frequency of the applied acoustics; indicating that there are sustained effects on the periodicity of
the vortex shedding phenomena seen in Fig. 4.5.

Wavenumber-frequency spectra (Fig. 4.7) allow for the determination of the predominant
disturbance wavenumber and convective velocity. For all cases, spectral energy is primarily
concentrated along a line of constant slope, which is commonly referred to as the convective ridge
[78]. Along this ridge, the disturbance wavenumber and frequency are related by their convective
velocity, 𝑢con = 2𝜋 𝑓 /𝑘𝑥 . For the natural case (Fig. 4.7a), the wavenumber and convective velocity
corresponding to St0𝑐 are 𝑘𝑥𝑐 = 158 and 𝑢con/𝑢e = 0.52, where the edge velocity is taken outside
of the separated bubble (𝑢𝑒 = 1.2𝑢∞ from Fig. 4.4). The obtained estimate for 𝑢con agrees well with
the range 0.3 . 𝑢con/𝑢e . 0.6 observed in previous investigations [20, 33, 190]. Figures 4.7b and
4.7c show that excitation at either the fundamental or subharmonic frequency concentrates spectral
energy at the forcing frequency, while not appreciably altering the convective ridge. Estimating
the convective velocities for these two cases yields 𝑢con/𝑢𝑒 = 0.52 and 0.51, respectively, which
closely matches the natural case. Therefore, consistent with the ascertainable convective velocities
from the vortex traces in Fig. 4.5, neither forcing case affects the convective velocity of the periodic
disturbances.

The PIV measurements from the top view configuration (Fig. 4.3b) allow for analysis of both
streamwise and spanwise aspects of the flow development. For these measurements, the laser sheet
was positioned such that it passed through the top halves of the shear layer vortices, thus allowing
for their identification as periodic spanwise bands of high streamwise velocity in the planar images,
which are visible throughout Fig. 4.8. For all cases, coherent and spanwise uniform structures are
first identified at 𝑥/𝑐 ≈ 0.5, which is consistent with where roll-up is observed in Fig. 4.5. At
and beyond formation, significant spanwise undulations develop in the vortex filaments, which
intensify as the structures convect downstream. This leads to the onset of the breakup to smaller
scales seen for 𝑥/𝑐 > 0.6. The formation of spanwise uniform shear layer vortices is consistent
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Figure 4.8: Sequences of instantaneous streamwise velocity contours. Flow is from top-to-bottom.
Consecutive frames separated by 𝑡∗𝑐 = 2.5 × 10−2. Dashed lines indicate smoothed spline fits to
the centre of selected structures (labelled A–F).

with the observations of other similar investigations [92, 137, 170], which according to Michelis
et al. [153] is an indication of the relative dominance of normal over oblique disturbance modes.
Furthermore, the development of spanwise deformations leading to localized regions of vortex
breakup is consistent with the vortex breakup mechanism for an LSB proposed by Kurelek et al.
[113].

For each of the studied cases, exemplary merging events are depicted in the sequences presented
in Figs. 4.8a–c. For example, Fig. 4.8c shows merging between two shear layer vortices, labelled
as E and F, for the subharmonic excited flow. In Figs. 4.8c-i and 4.8c-ii, vortex E convects
downstream while developing spanwise undulations, which are most notable at 𝑧/𝑐 = −0.1 and 0.3,
as the vortex filament bulges forward in the streamwise direction. Concurrently, vortex F is formed
and also develops spanwise undulations in Figs. 4.8c-ii and 4.8c-iii. The merging process between
E and F begins to take place in Fig. 4.8c-iii, as the vortex filaments intertwine, while the structures
do not merge at the locations where the streamwise forward bulges developed in E. The merged
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structure, labelled E+F in Fig. 4.8c-iv, then continues to convect downstream while retaining two
separate vortex filaments over some spanwise segments, e.g., at 𝑧/𝑐 ≈ −0.1 and 0.3. Overall,
similar progressions are seen for the merging of structures A and B in the natural flow (Fig. 4.8a),
and C and D in the flow excited at the fundamental frequency (Fig. 4.8b). In particular, the
depicted merging events occur in a non-uniform spanwise manner, resulting in structures that are
merged within some spanwise segments, e.g., within 0.15 < 𝑧/𝑐 < 0.25 and 0.05 < 𝑧/𝑐 < 0.15 in
Figs. 4.8a-iv and 4.8b-iv, respectively, while distinct segments of unmerged filaments persist at
other locations, e.g., at 𝑧/𝑐 = 0.025 and 𝑧/𝑐 > 0.25 in the same two figures. The three instances
of vortex merging depicted here are representative of most merging events observed across the
studied cases, and so the results demonstrate that vortex merging in a separation bubble occurs
non-uniformly across the span, with the spanwise undulations that develop in the vortex filaments
playing an intrinsic role in the process.

It should be noted that the spanwise wavelengths, 𝜆𝑧, that develop in the vortex filaments
exhibit significant cycle-to-cycle variations for all three cases. There variations are characterized
in a statistical sense using a wavelet based analysis (Section 3.3.3), which is preferred over
Fourier analysis due to the limited spanwise extent of the PIV field of view. From the top view
PIV measurements, streamwise velocity fluctuating velocity signals are extracted at 𝑥/𝑐 = 0.55,
smoothed using a spatial kernal of width 0.02𝑐, and wavelet coefficients are calculated using the
Morlet wavelet [43]. For a given time instant, the predominant spanwise wavelength is estimated
from the maximum wavelet coefficient, with the process repeated for all time realizations and
statistical samples obtained as a result. The data are presented using histograms in Fig. 4.9,
which show similar distributions of 𝜆𝑧, each with a mean value of approximately 𝜆𝑧/𝑐 = 0.15 and
predominant wavelengths concentrated within 0.04 . 𝜆𝑧/𝑐 . 0.28, which is in good agreement
with the visualized structures in Fig. 4.8. Comparing these results with the predominant streamwise
wavelength of the primary structures (𝑘𝑥𝑐 ≈ 158⇒ 𝜆𝑥/𝑐 ≈ 0.04, from Fig. 4.7), gives a ratio of
wavelengths that ranges between 1 . 𝜆𝑧/𝜆𝑥 . 7, which is consistent with the results of previous
investigations [113, 137, 153]. While the undulations that develop in the vortex filaments play an
intrinsic role in the merging process (Fig. 4.8), the lack of appreciable differences in the histograms
across the three studied cases (Fig. 4.9) indicates that any effect the forcing may have on the vortex
merging process does not manifest through modification of the spanwise wavelengths.

4.3.2 Vortex Merging

Section 4.3.1 provided anecdotal evidence of the fundamental and subharmonic forcing affecting the
vortex merging process in the LSB. To substantiate these findings, wavelet analysis (Section 3.3.3)
is employed to quantify vortex merging in the flow and the subsequent effect of forcing. This tool
is preferred over traditional Fourier analysis since the merging phenomenon is localized in both
time and space, while not necessarily being periodic in time. For each case examined, fluctuating
wall-normal velocity signals are extracted at 𝑦 = 𝛿1 and the midpoint between the mean maximum
height location and reattachment points (𝑥/𝑐 ≈ 0.54 for all cases), where most vortex merging
events occur (Fig. 4.5). Wavelet coefficients, 𝜓, are then calculated using the Morlet wavelet [43]
for all time instants and across the relevant spectrum of frequencies, with the results presented in
Fig. 4.10. For the natural and fundamental cases, examination of Figs. 4.10a and 4.10b shows
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Figure 4.9: Spanwise wavelength probability distributions at 𝑥/𝑐 = 0.55. Dotted lines indicate
standard deviation from the mean (dashed line).

that velocity fluctuations are predominantly concentrated within a band of frequencies centred at
St0𝑐 = 15.6 over the entire recorded sequence. Instants at which significant wavelet coefficients
exist ta 1

2St0𝑐 = 7.8 do occur for these cases, however they are relatively infrequent compared to the
subharmonic case (Fig. 4.10c), where activity at 1

2St0𝑐 is widespread over the entire measurement.
To link vortex merging with the trends observed in the wavelet coefficients, short segments

that encompass the time periods corresponding to the vorticity sequences presented in Fig. 4.5
are shown in Figs. 4.10d–f. For the natural and subharmonic cases, when vortex merging is
visually identified in Figs. 4.5a and 4.5c, the corresponding maximum wavelet coefficients (within
the dotted intervals in Figs. 4.10a and 4.10c) are concentrated at 1

2St0𝑐. In contrast, the wavelet
coefficients for the fundamental case (Fig. 4.10e) are confined to a relatively narrow band centred
at St0𝑐, which is consistent with the highly organized and periodic nature of the structures observed
in Fig. 4.5b. Thus, the identification of local maxima in the wavelet coefficients at frequencies of
interest can serve to identify instances at which vortex merging occurs, allowing for a quantitative
comparison of the prevalence of the phenomenon between the three studied cases. It must be
noted that, in particular for the natural case (Fig. 4.10d), significant low-frequency activity is
detected at Stsw𝑐 = 6 in addition to 1

2St0𝑐. This activity is a result of the standing wave present in
the test section (Fig. 4.2b), whose frequency is close to the subharmonic frequency. Therefore, it
is possible that the standing wave serves to influence the flow, leading to merged structures with
this characteristics frequency. For this reason, quantitative analysis of the results is performed for
both 1

2St0𝑐 and Stsw𝑐, and the possible relation of the standing wave frequency to vortex merging
is considered in detail later in this section.

The proposed method for vortex merging quantification involves identifying all local maxima
in the wavelet coefficients at the frequencies of interest, namely, 1

2St0𝑐 and Stsw𝑐, within a non-
dimensional frequency band of ±0.1. Conditional filtering is applied, with a maximum only being
retained if its magnitude exceed a signal-to-noise ratio of five and is greater than other maxima
detected at St0𝑐 ± 0.1 within a temporal window of width equal to twice the fundamental shedding
period. The resulting detected maxima are indicated by the black markers in Figs. 4.10d–f.
Estimates for the percentage of merged structures detected in the flow, 𝑅merg, are made by taking
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Figure 4.10: Wavelet coefficient contours computed from wall-normal velocity fluctuations
sampled at 𝑦 = 𝛿1 and at the midpoint between 𝑥h and 𝑥r. Dashed regions in (a)–(c) replotted in
(d)–(f). Dotted regions in (d)–(f) correspond to intervals shown in Fig. 4.5. Markers denote local
maxima identified at frequencies of interest.

the ratio of combined number of maxima detected at 1
2St0𝑐 and Stsw𝑐 to an estimated number of

primary structures shed during the measurement sample (1.32 s) at the fundamental shedding
frequency, St0𝑐 = 15.6 ( 𝑓0 = 750 Hz). Prior to evaluating all data sets, the proposed methodology
was applied to a test signal (0.35 s long) extracted at 𝑦 = 𝛿1 and the midpoint between 𝑥h and 𝑥r
for the subharmonic data set. Through a detailed manual inspection of the vorticity contours,
it was determined that this test segment contained approximately 80 merging events, which the
method was able to estimate within 4%. The method was then applied to the full data sets and at
all streamwise positions, yielding the results shown in Fig. 4.11. The results are smoothed using a
sliding spatial window (0.01𝑐 width) and the indicated uncertainty bounds are determined based
on the variability of the estimates within the smoothing window. Note that results are plotted up
until the mean reattachment locations, where the uncertainty was found to sharply increase from
approximately ±3% to over ±10% due to the onset of vortex breakdown (Fig. 4.5).

Figure 4.11 provides several key insights regarding the vortex merging process and the effects
of forcing. Namely, for all cases, no merged structures are detected in the fore portion of the
bubble (𝑥/𝑐 < 0.48), indicating that all vortices are formed and shed at the fundamental frequency.
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Figure 4.11: Ratio of detected merged structures to total number of shed primary structures
determined using wavelet methodology (Fig. 4.10). Dashed and dotted lines (coloured according
to legend) mark 𝑥h/𝑐 and 𝑥r/𝑐, respectively. Shaded regions (coloured according to legend)
indicate uncertainty bounds.

Further downstream, all cases shown an eventual rise in the number of detected merged structures
indicating the onset of merging, with the start of the region where 𝑅merg plateaus indicating the
location at which most merging events are completed. For the natural flow, the first merging events
are detected at 𝑥/𝑐 ≈ 0.51, followed gradual increases until 𝑅merg plateaus to a value of 9% ± 3 at
𝑥/𝑐 = 0.55. Further downstream, 𝑅merg begins to rise again, however, the changes are within the
uncertainty of the estimates and may be a result of turbulent breakdown. The fundamental case
shows a similar trend to the natural flow, with 𝑅merg also peaking at approximately 𝑥/𝑐 = 0.55,
but the maximum value is reduced to 4% ± 1. For the subharmonic forcing, the onset of vortex
merging is seen at a much earlier streamwise position compared to the natural flow, followed by a
sharper rise in the ratio of merged structures that begins to plateau at 𝑥/𝑐 = 0.53, attaining a value
of 34% ± 2. Thus, supporting the analysis of the time-resolved flow development and spectra
of flow disturbances (Figs. 4.5 and 4.6, respectively), these results conclusively show vortex
merging occurs naturally in the studied LSB, while forcing at the subharmonic and fundamental
frequencies promotes and inhibits merging, respectively. Such observations are in agreement with
those made for free shear layers [72, 81]. The results of this investigation clearly indicate that
forcing specifically affects the streamwise position at which merging events take place and the
total percentage of vortices that undergo merging.

From the peak ratio of detected merged structures determined from Fig. 4.11, it is possible to
estimate the ratio of primary structures that are involved in vortex merging for a given case. For
example, when the flow is forced subharmonically, at 𝑥/𝑐 = 0.54 the merged vortices account
for 34% of the total number of shed primary vortices. Since merged structures are formed by
two primary vortices, this implies that 68% of all primary vortices undergo merging. Similarly,
the percentage of primary structures engaged in merging is 18% and 8% for the natural and
fundamental cases, respectively. In the investigation of Lambert & Yarusevych [115], they found
that up to 15% of the total number of shed vortices merge in an unforced LSB formed over the
same NACA 0018 profile at a comparable Reynolds number and angle of attack, which agrees
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well with the 18% reported here.
It is now possible to clarify the relationship between vortex merging and separation bubble

topology given that the effects of forcing on vortex merging have been established. In free shear
layers, it is well documented that the promotion of vortex merging through subharmonic forcing
lends to an increase of momentum transfer across the layer [72]. For separation bubbles, it is
generally accepted that mean reattachment is induced by the exchange of momentum from the outer
flow to the wall by the shear layer vortices [134, 260]. Therefore, one might expect a promotion
of vortex merging in an LSB to lead to earlier mean reattachment. However, the findings of this
investigation clear show that this is not the case, as the percentage of primary structures that merge
in the aft portion of the bubble increases significantly from 18% in the natural flow to 68% when
forced subharmonically, yet the mean reattachment location does change within the uncertainty of
the PIV measurements (Fig. 4.4). This indicates that the enhancement of momentum exchange
due to the increase in merged vortex circulation [35, 148] is balanced by the reduced frequency of
the structures, producing a comparable mean flux of momentum to that produced by unmerged
primary structures. Consequently, the mean bubble position, length, and maximum height remain
largely unchanged (Fig. 4.4).

The present results have established that, similar to free shear layers, targeted forcing applied
at the subharmonic and fundamental frequencies promotes and inhibits vortex merging in an
LSB, respectively. Further parallels can be drawn with free shear layers, as Ho & Huang [72]
demonstrated that periodic vortex merging coincides with the growth of perturbation energy at the
subharmonic frequency for acoustically forced free shear layers. A similar analysis is performed
here, where modal amplitudes for wall-normal velocity perturbations of a given frequency, 𝑣′, are
determined by integrating the frequency spectra within an St𝑐 band of width 1. The streamwise
evolution of the modes in the separated shear layer (𝑦 = 𝛿1) is shown in Fig. 4.12, where St0𝑐,
1
2St0𝑐, and Stsw𝑐 are the frequencies of interest. When left to develop naturally (Fig. 4.12a),
exponential growth is detected in the St0𝑐 mode within 0.42 < 𝑥/𝑐 < 0.48, followed by a reducing
growth rate and eventual saturation by 𝑥/𝑐 ≈ 0.5, which lies upstream of the mean maximum
height location and coincides with the roll-up region, i.e., where coherent vortices are first formed.
At the streamwise location where the fundamental mode begins to deviate from an exponential
growth rate (𝑥/𝑐 ≈ 0.48), growth is detected in the subharmonic and standing wave modes, which
precedes the detection of vortex merging onset seen in Fig. 4.11. A similar progression is seen for
the fundamental case (Fig. 4.12b), namely exponential growth in the fundamental mode followed
by growth in other modes at a streamwise position slightly upstream of where vortex merging is
first detected; however, here earlier detectable growth in St0𝑐 is observed as a result of forcing the
fundamental mode.

In contrast to the natural and fundamental cases, when the flow is forced at the subharmonic
frequency (Fig. 4.12c), both the St0𝑐 and 1

2St0𝑐 modes undergo similar initial amplification. The
fundamental mode then saturates at approximately the same streamwise location as that of the
natural case, while the subharmonic mode continues to grow, reaching its peak at approximately
𝑥/𝑐 = 0.55. The streamwise location where this maximum is reached approximately coincides
with where vortex merging is observed in Fig. 4.5c and where 𝑅merg plateaus (Fig. 4.11), thus
supporting the assertion of Ho & Huang [72]. In fact, the trends reported in Fig. 4.12c agree
well with those reported by Ho & Huang (cf. their Figs. 15 and 16). However, one distinction
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Figure 4.12: Streamwise growth of wall-normal velocity perturbation modes within the separated
shear layer (𝑦 = 𝛿1). Black and grey arrows mark 𝑥h/𝑐 and 𝑥r/𝑐, respectively.

must be highlighted here, as a secondary resonance mechanism has been proposed for free shear
layers [102, 160]. This mechanism dictates that the growth in the subharmonic mode follows the
saturation of the fundamental mode, with subharmonic growth occurring as a result of energy
cascading from the fundamental mode, even when forced at the subharmonic frequency. This
appears not the case for the studied LSB, as here the subharmonic forcing is capable of affecting
the intended mode directly without a secondary transfer mechanism.

Analysis of the LSB coherent structures and their merging characteristics is furthered through
proper orthogonal decomposition analysis (Section 3.3.2), which is performed using the snapshot
method of Sirovich [223]. Figure 4.13 presents the relative, 𝐸R, and cumulative, 𝐸C, energy
distributions across the first 20 modes, with𝑚 indicating mode number. As is typically seen for flows
involving large-scale, propagating coherent structures [124, 241, 244, 260], a significant portion
of the total turbulent kinetic energy is captured within a small number of modes (approximately
71–78% in the first 20 modes, as seen in Fig. 4.13b), and the most energetic modes are grouped
into pairs of similar energy levels (i.e., modes 1 and 2, and modes 3 and 4 in Fig. 4.13a). The
paired nature of the modes is confirmed through visual inspection of their spatial distribution,
which show a distinct phase offset of 𝜋/2 between pairs. Therefore, every other mode is plotted in
terms of its wall-normal component, 𝛾 (𝑚)𝑣 , in Fig. 4.14. For all cases, the most energetic mode
pair features a distinct periodic spatial structure that is characterized by a streamwise wavelength
of approximately double the primary wavelength of the shear layer vortices in the natural flow
(𝑘𝑥𝑐 = 158⇒ 𝜆𝑥/𝑐 = 0.04, from Fig. 4.7a). This, in addition to these structures being found in
the aft portion of the bubble, indicates that these modes are associated with the merged shear
layer vortices. The unmerged, primary structures are captured by the higher mode pairs (modes 3
and 4 for the natural and fundamental cases, and modes 5 and 6 for all cases), as these structures
have wavelength of approximately 0.04𝑐 and form further upstream. Based on these results, a few
key observations can be made. First, consistent with the effect of these two types of forcing on
vortex merging, forcing at the subharmonic frequency increases the relative energy content of the
modes associated with the merged structures, while the opposite effect is produced by forcing at
the fundamental frequency. It must be noted that a commensurate increase in the energy levels of
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Figure 4.13: POD (a) relative and (b) cumulative modal energy distributions.

Figure 4.14: Wall-normal component of normalized POD spatial modes. Solid lines mark the
dividing streamlines. Black and grey arrows mark 𝑥h/𝑐 and 𝑥r/𝑐, respectively.

modes 3–6 is not seen when forced at the fundamental frequency (Fig. 4.13a), which has been
previously reported [260]. This is likely the consequence of employing a spatial decomposition
technique, resulting in modes with the same frequency content being split across several modes.
Thus, when the flow is forced small increases in the energy levels of many modes are observed,
rather than a large increase for a single mode pair.

Further insight into the vortex merging process is gained through examination of the spectra of
the POD temporal coefficients, 𝑏 (𝑚) , presented in Fig. 4.15. Beginning with the subharmonic case
(Fig. 4.15c), the results reveal that the most significant frequency content of the modes associated
with the merged structures (e.g., 𝑏 (1) and 𝑏 (3)) is found at 1

2St0𝑐, while the temporal coefficients
for mode 5 show periodicity over a relatively broad range of frequencies centred at St0𝑐. Thus, the
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Figure 4.15: Frequency spectra of POD temporal coefficients. Dashed, dotted, and dash-dotted
lines mark St0𝑐, 1

2St0𝑐, and Stsw𝑐, respectively.

previous analysis is confirmed, associating these modes with the merged and unmerged structures,
respectively. For the natural and fundamental cases, (Figs. 4.15a and 4.15b), as expected, activity
at St0𝑐 is found for modes 3 and 5, while for mode 1 elevated energy levels are found at both 1

2St0𝑐
and Stsw𝑐. Therefore, these results support the earlier conjecture that the standing wave serve to
influence the flow in a subharmonic fashion, leading to the formation of merged structures with this
characteristic frequency. That being said, an important distinction must be highlighted. Namely
vortex merging does not solely result due to the presence of the standing wave, but rather the
merging process is influenced by the presence of the standing wave, resulting in merged structures
with characteristic frequencies that match either the subharmonic or standing wave frequencies, as
revealed by both the wavelet (Fig. 4.10) and POD analysis (Fig. 4.15).

A statistical characterization of vortex merging was carried out using the side view PIV
measurements taken at 𝑧/𝑐 = 0, while results from the top view PIV measurements indicate
that process occurs in a spanwise non-uniform manner (Fig. 4.8). Therefore, it is necessary to
statistically characterize the spanwise behaviour of vortex merging to evaluate if the results at
𝑧/𝑐 = 0 are representative of those over the full spanwise domain. This is carried out through an
assessment of the spanwise variation in the ratio of detected merged structures over a range of
streamwise location using the previously applied wavelet methodology (Fig. 4.10). The approach
is unchanged from that previously described, save for the analysis is now applied to 𝑢′ signals from
the top view measurements. The signals are extracted across the span and at streamwise locations
within 0.545 ≤ 𝑥/𝑐 ≤ 0.555 for all cases. The results at each spanwise position are then averaged
to give a single curve that is representative of the region where 𝑅merg plateaus in Fig. 4.11. The
results are presented in Fig. 4.16, which are smoothed using a sliding spatial window (0.03𝑐 in
width) and the indicated uncertainty bounds are determined based on the variability within the
smoothing window. Evaluating 𝑅merg at 𝑧/𝑐 = 0 for the natural, fundamental, and subharmonic
cases gives 7.5% ± 2, 3.5% ± 4, and 30% ± 4, respectively, all of which are in good agreement
with the values determined from the side view analysis (9%, 4%, and 34%).

It should be noted that in applying the wavelet detection method to the top view data, no
attempt is made to correlate merging at a given spanwise location with other events occurring
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Figure 4.16: Spanwise variation in ratio of detected merged structures to total number of shed
primary structures using wavelet methodology (Fig. 4.10). Method is evaluated at streamwise
locations within 0.545 ≤ 𝑥/𝑐 ≤ 0.555, with results averaged to produce a single curve represen-
tative of the region where 𝑅merg plateaus in Fig. 4.10. Shaded regions (coloured according to
legend) indicate uncertainty bounds.

at the same instant in time. Thus, the results in Fig. 4.16 do not give an indication toward the
spanwise uniformity of any given merging event, but rather give a measure of the overall variability
in the prevalence of merging over the entire span, while also revealing statistical tendencies for
merging events toward particular spanwise locations. Beginning with the natural case, the ratio of
detected merged structures varies within 6.5% ≤ 𝑅merg ≤ 14.5% over the spanwise extent of the
measurement domain. Discernible peaks in 𝑅merg can be identified, e.g., at 𝑧/𝑐 = −0.16, 0.15, and
0.25; however, the peak values fall well within the uncertainty bounds. The prevalence of merging
events toward particular spanwise locations becomes clearer for the two forcing cases, where peaks
in 𝑅merg are found, with some at the same spanwise locations (e.g., 𝑧/𝑐 = −0.16, 0.15, and 0.25).
The most pronounced variability is observed for the subharmonic case, where the locations of the
most prominent valleys in Fig. 4.16 (e.g., 𝑧/𝑐 = −0.12 and 0.3) correspond to locations in Fig. 4.8c
where merging between vortices E and F is delayed. This indicates that local vortex merging tends
to occur more often in certain flow regions, where in other regions merging is more likely to be
delayed and may not complete before the onset of turbulent breakdown. In the experiment, careful
attention was paid to the model and facility to prevent any spanwise modulation of the flow, and
the fact that the number and location of the peaks and valleys in Fig. 4.16 differ across the cases
suggests that the observed spanwise non-uniformity in the merging process is likely linked to LSB
dynamics. Nevertheless, across the studied cases, it is apparent that there is significant variability
in the prevalence of vortex merging across the span, with the ratio of detected merged structures
varying by as much as 50% of the midspan value.

4.3.3 Three-Dimensional Features

In this chapter, the results presented thus far have been restricted to planar, two-dimensional
evaluations of a flow in which significant three-dimensional features develop, with the most
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Figure 4.17: Mean static pressure on the suction surface for the natural case at (a) the midspan
plane and (b) across the span at three streamwise position. Measurement uncertainty is given by the
marker size. Dashed and dotted lines indicate spanwise extents of the scanning PIV measurement
volume for the side and top view configurations, respectively.

notable features relating to the primary shear layer vortices (e.g., Fig. 4.8). Therefore, the analysis
now shifts to the examination of the three-dimensional flow development in an LSB, made
possible through volumetric reconstructions of the flow field through scanning, phase-locked PIV
measurements. The natural and fundamental forcing cases are focused on, with the relatively low
forcing amplitude of the latter case leaving the base flow largely unmodified (Fig. 4.4), while also
enabling three-dimensional reconstructions of the vortex dynamics through phase-locking.

Mean static pressure distributions, 𝐶𝑝, on the airfoil suction side are plotted in Fig. 4.17 for
the natural case. The streamwise distribution at the midspan plane (Fig. 4.17a) agree well with the
time-resolved PIV measurements (Fig. 4.4), as the pressure measurements show the presence of
the LSB within the region 0.3 . 𝑥/𝑐 . 0.6, as marked by a pressure plateau resulting from flow
separation, followed by a region of rapid pressure recovery due to the flow reattachment in the
mean sense [172, 232]. Spanwise pressure distributions are also plotted (Fig. 4.17b), with data
available at streamwise locations well upstream of the bubble (𝑥/𝑐 = 0.15), and near the mean
separation and reattachment locations (𝑥/𝑐 = 0.3 and 0.6, respectively). Across all streamwise
locations, the spanwise pressure data show good uniformity over the entire domain (±4%), and in
particular within the region of the scanning PIV measurements (±1.5%). Thus, the LSB mean
topology is expected to be relatively two-dimensional.

Contours of mean streamwise velocity from the scanning PIV measurements in 𝑥-𝑦 planes
(Fig. 4.3a) are plotted in Fig. 4.18 at multiple spanwise locations. As was performed for the
time-resolved measurements (Fig. 4.4), the dividing streamlines are identified, along with the
mean separation, maximum bubble height, and reattachment locations. Comparisons between the
LSB characteristics from the time-resolved and scanning PIV measurements are favourable for
both cases, with the values summarized in Table 4.2. For the natural case, at the midspan (𝑧/𝑐 = 0)
the mean separation and reattachment points are estimated as 𝑥s/𝑐 = 0.38 ± 0.03 and 𝑥r/𝑐 =

0.58 ± 0.01, respectively, while the maximum height is found to be 𝑦h/𝑐 = 6 × 10−3 ± 9 × 10−4 at
𝑥h/𝑐 = 0.52 ± 0.01. Thus, the length-to-height ratio of the LSB at the midspan is 𝐿/𝑦h = 37 ± 5.
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Figure 4.18: Contours of mean streamwise velocity at selected spanwise locations. Solid
lines mark the dividing streamlines, whose uncertainty bounds are indicated by the dotted lines.
Circle, triangle, and square markers denoted estimated mean separation, maximum height, and
reattachment points, respectively. Dashed lines mark displacement thickness.

The results in Fig. 4.18a, in addition to those in Fig. 4.19, where 𝑥s, 𝑥h, and 𝑥r are plotted over the
entire investigated span, indicate that the mean topology of the LSB is relatively two-dimensional.
In particular, the length-to-height ratio of the natural LSB over the span falls within the relatively
narrow range 𝐿/𝑦h = 38 ± 5, with the variance primarily driven by the relatively high uncertainty
associated with the separation point (Fig. 4.19a), which arises as a consequence of extrapolating
outside of the measurement domain (Fig. 4.18a).

For the fundamental case, the results in Figs. 4.18b and 4.19b reveal that the excitation causes
minor changes in the LSB topology, as was seen previously (Fig. 4.4). Specifically, the changes in
separation consistently fall within the uncertainty bounds across the span, while minor upstream
shifts in the maximum bubble height and reattachment locations are apparent. Upstream shifts
in these locations when subjected to periodic forcing are expected based on previous findings
[151, 260], however, it is reinforced that these shifts are relatively minor, with 𝑥h and 𝑥r shifting
upstream by on average 4% and 6% of the length of the natural LSB, respectively. Furthermore,
the spanwise-averaged length-to-height ratio of the excited LSB is found to be 41 ± 4.7, thus
closely matching the natural case (38 ± 5). It is of particular significance that the excitation does
not alter the mean two-dimensionality and provides an LSB that is topologically similar to the
natural case, while also providing the means for phase-averaging.
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Table 4.2: Comparison of LSB characteristics from time-resolved and scanning PIV measurements
at the midspan plane.

Case Parameter Time-Resolved PIV Scanning PIV

Nat.
𝑥s/𝑐 0.35 ± 0.05 0.38 ± 0.03
𝑥h/𝑐 0.52 ± 0.01 0.52 ± 0.01
𝑥r/𝑐 0.56 ± 0.01 0.58 ± 0.01

F
𝑥s/𝑐 0.36 ± 0.05 0.36 ± 0.03
𝑥h/𝑐 0.51 ± 0.01 0.51 ± 0.01
𝑥r/𝑐 0.56 ± 0.01 0.57 ± 0.01

Figure 4.19: Spanwise topology of mean separation bubble characteristics. Shaded regions
indicate uncertainty bounds.

While the topology of the LSB is relatively two-dimensional, it is apparent from Figs. 4.18
and 4.19 that there is an upstream shift in the bubble position with increasing 𝑧 for both cases.
When expressed as the average of the linear trends over 𝑧 in 𝑥s, 𝑥h, and 𝑥r, the upstream shift
in bubble position over the spanwise distance of 0.7𝑐 is 0.038𝑐 and 0.030𝑐 (5.5% and 4.2% of
0.7𝑐) for the natural and fundamental cases, respectively. These values are relatively minor and
are attributed to inevitable minor imperfections in the experiment (e.g., incoming free-stream
non-uniformity and/or airfoil misalignment), which fall within the uncertainty of the spanwise
pressure measurements (±1% of the free-stream dynamic pressure, 𝑞∞, see Fig. 4.17b).

From Fig. 4.18, the maximum reported reverse flow within the LSB is 7.5% and 6.0% (with
respect to the local edge velocity) for the natural and fundamental cases, respectively. While these
values are lower than the threshold for the possible onset of absolute disturbance growth (15 to
20% of 𝑢e) reported by Alam & Sandham [2], the natural case exceeds the minimum threshold of
7% for the onset of global instability reported by Rodríguez & Gennaro [200] and Rodríguez et al.
[201]. This instability is characterized by spanwise variations in the mean topology of the LSB,
leading to spanwise varied disturbances with peaks and valleys that align with spanwise locations
of higher and lesser reverse flow, respectively (see Fig. 5 in Ref. [200]). Here, no significant
spanwise variability in the reverse flow is observed (Fig. 4.18), suggesting that the investigated
LSB is not subject to the global instability discussed in Refs. [200, 201]. What’s more, analysis of
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Figure 4.20: Sequence of phase-averaged 𝑄-criterion [84] for the fundamental case. Dashed
lines indicate smoothed spline fits to the core of selected structures. Black and grey arrows mark
spanwise-averaged 𝑥h/𝑐 and 𝑥r/𝑐, respectively.

the disturbance development for these two cases in Section 4.3.1 (Figs. 4.6 and 4.7) established that
disturbance growth is entirely convective, which points toward a Kelvin-Helmholtz type instability
of the shear layer [20, 135, 243]. Thus, no effect on the three-dimensionality of the LSB and its
coherent structures are expected on account of a local absolute instability or a global instability.

The three-dimensional development of coherent structures is examined in Fig. 4.20, where
phase-averaged results measured using the side view PIV configuration (Fig. 4.3a) are shown for
several phases in the fundamental forcing cycle. Iso-surfaces of the 𝑄-criterion [84] are used to
identify the spanwise vortices formed as a result of the shear layer roll-up in the LSB (Fig. 4.5b).
Throughout Fig. 4.20, cores of selected structures are identified in the aft portion of the bubble
(from just upstream of 𝑥h/𝑐 to 𝑥r/𝑐) via smoothing spline fits to detect local maxima in 〈𝑄〉. For
convenience, these are plotted in Fig. 4.21, which includes phases not depicted in Fig. 4.20.

The results in Fig. 4.20 show strongly two-dimensional, spanwise-oriented vortices that form

64



Figure 4.21: Identified vortex cores (Fig. 4.20) for all recorded phases. Thick lines indicate
cores identified for 𝜃 = 4𝜋/3. Black and grey arrows mark spanwise-averaged 𝑥h/𝑐 and 𝑥r/𝑐,
respectively.

upstream of the mean maximum bubble height location. These structures maintain a strong
spanwise coherence up until the mean reattachment location, beyond which coherence begins to
degrade on account of the breakdown to turbulence and the associated redistribution of energy
to all other frequencies (Fig. 4.6b). The characteristics of the shear layer vortices captured here
are consistent with those reported for convectively unstable LSBs in low free-stream turbulence
environments [123, 144, 170]. Here, the roll-up and initial shedding of the vortices arising from
the convective amplification of perturbations in the shear layer is spanwise uniform, with the onset
to three-dimensionality following past the location of maximum bubble height. The necessary
conditions for this to take place is the absence of both local absolute and global instabilities
(verified through levels of reverse flow [2, 201] and/or spanwise modulation of the mean flow
[200]), and sufficiently low free-stream turbulence levels.

In Fig. 4.20, the vortex filaments develop spanwise undulations as the structures convect
downstream. This is particularly evident in Fig. 4.21, where filaments are relatively straight
upstream of 𝑥h/𝑐, with notable spanwise deformations at a wavelength of 〈𝜆𝑧〉/𝑐 ≈ 0.13 developing
as mean reattachment is approached. Based on the spanwise-averaged streamwise wavelength of
the structures, 〈𝜆𝑥〉/𝑐 = 0.035, the ratio of spanwise to streamwise wavelengths is 〈𝜆𝑧/𝜆𝑧〉 ≈ 3.7.
These values compare favourably with the analysis of the time-resolved PIV measurements
(Section 4.3.1), which found predominant spanwise and streamwise wavelengths of 𝜆𝑧/𝑐 = 0.15
and 𝜆𝑥/𝑐 = 0.04, and wavelength ratios that range between 1 . 𝜆𝑧/𝜆𝑥 . 7 (Fig. 4.9b). It must be
noted that the presence of spanwise undulations in the phase-averaged data indicates that they
occur at consistent spanwise locations, which was also reported by Michelis et al. [153] (see their
Fig. 4b), who studied an LSB formed over a flat plate. The nature of such spanwise deformations
is considered further.

The proposed development of a vortex filament in the LSB is as follows. The filament is
essentially two-dimensional at formation, however small variations in wall-normal distance across
the span of the filament are inevitable, leading to sections of the filament experiencing varied
convective velocity as a result of the strong wall-normal velocity gradient (Fig. 4.18). Thus,
segments further from the wall progress downstream at a greater rate than those closer to the
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Figure 4.22: Contours of time-averaged spanwise vorticity at exemplary locations where peaks
(𝑧/𝑐 = 0.35 and 0.5) and valleys (𝑧/𝑐 = 0.45) form in the vortex filaments (Fig. 4.21). Solid lines
mark 2nd order polynomial fits to vorticity minima upstream of 𝑥/𝑐 = 0.55, the uncertainty bounds
of which are indicated by the dotted lines. Black and grey arrows mark 𝑥h/𝑐 and 𝑥r/𝑐, respectively.

Table 4.3: Wall-normal distance of time-averaged shear layer trajectory from surface at 𝑥/𝑐 = 0.6
(Fig. 4.22).

𝑧/𝑐 plane Nat. F

0.35 (7.0 ± 0.9) × 10−3 (7.1 ± 1.0) × 10−3

0.45 (4.9 ± 0.9) × 10−3 (4.7 ± 1.0) × 10−3

0.5 (5.9 ± 1.0) × 10−3 (5.7 ± 0.9) × 10−3

wall, leading to the continual intensification of the spanwise undulation in the filament, as seen in
Fig. 4.21. If the vortex develops as proposed, then the streamwise forward and rearward sections
of the filaments (peaks and valleys, respectively) should depart from and approach the surface,
respectively, due to mutual induction. This is verified through an examination of the streamwise
development of time-averaged vorticity (Fig. 4.22), at spanwise locations where peaks (𝑧/𝑐 = 0.35
and 0.5 from Fig. 4.21) and valleys (𝑧/𝑐 = 0.45, also Fig. 4.21) are found in the vortex filaments.
Time-averaged trajectories of the shear layer are shown as solid lines in Fig. 4.22, which are
determined through 2nd order polynomial fits to vorticity minima upstream of 𝑥/𝑐 = 0.55. For both
the natural and fundamental cases, the results in Fig. 4.22 confirm that time-average trajectories
at 𝑧/𝑐 = 0.35 and 0.5 are farther from the wall than those at 𝑧/𝑐 = 0.45, particularly in the aft
portion of the LSB (𝑥/𝑐 & 0.55), with heights of the shear layer trajectories at 𝑥/𝑐 = 0.6 reported
in Table 4.3. These results imply there is a consistent variation in the distance to the wall along
the span of the filament in both the natural and excited flow, supporting the proposed development
of the spanwise undulations in the vortex filaments.

Further insight into the development of the shear layer vortices is gained from the top
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Figure 4.23: Phase-averaged (a) streamwise and (b) spanwise velocity fluctuations for phase
𝜃 = 4𝜋/3 of the fundamental case. Black lines indicate vortex cores identified from side view PIV
measurements (Fig. 4.21). × marks the same structure across the planes. Black and grey arrows
mark spanwise-averaged 𝑥h/𝑐 and 𝑥r/𝑐, respectively.

view, scanning PIV measurements (Fig. 4.3b). Figure 4.23 presents contours of phase-averaged
streamwise and spanwise velocity fluctuations in 𝑥-𝑧 planes at wall-normal heights of 𝑦/𝑐 =

3 × 10−3, 9 × 10−3, and 16 × 10−3, approximately corresponding to planes that intersect through
the top, middle, and bottom portions of the shear layer vortices. As such, the structures are
identified at 𝑦/𝑐 = 3 × 10−3 and 16 × 10−3 in Fig. 4.23a as spanwise bands of negative and positive
fluctuating streamwise velocity, respectively, with the bands of opposite sign corresponding to
the induced flow between structures. For the same phase in the excitation cycle, the vortex cores
identified from the side view PIV measurements (Fig. 4.21) are superimposed and confirm the
identification of the structures in the results of the top view PIV configuration. Overall, good
agreement is found between the results of the two configurations in terms of the streamwise
position of the structures and the spanwise locations at which peaks and valleys form in the
vortex filaments, with some minor discrepancies likely stemming from the higher measurement
uncertainty associated with the top view configuration (Table 4.1). This general agreement was
verified for all other phases in the excitation cycle (not shown for brevity).

The contours of phase-averaged spanwise velocity fluctuations in Fig. 4.23b show organized
patterns of strong positive and negative fluctuations centred at spanwise locations where streamwise
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forward undulations develop in the vortex filaments, i.e., at 𝑧/𝑐 ≈ 0.1, 0.36, and 0.5. Furthermore,
these regions of strong spanwise fluctuations are tilted forward in the streamwise direction. For
example, tracing the structure marked by the × symbol up from 𝑦/𝑐 = 3 × 10−3 to 16 × 10−3

reveals that it and its adjacent pair shift downstream with increasing wall-normal height. Thus,
these patterns in the spanwise velocity fluctuations confirm that the spanwise undulations in
the vortex filaments are associated with wall-normal deformations, with the filaments tilting
away from the wall at locations where they surge forward in the streamwise direction. Such a
deformation re-distributes the filament’s spanwise vorticity into both the streamwise and wall-
normal directions, thus creating spanwise and wall-normal velocity fluctuations, with the former
captured in Fig. 4.23b.

The results in Fig. 4.22 suggest that the spanwise deformations of the vortex filaments seen for
the fundamental case develop in a similar manner in the natural flow. Further evidence of this is
provided through POD analysis (Section 3.3.2), which is performed on measurements from a single
field of view from the top view PIV measurements using the snapshot method of Sirovich [223].
A set of 1000 independent snapshots is used, with modes computed at 𝑦/𝑐 = 3 × 10−3 and within
0.44 . 𝑧/𝑐 . 0.54, where notable signatures of vortex deformations are observed in Fig. 4.23.
The relative and cumulative energy distributions of the computed modes are shown in Fig. 4.24,
with the latter showing that approximately 52% and 45% of the total energy contained in the
velocity fluctuations is recovered within the first 30 modes for the natural and fundamental cases,
respectively. The three most energetic modes have been verified to capture velocity fluctuations
attributed to the primary shear layer vortices. This is depicted by the spatial topology of the first
POD mode plotted in Fig. 4.25. For both cases, the plotted streamwise component is topologically
similar to that seen in Fig. 4.23a, featuring strong spanwise uniformity and a similar streamwise
wavelength. It should be noted that an increase in the energy levels of the first mode pair is
expected when the flow is forced, however, this is not seen in Fig. 4.24. Since the employed weak
forcing produces minor effect on flow characteristics, the associated changes in the modal energy
content fall within the uncertainty associated with the near-wall 𝑥-𝑧 measurement plane. The
expected increase in energy levels when excitation is applied is seen at 𝑥-𝑧 planes farther from the
wall, which is examined in detail in Appendix C.1.1.

The spanwise deformations seen in the vortex filaments through the phase-averaged results
(e.g., Figs. 4.21 and 4.23) are also captured in the POD results. In Fig. 4.25b, a forward bulge
(peak) in the spatial mode is apparent at 𝑧/𝑐 = 0.49, which matches closely with the location
where peaks in the vortex filaments are consistently observed in Figs. 4.21 and 4.23. As was seen
with Fig. 4.23b, the deformation of the shear layer vortices is accompanied by the generation of
strong spanwise velocity fluctuations, with the same distinct pattern captured in the spanwise
component plotted in Fig. 4.25b. For the natural case (Fig. 4.25a), a similar characteristic signature
is seen in the spanwise component of the first mode at 𝑧/𝑐 = 0.49, and a streamwise forward peak
is also identifiable in the streamwise component of the mode at this location. Thus, the POD
results confirm that the identified vortex deformations also occur in the natural flow. However, the
signature of these events in the most energetic POD modes is significantly decreased in terms of
spatial coherence, suggesting that the associated vortex deformations either occur less frequently
and/or are less pronounced compared to the fundamental case.

With observed development of the shear layer vortices involving streamwise forward sections
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Figure 4.24: POD (a) relative and (b) cumulative modal energy distributions for (𝑢,𝑤) modes
computed at 𝑦/𝑐 = 3 × 10−3 from a single view of the top view PIV configuration.

Figure 4.25: Normalized POD spatial modes computed at 𝑦/𝑐 = 3 × 10−3 from a single view of
the top view PIV configuration. Black and grey arrows mark spanwise-averaged 𝑥h/𝑐 and 𝑥r/𝑐,
respectively.

lifting away from the surface (Fig. 4.22), a re-orientation of vorticity into the wall-normal direction
is also expected. An exemplary case is examined in Fig. 4.26, where a sequence of phase-averaged
wall-normal vorticity iso-surfaces is plotted in a region zoomed-in centred on 𝑧/𝑐 = 0.5. Contours
of phase-averaged spanwise vorticity at 𝑧/𝑐 = 0.5 (shifted to 𝑧/𝑐 = 0.45 for clarity) and contours of
phase-averaged negative streamwise velocity fluctuations at 𝑦/𝑐 = 3 × 10−3 are also plotted to help
identify the primary structures. In Fig. 4.26a, the primary roller I shows relatively strong spanwise
coherence, however, a local deformation has initiated, as the filament begins to bulge forward at
𝑧/𝑐 ≈ 0.5. This is marked by a concentration of streamwise velocity fluctuations that intensifies
as the structure convects downstream, along with the emergence of a distinct pair of positive and
negative wall-normal vorticity, labelled i in Fig. 4.26b–d. The effect becomes more pronounced
with downstream development, as seen with primary vortex II and the associated wall-normal
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Figure 4.26: Sequence of phase-averaged wall-normal vorticity iso-surfaces, negative spanwise
vorticity contours at 𝑧/𝑐 = 0.5 (shifted to 𝑧/𝑐 = 0.45 for clarity), and contours of negative
streamwise velocity fluctuations at 𝑦/𝑐 = 3 × 10−3 for the fundamental case. Black and grey
arrows mark spanwise-averaged 𝑥h/𝑐 and 𝑥r/𝑐, respectively.
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vorticity pair ii. Given that the vorticity pairs i and ii are tilted forward in the streamwise direction,
seen in the 𝑥-𝑦 projections in Fig. 4.26, and form where the primary spanwise vortices bulge
forward, the formation of these structures is consistent with the negative spanwise vorticity of
the main shear layer vortices re-orienting through lift-up of the main filament and subsequent
stretching in the streamwise direction. Thus, positive and negative wall-normal vorticity results,
forming the legs of a hairpin like structure. Note that the streamwise wavelength of the wall-normal
vorticity pairs is half that of the primary structures, with vorticity pairs of opposite sign present in
the region between consecutive rollers (i.e., between structures i and ii) that may be created via
induction from the neighbouring wall-normal structures. Similar secondary structures in both the
vortex core region and in the gap region between consecutive rollers have been reported in DNS
studies of LSBS [92, 137], which have drawn comparisons to the ‘rib’ vortices reported in free
shear layers [15] and bluff body wakes [253]. Whether or not the secondary structure reported here
are of the same nature is unclear given the limitations of the measurement techniques employed,
which merits future investigation.

The proposed description of the vortex dynamics within the LSB is summarized as follows.
The shear layer rolls up to form spanwise oriented vortices with strong spanwise coherence.
However, inevitable minor variances in wall-normal height, in conjunction with strong mean
wall-normal shear, lead to the development of spanwise undulations. These undulations intensify
as the structures convect downstream, while the forward sections of the filament lift away from
the surface, which re-orients the filament’s spanwise vorticity into both the streamwise and
wall-normal directions. Thus, hairpin like structures form (structures i and ii in Fig. 4.26), which
are tilted forward and extend above the vortex core region, and are marked by the localized
production of streamwise and spanwise velocity fluctuations (Figs. 4.23 and 4.25).

4.4 Concluding Remarks

In this chaptern the general flow development and vortex dynamics in a laminar separation
bubble were examined, with emphasis placed on the vortex merging phenomenon and the three-
dimensional development of the primary shear layer vortices. This was accomplished through
an experimental examination of an LSB formed over a NACA 0018 airfoil at a chord Reynolds
number of 125 000, an angle of attack of 4°, and a free-stream turbulence level of 0.07%. Much of
the experimental findings came from PIV results collected in a variety of configurations, allowing
for two-dimensional, time-resolved evaluations of the flow, in addition to conditional volumetric
reconstructions of the flow field using phase-locked, scanning PIV measurements. In addition
to leaving the flow to develop naturally, acoustic forcing was applied at the LSB’s fundamental
and subharmonic frequencies, with a relatively low excitation amplitude selected to avoid any
substantial mean flow modifications.

The flow development in the LSB is characterized by the periodic roll-up of the separated shear
layer into vortices upstream of the LSB maximum height location, where flow disturbances are
amplified within a band centred on the fundamental frequency. The shear layer vortices interact
and deform as they convect downstream, followed by the breakdown to smaller scales downstream
of the mean reattachment point. This is marked by the redistribution of spectral energy to a wider
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range of frequencies as the flow transitions to turbulence.
With respect to vortex merging, the results show that this phenomenon occurs naturally in

the LSB, while forcing at the subharmonic and fundamental frequencies promotes and inhibits
merging, respectively, as is the case for free shear layers [72]. A vortex merging detecting scheme
was developed using wavelet analysis, which showed that, at the midspan plane, 18% of the
primary structures formed in the naturally developing LSB merge. This value increased to 64%
when forced at the subharmonic frequency and decreased to 8% when forced at the fundamental
frequency. For all cases, the majority of merging events occurred in the aft portion of the bubble,
while subharmonic forcing lead to a significant number of merging events shifting upstream.
Despite subharmonic forcing having a significant effect on the prevalence of vortex merging,
the mean topology of the bubble remained relatively unchanged from the natural flow. Since
it is generally accepted that reattachment is facilitated by the shear layer vortices [134, 260],
these results imply that the increase in strength of individual structures as a result of merging is
balanced by the reduction in their frequency, resulting in a largely unchanged mean LSB topology.
Furthermore, the vortex merging process is found to occur in a spanwise non-uniform manner,
with localized merging events occurring away from where forward and rearward streamwise
bugles develop in the vortex filaments. Thus, the spanwise undulations that develop in the vortex
filaments are shown to be intrinsic to the LSB vortex merging process.

In examining the three-dimensional development of the shear layer vortices, the fundamental
forcing case is first established as a suitable analog in studying the natural flow since the low level
of forcing does not substantially alter the mean flow or the disturbance development, while also
enabling volumetric reconstruction of the flow field through phase-averaging. Time-averaged
reconstructions revealed a strongly two-dimensional LSB topology for both the natural and forced
cases, while analysis of the flow development demonstrated that in both flows the shear layer
vortices that form in the separation bubble are spanwise-oriented and strongly two-dimensional.
The previously seen spanwise undulations in the vortex filaments are captured and are shown to
continually intensify with downstream convection as a result of the streamwise forward sections
lifting away from the surface. This motion re-orients the shear layer vortices’ spanwise vorticity
into the streamwise and wall-normal directions, forming hairpin-like structures that are tilted
forward and extend above the vortex core region.

These results have made it clear that flow development in a separation bubble, particularly
in the aft portion, is inherently three-dimensional. In particular, spanwise undulations develop
in the filaments of the shear layer vortices over a fixed range of values, 1.5 . 𝜆𝑧/𝜆𝑥 . 7,
and are critical to the merging and breakdown processes of the vortices. In the following
chapters, a three-dimensional forcing technique is developed to target the LSB at these spanwise
wavelengths (Chapter 5), and the effect of these deterministic disturbances on three-dimensional
flow development in an LSB is assessed (Chapter 6).
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Chapter 5

Characterization of Three-Dimensional In-
put Disturbances
A three-dimensional forcing technique capable of producing disturbances modulated to a desired
spanwise wavelength is developed and characterized. The technique utilizes surface-mounted, AC-
DBD plasma actuators arranged in streamwise succession, the outputs of which are superimposed
to produce the desired disturbance topology while keeping total imparted momentum constant.
Assessment of the forcing on flow development in an LSB reveals that disturbance growth is
spanwise wavelength dependent, with significant amplification observed for disturbances with a
spanwise to streamwise wavelength ratio of 2 : 1. For this case, significant undulations develop in
the initially spanwise uniform shear layer vortices at the forcing wavelength, which impact the
ensuing vortex dynamics.

Parts of this chapter have been adapted from the following publications:

Kurelek, J. W., Yarusevych, S., & Kotsonis, M. 2018 An Assessment of Flow Development in a Separation
Bubble Subjected to Spanwise Modulated Disturbances using Particle Image Velocimetry. In 48th AIAA Fluid Dyn.
Conf., Atlanta GA, June 25–29. DOI.

Kurelek, J. W., Yarusevych, S., & Kotsonis, M. 2019 The effect of three-dimensional forcing on flow development
with a laminar separation bubble. In 11th Int. Symp. Turbul. Shear Flow Phenom., Southampton UK, July 30–Aug 2.
URL.
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5.1 Introduction

The discussions in Section 2.3 and the results of Chapter 4 highlight that the introduction of
periodic flow disturbances aimed at control of separation bubble dynamics have a significant
effect on the ensuing three-dimensional flow development. The majority of studies to-date have
examined the problem in two dimensions, employing techniques that introduce periodic and
spanwise uniform disturbances through wall oscillations [2, 118, 140], external acoustics [91,
112], or surface-mounted plasma actuators [151, 260, 261]. Several investigators have linked the
optimal excitation frequency to the frequency of the most amplified disturbances in the natural
flow [134, 258, 260], showing that inducing mean flow reattachment on stalled airfoil (and thus
forming an LSB) or reducing the size of an existing LSB is most effective when the excitation
targets this frequency. When forcing at this fundamental frequency, the vortex shedding process
locks to the excitation frequency and the spanwise coherence of the structures is increased, which
is related to a higher entrainment of momentum from the surrounding flow to the surface, thus
resulting in an upstream shift in the LSB mean reattachment location.

Complementing this work, a number of studies [33, 69, 92, 113, 137, 151, 153, 170],
including those presented in Chapter 4 and Appendix A, have gone on to characterize the
development of LSB shear layer vortices through the later stages of transition, where significant
three-dimensionality is observed. While these studies have put forward widely ranging descriptions
of the vortex development, the results of Chapter 4 clarify that for LSBs in a low turbulence
intensity environments, the shear layer vortices show strong spanwise coherence at formation, but
then quickly undergo significant spanwise deformations prior to the breakdown to turbulence.
Surveying the literature for LSBs investigated under similar conditions [113, 137, 153, 170] reveals
that the spanwise deformations are a common feature, which tend to develop over a relatively
fixed range of wavelengths, 1 . 𝜆𝑧/𝜆𝑥 . 7, where 𝜆𝑧 and 𝜆𝑥 are the spanwise and streamwise
wavelengths of the deformations and shear layer vortices, respectively. This raises the possibility
of an underlying instability associated with vortex breakup in LSBs which, if present, could
potentially be manipulated through targeted, three-dimensional forcing.

Precedence for three-dimensional forcing techniques can be found in the literature, as key
physical mechanisms have been elucidated in boundary layers [97, 107, 209] and free shear
layers [15, 89, 203] through the use of such techniques. Most notably, Klebanoff et al. [107]
introduced three-dimensional disturbances into a laminar boundary layer by modulating the output
of a thin vibrating ribbon, showing the spanwise deformation of the TS instability waves into
three-dimensional structures, which has been established as a critical step in the transition process
of boundary layers [214]. A limited number of investigations have pursued three-dimensional
forcing of LSBs due to the difficulty in implementing the forcing technique in a reliable manner,
which is then compounded by the need for three-dimensional flow field measurements. A limited
number of investigations have been pursued [118, 139, 141], with the prevailing conclusion being
that the introduction of three-dimensional disturbance has little effect on the LSB transition process.
This is in contrast to the effects noted in boundary layers [107, 209] and free shear layers [89, 203],
in addition to other reports that note a dependence of LSB flow development on three-dimensional
disturbance characteristics [153, 182, 198].

In this chapter, a new forcing technique capable of producing deterministic two and three-
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dimensional disturbances is developed using surface-mounted, dielectric barrier discharge plasma
actuators (Section 3.2.2), with three-dimensional forcing at a prescribed spanwise wavelength
achieved through the superposition of disturbances created by actuators arranged in streamwise
succession. As both the imparted momentum and spatial topology of the forcing are critical, a
characterization approach that considers both quiescent and in-flow conditions is taken, since it
is well documented that plasma actuator output depends on the external flow conditions [184].
Following this, a preliminarily investigation of the effects of the forcing on flow development in a
laminar separation bubble formed over a flat plat is conducted.

5.2 Description of Experiments

5.2.1 Quiescent Characterization

The alternating current, dielectric barrier discharge (AC-DBD) plasma actuators used in this
investigation are shown in Fig. 5.1. Each actuator consisted of two pairs of high voltage and
ground electrodes, with each pair arranged in an asymmetric configuration on opposites sides
of a dielectric barrier (e.g., see Fig. 3.6). As will be demonstrated, a weak wall-parallel jet near
the surface is produced during operation in the region where a high voltage and ground electrode
overlap. A 400 µm thick polyethylene terephthalate (PET) strip served as the dielectric layer,
onto which the electrodes were painted using conductive silver paint. Each painted electrode
was approximately 5 µm thick, making the total thickness of the actuator 410 µm, with groves
of equal depth machined into the test model to allow for flush mounting. The high voltage and
ground electrodes extended 10 and 6 mm in the streamwise direction, respectively, and were
overlapped by 1 mm to create the discharge area. Three-dimensional disturbances were produced
by arranging the electrode pairs in streamwise succession, with the upstream set used to produce a
two-dimensional disturbance, while the downstream set forced in a spanwise modulated fashion
as a result of gaps in the ground electrode. Three actuator configurations were fabricated, with
spanwise wavelengths of 25, 37.5, and 50 mm, which correspond to 𝜆𝑧 = 12.5, 18.75, and 25
when non-dimensionalized by the displacement thickness at separation when the flow is not
forced (𝛿1s = 2 mm). Characterization was performed for four forcing configurations, the first
consisting of purely two-dimensional forcing achieved through operation of only the upstream
set of electrodes. The other three cases are three-dimensional forcing at spanwise wavelengths
of 𝜆𝑧 = 12.5, 18.75, and 25, with each achieved by operating both sets of electrodes on a given
actuator with a relative phase delay used to superimpose the two disturbances introduced into the
flow.

The experimental setup is shown in Fig. 5.2. Each set of electrodes was characterized
individually, with flow visualization and planar PIV measurements conducted in the region of
the electrode overlap, where ionization occurs and the wall jet is produced. The measurements
were carried out in quiescent conditions created within a contained volume with dimensions
610 × 610 × 2400 mm, with the actuator mounted flush to the surface of a 250 × 510 × 6 mm ABS
plate. The volume was seeded by atomizing olive oil into particles with a mean diameter of 1 µm
using a Laskin nozzle style atomizer based on the designs of Kähler et al. [98]. These seeding
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Figure 5.1: Plasma actuator configurations. All dimensions in millimetres.

particles had to be used in place of the water-based particles due to the significant electrodynamic
effects that prevent substances with strongly polar molecules from entering the ionization region
[49, 110].

Particle image acquisition for both the PIV measurements and flow visualizations was carried
out using an EverGreen 70 mJ/pulse Nd:YAG laser, a LaVision Imager Pro-X 2M camera, a
timing unit, and LaVision’s DaVis 8 software. The flow visualizations (Fig. 5.2b) were completed
in a top view configuration, with the laser beam conditioned into a 2 mm thick sheet that was
positioned into an 𝑥-𝑧 plane, whose centre was 3 mm from the surface. The camera was fitted with
a 60 mm focal length Nikon macro lens set to 𝑓# = 5.6, its sensor cropped to 1600 × 711 px from
its full resolution of 1600 × 1200 px, and an imaged area of 127 × 57 mm was set, resulting in a
magnification factor of 0.09. The PIV measurements (Fig. 5.2a) were completed in a side view
configuration, with measurements completed at multiple 𝑥-𝑦 planes. The camera and laser were
moved in tandem using an automated traversing system, with calibration images taken at multiple
planes to ensure fidelity of the movements. The laser sheet thickness and camera resolution were
maintained from the flow visualizations, while the camera was fitted with a 200 mm focal length
Nikon macro lens set to 𝑓# = 8, and the field of view was set to 21.5 × 8.5 mm, resulting in a
magnification factor of 0.55. 2000 double-frame images were acquired per measurement plane at
14.67 Hz with a frame separation time of 800 µs, which kept particle displacements under 15 px.
Velocity fields were computed using an iterative, multi-grid cross-correlation scheme with window
deformation [212], and a final window size of 24× 24 px with 75% overlap. As a result, the vector
pitch in the PIV data is 0.08 mm. The results were post-processed using the universal outlier
detection algorithm [247].

Maintaining tractability between a characterization conducted in quiescent conditions and test
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Figure 5.2: Experimental setup for actuator characterization in quiescent conditions. (a) PIV
measurements and (b) flow visualizations.

conditions with an external flow presents a challenge since the external flow is expected to alter the
produced disturbances. The investigation of Pereira et al. [184] established the effects of external
flow on the momentum transfer from an AC-DBD, noting that quiescent characterization tends to
only slightly under-predict the generated thrust force, which has allowed several investigations
to rely on quiescent characterization [153, 260, 261]. Furthermore, while the external flow can
alter the streamwise characteristics of the disturbances, it is theorized that the general spanwise
periodicity will not be significantly affected owing to the spanwise uniformity of the external flow
to be investigated (Section 5.2.2). As such, the quiescent characterization is aimed at determining
spanwise topology and thrust generation only, both of which are assumed to be relatively invariant
to external flow conditions. The streamwise characteristics of the produced disturbances will be
established through the in-flow characterization (Section 5.2.2).

The actuators were driven by a TREK 20/20C high voltage amplifier, with signals generated
using National Instrument’s LabVIEW software and a PCIe-6321 DAQ. The forcing signals
consisted of a 𝑓c = 5 kHz carrier sine wave amplified to a peak-to-peak voltage of 𝑉pp = 6 kV
and modulated by a 𝑓m = 133 Hz square wave, with the modulation frequency selected based
on preliminary flow measurements and targeted the primary convective instability in the LSB
(Appendix C.2.2). The effects of viscosity is expected to be significant for these forcing conditions
given the relatively low wall jet velocities generated in quiescent conditions (on the order of
1 m s−1). This results in low levels of turbulent mixing and an uneven distribution of seeding
particles, with very low particle density found in the ionization region (i.e., the region of interest).
This is especially true for low duty cycle actuation, and as a result it is necessary to operate the
actuator at higher duty cycles to enable sufficient mixing of seeding particles, and then scale the
net momentum injection accordingly. Such an approach is feasible due to the large separation
of characteristic time scales between the fluid and plasma dynamics, effectively decoupling the
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Figure 5.3: (a) Side and (b) top view of experimental setup.

phenomena [87]. Therefore, the modulating duty cycle of the forcing was varied between 18%
and 100%, thus covering the range of duty cycles employed for the in-flow measurements (21% to
25%), while allowing for more reliable results collected at higher duty cycle to be included in the
interpolation.

5.2.2 In-Flow Characterization

In-flow characterization was performed in the TU Delft A-Tunnel (Section 3.1.2), where an LSB
was formed over a flat plate through application of an adverse pressure gradient. A schematic of
the experimental setup is provided in Fig. 5.3. The acrylic flat plate described in Section 3.1.4
was installed in the test section 150 mm from the floor, with the trailing edge flap rotated upwards
to mitigate unsteady separation effects. The pressure gradient on the plate’s top surface was
conditioned using an adjustable displacement body on the top wall of the test section. The boundary
layer developing on the displacement body was tripped to turbulence by a zip-zag turbulator in
order to avoid flow separation in the adverse pressure gradient region, the effectiveness of which
was verified through tuft flow visualization. The same tripping technique was employed on the
bottom surface of the flat plate to suppress possible vortex shedding at the plate trailing edge. A
Cartesian coordinate system is used throughout this chapter (Fig. 5.3), with the origin selected
such that 𝑥 = 0 corresponds to the location of mean flow separation with no forcing (490.5 mm
from the plate leading edge), while 𝑦 = 0 and 𝑧 = 0 are located at the top surface and midspan
of the plate, respectively. The free-stream velocity was set to 𝑢∞ = 5.75 m s−1, measured by a
Pitot-static tube located upstream of the flat plate leading edge. A detailed characterization the
facility was conducted by Merino-Martínez et al. [147], showing that at the investigated free-stream
velocity the streamwise turbulence intensity is 0.09% and no significant spectral peaks are found
in the free-stream velocity and pressure fluctuations within the frequency range of interest to this
investigation, 1 ≤ 𝑓 ≤ 1000 Hz. Based on the displacement thickness at separation when the flow
is not forced, the Reynolds number for the experiments is Re𝛿1s ≈ 750.

The imposed pressure distribution on the flat plate was measured via static pressure taps
(Section 3.1.4 and Fig. 5.3). All taps were measured simultaneously at 100 Hz for 20 s using a
set of Honeywell HSC series differential pressure transducers with a full range of ±160 Pa. The
resulting pressure distributions are shown in Fig. 5.4, where the estimated uncertainty for all
measurement is ±4.6% of 𝑞∞ (Appendix B). As indicated by the pressure plateau region in the
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Figure 5.4: Mean surface (a) streamwise and (b) spanwise static pressure distributions with
actuator installed but not active. Measurement uncertainty is given by the marker size. Blue and
grey arrows mark of 𝑥s and 𝑥r, respectively.

streamwise 𝐶𝑝 distribution (black markers in Fig. 5.4a), a separation bubble is present with mean
separation and reattachment locations of approximately 𝑥s = 0 and 𝑥r = 70, respectively. The
spanwise pressure distributions (Fig. 5.4b) indicate that the flow is essentially two-dimensional,
with the uniformity falling within ±0.8%.

The AC-DBD actuators described in Section 5.2.1 (Fig. 5.1) were used, with a total of five
cases investigated: (i) no forcing (actuator installed but not active), (ii) two-dimensional forcing,
and three-dimensional forcing with spanwise wavelengths (𝜆𝑧) of (iii) 12.5, (iv) 18.75, and (v) 25.
Figure 5.4a confirms that there is no change in the mean LSB topology, within the experimental
uncertainty, as a result of changing the actuator. All actuators were recessed into the plate so as
not to perturb the flow and were placed to locate the two-dimensional discharge area at 𝑥̃ = −310.
Positioning the actuator within the favourable pressure gradient region allowed for sufficient
control authority, while allowing for the disturbances to develop through the boundary layer
upstream of the mean separation point. The actuators were driven by the same equipment used for
the quiescent characterization experiments (Section 5.2.1), and the generated forcing signals were
also kept the same. Only the modulating duty cycle was varied, with values between 21% and
25% employed on a per forcing case, with values chosen to achieve equal total momentum input
across all the forcing cases considered.

Streamwise and spanwise aspects of the flow development within the LSB were assessed using
planar, time-resolved PIV in two separate configurations, referred to as the side and top view
configurations. The approximate fields of view for these configurations are depicted in Fig. 5.3
and an overview of the PIV parameters are provided in Table 5.1. The flow was seeded using a
water-glycol based fog with a mean particle diameter of 1 µm produced by a SAFEX generator.
Illumination was provided by a Continuum 532-120M Nd:YAG high-speed laser, with the beam
conditioned into a sheet approximately 2 mm thick. Images were captured by a PCO Dimax HS4
camera fitted with a Nikon 105 mm macro lens set to 𝑓# = 5.6 and 2.8 for the side and top views,
respectively. The cameras were synchronized with the laser via a LaVision timing unit and image
acquisition was done using LaVision’s DaVis 8 software.
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Table 5.1: Parameters for PIV experiments.

Parameter Side view Top view Unit

Laser Continuum 523-120M Nd:YAG –
Camera PCO Dimax HS4 –
Lens focal length 105 mm
Lens 𝑓# 5.6 2.8 –
Magnification factor 0.28 0.14 –
Sensor resolution 2016 × 432 1680 × 848 px
Total field of view 79 × 16 135 × 63 mm
PIV mode Double-frame –
Sampling rate 2 1.75 kHz
Laser pulse sep. 80 140 µs
Max. particle disp. 15 12 px
No. of samples 7238 4480 –
Final window size 24 × 24 (75% overlap) px
Vector pitch 0.24 0.48 mm
Avg. uncertainty 3.5 5.2 % of 𝑢∞

For the side view configuration, measurements were taken at multiple 𝑥-𝑦 planes so that the
flow field could be volumetrically reconstructed using phase-averaging. This was achieved by
translating the actuator in the 𝑧-direction, thus shifting the origin of the measurement domain
relative to the measurement system, rather than vice versa which requires re-calibration. This
multi-plane measurement approach is possible due to the fact that the flow is essentially two-
dimensional when left to develop naturally (Fig. 5.4b). Therefore, the camera’s field of view
was set to a fixed 𝑥-𝑦 plane (relative to the plate and test section), and the full resolution of
2016 × 2016 px was cropped to 2016 × 432 px to cover an area of 79 × 16 mm, resulting in a
magnification factor of 0.28. For the top view configuration, measurements were performed in a
single 𝑥-𝑧 plane located 7 mm from the top surface of the plate. In order to achieve the desired
sampling rate, the camera’s sensor was cropped to 1680 × 848 px, covering a field of view of
135 × 63 mm at a magnification factor of 0.14. Sampling was performed at 2 and 1.75 kHz for a
total of 7328 and 4480 samples for the side and top view configurations, respectively. Prior to
amplification, the plasma forcing signal was split and sent to the PIV timing unit, thus allowing
for the phase information between the forcing and the PIV acquisitions to be determined.

For both PIV configurations, the focus was adjusted to produce imaged particles approximately
3 to 4 px in diameter. An iterative multi-grid cross-correlation scheme with window deformation
[212] was used to compute velocity fields. A final interrogation window size of 24 × 24 px with
75% overlap was used, with windows of this size containing, on average, 12 particles. As a result,
the vector pitches in the data are 0.24 and 0.48 mm for the side and top view configurations,
respectively. The results were post-processed using the universal outlier detection method [247].
The random errors in the PIV measurements were evaluated using the correlation statistics method
[251]. The average uncertainties within the region of the separated shear layer are estimated to be
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less than 3.5% and 5.2% of 𝑢∞ for the side and top view configurations, respectively, while higher
uncertainties are present near the wall for the side view configuration. A full treatment of the
uncertainty estimates related to the PIV measurements and quantities derived from the PIV results
is given in Appendix B.

5.3 Quiescent Characterization

The results presented in this section establish the characteristics of the employed plasma actuators
(Fig. 5.1) in terms of the spanwise topology and net momentum injection of the forcing. These
characteristics are assumed invariant to the external flow conditions and so PIV measurements
and flow visualizations are conducted in quiescent conditions. Four forcing configurations are
characterized, covering (i) two-dimensional forcing, and spanwise wavelengths (𝜆𝑧) of (ii) 12.5,
(iii) 18.75, and (iv) 25.

Figure 5.5 shows visualizations of the flow induced by the plasma actuation for the two-
dimensional and 𝜆𝑧 = 25 actuators. The electrode overlap is located at 𝑥̃ = 0 with the high voltage
and ground electrodes above and below, respectively. The induced jets are visible in the images
due to the non-uniform dispersion of seeding particles in regions of high shear, which reveals that
the jets are aligned in the streamwise direction and appear to originate at approximately 𝑥̃ = 5.
As will be shown later, the jets originate closer to 𝑥̃ = 0, which could not be captured in the flow
visualizations due to significant surface reflections that resulted when locating the laser closer to
the surface. Nevertheless, the results demonstrate that the output of the two-dimensional actuator
(Fig. 5.5a) is spanwise uniform after the start-up phase, while the 𝜆𝑧 = 25 actuator (Fig. 5.5b)
only induces flow within the regions of electrode overlap, i.e., the active regions, with the flow
remaining essentially stagnant in between. Similar flow visualizations results are reported for other
actuators in Appendix C.2.1. Thus, the flow visualizations confirm that the spanwise modulated
actuators are successful in creating spatially modulated flow disturbances at the desired spanwise
wavelengths.

The side PIV measurements are used to quantify the momentum imparted to the fluid. Figure 5.6
presents contours of mean streamwise velocity across the span of the four investigated actuators.
As is typically seen for surface mounted AC-DBD plasma actuators [108], at active locations away
from the edges of actuator overlap, all actuators produce a wall jet predominantly in the streamwise
direction with a minor inclination angle relative to the surface that originates just downstream of
the electrode overlap (𝑥̃ = 0). For the two-dimensional actuator (Fig. 5.6a), consistent with the
flow visualizations (Fig. 5.5a), good spanwise uniformity is seen across the four measurement
planes, with the variability quantified in the control volume analysis that follows. For the spanwise
modulated actuators (Fig. 5.6b–d), the jet exhibits strong spanwise uniformity near the centre of
the active region (0 ≤ 𝑧̃ ≤ 1), while the jet’s streamwise velocity magnitude decreases as the edge
is approach (1.5 ≤ 𝑧̃ ≤ 2), reaching zero at the edge of the actuator overlap (̃𝑧 = 2.5) and in the
gap region (̃𝑧 > 2.5) where no positive streamwise velocity is observed. These observations are
consistent with the flow visualizations, showing that the produced jets are more narrow than their
active regions and are separated by stagnant fluid. Upon close inspection of the 𝑧̃ = 2 plane in
Figs. 5.6b–d there is clear decrease in jet streamwise velocity with increasing wavelength, which
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Figure 5.5: Visualization of flow induced due to plasma actuation during the (i) start-up and (ii)
steady state phases (𝑉pp = 6 kV, 𝑓c = 5 kHz, 100% duty cycle). Flow is from top-to-bottom.

may be the result of a weak interaction effect between adjacent jets of a given actuator. Overall
the effect is weak, but it will result in a small difference in total momentum input per active region
between the three spanwise modulated actuators.

A control volume analysis is employed to quantify the momentum imparted to the fluid. The
selected control volume is shown in Fig. 5.7, which is employed for all actuators. It is noted that the
use of planar PIV measurements in this configuration does not provide a measure of the spanwise
transport of momentum, however, the flow visualizations (Fig. 5.5) provide qualitative evidence
that this component is not significant, even for the spanwise modulated actuators. The control
volume boundaries are selected to be sufficiently removed from the strong pressure gradients near
the electrode overlap [109] since an estimate of pressure is not available. Performing a momentum
balance in the 𝑥-direction gives:

𝑇𝑥 = 𝜌

[∫
ab
𝑢2d𝑦 +

∫
bc
𝑢 𝑣d𝑥 −

∫
cd
𝑢2d𝑦

]
, (5.1)

where 𝑇𝑥 captures the streamwise body/thrust force applied to the fluid and the generated wall
shear stress. Separation of these two forces is not possible given the experimental limitations,
however this is not critical given that the objective is quantification of differences in generated
forces between the different configurations. Therefore, 𝑇𝑥 is assumed to be a good representation
of the total thrust forced applied to the fluid.

The results of the momentum calculations are presented in Fig. 5.8, which show that, thrust
values ranging between 0.14 ≤ 𝑇𝑥 ≤ 0.25 mN m−1 are produced by the two-dimensional actuator
(Fig. 5.8a) and the spanwise modulated actuators within the 0 ≤ 𝑧̃ ≤ 1 section of the active region
(Fig. 5.8b). These values are expected to be more or less equivalent given that thrust generation is
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Figure 5.6: Contours of mean streamwise velocity across actuator spans (𝑉pp = 6 kV, 𝑓c = 5 kHz,
100% duty cycle). Note different aspect ratios (̃𝑧-direction) between (a) and (b)–(d).

expected to be spanwise uniform in these areas, yet the values vary by as much as 33% from their
mean. This variability in ‘spanwise uniform’ thrust generation is noted and is the likely result
of imperfections in the manufacturing process (defects/contamination during paint application
or drying) since the variability extends beyond the limits of the measurement uncertainty. On
that note, the measurement uncertainty is relatively high given a number of challenges in the
PIV experiments, the most significant of which is the low particle density levels in the region
surrounding the electrode overlap, leading to a propensity for erroneous vectors in this region.
A full discussion of the uncertainty related to these measurements is provided in Appendix B.
Nevertheless, the measurements are still capable in resolving the decrease in thrust generated
as the edge of the active region is approached and passed for the spanwise modulated actuators.
Averaging 𝑇𝑥 within the active regions (all measured values for the two-dimensional actuator, and
within 0 ≤ 𝑧̃ ≤ 2.5 for the spanwise modulated actuators) gives the average thrusts generated in
the active regions, 𝑇act, which are plotted in Fig. 5.8 as dashed lines. As expected, 𝑇act is highest
for the two-dimensional actuator, which is not subject to any end effects, while 𝑇act is equal,
within the experimental uncertainty, for the three spanwise modulated actuators. More sensitive
experimental measurements are required to determine if the minimal decreases in 𝑇act seen with
increasing spanwise wavelength are due to weakening jet interaction effects.
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Figure 5.7: Contours of mean streamwise velocity at 𝑧̃ = 0 for the 2D actuator (𝑉pp = 6 kV,
𝑓c = 5 kHz, 100% duty cycle). Dashed outline (corners abcd) indicates control volume for
momentum analysis.
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Figure 5.8: Sectional thrust generated across actuator spans (𝑉pp = 6 kV, 𝑓c = 5 kHz, 100% duty
cycle). Dashed lines (coloured according to legend) indicate average within the actuator active
region (𝑇act).

The results presented thus far have been at a duty cycle of 100%, while in the experiments
that follow (Section 5.5) it is the intention to operate the actuator outputs at lower duty cycles
in order to produce disturbances that target the main instability within the LSB. As previously
discussed (Section 5.2.1), this was necessary to provide sufficient mixing of seeding particles,
which even still yielded relatively high uncertainty levels (Fig. 5.8). The approach is then to
collect results over a range of duty cycles so that the higher uncertainties associated with lower
duty cycle operation can be somewhat mitigated through consideration of the entire dataset and
the use of linear interpolation. The effect of duty cycle on thrust generated at a single plane
(̃𝑧 = 0) for the two-dimensional actuator is plotted in Fig. 5.9. The uncertainty intervals remain
relatively constant with duty cycle, confirming that results at lower duty cycles are subject to
much higher relative uncertainties. Within the experimental uncertainty, the trend in 𝑇𝑥 with duty
cycle is approximately linear, and thus the thrust generated by the actuators at other duty cycles is
estimated through linear interpolation of the current results.

Since negligible thrust is produced in areas where the electrodes do not overlap (Figs. 5.5
and 5.6), estimates of the total thrust produced by an actuator can be made from the average
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Figure 5.9: Effect of duty cycle on sectional thrust generated at 𝑧̃ = 0 for the 2D actuator
(𝑉pp = 6 kV, 𝑓c = 5 kHz, 𝑓m = 133 Hz).

sectional thrust generated in the active regions (𝑇act, Fig. 5.8) and the actuator’s total active length,
which are 385, 150, 110 and 70 mm for the 𝜆𝑧 = 0, 12.5, 18.75, and 25 actuators, respectively.
These results are presented in Table 5.2, which shows that for a given duty cycle, as expected, the
total thrust produced decreases with increasing spanwise wavelength. Also, the results highlight
that achieving equal momentum output across all the four actuators through varying the duty cycle
is not practically possible since, for example, the 𝜆𝑧 = 25 actuator at 100% duty cycle produces
less than half the momentum of the two-dimensional actuator at 25% duty cycle. One approach to
producing spanwise modulated disturbances of different wavelengths while holding the output
momentum constant is to superimpose the output of the two-dimensional actuator with that of a
spanwise modulated actuator by arranging them in streamwise succession (Fig. 5.1), with the key
assumption being that the momentum outputs of each actuator will linearly superimpose in this
arrangement. To this end, a streamwise separation of 26 mm (𝑥̃ = 13) is used between actuators
(Fig. 5.1) which, based on the results seen in Fig. 5.6, should ensure the momentum outputs of the
two actuators remain independent. Therefore, the superposition of momentum output is assumed
valid and duty cycles for various actuator combinations are found that give equal amounts of
total momentum output. These values are reported in Table 5.2 as superposition momentum
coefficients, showing that the outputs of the 𝜆𝑧 = 12.5, 18.75, and 25 actuators superimposed
with that of the two-dimensional actuator at duty cycles of 21%, 22%, and 23%, respectively,
give total 𝐶𝜇 values that match the output of just the two-dimensional actuator at a duty cycle of
25%. Thus, operating conditions for the two-dimensional actuator and three cases of superposition
with the spanwise modulated actuators have been identified. These conditions produce equivalent
total output momentum across all four cases and will be used in the experiments that follow
(Section 5.5).

5.4 In-Flow Characterization

The characterization efforts now shift to determining the phase delay needed to superimpose the
actuator outputs and the resulting streamwise topology of the disturbances. This requires the
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Table 5.2: Thrust and momentum coefficient estimates (𝑉pp = 6 kV, 𝑓c = 5 kHz, 𝑓m = 133 Hz).

Actuator (𝜆𝑧) Duty cycle [%] 𝑇tot [µN] 𝐶𝜇 [×10−4] Superposition 𝐶𝜇 [×10−4]

2D 100 71.4 ± 6.8 46.8 ± 4.5 –
12.5 100 19.2 ± 1.8 12.6 ± 1.2 –
18.75 100 13.5 ± 1.2 8.8 ± 0.8 –

25 100 7.9 ± 0.9 5.2 ± 0.6 –

2D 25 18.6 ± 3.8 12.2 ± 2.4 12.2 ± 2.4

2D 21 15.0 ± 3.4 9.8 ± 2.2 12.4 ± 2.312.5 21 4.0 ± 0.8 2.6 ± 0.6

2D 22 15.7 ± 3.4 10.3 ± 2.2 12.2 ± 2.318.75 22 3.0 ± 0.6 1.9 ± 0.4

2D 23 16.4 ± 3.6 10.8 ± 2.4 12.0 ± 2.425 23 1.8 ± 0.4 1.2 ± 0.2

correct external flow conditions, and so the experimental setup described in Section 5.2.2 is used.
Thus, a laminar separation bubble is formed over a flat plate at a nominal Reynolds number of
Re𝛿1s = 750 and the flow is forced by the surface-mounted, AC-DBD plasma actuators (Fig. 5.1),
characterized in Section 5.3. Five cases are considered: (i) the natural/unforced flow (shorthand
Nat.), (ii) two-dimensional forcing (shorthand 2D), and three-dimensional forcing with spanwise
wavelengths (𝜆𝑧) of (iii) 12.5, (iv) 18.75, and (v) 25. Two-dimensional forcing is achieved through
operation of a single spanwise uniform actuator, while for the three-dimensional forcing cases
two actuators are arranged in streamwise succession and operated simultaneously. The total
momentum imparted to the fluid is kept constant across all forcing cases by using duty cycles of
25%, 21%, 22%, and 23% for the 2D, and 𝜆𝑧 = 12.5, 18.75, and 25 cases (Table 5.2), respectively,
while keeping all other forcing parameters constant (𝑉pp = 6 kV, 𝑓c = 5 kHz, 𝑓m = 133 Hz).

A phase delay between the two-dimensional and a given three-dimensional actuator must
be determined in order to spatially superimpose the produced disturbances. The phase delay is
expected to depend on the spatial separation of the actuators, the forcing parameters, and the
external flow. To this end, PIV measurements synchronized to the forcing cycle were acquired in the
top view configuration (Fig. 5.3b) with each actuator operating in isolation (no superposition), with
the results presented in Fig. 5.10 showing phase-averaged streamwise velocity. The measurements
were performed in the aft portion of the LSB (𝑥s = 0 for the unforced case) so that the disturbances
reached measurable amplitudes, with the laser sheet positioned such that is passed through the top
halves of formed shear layer vortices in this region, thus resulting in the capture of the disturbances
as bands of relatively high streamwise velocity.

From Fig. 5.10, the disturbances produced from the three-dimensional actuators (Fig. 5.10c–e)
are at approximately equivalent spatial locations for the same phase angles of their forcing cycles,
indicating that upstream of the measurement domain the disturbances travel at roughly equivalent
convective velocities. For the same phase angle in the two-dimensional actuator’s forcing cycle
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Figure 5.10: Phase-averaged streamwise velocity contours. Flow is from top-to-bottom. Note
that the 2D actuator is off for (c)–(e).

Figure 5.11: Phase and spanwise-averaged streamwise velocity for the same cases presented in
Fig. 5.10. Markers (coloured according to legend) indicate selected local maxima.

(𝜃 = 0° in Fig. 5.10a), disturbances are further upstream compared to Fig. 5.10c–e, which is
attributed to the upstream positioning the two-dimensional actuator (Fig. 5.1). Advancing 42°
in the 2D forcing cycle (Fig. 5.10b) positions the disturbances at similar streamwise locations
to three spanwise modulated cases, which is verified in Fig. 5.11, where the velocity fields in
Fig. 5.10 are spanwise-averaged and plotted. Selected local maxima in the spanwise-averaged
velocity (markers in Fig. 5.11) estimate the position of the disturbances and are used to determine
the optimal phase shift in order to spatially superimpose the two-dimensional disturbances with
all three outputs of the spanwise modulated actuators. This phase shift is determined to be 42°,
meaning when two actuators are operated simultaneously, the two-dimensional forcing cycle must
lead that of the three-dimensional forcing by 42°.

The result of operating the 𝜆𝑧 = 12.5, 18.75, and 25 forcing configurations for disturbance
superposition using the determined phase delay is presented in Fig. 5.12, where all three cases
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Figure 5.12: Phase-averaged streamwise velocity contours for phase 𝜃 = 0 showing disturbance
superposition. Flow is from top-to-bottom.

show the same streamwise disturbance wavelength (𝜆𝑥 ≈ 12.5) as the two-dimensional forcing
case (cf. Figs. 5.10a and 5.10b). Thus, across all the forcing configurations considered, the
produced disturbances are of the same frequency and streamwise wavelength. The former is
by virtue of operating all actuators at the same modulation frequency ( 𝑓m = 133 Hz), while the
latter is achieved by successful superposition of disturbances for the three-dimensional forcing
cases (Fig. 5.12). Additionally, the results of the quiescent characterization confirm that the total
momentum imparted to the fluid is equal across all these case (Table 5.2).

5.5 Effect on LSB Flow Development: Preliminary Study

With the forcing technique fully characterized, three-dimensional forcing with superposition may
be applied to the flow, and flow development in the LSB may be contrasted with that of the
natural and two-dimensional forcing cases. Figure 5.13 presents these results with sequences of
instantaneous streamwise velocity measured via the top view PIV configuration. For the natural
case (Fig. 5.13a), strongly coherent spanwise vortices with significant spanwise undulations are
apparent in the upstream portion of the field of view (𝑥̃ < 50). Further downstream, structures of
a similar spanwise wavelength are identifiable, however their spanwise coherence is decreased.
For the particular instant depicted in Fig. 5.13a, the predominant spanwise wavelength in the
vortex filaments is approximately 𝜆𝑧 = 30. A rigorous statistical characterization of the spanwise
wavelengths that develop in the vortex filaments follows later in this section. With respect to
the streamwise wavelength of the structures, across all of Fig. 5.13, the predominant streamwise
wavelength of the structures is 𝜆𝑥 = 12.5. This is confirmed via POD analysis (see Appendix C.2.2)
to be the mean streamwise wavelength of the LSB shear layer vortices for all cases, which is
a direct result of the forcing targeting the frequency of the most amplified disturbances in the
natural flow. Thus, representing the spanwise forcing wavelengths with respect the predominant
streamwise wavelength gives 𝜆𝑧 = 𝜆𝑥 , 1.5𝜆𝑥 , and 2𝜆𝑥 for the 𝜆𝑧 = 12.5, 18.75, and 25 cases,
respectively. These cases cover the lower portion of the range 1 . 𝜆𝑧/𝜆𝑥 . 7 reported in Chapter 4
(Section 4.3.1) and other previous investigations [113, 137, 153].
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Figure 5.13: Sequences of instantaneous streamwise velocity contours. Flow is from top-to-
bottom. Consecutive frames separated by 𝑡∗

𝛿1s
= 4.6.
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From Fig. 5.13, significant changes in the flow development are observed when the flow is
forced. Specifically, for the two-dimensional forcing case, the most upstream vortex in Fig. 5.13a-i
is uniform across the span and remains largely two-dimensional as it convects downstream, while
developing relatively minor spanwise undulations. These undulations are more apparent in the
downstream structure, located at 𝑥̃ ≈ 56 in Fig. 5.13a-i. As this structure convects downstream,
localized breakup regions develop at the locations where the filament bulges forward in the
streamwise direction as was noted in Fig. 4.8. That being said, comparing the downstream
structure in Fig. 5.13b-ii to the structures at the same streamwise locations in the natural flow
(e.g., at 𝑥̃ ≈ 62 in Fig. 5.13a–ii) reveals that the two-dimensional forcing leads to an increase
in spanwise coherence in the formed shear layer vortices, which persists as the vortices develop
downstream. In a similar manner, results for the three-dimensional forcing cases (Fig. 5.13c–e)
show highly spanwise uniform vortex filaments upstream of 𝑥̃ = 50. This reflects the fact that
the disturbances introduced into the flow for the spanwise modulated forcing cases are primarily
two-dimensional, with only a weak three-dimensional component. This is to be expected given that
the two-dimensional actuator provides 80 to 90% of the total momentum for the three-dimensional
forcing cases. However, despite the relative weakness of the three-dimensional forcing components,
spanwise wavelengths that match the forcing wavelength are evident for the 𝜆𝑧 = 25 forcing,
particularly in the structure at 𝑥̃ = 54 in Fig. 5.13e-i. Note that regions where the downstream
vortex in Fig. 5.13e bulge forward are downstream of where the spanwise modulated actuator is
active (̃𝑧 = −25, 0, and 25, see Fig. 5.1), while the filament lags behind at spanwise locations
downstream of the actuator gaps.

The flow development depicted in Fig. 5.13e confirms a crucial aspect of this investigation,
as the 𝜆𝑧 = 25 forcing does not result in a simple spanwise modulation of the base flow. Rather,
the results point to the presence of an instability mechanism within the LSB that amplifies the
spanwise component of the input disturbances, causing the initially two-dimensional vortex
filament to develop significant spanwise undulations at the prescribed wavelength. Furthermore,
there is an apparent spanwise wavelength dependence, as spanwise undulations in the vortex
filaments matching the input of the 𝜆𝑧 = 12.5 and 18.75 forcing are not readily identified in the
flow (Figs. 5.13c and 5.13d, respectively). Therefore, these cases may serve to force the flow in
a manner more akin to the two-dimensional forcing, however, statistical evidence is needed to
support this claim.

A statistical characterization of the spanwise wavelengths that develop in the LSB shear layer
vortices is carried out using wavelet analysis (Section 3.3.3), which is preferred over spatial Fourier
analysis due to the limited spanwise extent of the PIV field of view. From the top view PIV
measurements (e.g., Fig. 5.13), fluctuating streamwise velocity signals are extracted at 𝑥̃ = 45, 55,
and 65, smoothed using a spatial kernel of width 𝑥̃ = 1.5, and wavelet coefficients are calculated
using the Morlet wavelet [43]. An exemplary signal and its corresponding wavelet coefficients
are presented in Fig. 5.14. For a given time instant, the predominant spanwise wavelength is
estimated from the maximum wavelet coefficient, with the process repeated for all time realizations,
resulting in 4480 statistical samples obtained per streamwise location. The resulting histograms
are presented in Fig. 5.15. For the natural case (Fig. 5.15a), the distribution at 𝑥̃ = 45 is evenly
spread across a wide range of wavelengths, 12 . 𝜆𝑧 . 60, with a minor peak at 𝜆𝑧 = 29, which
roughly matches what is seen in Fig. 5.13 at this location. The wide dispersion of values indicates
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Figure 5.14: (a) Exemplary fluctuating streamwise velocity sampled across the span at 𝑥̃ = 45 in
the natural flow and (b) corresponding wavelet coefficient contours. Maximum wavelet coefficient
indicated by × marker.

that there is significant variability in the initial undulations of the naturally developing shear layer
vortices, with a minor preference toward spanwise wavelengths of 𝜆𝑧 ≈ 30. When compared to the
predominant streamwise wavelength of the structures, 𝜆𝑥 = 12.5, the general range of wavelengths
observed at 𝑥̃ = 45 in Fig. 5.15a is 1 . 𝜆𝑧/𝜆𝑥 . 5, which is in agreement with previous LSB
investigations [113, 137, 153].

From Fig. 5.15a, the wavelength distributions shift to lower values as the vortices convect
downstream to 𝑥̃ = 55 and 65, with a significant peak centred at 𝜆𝑧 = 5 seen in the distribution of
the most downstream station. This shift is associated with the turbulent breakup of the shear layer
vortices, seen in Fig. 5.13, as the prominent fluctuations that are localized to the breakup regions
in the vortex filaments are characterized by these short wavelengths. In fact, all cases presented in
Fig. 5.15 show this shift to shorter wavelengths as the flow develops downstream, confirming that
this trend is indicative of turbulent breakdown. When the flow is subjected to the two-dimensional
forcing, the shear layer vortices are initially spanwise uniform (Fig. 5.13b), while the results at
𝑥̃ = 45 in Fig. 5.15b show a distribution that spans the entire detectable range of wavelengths,
which is indicative of the structures being spanwise uniform, with the analysis method detecting
small amplitude undulations present in the velocity signals, with wavelengths concentrated at
three minor peaks, two of which roughly match the natural case at the same streamwise location
(𝜆𝑧 ≈ 28 and 50). The peak at the lowest wavelength value, 𝜆𝑧 = 5, may indicate an intermittent
onset of turbulent breakdown, but could also result from noise in the PIV measurement that is not
completely removed by the smoothing process.

It is instructive to begin the examination of the spanwise modulated forcing results with the
𝜆𝑧 = 25 case (Fig. 5.15e), where spanwise undulations at and near the forcing wavelength are
detected in the flow at 𝑥̃ = 45. The peak in the histogram is found at 𝜆𝑧 = 22, which indicates
that there is a tendency for the input wavelength of the disturbance to be modified slightly as
the disturbances grows through the upstream boundary layer and into the LSB. It must be noted
that the wavelet analysis only quantifies the probability distribution of spanwise wavelengths
present in the velocity signals, and does not provide a measure of the magnitude of any particular
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Figure 5.15: Spanwise wavelength probability distributions determined from spatial wavelet
analysis (Fig. 5.14). Dotted lines indicate standard deviation from the mean (dashed line).

spanwise deformation present in the flow. Therefore, the 𝜆𝑧 ≈ 25 peak in the histogram at
𝑥̃ = 45 is reflective of a tendency for undulations at this wavelength, with evaluation of the flow
development (Fig. 5.13e) affirming that these undulations are of a relatively minor amplitude at
this streamwise location. As the structures develop downstream to 𝑥̃ = 55 and 65, the distributions
shift toward lower wavelengths as a result of turbulent breakdown. A similar trend can be seen
for the 𝜆𝑧 = 18.75 case (Fig. 5.15d), as a minor peak centred at the input wavelength is found
in the distribution at 𝑥̃ = 45, albeit the effect is not as apparent as seen for the 𝜆𝑧 = 25 forcing,
which indicates that indeed three-dimensional disturbance growth is wavelength dependent, with
growth at 𝜆𝑧 ≈ 25 being preferred over 𝜆𝑧 = 18.75 and 12.5. In fact, in examining the results

92



of the 𝜆𝑧 = 12.5 forcing case (Fig. 5.15c), none of the distributions show peaks at the forcing
wavelength. Instead the distributions resemble that of the two-dimensional forcing case, indicating
that spanwise component introduced by the forcing has been damped out and the flow is primarily
forced in a two-dimensional manner.

Given the perceived increased receptivity of the flow to spanwise disturbances with wavelength
𝜆𝑧 = 25, the focus now shifts to contrasting the results of that case in particular with those of
the natural flow and the two-dimensional forcing case. Contours of phase-averaged spanwise
vorticity, measured using the side view PIV configuration (Fig. 5.3a), are presented in Fig. 5.16.
Results for only the two-dimensional and 𝜆𝑧 = 25 cases are presented since phase-averaging is not
possible for the natural case. To aid in visualizing the development of the shear layer vortices
throughout the forcing cycle, the cores of vorticity for a selected vortex are identified using the
𝜆2-criterion [88], and are connected using a smoothing spline fit. The results in Fig. 5.16 affirm
the observations made from the top view PIV measurements (Fig. 5.13), as vortex filaments are
initially two-dimensional under both types of forcing. As the vortices develop downstream, a clear
spanwise undulations matching the forcing wavelength develop for the 𝜆𝑧 = 25 case (Fig. 5.16b-iii)
that is absent in the presence of purely two-dimensional forcing (Fig. 5.16a-iii). Figure 5.16b
provides further insight into the effects of the spanwise modulated forcing, as it shows the core of
the shear layer vortex is closer to the surface in the region 𝑧̃ ≥ 7.5, which is where the filaments
lags behind the streamwise forward section that develops within 𝑧̃ ≤ 5. This type of motion
could be the result of the spanwise undulation in the filament, since a filament of such topology
would self-induce a net rotational motion, causing lift-up and push-down on the regions where the
filament bulges forward and lags behind, respectively. This, coupled with the strong wall-normal
velocity gradient, would lead to a continual intensification of the vortex stretching, until localized
breakup takes place, as seen in Fig. 5.13e-ii at 𝑥̃ ≈ 60. These dynamics are examined in detail
through the development of vortex filament in Section 5.5.1.

Previous investigators [134, 260] and the findings presented in Appendix A demonstrate that
the reattachment process in LSBs is almost entirely governed by the dynamics of the shear layer
vortices, and so significant changes in the mean flow topology are expected as a result of the
investigated forcing techniques. This is first examined through contours of mean streamwise
velocity from the side view PIV measurements, presented in Fig. 5.17. As in Chapter 4, the
topology of the separation bubble is characterized using the dividing streamline, which forms a
closed contour with surface within which the streamwise mass flux is zero [58, 76, 172]. The
intersection points of the dividing streamline with the surface give the mean separation and
reattachment points, with the former not being estimated as a result of lying well upstream of the
measurement domain for all cases. The maximum bubble height and its streamwise location are
also estimated, and are found where the maximum wall-normal distance between the surface and
dividing streamline occurs.

The results plotted in Fig. 5.17a show the natural separation bubble reaches a maximum
height of ℎ̃ = 0.8 ± 0.12 at 𝑥̃h = 44.6 ± 0.10 and reattaches to the surface, in the mean sense, at
𝑥̃r = 57.0± 0.55. Examining the same spanwise plane, 𝑧̃ = 0, when the flow is forced reveals small
changes in the mean characteristics of the LSB for both the two-dimensional and 𝜆𝑧 = 25 cases,
which is to be expected given the relatively small forcing amplitudes employed (Table 5.2). That
being said, both types of forcing do lead to slight upstream shifts in the maximum bubble height
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Figure 5.16: Sequence of phase-averaged spanwise vorticity contours. Circle markers indicate
vorticity cores for a given structure, identified via the 𝜆2-criterion [88], and are connected using
smoothing spline fits.

and reattachment locations, which is consistent with the findings in Appendix A (Fig. A.3) and
other previous reports on the effects of periodic forcing on separation bubble mean topology [151,
260]. However, in all other investigations, forcing also leads to a reduction in the maximum bubble
height, while the opposite is found here as the maximum bubble height increases to approximately
ℎ̃ = 1.1 ± 0.12 for both the 2D and 𝜆𝑧 = 25 cases. A detailed comparison between these two cases
and the natural flow is presented in Chapter 6, which clarifies that this results from low frequency
activity in the natural LSB.

With regards to spanwise topology of the bubble, as outlined in Section 5.2.2, data at spanwise
planes other than 𝑧̃ = 0 are only available for the forcing cases. Therefore, an examination of
the spanwise topology of the natural LSB is reserved for Chapter 6, while here the spanwise
topology between the two forcing cases can be compared. Fig. 5.17b reveals negligible difference
between the 𝑧̃ = 0 and 12.5 planes for the two-dimensional forcing case, with the small differences
between the maximum bubble height and reattachment locations lying within the experimental
uncertainty. Given this and the inevitable minor imperfections present in experiments, the mean
bubble topology for this case can be considered essentially two-dimensional, which is to be
expected given the type of forcing. In contrast, significant differences are observed between the
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Figure 5.17: Contours of mean streamwise velocity at selected spanwise locations. Solid lines
mark the dividing streamlines, whose uncertainty bounds are indicated by the dotted lines. Triangle
and square markers denote estimated mean maximum bubble height and reattachment points,
respectively.

𝑧̃ = 0 and 12.5 planes for the 𝜆𝑧 = 25 forcing case. The mean topology at 𝑧̃ = 0 largely resembles
that at the same plane for the two-dimensional forcing case, while significant upstream shifts
in 𝑥̃ℎ and 𝑥̃𝑟 and a reduction in ℎ̃ is found at the 𝑧̃ = 12.5 plane for the 𝜆𝑧 = 25 case. These
results indicate that the effects of the spanwise modulated forcing on the mean flow topology are
most pronounced in regions of the streamwise rearward ‘valleys’ of the input disturbance (e.g.,
𝑧̃ = 12.5, from Fig. 5.16b), while in the regions of the disturbance’s streamwise forward ‘crests’
(̃𝑧 = 0), the forcing acts in a similar manner to equivalent (in terms of momentum input), yet
purely two-dimensional forcing. Relating the changes observed in the mean topology of the LSB
at 𝑧̃ = 12.5 to the vortex dynamics, Fig. 5.16b revealed that the shear layer vortices are closer to
the surface in this region, which is consistent with the upstream advancement in reattachment and
reduction in bubble height seen in Fig. 5.17c.

Further insight into the disturbance development within the LSB is gained through an
examination of root-mean-square contours of the wall-normal velocity fluctuations, which are
plotted in Fig. 5.18. Overall, the contours for the natural case (Fig. 5.18a) match previous results
for naturally developing separation bubbles (Figs. 4.4 and A.3, and in Refs. [113, 125, 260]),
with the streamwise amplification of disturbances first detected just upstream of the maximum
bubble height location. This is followed by strong growth in disturbance amplitudes in the aft
portion of the bubble due to the shedding of the shear layer vortices. A similar trend is seen for the
two-dimensional forcing case (Fig. 5.18b), albeit amplification is detected at earlier streamwise
locations as a result of the forcing targeting the primary instability with the LSB. Moreover,
Fig. 5.18b provides further evidence that the two-dimensional forcing is indeed two-dimensional,
as the rms contours for the 𝑧̃ = 0 and 12.5 planes only show minor differences.
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Figure 5.18: Rms of fluctuating wall-normal velocity contours at same spanwise locations as
Fig. 5.17. Solid lines mark the dividing streamlines. Triangle and square markers denote estimated
mean maximum bubble height and reattachment points, respectively.

Examining the 𝑣′rms contours for the 𝜆𝑧 = 25 case (Fig. 5.18c) reveals similar disturbance
amplification for the 𝑧̃ = 0 plane to that of the two-dimensional forcing case, although higher
amplitude disturbances are found for the 𝜆𝑧 = 25 case in the aft portion of the bubble, which
may be related to an earlier onset of turbulent breakdown as a result of the vortex stretching
(Fig. 5.16b) and localized breakup (Fig. 5.13e) that occurs in this region. However, this does
not impact the mean topology of the LSB, which is consistent with the arguments put forward
in Section A.3.3, where it is contended that the location at which vortex formation occurs is
the most significant factor affecting separation bubble topology. The strong effect of vortex
formation and the associated dynamics on the rms contours is further reinforced at the 𝑧̃ = 12.5
plane for the 𝜆𝑧 = 25 case. Here, as a result of the vortex being stretched and pushed toward the
surface, a localized region of high velocity fluctuations is found relatively close to the surface at
𝑥̃ ≈ 49. Moving downstream, the rms levels do not rise continuously as the reattachment point
is approached, indicating that the fluctuating energy has been redistributed into another velocity
component. No discontinuity is seen in the 𝑢′rms contours (Fig. C.7c), indicating that the velocity
fluctuations have been redistributed into either the streamwise, spanwise, or both direction. Since
the spanwise component is not captured in the current experiments, measurements capturing all
three components of velocity for this LSB and the forcing configurations are required in order to
be able to accurately describe the observed the disturbance development.

5.5.1 Vortex Filament Model

An assertion was made that self-induced motion affects the development of the observed spanwise
modulated vortex filaments, leading to sections of the filament being lifted away and pushed toward
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the surface (Fig. 5.16c), which then has significant impact on the mean topology of the flow field
(Figs. 5.17c and 5.18c). This assertion is examined through the development of an analytical model
that considers a sinusoidal vortex filament in the vicinity of a wall subject to a mean shear flow
and Biot-Savart induction. Specifically, velocity fields are computed through the superposition of
mean flow profile typical of a separated shear layer and the time-dependent induced flow resulting
from a real and mirror vortex filament pair, with the latter governed by Eqn. 2.6. Such a model
is expected to capture the self-induced motions of an undulatory-shaped vortex filament, which
can then be studied in the presence of wall effect and a wall-normal velocity gradient. It is noted
that the model will be subject to significant limitations, since only a single vortex is modelled
in isolation and the model does not enforce the conservation laws, and theferefore the effects of
inertia, pressure, and viscosity are not fully accounted for in the modelled flow. That being said,
through the inclusion of the aforementioned phenomena and subsequent study of their interaction,
the model may prove useful in elucidating certain mechanisms present in the investigated flow.

The modelled filament is initialized from the following set of parametric equations:

𝑥̃ = 𝑏 sin
(
2𝜋
𝜆𝑧

𝜏

)
, 𝑦̃ = 2, 𝑧̃ = 𝜏, 0 ≤ 𝜏 ≤ 𝑛𝜋, (5.2)

where 𝑛 is the number of spanwise wavelengths in the filament within the span of the modelled
domain. The spanwise wavelength is set to 𝜆𝑧 = 25, and the amplitude of the sinusoid, 𝑏 = 1.25,
is estimated from the PIV measurements (Fig. 5.16b-iii). The motion of the filament is modelled
through the consideration of three phenomena, which are visualized in Fig. 5.19. The first is
convection by the mean flow (Fig. 5.19a). An estimate of this is provided by the time-averaged PIV
measurements, with the profile at 𝑧̃ = 0 and 𝑥̃ = 45 from the 𝜆𝑧 = 25 case used (Fig. 5.17c). As
the model requires an analytical expression for the mean velocity profile, the following fit is used:

𝑢

𝑢e
=

1 − 𝑎1

2
+ 1 + 𝑎1

2
tanh

[
𝑎2 ( 𝑦̃ − 𝑎3)

𝑎4

]
, (5.3)

which is a modified form of that proposed by Dini et al. [45] that allows for reverse flow and
has been shown to suitably model separated boundary layer profiles in a number of analytical
applications [20, 23]. The profile edge velocity, 𝑢e, is again estimated from the PIV measurements,
while the coefficients 𝑎𝑛 are estimated through a least-squares curve fitting operation to the
measured data.

The second aspect to be modelled is the filament’s self-induced velocity; governed by the
Biot-Savart law (Eqn. 2.6). The circulation of the filament is estimated as Γ/𝑢∞𝛿1s = −19.5,
found from phase-averaged PIV measurements (Fig. 5.16b), where spanwise vorticity within a
contour on the 𝑧̃ = 0 plane that encompasses a single shear layer vortex is integrated. To evaluate
the filament’s self-induced velocity, Eqn. 2.6 is evaluated at the points lying along the filament. A
singularity results when the velocity a point induces on itself is evaluated (i.e., ®𝑟 = 0 in Eqn. 2.6),
which is remedied by defining a ‘solid core’ radius of the filament, within which Biot-Savart
induction does not apply. The self-induced velocity distribution for the initial filament position is
depicted in Fig. 5.19b.

The final aspect to be modelled is the wall effect. This is modelled by a mirror image of the
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Figure 5.19: Segment of modelled vortex filament (blue) subject to (a) mean shear flow, (b)
Biot-Savart self-induction, and (c) Biot-Savart induction from the filament mirrored about the
wall plane (red).

vortex filament about the wall plane (𝑦̃ = 0) with an equal but opposite circulation. The induced
velocity on the ‘real’ filament is then evaluated using Eqn. 2.6, with the result for the initial
filament position shown in Fig. 5.19c.

The motion of the filament is simulated through numerical evaluation of the model, with the
implementation written in Matlab, the source code of which is available in Appendix D.1. The
filament is discretized in space and the velocity at each of its points is evaluated as previously
described. Each point is then advanced in space according to its total estimated velocity and a
prescribed time step, with the process repeated for a set number of time steps. Through an iterative
process, the model was found to be stable and give converged results for a solid core radius size of
𝜋/18, a spatial discretization size of 𝜏 = 𝜋/36, and a time step of d𝑡∗

𝛿1s
= 0.1. As prescribed by

the vortex theorems of Helmholtz [70], a vortex filament may not start or end in the fluid, however
this is unavoidable in the current model. In order to minimize the ‘unnatural’ end effects present, a
total filament length covering 32 spanwise wavelengths is modelled, with the end effects assumed
negligible in the region covering the centre-most two wavelengths.

The results of the simulation are shown in Fig. 5.20. At initialization (Fig. 5.20a), the filament
is confined to the 𝑦̃ = 2 plane, while the mean flow serves to convect the filament purely in the
𝑥̃-direction (Fig. 5.19a), which is slightly opposed by the wall effect (Fig. 5.19c). Due to the
spanwise undulatory shape of the filament, a rotational motion about the filament’s 𝑧̃-axis is
imparted as a result of Biot-Savart self-induction (Fig. 5.19b). Thus, as the filament convects
downstream in Figs. 5.19b–d, this rotational motion causes the streamwise forward and rearward
sections of the filament to tilt away and toward from the surface, respectively, visualized in Fig. 5.20
by colouring the filament according to its wall-normal height. As a result of the self-induced tilting
motion, the filament is stretched in the 𝑥̃-direction, both by the wall-normal shear and wall effect.
The result is an approximate 50% increase in the spanwise amplitude of the filament’s undulations
between 𝑥̃ = 40 and 50, which is most clearly seen in the 𝑥-𝑧 views of Figs. 5.20b and 5.20c.

The model and experimental results are compared in Fig. 5.21 in terms of the stretching
observed in the vortex filaments. This is quantified by the peak-to-peak distance in the filament
in a given coordinate direction, i.e., 𝑥̃pp and 𝑦̃pp for the streamwise and wall-normal directions,
respectively. The experimental data are taken from the phase-averaged side view PIV measurements
for the 𝜆𝑧 = 25 case, in which the vortex cores were identified using the 𝜆2-criterion (Fig. 5.16b).
Both the model and experimental results presented in Fig. 5.21 are normalized by the results at
𝑥̃ = 40 since this gives a measure of the relative stretching with downstream development, in
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Figure 5.20: Development of modelled vortex filament subject to mean shear and Biot-Savart
induction (Fig. 5.19). Filament coloured according to its wall-normal height. Consecutive frames
separated by 𝑡∗

𝛿1s
= 15.9.
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Figure 5.21: Vortex filament stretching in the (a) streamwise and (b) wall-normal directions. PIV
data is taken from the vortex cores determined in Fig. 5.16b and is smoothed using a sliding kernel
of width Δ𝑥̃ = 2.6. The uncertainty bounds (grey shaded regions) are based on the variability
within the smoothing kernel.

addition to the model and experimental values being matched at this location through selection
of the model’s initial spanwise amplitude in the 𝑥̃-direction (𝑏 in Eqn. 5.2). From Fig. 5.21, it
is apparent that the experimental measurements show more significant vortex stretching in both
the streamwise and wall-normal directions than the model predicts. Fair agreement is seen on
the magnitude of stretching in the 𝑦̃-direction (Fig. 5.21b), while in the 𝑥̃-direction (Fig. 5.21a),
both the magnitude and rate at which the stretching occurs is higher in the experiments. This
indicates that factors not captured in the model must also contribute significantly, such as the
model not accounting for changes in the mean velocity profile with 𝑥, viscous effects, and other
vorticity sources present in the real flow. That being said, the vortex strecthing predicted by the
model is similar in trend and of the same order of magnitude as seen in the experiments, which
indicates that the mechanisms present in the model contribute significantly to the vortex stretching,
in addition to other unaccounted effects.

From the perspective of the dynamics considered in the vortex filament model, the spanwise
modulated shape of the vortex filament observed in the experiments (Fig. 5.16b-iii) will self-induce
a rotational motion which, alongside the wall-normal shear and wall effect, will cause a continual
intensification of the vortex stretching. Not only is this motion seen in Fig. 5.16b, but it is also
reported in Chapter 4, where even in the absence of intentional spanwise modulated forcing,
spanwise undulations develop in the LSB shear layer vortices, leading to the streamwise forward
sections of the filament lifting away from the surface and tilting forward in the streamwise direction
(Fig. 4.26). Thus, for the investigated LSBs, one formed over an airfoil and the other over a
flat plate with an applied adverse pressure gradient, a fundamental aspect of the shear layer
vortex development appears to be the development of spanwise undulations which, due to the
self-induced motions they incur, are intrinsic to the breakup of the vortex and therefore to the
overall transitional process to turbulence. These observations can be applied more broadly to all
LSBs, since regardless of how the spanwise undulations are initially produced, if present, they
will tend to develop in the way shown in any near-wall shear flow.
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5.6 Concluding Remarks

In this chapter a three-dimensional forcing technique capable of producing deterministic distur-
bances modulated to a desired spanwise wavelength was developed and characterized, with a
preliminary look taken at the effects of this forcing on flow development in an LSB. The separation
bubble was formed over a flat plate with an imposed adverse pressure gradient at a nominal
Reynolds number of Re𝛿1s = 750. Forcing was provided by surface-mounted, AC-DBD plasma
actuators installed well upstream of the natural LSB separation point, thus leaving the disturbances
to develop as they convect through the upstream boundary layer and into the LSB. Five cases were
investigated: (i) the natural/unforced flow, (ii) two-dimensional forcing, and three-dimensional
forcing with spanwise wavelengths (𝜆𝑧) of (iii) 12.5, (iv) 18.75, and (v) 25. These spanwise forcing
wavelengths were chosen since, when considered with respect to the predominant streamwise
wavelength of disturbances in the LSB (𝜆𝑥 = 12.5), they correspond to 𝜆𝑧 = 𝜆𝑥 , 1.5𝜆𝑥 , and 2𝜆𝑥 ,
respectively, thus covering the lower portion of the range 1 . 𝜆𝑧/𝜆𝑥 . 7 reported in Chapter 4 and
other previous investigations [113, 137, 153]. Two-dimensional forcing was achieved through
operation of a single spanwise uniform actuator, while for the three-dimensional forcing cases,
two actuators were arranged in streamwise succession and operated simultaneously. The upstream
actuator produced a spanwise uniform disturbance, which was then spanwise modulated by the
output of the downstream actuator, with a relative phase delay used to superimpose the two outputs.

Prior to studying the effects of the forcing on LSB flow development, a detailed characterization
of the plasma actuators was carried out in both quiescent and in-flow conditions to determine
the spanwise and streamwise disturbance topology, net momentum injection, and phase delayed
needed for disturbance superposition. The quiescent characterization involved flow visualizations
and planar PIV measurements, showing that all actuators provide a spanwise uniform injection of
streamwise momentum through the production of relatively weak, wall-parallel streamwise jets in
regions where the actuator’s high voltage and ground electrodes overlap. Thus, two-dimensional
output is achieved from an actuator with electrode overlap that is spanwise continuous, while
three-dimensional disturbances at a desired spanwise wavelength are achieved through introducing
gaps in the electrode overlap, as no streamwise velocity is generated in the gap regions.

From the planar PIV measurements, the generated thrust and associated momentum coefficients
were estimated for all actuators using a control volume analysis. The results highlight higher
sectional thrust generated by the two-dimensional actuator due to end effects that decrease
momentum output at the edges of the overlap regions. This, coupled with different total active
region (thrust producing) lengths, results in varied total thrust production for all actuators
considered. The assumed superposition of momentum output for actuators arranged in streamwise
succession was shown to be reasonably valid, which coupled with the established linear trend
between thrust output and forcing duty cycle, allowed for the identification of forcing parameters
for the desired actuator combinations that gave equal amounts of total momentum output. In
particular, duty cycles of 25%, 21%, 22% and 23% were found to give equal total momentum
across the two-dimensional, 𝜆𝑧 = 12.5, 𝜆𝑧 = 18.75, and 𝜆𝑧 = 25 cases, respectively, while all other
forcing parameters were kept constant. The phase delay required to superimpose the disturbance
outputs of the actuators was invariant to spanwise wavelength, with a value of 42° leading to
successful disturbance superposition within the LSB.
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Significant changes in the development of the LSB shear layer vortices were observed as
a result of the forcing. When left to develop naturally, the vortices formed with significant
spanwise undulations, the wavelengths of which exhibited a high degree of variability over a
relatively wide range of values, 1 . 𝜆𝑧/𝜆𝑥 . 5. When the flow was forced in a two-dimensional
manner, vortex formation was essentially two-dimensional, with the vortex being uniform across
the entire investigated span. This two-dimensionality was maintained as the vortex developed
downstream, with only minor undulations developing prior to localized breakdown to turbulence.
In a similar manner, the vortex filaments were predominantly spanwise uniform at formation
for all the spanwise modulated forcing cases. Differences were observed based on the spanwise
wavelength of the forcing as the vortex developed downstream, as substantial spanwise undulations
that essentially matched that of the forcing resulted only for the 𝜆𝑧 = 25 case, while the effect was
much less pronounced for the 𝜆𝑧 = 18.75 and 12.5 cases. In fact, the results of the 𝜆𝑧 = 12.5 case
were largely similar to those of the two-dimensional forcing case, indicating that the spanwise
component introduced by forcing at that particular wavelength was damped out. Thus, evidence
of three-dimensional disturbance growth that is spanwise wavelength dependent was established.
In the case of forcing at a spanwise wavelength of 𝜆𝑧 = 25, this led to the relatively weak
three-dimensional component of the introduced disturbances to be significantly amplified in the aft
portion of the bubble, causing the initially two-dimensional vortex to develop significant spanwise
undulations at a prescribed wavelength.

Further analysis of the vortex dynamics revealed that, in the case of the 𝜆𝑧 = 25 forcing,
the vortex filaments surged forward in the streamwise direction in the region downstream of
where the three-dimensional actuator was active, while the filament lagged behind at spanwise
locations downstream of the actuator gaps. These filament motions, coupled with the strong mean
shear, were speculated to lead to a continual intensification of vortex stretching, leading to rapid
filament deformation. The validity of this assertion was established through the development
of simplified model that considered the development of a vortex filament subject to Biot-Savart
induction and mean flow convection. The results of the model confirmed that, as a result of the
filament’s spanwise undulatory shape, a net rotational motion is imparted on the filament through
Biot-Savart self-induction, causing the crests and valleys of the filament to tilt away and toward
the surface, respectively. This, coupled with the mean shear flow, caused the filament to stretch in
the streamwise direction.

The discussed vortex dynamics were linked to the mean topological features, as the two-
dimensional forcing was shown to shift the mean maximum bubble height and reattachment
locations upstream, while also causing the mean bubble height to increase. Similar results were
found for the 𝜆𝑧 = 25 case where the vortex filaments surged forward, indicating that the effect of
the forcing at these locations was similar to that of the two-dimensional forcing. That being said,
the most significant effects on the mean characteristics of the flow were seen in regions where
the vortex filaments were pushed toward the surface, which in turn caused significant upstream
shifts in reattachment and reductions in the maximum bubble height. This lead to disturbance
growth in the aft portion of the bubble occurring in a region much closer to the surface, where
the streamwise and wall-normal components of the fluctuating energy were redistributed into the
spanwise direction prior to the breakdown to turbulence.

These results have shown that significant changes to LSB flow development can be made
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through spanwise modulated forcing, with the outcome dependent on the input wavelength. For
the particular LSB investigated, the effect was most significant for a spanwise wavelength that
was approximately double the streamwise wavelength of the LSB shear layer vortices. To further
elucidate the effects of this type of forcing, more comprehensive measurements that capture
all three components of velocity are required, so that the ensuing vortex dynamics can be fully
observed and connections can be drawn to the three-dimensional time-averaged flow topology.
Furthermore, the observed vortex dynamics should be linked to flow stability, with focus placed
on whether two or three-dimensional disturbances are most destabilizing to the flow. These are the
objectives laid out for Chapter 6.
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Chapter 6

Growth of Spanwise Modes in a Laminar
Separation Bubble
A follow-up campaign to that of Chapter 5 is conducted, where the growth of spanwise disturbances
in the LSB is considered in detail. Measurements near the mean separation point reveal a
preferential amplification of spanwise modes in the upstream boundary layer. In the LSB, both
measurements and LST predictions show two-dimensional modes are the most amplified, while
spanwise modes grow at reduced, yet comparable rates. The end result, in the case of three-
dimensional forcing, is the manifestation of the unstable spanwise modes in the shear layer vortices
as spanwise undulations, which lead to a continual intensification of vortex stretching that is
intrinsic to the vortex breakup process.
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6.1 Introduction

The results of Chapter 5 made it clear that significant changes to the flow development in a laminar
separation bubble can be made through the introduction of controlled disturbances of varied
spanwise wavelengths. Of the three spanwise wavelengths considered, the most significant changes
resulted from spanwise forcing at a wavelength that corresponded to two times the streamwise
wavelength of the fundamental disturbances in the LSB. Precedence for unstable disturbance
growth of similar spanwise modes can be found in the study of laminar boundary layers. In
the work of Mack [131], in which linear stability analysis was applied to a Blasius boundary
layer, albeit at much higher Reynolds numbers, spanwise modes were found to be more unstable
than the normal Tollmien-Schlichting waves for certain frequencies and oblique wave angles.
Furthermore, the interaction between normal and oblique modes is responsible for the onset of
three-dimensionality in K-type [107] and H-type [71] transition. A model of such interactions was
developed by Craik [41] and Zelman & Maslennikova [267], and considers the formation of a
resonant triad of a two-dimensional TS wave and two oblique waves of equal but opposite angles.
Most notably, the frequency of the oblique wave pair is half of the normal TS mode and so the
interaction is referred as subharmonic. Thus, there is evidence linking the most amplified normal
and oblique modes in certain cases of laminar boundary layer transition to the forcing technique
found to be most effective in Chapter 5, as both report a spanwise to streamwise wavelength ratio
of 2 : 1. This supports the notion that the upstream boundary layer sets the initial conditions for
the transition process within the LSB, as it conditions the incoming disturbances (e.g., Ref. [46]).

Previous studies have examined the effect of oblique disturbances on LSB transition and flow
development. Rist & Augustin [198], in a direct numerical simulation of an LSB formed on a flat
plate, found that weakly oblique instability waves grew at comparable rates to the two-dimensional
normal mode and lead to an earlier onset of turbulent breakdown, as long as oblique wave
angles were below 30°. Note that a wave angle of 30° corresponds to a spanwise to streamwise
wavelength ratio of 1.73, again closely matching the most effective forcing wavelength from
Chapter 5. Furthermore, the introduction of these oblique waves caused a spanwise staggering
of the LSB vortex shedding process, leading to a peak and valley distribution in mean flow field
quantities. Similar observations have been made in other DNS studies, notably those of Marxen
et al. [137] and Pauley [182]. Experimental studies of the same nature are relatively scarce due
to the difficulty in implementing a reliable spanwise modulated forcing technique, which is then
compounded by the need for three-dimensional flow field measurements. Notable exceptions are
Michelis et al. [151, 153], who noted spanwise deformations in naturally developing LSBs. In
Ref. [153] the spanwise to streamwise wavelength ratio of the deoformattions was found to be 1.94,
while applying two-dimensional forcing almost entirely eliminated the spanwise modulations. As
a result, a model based on the amplitude ratio between normal and oblique disturbance modes was
proposed for vortex deformations in LSBs.

From surveying the literature, it is clear that the development of disturbances upstream of
the LSB must be considered. In doing so, a more comprehensive understanding of the effects
imparted by spanwise modulated forcing on LSB flow development can be gained. In particular,
special consideration can be given to the stability characteristics of the flow that dictate the growth
of the modes introduced by the forcing, which can then be linked to the development of the LSB
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shear layer vortices and the mean flow topology. To this end, a follow-up experimental campaign
to that conducted in Chapter 5 is undertaken, utilizing the same wind tunnel facility, model, flow
conditions, and forcing technique. Disturbance development in the region near the mean separation
point is measured via hot-wire anemometry, while planar and tomographic PIV measurements are
utilized to capture reliable statistics and the three-dimensional evolution of the shear layer vortices
in the aft portion of the LSB, respectively.

6.2 Description of Experiments

The same wind tunnel facility, model, flow conditions and forcing techniques discussed in
Section 5.2.2 were employed, with a schematic of the experimental setup provided in Fig. 6.1.
Therefore, by maintaining the same free-stream velocity (5.75 m s−1) and pressure distribution
imposed by the displacement body, a separation bubble was formed on the top surface of the flat
plate that extended from 𝑥̃ = 0 to 𝑥̃ ≈ 70, matching the LSB studied in Chapter 5, as seen in
Fig. 6.2. The previous Cartesian coordinate system is used, with the origin located such that 𝑥 = 0
is located at the location of mean flow separation with no forcing (490.5 mm from the plate leading
edge), while 𝑦 = 0 and 𝑧 = 0 are located at the top surface and midspan of the plate, respectively.
Based on the displacement thickness at separation when the flow is not forced (𝛿1s = 2 mm), and a
free-stream velocity of 5.75 m s−1, the nominal Reynolds number for the experiments was once
again Re𝛿1s = 750.

The AC-DBD actuators described in Section 5.2.1 (Fig. 5.1) were employed to introduce
controlled disturbances upstream of the LSB. A subset of the cases considered in Chapter 5 were
selected, including: (i) the natural/unforced flow, (ii) two-dimensional forcing, and (iii) three-
dimensional forcing with a spanwise wavelength of 𝜆𝑧 = 25. Since a single set of actuators can
provide either two-dimensional or spanwise modulated forcing, the set did not need to be changed
between cases. The set of actuators was recessed into the plate so as not to perturb the flow and
placed to locate the two-dimensional discharge area at 𝑥̃ = −310. The equipment and parameters for
plasma actuation described in Section 5.2.1 were utilized (𝑉pp = 6 kV, 𝑓c = 5 kHz, 𝑓m = 133 Hz).

Figure 6.1: (a) Side and (b) top view of experimental setup. The setup from Fig. 5.3 is
maintained, with additional equipment added for hot-wire anemometry (HWA) and tomographic
PIV measurements. Tomographic camera arrangement shown in (b).
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Figure 6.2: Mean streamwise static pressure distributions showing equivalence between the
Chapter 5 and present experiments. Measurement uncertainty is given by the marker size.

Duty cycles of 25% and 23% were employed for the two-dimensional and 𝜆𝑧 = 25 forcing cases,
respectively, providing closely matching total momentum coefficients between the two forcing
cases, 𝐶𝜇 = (12.2± 2.4) × 10−4 and (12.0± 2.4) × 10−4, respectively, as determined in Section 5.3
(Table 5.2).

Disturbance development near the mean separation point was measured via hot-wire anemom-
etry, with the approximate measurement locations shown in Fig. 6.1b. The measurements were
performed in spanwise scans at wall-normal heights equal to the local displacement thickness
(approx. 𝑦 = 2 mm) where the mean streamwise velocity is approximately equal to 0.65𝑢∞
(3.75 m s−1). These measurement locations were selected based on the anticipation of measurable
disturbance amplitudes at a distance from the wall where errors due to rectification and near-wall
conduction are expected to be low. A Dantec 55P15 boundary layer probe was used for all
measurements, which was angled at approximately 10° to the plate surface, in accordance with the
recommendations of Brendel & Mueller [24]. The hot-wire sensor was operated by a TSI IFA-300
constant temperature anemometer bridge, with the bridge outputs digitized using a 24-bit National
Instruments 9234 data acquisition module. The sensor was held in place by a rigid sting aligned in
the streamwise direction, which was mounted to a 3-axis Zaber DE51T3 traversing system located
downstream of the test section exit. 300, 150, and 150 mm of maximum travel were available in
the spanwise, streamwise, and wall-normal directions, respectively, with an estimated uncertainty
in traverse movements of 15 µm. Position of the hot-wire sensor relative to the coordinate system
was determined via a telescopic optical setup, with the uncertainty in its position in all coordinate
directions estimated to be less than 0.06 mm. The presence of the sting and traversing system were
confirmed via surface pressure measurements to have no measurable impact on the mean flow.
Sampling was performed at 51.2 kHz for a total of 5 s, thus collecting 2.56 × 105 samples per
measurement location. A wait period of 10 s was used between traverse movements to ensure any
vibrations resulting from the movement had died out. To enable phase-averaging of the results,
the plasma forcing signal was split prior to amplification and served as the start trigger for the
measurements.

Calibration of the hot-wire sensor was performed in-situ, with the tunnel off and a TSI 1127
Velocity Calibrator placed inside the open test section. The reference velocity provided by the
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Table 6.1: Parameters for PIV experiments.

Parameter Planar Tomographic Unit

Laser EverGreen 200 mJ/pulse Nd:YAG –
Camera PCO sCMOS 5.5MP (x2 planar, x4 tomo) –
Lens focal length 105 200 mm
Lens 𝑓# 5.6 11 –
Sensor resolution 2560 × 733 2560 × 1800 px
Final area/volume 4767 × 733 1499×165×2605 px/vox

130 × 20 69 × 7.6 × 120 mm
PIV mode Double-frame –
Acquisition mode Indep. sampling & phase-locked –
Sampling rate 15 (indep.), 14.77 (phase-locked) Hz
Laser pulse sep. 70 100 µs
Max. particle disp. 20 17 px/vox
No. of samples 2400 (indep.), 300 (per phase) –
Final window size 16 × 16 20 × 20 × 20 px/vox
Vector pitch 0.11 0.23 mm
Avg. uncertainty 1 2.9 % of 𝑢∞

calibrator was estimated by measuring the pressure drop across its nozzle using a Honeywell HSC
series pressure transducer with full range of ±160 Pa, resulting in an uncertainty of less than 2%
on velocities greater than 0.3𝑢∞. Calibration was performed daily, using 17 calibration points
spanning between 0 ≤ 𝑢/𝑢∞ ≤ 2, with a fourth order polynomial fit to the voltage response of
the hot-wire used. Based on the discussions provided in Appendix B.3, the uncertainty in the
hot-wire measurements is estimated to be less than 3% of 𝑢∞ within the measured velocity range
(0.6 ≤ 𝑢/𝑢∞ ≤ 0.78).

Flow development in the separation bubble was measured using planar and tomographic
PIV configurations (Fig. 6.1), with the salient parameters for each configuration summarized in
Table 6.1. For both configurations, the flow was seeded with a glycol-water based fog with a
mean particle diameter on the order of 1 µm. Illumination was provided by a Quantel EverGreen
200 mJ/pulse Nd:YAG laser, with synchronization between the cameras and laser handled through
a LaVision timing unit. Data acquisition and processing was performed using LaVision’s DaVis
10 software. Data were acquired in independent sampling and phase-locked acquisition modes,
with the plasma forcing signal split prior to amplification and sent to the timing unit to serve
as the phase-locking reference. For the phase-locked acquisitions, 300 samples per phase were
collected for a total of 12 phases, while independent sampling was done at 15 Hz with a total of
2400 samples collected.

Measurements were performed in the 𝑥-𝑦 plane for the planar configuration, using two PCO
sCMOS 5.5MP cameras arranged in streamwise succession. Each camera was fitted with a Nikon
105 mm focal length macro lens set to 𝑓# = 5.6. With the fields of view overlapped by 12%, a
total FOV of 130 × 20 mm was achieved. The magnification factor for both cameras was 0.24,
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yielding resolutions of 37 px/mm. Double-frame particle images were acquired using a frame
separation time of 70 µs, keeping particle displacements under 20 px. Particle displacements were
calculated using an iterative, multi-grid cross-correlation scheme with window deformation [212],
starting and ending with window sizes of 64×64 px and 16×16 px, respectively, with 75% overlap
between windows. The resulting vector pitch is 0.11 mm in both the 𝑥 and 𝑦 directions. The
results were post-processed using the universal outlier detection method [247], with the resulting
vector fields stitched together using a cosine weighted blending function in the overlap region.
The random errors in the measurements were estimated using the correlation statistics method
[251]. The average uncertainty within the fore portion of the LSB and the free-stream is estimated
at 1% of 𝑢∞, while higher levels (∼3%) are present in the aft portion of the LSB.

For the tomographic configuration, four PCO sCMOS 5.5MP cameras were used. These were
placed in rectangular arrangement above the flat plate at inclination angle of approximately 27°
with respect to the 𝑦-axis. Each camera was fitted with a Nikon 200 mm focal length macro lens
set to 𝑓# = 11, with a Scheimpflug adapter used to align the focal plane with the camera sensor.
The laser beam was collimated using a set of spherical lenses, then expanded to illuminate the
volume of interest using a cylindrical lens. Light attenuation effects at the volume boundaries was
mitigated through the use of a knife edge filter. A physical calibration was performed by imaging a
calibration target placed at three wall-normal planes within the volume. This calibration was then
refined using volume self-calibration [250], which reduced the standard deviation in the volume
calibration to less than ±0.1 px. Double-frame particle images were acquired using a frame
separation time of 100 µs, keeping particles displacements under 17 px. Volume reconstruction
from the acquired images was obtained through the Simultaneous Implementation of Multiplicative
Algebraic Reconstruction Techniques (SMART) [12], yielding a total interrogation volume of
1499 × 165 × 2605 voxel (vox). Vector calculation was performed iteratively using cubic windows
and 75% overlap, with initial and final windows lengths of 96 and 20 vox, respectively. The
final volume is 69 × 7.6 × 120 mm containing 300 × 33 × 521 vectors, resulting in a vector
pitch of 0.23 mm in all three coordinate directions. The findings of Lynch & Scarano [129] can
provide a rough estimate of the uncertainty on instantaneous velocity measurements, which is
estimated to be 0.5 vox away from the wall, corresponding to 2.9% of the free-stream velocity,
with higher uncertainties expected near the wall. However, this is not a rigorous determination
of the uncertainty associated with the tomographic measurement, which is challenging for any
investigator given the complexity of the technique. A full discussion of the contributing factors
to uncertainty in tomographic PIV measurements is provided in Appendix B.2. In order to
establish the reliability of the tomographic results, a detailed comparison with equivalent planar
PIV measurements will be conducted, since a more robust estimate of uncertainty is available for
the latter.

6.3 Time-Averaged Characteristics

Statistical quantities from the planar and tomographic measurements are first analyzed to establish
the mean characteristics of the investigated LSB. From the planar PIV measurements, Fig. 6.3
presents mean streamwise velocity and rms quantities of the streamwise and wall-normal velocity
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Figure 6.3: Planar PIV contours of mean streamwise velocity (𝑢), and rms of fluctuating
streamwise (𝑢′rms) and wall-normal (𝑣′rms) velocity. Solid lines mark the dividing streamlines,
whose uncertainty is indicated by the dotted lines. Circle, triangle, and square markers denote
estimated mean separation, maximum bubble height, and reattachment points, respectively. Dashed
lines indicate displacement thickness.

fluctuations at 𝑧̃ = 0. As the same experimental setup, flow conditions and forcing configurations
of Chapter 5 were utilized, the LSB characteristics reported in Figs. 5.17 and 5.18 are expected
here. Thus, the same methods in characterizing the mean LSB topology through identification of
the mean dividing streamline are employed [58, 76, 172], with the results shown in Fig. 6.3, and a
summary of values provided in Table 6.2. Estimation of the mean separation point is possible
as a result of capturing the fore portion of the LSB in the current experiments, with a value of
𝑥s = 0.1 ± 7.0 estimated for the natural flow, which does not change, within the experimental
uncertainty, on account of the two or three-dimensional forcing. The relatively high uncertainty in
𝑥s is a result of the relatively shallow angle of the mean dividing streamline in the fore portion of
the LSB, which is sensitive to the uncertainty in determining the location of the wall.

A few conclusions can be drawn from the comparison of the Chapters 5 and 6 results presented
in Table 6.2. First, the LSB characteristics for the two-dimensional and 𝜆𝑧 = 25 forcing cases
show good agreement between the two experimental campaigns, with nearly all values agreeing
within the uncertainty bounds. Comparing the flow topologies reported in Figs. 5.17 and 5.18,
and Fig. 6.3 for these two cases supports this assertion, as both the mean streamwise velocity and
rms contours show similar patterns in the aft portion of the bubble (𝑥̃ & 35), while differences in
the mean dividing streamlines result from resolving the fore portion of the LSB in the current
experiments.

Second, and most importantly, poor agreement is seen between the results of the natural case,
as the mean maximum bubble height and reattachment locations are significantly more downstream
in the Chapter 5 results, as reported in Table 6.2 and seen through comparison of Figs. 5.17a and
6.3. This indicates that the LSB has changed in length, shifted upstream, or a combination of
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Table 6.2: Comparison of LSB characteristics at 𝑧̃ = 0 from the planar PIV results of Chapters 5
and 6 (Figs. 5.17 and 6.3, respectively).

Case Parameter Chapter 5 Chapter 6

Nat.
𝑥s – 0.1 ± 7.0
𝑥h 44.6 ± 0.2 35.4 ± 2.8
𝑥r 57.0 ± 1.0 50.0 ± 2.9

2D
𝑥s – −0.9 ± 7.1
𝑥h 45.2 ± 0.2 45.8 ± 0.7
𝑥r 55.3 ± 1.2 57.3 ± 2.6

𝜆𝑧 = 25
𝑥s – −0.1 ± 7.2
𝑥h 45.6 ± 0.2 47.1 ± 0.9
𝑥r 56.3 ± 1.0 57.9 ± 2.0

both in the current experiments. As flows involving separation bubbles are extremely sensitive
to the experimental conditions [173, 174], the changes in the natural LSB characteristics could
be the result of minor changes in external factors (e.g., acoustic environment, slight difference
in model positioning, climatic induced changes in facility operating conditions) that are beyond
the control of the experimentalist. These factors would influence the natural LSB since it is the
external disturbance environment that provides the input disturbances for the ensuing transition
process, while providing deterministic input disturbances via forcing almost entirely eliminates
this dependence. Evidence of these minor discrepancies are seen in the streamwise pressure plots
of Fig. 6.2, where the results are in good general agreement but show some minor differences.
Finally, it must be noted that the sampling time of the PIV measurements in Chapter 6 is an order
of magnitude larger than that of Chapter 5 (𝑡∗

𝛿1s
= 4.6 × 105 versus 1 × 104). Therefore, if changes

in the natural LSB occur over a relatively long time scale, such as shear layer flapping [47, 266]
and/or bursting [58, 205], then such phenomena would manifest in the time-averaged results of
Chapter 6, while remaining statistically unresolved by the high-speed PIV of Chapter 5. A strong
case for this will be made through the discussions that follow in this chapter.

Figure 6.4 presents a comparison between the planar and tomographic measurements at 𝑧̃ = 0
for the natural flow. Note that due to experimental limitations, no tomographic data are available
below 𝑦̃ = 0.35. Overall, the agreement between the measurements is very good, with the
mean streamwise velocity profiles in the aft portion of the bubble showing excellent agreement
(Fig. 6.4a). Only slight discrepancies are seen in the mean wall-normal velocity profiles, which
are attributed to the significantly lower magnitudes and relatively higher uncertainty levels for this
velocity component. Good agreement is also found between the measured velocity fluctuations, as
seen for 𝑢′rms and 𝑣′rms in Figs. 6.4c and 6.4d, respectively. Slight discrepancies are apparent at
the most upstream and downstream stations, 𝑥̃ = 32 and 62, respectively, which are a result of
the relatively low and high fluctuating amplitudes at these stations, respectively, in addition to
the significant spatial filtering applied by the tomographic processing algorithm. However, the
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Figure 6.4: Comparison of statistical quantities between planar and tomographic PIV measure-
ments at 𝑧̃ = 0 for the natural case. Solid and dashed black lines indicate the mean dividing
streamline and displacement thickness, respectively, estimated from the planar PIV. Red × markers
indicate locations of the spanwise scanning hot-wire measurements.

overall excellent agreement between the planar and tomographic measurements establishes that an
accurate representation of the flow is expected from the tomographic measurements.

Insight into the three-dimensional topology of the LSB is gained through examination of mean
streamwise velocity in the 𝑦̃ = 0.46 plane measured in the tomographic configuration. The results
are presented in Fig. 6.5, with the spanwise trend in the mean streamwise maximum bubble height
location also plotted, which is determined using the same approach illustrated in Fig. 6.3 for all
𝑥-𝑦 planes available in the tomographic volume. The results are smoothed across the span using a
sliding kernel of width Δ𝑧̃ = 3, with the indicated uncertainty bounds determined based on random
PIV error propagation and the variability of results within the smoothing kernel. Immediately
apparent is a distinct spanwise non-uniformity present in the natural flow (Fig. 6.5a), which is
characterized by a peak and valley structure with a spanwise wavelength of 𝜆𝑧 ≈ 25. Significant
changes in the maximum bubble height location across the span are apparent (solid black line in
Fig. 6.5a), with values varying by as much as ±7.5 in the 𝑥̃-direction from the spanwise averaged
value, 𝑥h ≈ 43. Reliable estimates of the mean reattachment locations are not possible given
the near-wall limitations of the tomographic configuration, however, the reverse flow region is
captured in the measurements (darkest shade of blue in Fig. 6.5), which also shows the same
distinct spanwise non-uniform trend.

While the LSB investigated in Chapter 4 showed strong spanwise uniformity (Figs. 4.18
and 4.19), other investigators have reported strong spanwise non-uniformities in LSBs [151, 153,
198]. Most notably, Rist & Augustin [198], in a DNS study, induced a peak and valley distribution
in an LSB by introducing oblique disturbances in the upstream boundary layer. In an experimental
investigation, Michelis et al. [153] noted strong spanwise non-uniformity in an LSB formed
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Figure 6.5: Mean streamwise velocity contours in the 𝑦̃ = 0.46 plane. Flow is from top-to-bottom.
Solid lines indicate the spanwise trend in the streamwise location of mean maximum bubble
height, estimated from 𝑥-𝑦 plane tomographic measurements using the same approach illustrated
in Fig. 6.3. The 𝑥h results are smoothed using a sliding kernel of width Δ𝑧̃ = 3, with the uncertainty
bounds (dotted lines) determined based on random PIV error propagation and the variability of
results within the smoothing kernel.

over a flat plate, which was eliminated by promoting formation of spanwise uniform shear layer
vortices through forcing. The same observation is reported here, as applying either the two or
three-dimensional forcing significantly increases the two-dimensionality of the mean flow field.
The spanwise non-uniformity seen in the natural flow and the subsequent effect of forcing reveals
the cause for discrepancy between the results of Chapters 5 and 6. For the natural flow, where
differences are significant, the spanwise non-uniformity leads to a high degree of variability
in the LSB characteristics at 𝑧̃ = 0 (Table 6.2), which is where the planar PIV measurements
were performed. Therefore, any minor change in the experimental facility, setup or procedure
(e.g., acoustic environment, model positioning, facility operating conditions, etc.) could result in
significant changes in the measured statistical quantities of the natural LSB, particularly in the
region of 𝑧̃ = 0. Furthermore, the fact that these differences are almost entirely eliminated when
the flow is forced indicates that the source of the discrepancy stems from the external disturbance
environment, which likely manifests in the flow as a low frequency modulation. It must be noted
that the spanwise wavelength of the spanwise non-uniformity in the natural flow almost exactly
matches that of the spanwise modulated forcing case, 𝜆𝑧 = 25. This points to an inherent preference
of the baseline flow for disturbance amplification at this spanwise wavelength. However, as noted
in Figs. 6.5a and 6.5b, the outcomes are vastly different between the natural flow and spanwise
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Figure 6.6: Mean streamwise and spanwise velocity contours in the 𝑥̃ = 32 plane.

modulated forcing case, which points to different mechanisms for disturbance amplification. These
mechanisms are examined in detail and differentiated throughout the remainder of this chapter.

Figure 6.6 presents contours of mean streamwise and spanwise velocity in a cross-flow (𝑦-𝑧)
plane at 𝑥̃ = 32, which is upstream of the mean streamwise locations of maximum bubble height
(Fig. 6.5), thus locating the plane in the fore portion of the LSB for all cases (Fig. 6.3). Here,
the mean streamwise velocity profile is spanwise uniform, with flow in the spanwise direction
remaining below 2% of the free-stream in most locations, which is within the uncertainty of
tomographic measurements. The result is particularly noteworthy for the natural case, since it
indicates that the spanwise non-uniformity observed further downstream (Fig. 6.5a) is the result
of some phenomenon whose effects become significant in the aft portion of the LSB, while
the incoming flow is essentially two-dimensional. The conclusion, as will be demonstrated in
Section 6.5, is that the shear layer vortices form and develop in a spanwise non-uniform manner,
producing the signatures seen in Fig. 6.5.

6.4 Disturbance Development

The results in Figs. 6.3 and 6.4 demonstrate that disturbance amplitudes remain low in the fore
portion of the LSB (𝑥̃ . 32), and therefore fall within the uncertainty of both the planar and
tomographic PIV measurements. As a result, more sensitive measurements are required to
resolve disturbances in this region, which is the purpose of the hot-wire measurements. These
were performed in spanwise scans at the streamwise locations marked by the red × markers in
Fig. 6.4. The scan locations are 𝑥̃ = −4.5, 1.75, 8.0, and 14.25, with the 𝑦 position equal to
the local displacement thickness. In order to isolate the fundamental perturbation mode, the
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measured streamwise velocity fluctuations are band-pass filtered about St0𝛿1s = 0.046 ± 0.004
( 𝑓0 = 133 Hz ± 10) using a fourth order Butterworth filter, with a zero-phase delay achieved by
filtering signals in the forward and then reverse directions. Since no phase information is available
for the natural case, root-mean-square values are calculated for each measurement position from a
total of 2.56 × 105 samples. For the forcing cases, the results are phase-averaged relative to the
forcing cycle, whose frequency matches the fundamental frequency. A total of 72 phases bins with
a width of St𝛿1s = 3.5 × 10−3 ( 𝑓 = 1 Hz) is used, with a total of 2660 samples averaged per phase.

The results are presented in Fig. 6.7, where upstream of separation (𝑥̃ = −4.5) disturbance
amplitudes are low, while higher amplitude fluctuations may be present closer to the surface,
as is traditionally seen in attached boundary layers [214, 216]. However, measurements could
not be performed in this region due to significant errors related to wall effects on the convective
heat transfer at the probe [50, 120] and rectification errors [30] that would result downstream
of separation. Nevertheless, due to convective amplification, disturbance amplitudes increase
at the downstream stations. Comparing the natural flow with the two-dimensional forcing case
reveals that disturbance amplitudes are approximately doubled in the presence of the forcing at the
most downstream location (cf. rms and peak-to-peak amplitudes at 𝑥̃ = 14.25 in Figs. 6.7a and
6.7b, respectively). Distinct peaks at 𝑧̃ = −11 and 17.5 are seen for the natural case (Fig. 6.7a),
which are in alignment with the peak locations in the 𝑢 field (Fig. 6.5a). Therefore, the spanwise
non-uniformity observed in the time-averaged results of the natural flow may be the result of
preferential disturbance amplification at certain spanwise locations. In contrast, when the flow
is forced with two-dimensional disturbances, disturbance growth is relatively spanwise uniform
(Fig. 6.7b), with any slight spanwise non-uniformities resulting from imperfect disturbance
production (Fig. 5.8), and/or potentially the same root cause for preferred amplification seen in the
natural flow.

In comparison to the two-dimensional forcing case, stark changes in the topology and
development of disturbances are seen when the flow is forced at a spanwise wavelength of 𝜆𝑧 = 25
(Fig. 6.7c). As noted by the difference in scale on the left-hand axis of Figs. 6.7b and 6.7c,
disturbance amplitudes are notably higher for the 𝜆𝑧 = 25 case, with a distinct spanwise modulation
apparent at a wavelength that matches that of the forcing. The two depicted phases show that,
through half of the forcing cycle, local maxima in the disturbance amplitudes alternate between
locations downstream of the spanwise modulated actuator’s active regions (̃𝑧 = −25, 0, and 25 at
𝜃 = 0) and the centre of the actuator gap regions (̃𝑧 = −12.5 and 12.5 at 𝜃 = 𝜋). Furthermore,
the alternating pattern of peaks and valleys between successive streamwise stations at spanwise
locations such as 𝑧̃ = −12.5 indicates that the spacing of the stations, Δ𝑥̃ = 6.25, is approximately
equal to half the fundamental streamwise wavelength. Thus, the streamwise wavelength of the
disturbances is approximately 𝜆𝑥 = 12.5, which agrees well with the predominant streamwise
wavelength of the shear layer vortices reported in Section 5.5.

As discussed in Section 2.2, it is well established that a Kelvin-Helmholtz type instability
of the separated shear layer is responsible for disturbance amplification in the fore portion of
LSBs [20, 46, 197, 243], leading to the transition process within LSBs being initially driven
by the convective amplification of two-dimensional disturbances [118, 139, 141]. Such is the
case when two-dimensional forcing is applied in the current experiments (Fig. 6.7a). However,
the results from 𝜆𝑧 = 25 point to the possibility of other instability mechanisms, leading to
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Figure 6.7: (a) Root-mean-square and (b)–(c) phase-averaged streamwise perturbations of the
fundamental frequency measured via HWA at several streamwise stations, 𝑦 = 𝛿1, and across the
span. Note the difference in scale between (a)–(b) and (c) on the left-hand axis.
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Figure 6.8: Streamwise growth of perturbation of the fundamental frequency at 𝑧̃ = 0, 𝑦 = 𝛿1, as
measured by hot-wire and planar PIV. Minimum threshold of 0.5% of 𝑢∞ applied to PIV results.
Arrows (coloured according to legend) indicate 𝑥h.

the three-dimensional input disturbances outgrowing two-dimensional disturbances of the same
initial amplitude, which is ensured though equal momentum coefficients between the two forcing
configurations (Table 5.2).

The streamwise growth of disturbances of the fundamental frequency, quantified through the
rms of phase-averaged streamwise velocity fluctuation, i.e., 𝑢̂rms, is examined in Fig. 6.8, where
a composite of hot-wire and planar PIV results is presented. For the hot-wire measurements,
𝑢̂rms is calculated from the phase-averaged results at 𝑧̃ = 0, with the rms taken across the 72
available phases (Fig. 6.7). For the planar PIV, results from phase-locked acquisitions are used,
and are therefore limited to the two forcing cases. Note that disturbance amplitudes at streamwise
positions upstream of 𝑥̃ ≈ 24 fall within the noise level of the PIV measurements, and therefore a
minimum threshold of 0.5% of 𝑢∞ is applied to the PIV results presented in Fig. 6.8. This cut-off
value was determined based on the uncertainty in the PIV measurements (Table 6.1) and where
the results deviated from the expected exponential trend [118, 135, 136].

Figure 6.8 shows the significant increase in disturbance amplitude in the fore portion of the
LSB (𝑥̃ < 15) on account of the forcing, with disturbance amplitudes for the two-dimensional and
𝜆𝑧 = 25 cases at 𝑥̃ = 14.25 approximately 5 and 2.2 times higher than the amplitude of the natural
disturbances. Thus, at this streamwise location the amplitude ratio between the 𝜆𝑧 = 25 and
two-dimensional forcing cases is approximately 2.2, which indicates the stability characteristics of
the upstream laminar boundary layer favour amplification of the spanwise modulated disturbances.
From the PIV data, the difference in amplitudes between the two forcing cases is significantly
reduced, with the amplitude ratio reduced from 2.2 at 𝑥̃ = 14.25 to 1.3 by 𝑥̃ = 30. This indicates
a change in stability characteristics from the upstream boundary, leading to the preferential
amplification of purely two-dimensional disturbances in the LSB. That being said, the initially
higher amplitude of the three-dimensional disturbances persists throughout the length of the
LSB, until their growth begins to saturate at 𝑥̃ ≈ 38, downstream of which saturation of the
two-dimensional disturbances follows soon after.
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The streamwise growth of disturbances depicted in Fig. 6.8 captures total amplitude, which
consists of both normal and spanwise spatial modes in varying ratio based on the forcing case
(Fig. 6.7). These constituent components of the disturbances are quantified through a spatial
Fourier analysis on both the hot-wire and tomographic PIV data. As before, disturbances at
the fundamental frequency are isolated through bandpass filtering and phase-averaging of the
hot-wire and PIV data, respectively, with signals extracted at 𝑦 = 𝛿1. Exemplary signals are
presented in Fig. 6.9, from which the depicted wavenumber spectra are calculated using the entire
spanwise extent of the measurement domains. 𝜆𝑧 = 25 is defined as the fundamental wavelength,
𝜆𝑧0, with the corresponding wavenumber, 𝑘𝑧0 = 0.04, used for non-dimensionalization. The
fundamental streamwise wavenumber is 𝑘𝑥0 = 0.08 and is also used for non-dimensionalization,
allowing for the notation (𝑘𝑥 , 𝑘𝑧) = (𝑚,±𝑛) in specifying Fourier modes, where 𝑚 and 𝑛 are
integer multiples of the fundamental wavenumbers. As is evident from the wavenumber spectra
presented in Fig. 6.9, the resolution is relatively coarse about (1,±1) due the finite span of the
HWA and PIV measurements domains, each containing only 57 and 521 points (padded to 64
and 1024, respectively) over extents of Δ𝑧̃ = 70 and 60, respectively. Nevertheless, the distinct
𝜆𝑧 = 25 wavelength present in the sample velocity signals is captured in the spectra, with distinct
peaks present at (1,±1) for both the HWA and PIV data. Thus, the method can quantify the
relative modal contributions to the total disturbance amplitude, with particular attention paid to
the fundamental normal (1,0) and first spanwise (1,±1) Fourier modes. Note that due to the
convective nature of the disturbances, the amplitudes of the spatial Fourier modes change with
phase at a given streamwise position. Therefore, the wavenumber spectra at each 𝑥 position are
averaged across all phases, allowing for the growth of the modes to be tracked with downstream
development.

Figures 6.10 and 6.11 present the streamwise growth of the spatial Fourier modes as captured
by the hot-wire and tomographic PIV measurements, respectively. When the flow is forced with
two-dimensional perturbations, initial disturbance growth in the LSB is almost entirely confined
to the normal mode, with all (1,0) amplitudes reported upstream of 𝑥̃ = 12.45 at least three orders
of magnitude larger than any spanwise mode (Fig. 6.10a). This is consistent with the disturbance
development depicted in Fig. 6.7b, where amplitude modulation in the phase-averaged disturbances
is nearly spanwise uniform. Disturbance growth remains confined to the (1,0) mode up until the
mean maximum bubble height location, as seen in Fig. 6.11a, downstream of which relatively
long wavelength (𝑘𝑧 < 𝑘𝑧0) modes begin to appear. As will be discussed in the following section,
the vortex formation process occurs upstream of 𝑥h. Therefore, the results indicate that in the
presence of two-dimensional forcing, disturbances remain two-dimensional in the fore portion of
the LSB and through the vortex formation process, with spanwise modes only appearing further
downstream as vortex breakup begins to occur.

For the 𝜆𝑧 = 25 forcing case, peaks are observed at both (1,0) and (1,±1) in the hot-wire
measurements (Fig. 6.10b), with both modes growing in amplitude as disturbances convect
downstream. The amplitude ratio between the normal and first spanwise modes remains relatively
constant at 30 : 1 over the three most downstream HWA stations, indicating that, while the normal
mode dominates in terms of amplitude, both modes are subject to comparable amplification rates.
This is supported by the findings of Michelis et al. [153] and Rist & Augustin [198], both of
which found comparable amplification rates near mean separation between normal and spanwise
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Figure 6.9: Top row: Phase-averaged fundamental perturbations modes at 𝑦 = 𝛿1 and exemplary
streamwise stations for the 𝜆𝑧 = 25 forcing case measured by (a) hot-wire and (b) tomographic
PIV. Bottom row: Corresponding spanwise wavenumber/wavelength spectra.

Figure 6.10: Streamwise growth of spatial Fourier modes of the fundamental frequency along
𝑦 = 𝛿1 as measured by hot-wire.

modes with oblique wave angles less than 𝜗 = 30°. In the current experiment, the ratio of the
fundamental streamwise to spanwise wavenumbers, 𝑘𝑥0/𝑘𝑧0, is 2, yielding an oblique wave angle
of 𝜗 = 26.5°.

Farther into the LSB, the tomographic PIV measurements show strong growth in the (1,0)
mode upstream of 𝑥h for the 𝜆𝑧 = 25 case (Fig. 6.11b), while activity at (1,±1) is not detected
upstream of 𝑥̃ ≈ 44. As this spatial mode was detected upstream by the HWA measurements, it
is likely present, however it remains undetected in this region as a result low amplitude levels
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Figure 6.11: Streamwise growth of spatial Fourier modes of the fundamental frequency along
𝑦 = 𝛿1 as measured by tomographic PIV. Arrows marks spanwise-averaged 𝑥h.

(relative to the tomographic PIV noise level) and averaging the spatial Fourier results across the
phases. Nevertheless, the activity in the (1,±1) mode is first detected at 𝑥̃ = 44, which is just
upstream of 𝑥h and where vortex formation occurs. The ramifications of the growth of this spatial
mode on the ensuing development of the shear layer vortices in the LSB remains to be investigated
in detail (Section 6.5). What has been made clear in this section is that the disturbance growth
upstream of and in the LSB depends strongly on the spanwise wavelength of the input disturbance
(Figs. 6.7 and 6.8). Under either of the two forcing configurations considered, the disturbance
growth is primarily driven by the fundamental perturbation’s normal spatial mode, while growth
can also occur in the (1,±1) spatial mode (Figs. 6.10 and 6.11).

6.4.1 Linear Stability Predictions
Linear stability theory (LST) (Section 3.3.1) is well suited to provide insight into the stability
characteristics in the fore portion of the LSB on account of the flow being largely two-dimensional
(Fig. 6.6) and disturbance amplitudes remaining small (Fig. 6.7) in this region. The primary
goal is to investigate the growth of the normal and spanwise modes seen in the measurements
(Figs. 6.7, 6.10, and 6.11), particularly in the region downstream of the hot-wire measurements,
where disturbance amplitudes remained too low to be resolved by PIV (Fig. 6.8). In the analysis,
Eqn. 3.5 governs the growth of small, wave-like perturbations with angular frequency Ω, and
streamwise and spanwise complex wavenumbers, 𝛼 = 𝛼𝑟 + 𝛼𝑖 and 𝛽 = 𝛽𝑟 + 𝛽𝑖, respectively. This
is the spatial formulation of the problem (e.g., Schmid & Henningson [215]), where Ω and 𝛽𝑟
are prescribed and the eigenvalue problem is solved for spatial growth rates. On account of the
flow being nearly spanwise invariant in the LSB fore portion (Fig. 6.6), disturbance growth in the
spanwise direction is assumed negligible (𝛽𝑖 = 0), and the problem is reduced to a solution for
𝛼. The stability of a particular disturbance is indicated by the sign of 𝛼𝑖, while the magnitude
gives the growth/damping rate. In this context, more negative values of 𝛼𝑖 correspond to higher
growth rates, with this terminology employed throughout. Eqn. 3.5 is solved numerically using
Chebyshev polynomial base functions and the companion matrix technique to treat eigenvalue
non-linearity [25]. Further information regarding the solution method can be found in van Ingen
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Figure 6.12: Mean velocity profiles measured via planar PIV at 𝑧̃ = 0 (black markers) in the
natural flow and corresponding hyperbolic tangent fits (solid grey lines, Eqn. 5.3) used in LST
calculations. Second derivatives in 𝑦 (blue markers) are evaluated on the fitted curves at the spatial
resolution of the measured data.

& Kotsonis [240].
Measured mean streamwise velocity profiles at discrete streamwise locations serve as an input

to the LST calculations, therefore making the analysis local. Spatial gradients estimated from
PIV measurements often have a relatively high noise level due to the finite spatial resolution
of the measurement technique [248], to which stability predictions can be highly sensitive [23].
Therefore, stability analysis is performed using hyperbolic tangent fits (Eqn. 5.3) to the planar
PIV data measured at 𝑧̃ = 0 (Fig. 6.3), with fits of this type shown to provide accurate stability
predictions [20, 23, 45]. Exemplary velocity profiles and the corresponding fits for the natural flow
are shown in Fig. 6.12, where the second derivative of the fitted curved in 𝑦 has been evaluated at
the spatial resolution of the measured data.

For validation purposes, LST predictions and experimental results are compared in Fig. 6.13.
The experimental results come from the hot-wire measurements since these were performed
in the region where disturbance amplitudes remain low (Fig. 6.4), in addition to providing an
independent verification of results since the LST analysis uses planar PIV measurements as input.
A measure of amplitude growth is quantified from the LST results through the computation of
𝑁 factors (Eqn. 3.7), however, the critical location at which disturbances first become unstable,
𝑥cr, lies upstream of the planar PIV field of view for all relevant frequencies and therefore cannot
be determined directly. However, in the fore portion of the LSB, 𝛼𝑖 may be approximated by
a second-order polynomial, as demonstrated by Jones et al. [91] (see their Fig. 11). Based on
this, 𝑥cr is estimated by extrapolating the curve fit to 𝛼𝑖 = 0, which is found to be at 𝑥̃cr = −16.5
for St0𝛿1s = 0.046 and 𝛽𝑟 = 0 in the natural flow. A direct comparison of 𝑁 factors with the
measured disturbances is not possible since their initial disturbance amplitude, 𝐴cr, is unknown
and likely could not be measured even if attempted. Therefore, following other investigators [153,
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Figure 6.13: Comparison of 𝑁 factors for St0𝛿1s = 0.046 from LST results (𝛽𝑟 = 0) and hot-wire
measurements at 𝑧̃ = 0. Experimental N factors are matched to LST predictions using a least-
squares approach.

Figure 6.14: Comparison of spectra of LST 𝑁 factors and measured streamwise velocity
fluctuations for the natural case at 𝑥̃ = 14.25, 𝑧̃ = 0. Grey arrow indicates St0𝛿1s .

215, 261], the amplification factors are matched across the four measurement locations using a
least-squares approach, thus allowing for an estimate of 𝐴cr for a given frequency using Eqn. 3.7.
The agreement seen in Fig. 6.13 is excellent for all cases.

The validity of the LST predictions are further supported by a comparison of the frequency
spectra of LST 𝑁 factors and experimental streamwise velocity fluctuations at 𝑥̃ = 14.5 for the
natural case. This is presented in Fig. 6.14, where both spectra show elevated energy content
centred at the fundamental disturbance frequency, St0𝛿1s = 0.046. Thus, based on the good
agreement seen in disturbance amplification rates and unstable frequencies (Figs. 6.13 and 6.14,
respectively), it is established that the employed LST analysis is suitable for determining stability
characteristics in the fore portion of the LSB.

Stability diagrams showing the variation in streamwise growth rates with frequency and
streamwise position for 𝛽𝑟 = 0 are presented in Fig. 6.15 for the three investigated cases. The
contour separating the white and lightest shade of blue sits at 𝛼𝑖 = 0 and therefore delineates the
curve of neutral stability, with all disturbances of characteristics falling within the coloured region
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Figure 6.15: Contours of LST predicted streamwise growth rates for 𝛽𝑟 = 0. Dashed lines indicate
loci of most unstable frequencies. Black and grey arrows indicate spanwise-averaged 𝑥h and St0𝛿1s ,
respectively.

being convectively unstable (𝛼𝑖 < 0). As previously mentioned, for the range of frequencies
relevant to the LSB (0.01 . St𝛿1s . 0.1), the curve of neutral stability extends upstream of the
PIV field of view for all cases. The blacked dashed lines indicate the streamwise trend in the
most unstable frequency, which for the natural case (Fig. 6.15a) remains relatively constant at
St𝛿1s = 0.05 throughout the streamwise domain, with LST calculations performed up to and just
downstream of the spanwise-averaged mean maximum bubble height location. This is in good
agreement with the experimentally determined fundamental frequency, St0𝛿1s = 0.046.

In the presence of forcing, both types (Figs. 6.15b and 6.15c) lead to significant reductions in
growth rates at the fundamental frequency, i.e., mode (1,0), as the maximum streamwise growth
rate in the natural flow, 𝛼𝑖 = −0.31, decreases in magnitude by approximately 13% and 22% on
account of the two-dimensional and 𝜆𝑧 = 25 forcing, respectively, with reductions on this order
extending throughout the fore portion of the LSB. Reduced growth rates on the account of applied
forcing has been reported in previous works (Refs. [134, 135, 198, 261] and in Appendix A),
and is attributed to the mean flow deformation mechanism proposed by Marxen & Rist [140].
Across the three cases, the 𝜆𝑧 = 25 case is subject to the lowest disturbance growth rates, which is
significant and is in alignment with the observations of the experimentally determined disturbance
development (Fig. 6.8). There it was found that disturbance amplitudes were initially higher for
the 𝜆𝑧 = 25 near the separation point, while further downstream comparable amplitudes levels
were found, indicating that growth rates for two-dimensional forcing cases must be higher in the
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Figure 6.16: Streamwise growth rate as a function of wave angle at several streamwise stations
and St0𝛿1s . The arrows indicate the wave angle of the (1,±1) mode, 𝜗 = 26.5°.

region 15 . 𝑥̃ . 20, which is supported by the LST findings. Whether or not this is a direct
outcome of growth in only the (1,0) mode remains to be determined through the examination of
LST results for non-zero spanwise wavenumbers.

The stability of oblique disturbances in the fore portion of the LSB is assessed in Fig. 6.16,
where streamwise growth rates are plotted as function of wave angle, 𝜗 = arctan (𝛽𝑟/𝛼𝑟), at several
streamwise stations. The growth rates correspond to the fundamental frequency, and therefore
wave angles of 𝜗 = 0° and ±25.6° give the (1,0) and (1,±1) modes, respectively. Across the three
studied cases, nearly all oblique disturbances with a wave angle of less than 60° are unstable,
with the noted exception being at 𝑥̃ = 50, which is well within the region where disturbances
amplitude have reached levels that likely incite non-linear interactions (Fig. 6.3). For all cases
and streamwise positions, the highest growth rates are found for the (1,0) mode, with comparable
levels of amplification seen for wave angles of 𝜗 . 30°, agreeing with the previously discussed
findings of Refs. [153, 198]. At the most upstream stations (𝑥̃ = 2 and 10) the reduction in growth
rate with increasing wave angle within 0 ≤ 𝜗 ≤ 30 is minimal, with the range of wave angles
that experience comparable growth rates narrowing about 0° with increasing streamwise position.
Thus, for all three flows investigated, as disturbances develop downstream of the separation point,
the fundamental normal mode and oblique waves of 𝜗 . 30 will initially grow at comparable rates.
As the modes progress further downstream, oblique waves of higher wave angles (lower spanwise
wavelengths) will continually ‘fall off’ due to growth rates that are reducing compared to the lower
wave angle disturbances. Thus, given input disturbances that provide a full spectrum of spanwise
wavelengths, the larger wavelength disturbances will be most amplified as they convect through
the fore portion of the LSB. These findings supports the increased effectiveness of the 𝜆𝑧 = 25
forcing case, in terms of effecting change in disturbance and flow development, in comparison to
the two other forcing configurations considered in Chapter 5, since the disturbances produced by
the latter two configurations were subject to decreasing growth rates on account of their higher
wave angles (𝜗 = 33.7° and 45° from 𝜆𝑧 = 18.75 and 12.5, respectively).

In comparing Figs. 6.16b and 6.16c, it is clear that all amplification rates for the two-dimensional
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Figure 6.17: Comparison of streamwise amplification (a) rates and (b) factors for the fundamental
normal and spanwise modes, (1,0) and (1,±1), respectively. Arrows (coloured according to
legend) indicate spanwise-averaged 𝑥h.

forcing case are higher than those of the 𝜆𝑧 = 25 forcing case. A direct comparison of the modes
pertinent to the 2D and 𝜆𝑧 = 25 forcing cases is made in Fig. 6.17, where streamwise trends in
amplification rates and factors are presented for the (1,0) and (1,±1) modes. The results show that
all modes are unstable and experience comparable growths rates throughout the fore portion of the
LSB. Therefore, according to the theory of transition onset at some critical disturbance amplitude
[224, 239], an attempt to predict which of the two considered forcing scenarios would lead to
earlier transition could be made, which could involve assuming linear superposition between the
normal and spanwise modes. However, the experimental results have already established that
comparable total disturbance amplitudes are found between the two forcing cases into the aft
portion of the LSB (Fig. 6.8), leading to largely similar mean topologies (Fig. 6.3). Therefore,
the defining distinction between the two forcing cases is not related to which scenario leads to an
earlier onset of transition. Rather, the LST analysis firmly establishes the spanwise modes targeted
by the 𝜆𝑧 = 25 forcing as unstable, allowing for an evaluation of the effect that allocating input
energy to unstable spanwise modes has on the development of the shear layer vortices and the
ensuing vortex dynamics.

6.5 Three-Dimensional Flow Development

Thus far, mean features and disturbance development in the separation bubble have been character-
ized (Sections 6.3 and 6.4, respectively). The link between these two facets of the flow is now
established, as the coherent structures that manifest from the disturbances are examined and their
role in producing the observed mean flow field and its statistics is elucidated. Figure 6.18 presents
instantaneous iso-surfaces of the 𝑄-criterion [84] for the three investigated cases. Similar to the
flow development seen in Chapter 5 (Fig. 5.13a), the snapshots of the natural flow (Fig. 6.18a)
show coherent spanwise-oriented vortices with significant spanwise undulations, with the vortices
forming in proximity to the mean maximum bubble height location. Across all the depicted
snapshots, the spanwise locations at which the vortices surge forward in the streamwise direction
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directly correspond with where the mean maximum height location is advanced downstream,
with the trend consistent across the entire dataset. Thus, as has been reported previously [112,
134, 260], the shear layer vortices are the dominant factor in defining the mean topology of the
aft portion of the LSB. Here, it is established that consistent spanwise deformations in the shear
layer vortices result in a corresponding peak and valley structure of the aft portion of the LSB, as
characterized by the maximum bubble height location. Furthermore, the same trend is expected
in the mean reattachment location, since previous findings have established that changes in the
maximum bubble height location coincide with commensurate changes in the mean reattachment
location (Section A.3.1 and Refs. [134, 135, 260]).

Figures 6.18b and 6.18c present instantaneous snapshots showing shear layer vortex topology
for the two-dimensional and 𝜆𝑧 = 25 forcing cases, respectively. In comparison to the natural
flow (Fig. 6.18a), both types of forcing result in the vortex formation process occurring further
upstream, with the majority of snapshots presented in Figs. 6.18b and 6.18c showing structures
near and upstream of 𝑥̃ = 40. Furthermore, these upstream structures show a much higher degree
of spanwise uniformity compared to the natural flow, as was seen in the results of Chapter 5
(Figs. 5.13b and 5.13e). Across both forcing cases, the structures downstream of the mean
maximum bubble height location show significant spanwise deformations compared to their
upstream counterparts, with many of the downstream filaments deformed into a peak and valley
arrangement. The observation of spanwise undulatory vortex filaments in the aft portion of LSBs
has been observation across all results presented in this thesis (Chapters 4–6 and Appendix A),
indicating that they are a fundamental aspect of the flow development.

Returning to the natural flow, with the link established between the spanwise trend in the mean
maximum bubble height and the shear layer vortices, a statistical estimate of the predominant
spanwise wavelength of naturally developing vortices can be made from the approximate peak-to-
peak spanwise distance in 𝑥h since this result is time-averaged. From Fig. 6.5a, this is estimated
at 𝜆𝑧 ≈ 28, which corresponds precisely with the most prevalent wavelength detected through
the wavelet analysis employed in Chapter 5 (Fig. 5.15a). While results from the LST analysis
(Fig. 6.16a) indicate that disturbances of this spanwise wavelength (corresponding to 𝜗 = 23.7°)
at the fundamental frequency would experience growth rates comparable to that of the most
amplified spatial mode, the evidence suggests that this spanwise modulation of the natural flow is
not associated with the fundamental frequency. First, the significant differences between the planar
PIV results of Chapters 5 and 6 (Table 6.2) point to the presence of a low frequency modulation
that is not fully captured by the high-speed measurements of Chapter 5. Second, if the modulation
was associated with the fundamental frequency then one would expect forcing at this frequency
to enhance the features seen in the natural flow. This is not the case, as forcing results in stark
changes in the development of the shear layer vortices (Fig. 6.18) and subsequently the mean
topology of the bubble (Fig. 6.5). Thus, it is more likely that the changes in stability induced by
the forcing (Fig. 6.15) result in a significant reduction in the effects of the phenomenon causing the
spanwise modulation of the natural flow. Finally, further evidence that associates this phenomenon
with a frequency lower than the fundamental frequency is provided in Section 6.5.1.

The three-dimensional development of the shear layer vortices for the two forcing cases
is examined in Fig. 6.19, where phase-averaged results are shown for four phases within the
forcing cycle. Beginning with the two-dimensional forcing case, the most upstream structure in
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Figure 6.18: Instantaneous iso-surfaces of the 𝑄-criterion [84]. Dashed lines indicate 𝑥h.
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Figure 6.18 (cont.): Instantaneous iso-surfaces of the 𝑄-criterion [84]. Dashed lines indicate 𝑥h.

Fig. 6.19a-i, labelled I, is almost entirely two-dimensional, which is maintained as it convects
downstream, reaching the mean maximum bubble height location in Fig. 6.19a-iv. At 𝑥h, the
spatial Fourier analysis showed the emergence of spanwise modes (Fig. 6.11a), which is consistent
with the development seen in vortex II, as it is not until this structure is downstream of 𝑥h that
vortex breakup begins to take place. Note that vortex II is the same structure as vortex I, only a
full 2𝜋 later in the forcing cycle. Break-up of vortex II takes place between Figs. 6.19(a-i)–(a-iv),
with multiple dislocations developing over the span of the filament, marked by the gaps in the
〈𝑄〉 = 0.012 level, with the structure formed into a spanwise undulatory shape, which is most
clearly seen in the top view provided in Fig. 6.20a.

Evaluating the flow development of the 𝜆𝑧 = 25 case (Fig. 6.19b) reveals that, similar to the
two-dimensional forcing case, the most upstream structure in Fig. 6.19b-i, labelled III, is largely
two-dimensional, however a spanwise undulation in the vortex filament is discernible, with the
wavelength matching that of the forcing. It is noted that detection of this wavelength in the spatial
Fourier analysis (Fig. 6.11b) occurs much further downstream, which is an artifact of averaging the
Fourier analysis results across all phases. As was reported in Chapter 5 (Figs. 5.13e and 5.16b),
the locations at which the vortex bulges forward in the streamwise direction (̃𝑧 = −25, 0, and 25)
are downstream of the three-dimensional actuator’s active region (Fig. 5.1c) and are aligned with
the peaks seen in the spanwise hot-wire scans (Fig. 6.7c). Thus, the small amplitude disturbances
tracked through the fore portion of the LSB (Section 6.4) are found to manifest in the shear layer
vortices through the development of a spanwise undulations of a matching wavelength. Tracking
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Figure 6.19: Sequences of phase-averaged 𝑄-criterion [84]. Dashed lines indicate 𝑥h.

129



Figure 6.20: (i) Top and (ii) end views of phase-averaged 𝑄-criterion [84] for 𝜃 = 3𝜋/2 phase.
End views show values of 〈𝑄〉 downstream of 𝑥̃ = 54 only. Black solid lines estimate the core of
the most downstream vortex. Grey dashed lines indicate 𝑥h.

structure III as it develops downstream reveals that this undulation intensifies, with a distinct
undulatory shape seen in the vortex filament one full cycle later (structure IV in Fig. 6.19b-i). In
contrast, in the presence of two-dimensional forcing, structures at the same streamwise position
remained largely spanwise uniform (e.g., vortex II in Fig. 6.19a-i). As structure IV develops
downstream, the vortex filament becomes increasingly distorted with dislocations appearing at
various locations across the span, however, the overall spanwise peak and valley arrangement of
the filament is preserved, as seen in Figs. 6.19b-iv and 6.20b.

Figure 6.20 presents top (𝑥-𝑧) and end views (𝑦-𝑧) of the 𝜃 = 3𝜋/2 phases presented in Fig. 6.19,
in which the core of the most downstream structure is estimated through local maxima detected in
〈𝑄〉, with the results spatially smoothed in the 𝑥-direction using a kernel of width Δ𝑥̃ = 1. Through
identification of the vortex cores, it is evident that the streamwise forward sections of the filaments
are also displaced farther from the wall, with the effect more pronounced for the 𝜆𝑧 = 25 case (e.g.,
consider the filament sections at 𝑧̃ = 0 in Figs. 6.20a and 6.20b). In Chapter 5, the same vortex
topology was observed (Fig. 5.16), and a vortex filament model was developed (Section 5.5.1),
showing a spanwise undulatory vortex filaments self-induces a net rotational motion, causing its
streamwise forward sections to tilt away from the surface, thus leading to a continual intensification
of vortex stretching in a shear flow. The constant observation of streamwise forward vortex
segments that are tilted away from the surface in this chapter (Fig. 6.20) and the two previous
(Figs. 4.26 and 5.16) indicates that these dynamics are intrinsic to the breakup process of the
studied shear layer vortices.
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Figure 6.21: POD (a) relative and (b) cumulative modal energy distributions.

6.5.1 Proper Orthogonal Decomposition

To gain further insight into the characteristics of the coherent structures present in the studied
LSB, proper orthogonal decomposition (Section 3.3.2) is performed on the tomographic data
using the snapshot method of Sirovich [223]. For each case, a total of 2400 snapshots were
used in the computation. The code used is provided in Appendix D.2, which required special
consideration given that the size of each dataset (approx. 128 GB) exceeds the typical amount of
memory available in a personal computer.

Figure 6.21 presents the relative and cumulative energy distributions across the first 30 modes.
As is typically seen for flows involving large-scale propagating coherent structures [124, 241,
244, 260], a significant portion of the total turbulent kinetic energy is captured within a small
number of modes, with these values at approximately 50% for the natural flow, and 62% for the
two forcing cases (Fig. 6.21b). Additionally, the most energetic modes are grouped into pairs of
similar energy levels (i.e., modes 1 and 2 for all cases, and modes 3 and 4 for the natural cases in
Fig. 6.21a). The paired nature of the modes was confirmed through inspection of their spatial
distribution/eigenfunctions, which show a distinct streamwise phase offset of 𝜋/2. Therefore,
every other spatial mode is plotted in Fig. 6.22 for brevity.

For the two forcing cases (Figs. 6.22b and 6.22c), the most energetic mode pair features a
distinct spanwise uniform and streamwise periodic spatial structure that associates these modes
with the LSB shear layer vortices (cf. Fig. 6.19). The signature is strongest in the wall-normal
component of the spatial mode, 𝛾 (1)𝑣 , with similar features also identifiable in the streamwise
component, 𝛾 (1)𝑢 . For the two-dimensional forcing case (Fig. 6.22a), the first mode shows a
high level of spanwise uniformity that persists until the mean maximum bubble height location,
downstream of which a random distribution of spanwise fluctuations is present, thus reducing
the spanwise coherence of the mode’s total velocity magnitude in this region. This is consistent
with the flow development depicted in Fig. 6.19a, where the vortex filaments remained spanwise
uniform until just downstream of 𝑥h, after which the turbulent breakup process began. The first
mode of the 𝜆𝑧 = 25 case shows similar features (Fig. 6.22b), with one important distinction, as
the spanwise wavelength imparted by the forcing is evident, most notably in 𝛾

(1)
𝑣 . For this mode,
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Figure 6.22: Normalized POD spatial modes. Dashed lines indicate 𝑥h.
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Figure 6.22 (cont.): Normalized POD spatial modes. Dashed lines indicate 𝑥h.

the highest intensity fluctuations are found at 𝑧̃ = −25, 0, and 25, which are aligned with the
spanwise modulated actuator’s active regions and where the vortex filament surges forward in the
streamwise direction (Fig. 6.19b).

From Figs. 6.22b and 6.22c, modes 3 and 5 for both the two-dimensional and 𝜆𝑧 = 25 cases
show spatially periodic structures in the spanwise direction for all three velocity components.
These structures are located downstream of 𝑥h, where deformation and break up of the shear layer
vortices take place (Fig. 6.19), and so these POD modes indicate that there is a spatial periodicity
associated with these processes. Indeed, the spanwise wavelength of the 𝛾 (3) mode for the 𝜆𝑧 = 25
case matches the forcing, indicating that, in addition to the spanwise wavelength already present
in the shear layer vortices (𝛾 (1)𝑣 ), further deformations develop at the forcing wavelength as part of
the vortex breakdown process. This could be associated with the production of strong wall-normal
and spanwise velocity fluctuations through the re-orientation of the filament’s spanwise vortices, as
discussed in Section 4.3.3 (Fig. 4.26). Structures of the same wavelength, albeit localized to only
a portion of the spanwise domain, are observed in mode 3 of the two-dimensional forcing case,
indicating that same phenomenon likely influences the vortex breakdown process. For both cases,
mode 5 shows a more spatially random distribution of structures of varied spanwise wavelengths,
indicating that this mode is associated with turbulent breakup and/or higher harmonics of the
coherent motions.

In contrast to the two forcing cases, the most energetic mode for the natural flow does not show
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spanwise uniformity across the measurement domain (Fig. 6.22a). Rather, both the streamwise
and wall-normal components depict structures associated with vortex shedding localized to within
−30 . 𝑧̃ . 0, while the same is seen in the third mode, except localized to 0 . 𝑧̃ . 30. These
two zones align with the peak and valley structure of 𝑥h and the mean velocity field (Fig. 6.5a),
providing further confirmation that the statistical characteristics of the flow are dictated by the
development of the shear layer vortices. In the instantaneous snapshots provided in Fig. 6.18a, the
shear layer vortices are consistently distorted at 𝑧̃ = 0, which alongside the POD results, point to
‘cellular’ vortex shedding processes localized to these zones, as opposed to the spanwise uniform
process observed when the flow is forced. Further evidence that this activity is the result of a low
frequency modulation of the natural flow is provided through an assessment of the POD temporal
coefficients, 𝑏 (𝑚) . These are presented in cross-plots for selected mode pairs in Fig. 6.23.

As outlined by van Oudheusden et al. [241], the temporal coefficients for mode pairs related to
the same coherent motions, although statistically uncorrelated, are expected to be dependent, and
therefore are predicted to form an ellipse:

𝑏 (𝑚)

2𝑒(𝑚)
+ 𝑏 (𝑚+1)

2𝑒(𝑚+1)
= 1, (6.1)

where 𝑒(𝑚) is the eigenvalue associated with mode 𝑚. The relationship is expected to hold true for
modes 1 and 2 for all the investigated cases, in addition to modes 3 and 4 for the natural flow, and
so these modes are cross-plotted in Fig. 6.23. The expected result is found for the two forcing
cases in Figs. 6.23c and 6.23d, as the strong periodicity induced in the shear layer vortices by the
forcing leads to all realizations falling on the unit circle. The minimal scatter about the circle
indicates that amplitude variation from cycle-to-cycle is relatively low. In contrast, both mode
pairs for the natural flow, while forming a circular pattern, show significant scatter about the unit
circle and therefore significant cycle-to-cycle amplitude modulations are present in the vortex
shedding process. These amplitude modulations are most likely to occur on a time scale greater
than that of the vortex shedding process since it is the slowest motions in a flow that generally
contain most of the turbulent kinetic energy.

Figure 6.23: Cross-plot of POD temporal coefficients for select mode pairs. Unit circle in red.
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6.6 Concluding Remarks

In this chapter, the growth of spanwise disturbance modes in a laminar separation bubble was
investigated, with special consideration paid to the stability characteristics that dictate the growth
of such modes and the ensuing effect of their development on the dynamics of the LSB shear layer
vortices. Disturbance modes were targeted using the forcing technique developed and validated in
Chapter 5, allowing for the introduction of two-dimensional or spanwise modulated perturbations
of equivalent amplitude. A spanwise wavelength of 𝜆𝑧 = 25 was selected for investigation,
corresponding to two times the fundamental streamwise wavelength of disturbances in the LSB. In
total, three cases were considered: (i) the naturally developing flow, and forcing with spanwise
wavelengths of (ii) infinite (two-dimensional), and (iii) 𝜆𝑧 = 25. The same wind tunnel facility,
model, and flow conditions of the Chapter 5 experiments were employed, and thus a similar LSB,
characterized by a nominal Reynolds number of Re𝛿1s = 750, was studied. Measurements were
performed using hot-wire anemometry and tomographic PIV, with the former employed in the fore
portion of the bubble where disturbance amplitudes are relatively low. Furthermore, planar PIV
measurements were performed on a single plane within the tomographic volume, thus providing a
means for validating the tomographic measurements, in addition to providing reliable input data
for stability calculations.

In assessing the time-averaged characteristics of the flow field, comparison of the planar
and tomographic measurements showed excellent agreement on all statistical quantities, thus
establishing the tomographic measurements as reliable. For all cases, the flow in the fore portion of
the LSB was found to be essentially spanwise uniform, with mean flow velocities in the spanwise
direction reported at less than 2% of the free-stream velocity. Downstream, in the region where
the shear layer vortices formed, the spanwise uniformity of the two forcing cases and natural
flow were in stark contrast, as the former was spanwise uniform, while the latter featured a peak
and valley arrangement in the mean streamwise velocity field and subsequently the spanwise
trend in the mean maximum bubble height location. These features were shown to be directly
related to the development of the shear layer vortices, as in the presence of forcing the vortices
were two-dimensional at formation and featured strong spanwise coherence. In contrast, in the
natural flow the vortices were found to shed in localized regions across the span, with strong
distortions in the filaments between these shedding ‘cells’. Confirmation relating this phenomenon
to a low frequency modulation of the natural LSB was provided through consideration of three
factors. These included differences reported in the flow field statistics based on sampling time,
an assessment of the stability changes invoked by the forcing, and the temporal characteristics
of the natural flow elucidated through POD analysis. Nevertheless, the spanwise wavelength of
the modulated natural flow matched that of the 2 : 1 three-dimensional forcing case, indicating
that this low frequency modulation may be the underlying source for preferential amplification of
disturbances of this spanwise wavelength. Therefore, the growth of spanwise modes at this 2 : 1
wavelength ratio may be entirely particular to the considered LSB, and therefore may not apply
universally.

Through the hot-wire measurements, small amplitude disturbances of a frequency matching that
of the LSB’s primary Kelvin-Helmholtz instability were identified, which underwent convective
amplification downstream of the mean separation point. When forced at this fundamental frequency
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in a two-dimensional manner, disturbance growth was found to be largely two-dimensional. When
spanwise modulated forcing was applied, significant changes in the topology and development of
the disturbances were noted, as a distinct spanwise modulation matching the forcing wavelength
was noted in the disturbance profile. Furthermore, for the same streamwise station, disturbance
amplitudes for this case were found to be significantly higher than those of the two-dimensional
forcing case, indicating a preferential amplification of spanwise modes in the upstream boundary
layer.

Tracking disturbance development further downstream revealed that disturbance amplitudes
between the two forcing cases reached comparable levels in the region just upstream of the
mean maximum bubble height location, despite the higher amplitudes of the spanwise forced
disturbances near separation. This indicated a change in the stability characteristics from the
upstream boundary layer, leading to higher amplification rates in the two-dimensionally forced
flow. This was supported through linear stability analysis, which showed that, as a result the
forcing induced mean flow deformation [140], amplification rates in the fore portion of the LSB
reduced compared to the natural flow, with the most significant reductions found for the spanwise
modulated forcing cases.

The LST analysis also provided a means for quantifying the amplification rates of disturbance
modes of varied spanwise wavelength, finding that, regardless of the forcing scenario, the normal
mode was subject to the highest growth rates throughout the length of the LSB, while disturbance
modes of an oblique wave angle of less than 30° were subject to reduced, yet comparable growth
rates. The ratio of the spanwise to streamwise wavelength of the employed forcing was 2,
corresponding to a wave angle of 26.5°, thus confirming the unstable nature of the LSB toward
the employed forcing. Furthermore, these LST findings support the increased effectiveness of
this forcing configuration in comparison to the other two investigated in Chapter 5, as their
corresponding wave angles were 33.7° and 45°. The unstable nature of the spanwise modes was
experimentally verified through a spatial Fourier analysis of the hot-wire and tomographic PIV
data, both of which confirmed their presence and streamwise amplification.

The effect of the growth of the unstable spanwise modes on the development of the shear
layer vortices and the ensuing vortex dynamics was assessed. The small amplitude disturbances
tracked through the fore portion of the LSB were found to manifest in the shear layer vortices,
imparting a spanwise wavelength, if present, in the vortex filaments. Thus, in the case of the
two-dimensional forcing, the shear layer vortices remained largely two-dimensional until their
breakdown to turbulence, while for the 𝜆𝑧 = 25 significant undulations at a spanwise wavelength
matching that of the forcing developed in the filaments. The streamwise forward sections of the
filaments were displaced further from the wall, with the same vortex topology reported in Chapter 5.
There it was argued that spanwise undulatory vortex filaments self-induce a net rotational motion,
causing its streamwise forward sections to lift away from the surface, thus leading to a continual
intensification of vortex stretching in a shear flow. The consistent observation of these vortex
motions in this chapter, and the two previous, indicates that these dynamics are intrinsic to the
breakup process of shear layer vortices in laminar separation bubbles.
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Chapter 7

Conclusions and Recommendations
The main findings of this work are summarized and recommendations for future work are given.
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7.1 Conclusions

In this thesis, laminar separation bubbles were studied via experimental means in the pursuit of
several objectives, which were laid out in Section 1.1 and are repeated here:

• Establish if vortex merging in LSBs can be influenced through subharmonic forcing. If so,
assess the effects on the mean flow topology.

• Characterize the three-dimensional evolution of shear layer vortices in a laminar separation
bubble. Elucidate the role, if any, played by the development of spanwise undulations.

• Develop a forcing technique capable of producing disturbances of a desired spanwise
wavelength that holds all other parameters constant (amplitude, frequency, etc.).

• Establish if disturbance growth in an LSB is spanwise wavelength dependent. Evaluate the
presence of any instability mechanism that may lead to preferential modal growth.

• Link spanwise disturbance growth to changes in the ensuing vortex dynamics, and hence
changes in the mean flow topology.

The main findings, as they relate to these objectives, are summarized as follows.

7.1.1 Natural Flow Development and Vortex Merging

The first two objectives were addressed in Chapter 4, where an LSB formed over a NACA 0018
airfoil at a chord Reynolds number of 125 000, an angle of attack of 4°, and a free-stream turbulence
intensity of 0.07% was studied. The experimental findings came from PIV measurements collected
in a variety of configurations, allowing for two-dimensional, time-resolved evaluations of the flow,
in addition to conditional volumetric reconstructions of the flow field using phase-locked, scanning
PIV measurements. In addition to leaving the flow to develop naturally, acoustic forcing was
applied at the LSB’s fundamental and subharmonic frequencies, with a relatively low excitation
level selected to avoid substantial mean flow modifications.

The time-averaged topology of the LSB was found to be strongly two-dimensional across the
airfoil span, while the flow development was characterized by the periodic roll-up of the separated
shear layer, forming vortices upstream of the mean maximum height location. The vortices
were strongly two-dimensional at formation, but quickly developed spanwise deformations with
downstream convection, leading to their breakdown to smaller scales near the mean reattachment
location. The deformations took the form of spanwise undulations in the vortex filaments, that
developed over a relatively fixed range of values, 1.5 . 𝜆𝑧/𝜆𝑧 . 7. These undulations continually
intensified with downstream convection as a result of the streamwise forward sections of the vortex
filament lifting away from the surface. This motion re-oriented the structure’s spanwise vorticity
into the streamwise and wall-normal directions, forming hairpin-like structures that were tilted
forward and extended above the vortex core region.
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With respect to vortex merging, the phenomenon was found to occur naturally in the LSB,
while forcing at the subharmonic and fundamental frequencies promoted and inhibited merging
respectively. Through a vortex merging detection scheme, it was found that 18% of primary
structures at the midspan plane merged in the natural LSB. This value increased to 64% in the
presence of subharmonic forcing, and decreased to 8% when forcing was applied at the fundamental
frequency. Despite subharmonic forcing having a significant effect on the prevalence of vortex
merging, the mean topology of the LSB remained relatively unchanged compared to the natural
flow. As it is generally accepted that reattachment is facilitated by the shear layer vortices, this
implied that the increase in strength of individual structures as a result of merging was balanced by
the reduction in their frequency, resulting in largely unchanged mean LSB topology. Furthermore,
the vortex merging process was found to occur in a spanwise non-uniform manner, as localized
merging events occurred away from sections where forward and rearward bulges developed in the
vortex filaments.

7.1.2 Three-Dimensional Forcing Technique

The third objective was addressed in Chapter 5, where a novel forcing technique capable
of producing deterministic, three-dimensional disturbances modulated to a desired spanwise
wavelength was developed and characterized. Alternating current, dielectric barrier discharge
plasma actuators were used, with two dimensional forcing achieved through operating of a
single spanwise uniform actuator. For three-dimensional disturbance production, two actuators
were arranged in streamwise succession and operated simultaneously. The upstream actuator
produced a spanwise uniform disturbance, which was then spanwise modulated by the output of
the downstream actuator, with a relative phase delay used to superimpose the two outputs.

A detailed characterization of the actuators was carried out in quiescent and in-flow conditions
to determine the spanwise and streamwise disturbance topology, net momentum injection, and
phase delay needed for disturbance superposition. The quiescent characterization involved flow
visualizations and planar PIV measurements, and showed that all actuators provide a spanwise
uniform injection of streamwise momentum through the production of relatively weak, wall-parallel
streamwise jets in the regions where the actuator’s high voltage and ground electrodes overlap.
Thus, two-dimensional output was achieved from an actuator with spanwise continuous electrode
overlap, while three-dimensional disturbances at a desired spanwise wavelength were achieved
by introducing gaps in the electrode overlap, as no streamwise velocity was generated in the gap
regions.

The generated thrust and associated momentum coefficients were estimated for all actuators
using a control volume analysis applied to PIV measurements. The results highlighted higher
sectional thrust generated by the two-dimensional actuator due to end effects that decrease
momentum output at the edges of the overlap regions. This, coupled with different total lengths of
the thrust producing regions, lead to different total thrust production for all actuators considered.
The assumed superposition of momentum output for actuators arranged in streamwise succession
was shown to be valid. This, alongside the linear trend between thrust output and forcing duty cycle,
allowed for the identification of operating duty cycles that gave equal amounts of total momentum
output for a given actuator configuration, while holding all other forcing parameters constant.
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The in-flow characterization was used to determine the phase delay needed for disturbance
superposition, which was found to be invariant to spanwise wavelength. With the correct phase
delay, disturbances were successfully superimposed within the LSB, as the streamwise wavelength
of the superimposed disturbances matched that of the two-dimensional disturbances. Thus, across
the developed forcing configurations, the spanwise wavelength of the produced disturbances was
varied, while the total momentum input, and disturbance frequency and streamwise wavelength
were held constant.

7.1.3 Growth of Spanwise Disturbances

The final two objectives were addressed in Chapters 5 and 6, where flow development in an LSB
was studied and the effects of targeting disturbance modes using the forcing technique developed
in Chapter 5 were examined. The LSB was formed over a flat plate with an imposed adverse
pressure gradient at a nominal Reynolds number of Re𝛿1s = 750. Measurements were spread across
two experimental campaigns, and were performed through hot-wire anemometry, and planar and
tomographic particle image velocimetry. Results from three cases were examined in detail: (i) the
natural (unforced) flow, (ii) two-dimensional forcing, and (iii) three-dimensional forcing with a
spanwise-to-streamwise wavelength length ratio of 2 : 1, while a subset of results were considered
for smaller wavelength ratios (1.5 : 1 and 1 : 1).

In assessing the time-averaged characteristics of the flow field, flow in the fore portion of
the LSB was found to be essentially spanwise uniform, with mean velocities in the spanwise
direction being less than 2% of the free-stream velocity. Downstream, in the region where the
shear layer vortices formed, the spanwise uniformity of the forcing cases and the natural flow were
in stark contrast, as the former was spanwise uniform, while the latter featured a peak and valley
arrangement in the mean streamwise velocity field and subsequently the spanwise trend in the mean
maximum bubble height location. These features were directly linked to the shear layer vortices,
as in the presence of forcing the vortices were two-dimensional at formation and featured strong
spanwise coherence. In contrast, in the natural flow, the vortices shed in localized regions across
the span, with strong distortions in the filaments between these shedding ‘cells’. Confirmation
relating this phenomenon to a low frequency modulation of the natural LSB was provided through
the consideration of three factors. These included differences reported in the flow field statistics
based on sampling time, an assessment of the changes in stability incurred by the forcing, and
temporal characteristics of the natural flow elucidated through proper orthogonal decomposition
analysis. Nevertheless, the spanwise wavelength of the modulated natural flow matched that of
the 2 : 1 three-dimensional forcing case, indicating that this low frequency modulation may be
the underlying source for preferential amplification of disturbances of this spanwise wavelength.
Therefore, the growth of spanwise modes at this 2 : 1 wavelength ratio may be particular to the
considered LSB.

By tracking disturbance development throughout the length of the LSB, small amplitude
disturbances of a frequency matching the primary Kelvin-Helmholtz instability were identified,
which underwent convective amplification downstream of the mean separation point. When
forced at this fundamental frequency in a two-dimensional manner, disturbance growth was
two-dimensional. When the 2 : 1 spanwise modulated forcing was applied, a distinct spanwise
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modulation matching the forcing wavelength was noted in the disturbance profile. Furthermore,
for the same streamwise station, disturbance amplitudes for this case were found to be significantly
higher than those of the two-dimensional forcing, indicating a preferential amplification of spanwise
modes in the upstream boundary layer. Further downstream, disturbance amplitudes between
these two cases reached comparable levels in the region just upstream of the mean maximum
bubble height location. This indicated a change in the stability characteristics from the upstream
boundary layer, leading to higher amplification rates in the two-dimensional forced flow. Linear
stability analysis supported this, showing that, as a result of the induced mean flow deformation,
amplification rates in the fore portion of the LSB reduced compared to the natural flow, with the
most significant reductions occurring for the spanwise modulated forcing case.

The amplification rates of disturbances of varied spanwise wavelength were also quantified
through LST analysis, finding that, regardless of the forcing scenario, the normal (two-dimensional)
mode was subject to the highest growth rates throughout the length of the LSB. Disturbance modes
of an oblique wave angle of less than 30°, while unstable, were subject to comparable, yet reduced,
growth rates. Thus, disturbance growth in the LSB is confirmed to be spanwise wavelength
dependent, with the employed 2 : 1 spanwise-to-streamwise wavelength ratio corresponding to
a wave angle of 26.5°. Furthermore, this confirmed why this particular forcing configurations
produced more substantial changes in the flow development than the other two investigated in
Chapter 5 (1.5 : 1 and 1 : 1), as their corresponding wave angles are 33.7° and 45°, respectively.
The unstable nature of the spanwise modes predicted through LST was experimentally verified
through a spatial Fourier analysis of the hot-wire and tomographic data, both of which confirmed
their presence and streamwise amplification.

The effect of unstable spanwise modal growth on the development of the shear vortices and
the ensuing vortex dynamics was assessed. The small amplitude perturbations tracked through the
fore portion of the LSB manifested in the shear layer vortices, imparting a spanwise wavelength,
if present, in the vortex filaments. Thus, in the case of two-dimensional forcing, the shear layer
vortices remained largely two-dimensional until their breakdown, while for the three-dimensional
forcing case, significant spanwise undulations developed at the 2 : 1 ratio prescribed by the
forcing. The vortex filaments surged forward in the streamwise direction downstream of the
three-dimensional actuator’s active region, while lagging behind at spanwise locations downstream
of the actuator gaps. These filament motions, coupled with the strong mean shear, led to a
continual intensification of vortex stretching, leading to rapid filament deformations. These
observations were supported through a simple model that considered the development of a vortex
filament subject to Biot-Savart induction and mean flow convection. The results of the model
confirmed that as a result of the filament’s spanwise undulatory shape, a net rotational motion is
imparted on the filament through Biot-Savart self-induction, causing the streamwise forward and
rearward sections of the filament to tilt away and toward the surface, respectively. This, coupled
with the wall-normal velocity gradient, causes the filament to stretch in the streamwise direction.
These vortex motions were consistently observed throughout all the studied LSBs (Chapters 4–6),
and apply more broadly to all LSBs, since regardless of how spanwise undulations are initially
produced in a vortex filament, if present, the filament will tend to develop in the way shown in any
near-wall shear flow. Thus, these dynamics are found to be intrinsic to the breakup process of
shear layer vortices in laminar separation bubbles.
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7.2 Recommendations

The mean spanwise non-uniformity observed in the natural LSB studied in Chapters 5 and 6
(Fig. 6.5a) should be investigated in detail. All of the available evidence in this study points toward a
low frequency modulation of the flow, the exact source of which is unknown. In other experiments,
high levels of free-stream turbulence have led to highly irregular and spanwise non-uniform
vortex shedding in LSBs, however, this is not consistent with the suspected low frequency nature
of the observed phenomenon and the turbulence intensity of the TU Delft A-Tunnel, which is
verified at less than 0.09%. Therefore, other possible sources should be investigated, including
low frequency activities stemming from operation of the tunnel (aeroacoustic or mechanical
vibrations), imperfections in the flat plate model and displacement body (potentially matching a
spatial wavelength of approx. 50 mm), and acoustic signatures developed in the test section (e.g.,
standing waves established in the spanwise and/or wall-normal directions).

The results in Chapter 6 revealed a preferential amplification of spanwise modes in the
boundary layer upstream of the LSB. This should be investigated. Measurements of this nature
were attempted as part of this work, however, they were ultimately unsuccessful due to the
extremely low disturbance amplitudes, even when the flow was forced and measurements were
performed using hot-wire anemometry. While more sensitive measurements can be attempted,
an order of magnitude increase in sensitivity is likely required, which is beyond the capabilities
of most measurement techniques. Higher forcing amplitudes could be used to render the
disturbances measurable, however this will likely incur significant mean flow deformations, thus
changing the very flow being studied. Therefore, it is the author’s opinion that a combined
numerical/experimental approach would be the most effective, with disturbance development
studied in a simulation subject to initial/boundary conditions based on experimental measurements.

The developed forcing technique should be applied to study the growth of spanwise modes in
other LSBs. In particular, the preferred amplification of disturbance with a spanwise-to-streamwise
wavelength ratio of 2 : 1 may stem from the low frequency modulation of the base flow studied
in Chapters 5 and 6. Thus, these unstable disturbance characteristics may be unique to only
the studied LSB. Indeed, other investigators have reported a range of predominant spanwise
wavelengths in LSBs, 1 . 𝜆𝑧/𝜆𝑥 . 7. Thus, other LSB configuration (airfoil and flat plate) should
be studied to establish if there is any commonality among the most unstable spanwise wavelengths.
Furthermore, the effects of larger spanwise wavelengths should be examined, as the stability
analysis done as part of this work predicts increasing amplification rates with increasing spanwise
wavelength. Spanwise wavelengths in the range of 2.5 ≤ 𝜆𝑧/𝜆𝑥 ≤ 7 would be good candidates.
Another aspect that should be investigated is the amplitude ratio of the normal and spanwise
modes for a given spanwise modulated forcing case. This parameter was not varied in the current
work, with the ratio between the two kept constant in order to maintain equal total momentum
with the two-dimensional forcing case. Varying this parameter may give additional insight into
the effects of spanwise modal growth on vortex development and the mean topology of LSBs.

Throughout this thesis, conclusions regarding any potentially active secondary instabilities in
the LSB were avoided on the basis that the employed analysis techniques were not well suited
for their identification. In particular, these types of instabilities are usually identified through
techniques such as secondary/global/Floquet stability analysis, with are better suited for numerical
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investigations. Applications of these techniques to experimental data should be pursued. In
particular, PIV measurements may be suitable in providing the required base flow.

While the airfoil (Chapter 4) and flat plate (Chapters 5 and 6) LSBs studied in this thesis exhibit
many similarities, their differences were not cross-examined. As many investigations (including
this one) rely on the flat plate LSB as a suitable analog for those found in practice, i.e., those formed
over airfoils, a detailed study cross-examining these two configurations should be conducted. This
work established the significant influence of the incoming disturbances, and therefore certain
aspects unique to an airfoil LSB, such as fluctuations of the leading edge separation point due
shedding in the wake and surface curvature, are expected to have considerable influence.

The forcing technique developed as part of this thesis presents itself as a useful diagnostic tool
for the study of laminar–turbulent transition, as it can be easily adapted and used in the study of
other canonical flows. Good candidates could be boundary layers (without separation) and free
shear layers, as both have noted dependencies on three-dimensional disturbance development.
Furthermore, due to the flexibility afforded by plasma actuators, further novel forcing configurations
can be developed to target specific modes and/or instabilities. For example, a pure oblique wave
could be generated by arranging individual actuator elements across the span, which are then
operated with an increasing phase delay. This work established that superposition of plasma
actuator outputs is possible, and therefore two oblique waves of opposite angles could be generated
and superimposed with a two-dimensional mode, thus producing a experimental version of the
triadic resonance mechanism reported in attached boundary layers.

Finally, with regards to advancing the state-of-the-art in the study of LSBs, it is the author’s
opinion that configurations that are more representative of real-world application must be pursued.
The majority of studies to-date (including this one) have relied on two-dimensional laboratory
configurations, namely the airfoil and flat plate configurations. Across the current body of work,
many aspects of LSBs are considered well established for these two-dimensional configurations,
including the time-averaged topology, basics of the transition process, and the characteristics of
the formed coherent structures. Furthermore, in relation to these aspects, the effects of applying
flow control and/or varying certain basic parameters, such as the Reynolds number and angle of
attack, and are also relatively well established. Thus, extensive reference material is available
for relatively ‘simple’ flow configurations, from which investigations examining more complex
configurations can branch off. Based on relevant applications, some research avenues to consider
include LSBs formed on real wings (finite wings, wings with sweep, at junctions, surfaces with
imperfections), LSBs in dynamic systems (turbine blades in motions, flapping wings, pitching
and/or heaving airfoils), and the effects of free-stream turbulence on LSBs.
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Appendix A

Effect of Tonal and Broadband Acoustic Ex-
citation on LSB Transition
Transition in an LSB formed over an airfoil is studied experimentally, and the effects of tonal and
broadband acoustic excitation are considered. For equal input energy levels, these two types of
excitation produce equivalent changes in the mean LSB topology. A cross-examination of LST
predictions and measured disturbance characteristics show non-linear interactions play a crucial
role in the transition process, leading to significantly different disturbance development for the
tonal and broadband excited flows.

Parts of this appendix have been adapted from

Kurelek, J. W., Kotsonis, M. & Yarusevych, S. 2018 Transition in a separation bubble under tonal and broadband
acoustic excitation. J. Fluid Mech. 853, 1–36. DOI.
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A.1 Introduction

One of the prevailing themes throughout Sections 2.1.4 and 2.2 is the importance of a transitioning
flow’s sensitivity to environmental disturbances. Of particular practical relevance to separation
bubbles is airfoil self-noise production, where tonal or broadband noise is generated at the trailing
edge of an airfoil [29]. Strong acoustic tones are commonly observed on airfoils operating
in the low Reynolds number domain [169, 181, 189]. This occurs when laminar boundary
layer separation or LSB formation occurs close to the trailing edge, and the strongly coherent
perturbations amplified in the separated shear layer produce tones when scattered at the airfoil
trailing edge [7, 44, 188]. In contrast, when the LSB is located closer to the leading edge and a
turbulent boundary layer forms over the aft portion of the airfoil, broadband noise emissions are
produced at the trailing edge [3, 28]. The occurrence of such noise emissions can have notable
effect on the flow development. In aeroacoustic investigations, the upstream propagation of tonal
noise has been shown to establish an acoustic feedback loop [7, 11, 93, 185], thus affecting
the development of shear layer perturbations responsible for the noise emissions. Pröbsting &
Yarusevych [190] demonstrate that such a feedback loop, dictated by either suction or pressure
side LSBs, can alter LSB characteristics.

As a result of these phenomena being coupled by a feedback loop, it is difficult to assess the
effect of airfoil-self noise emissions on LSB development. Furthermore, a cross-examination
between the effects of tonal and broadband noise emissions on LSB dynamics has yet to be done
in a controlled environment. Such an investigation has merit since the transition process within a
laminar separation bubbles is broadband in nature [19], i.e., the flow is unstable to disturbances over
a range of frequencies. Thus, the non-linear mechanisms by which amplified perturbations interact
in separation bubble flows are hypothesized to have significant impacts on flow development,
since such mechanisms play key roles in the later stages of the transition processes in other
canonical flows. In the case of the laminar boundary layer, Boiko et al. [19] note that the continued
growth of two Tollmien-Schlichting waves with close but distinct frequencies incites the growth of
fluctuations at not only their own frequencies and harmonics, but also at the sum and difference
frequencies and their harmonics. All of these waves grow, interact, and generate further harmonics,
thus quickly realizing a broadband spectra of fluctuations. Similar observations have been made
in the investigation of free shear layers excited at multiple frequencies [154, 155]. By exciting two
distinct frequencies acoustically, Miksad [155] found the same generation of fluctuations at sum
and difference frequencies, in addition to harmonics and subharmonics. Moreover, non-linear
mode competition between disturbances was found to be important, as the two excited modes
suppressed each others’ growth, with a tendency for fluctuating energy to become distributed
among a broad range of frequencies. Thus, it was necessary to employ a disturbance growth model
that took non-linear effects into account to accurately describe the transition process.

The present investigation is carried out to determine the effects of tonal and broadband acoustic
excitation on flow development and transition in a laminar separation bubble. Disturbances are
introduced in a controlled manner from an external source, so as to decouple the interdependence
of flow development and acoustic emissions due to airfoil-self noise production. In addition to
the unperturbed case, where broadband disturbances present in the environment serve as input
to the unstable flow, two excitation cases are considered: (i) tonal excitation at the frequency of
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the most amplified disturbances in the natural flow, and (ii) broadband excitation: white noise
band-pass filtered to the unstable frequency range of the natural flow. The aim is then to cross-
examine these cases and elucidate any underlying physical differences in the transition processes
and the associated changes in flow development. The flow field is assessed via time-resolved,
two-component Particle Image Velocimetry (PIV). Two separate experimental configurations
are employed to characterize streamwise and spanwise aspects of the flow development. The
time-resolved nature of the measurements allows for characterization of the temporal evolution
across the entire range of relevant time scales. The experimental results are complemented by LST
analysis, and the elucidated differences in the evolution of perturbations are related to changes in
vortex dynamics and mean topological features of the bubble.

A.2 Description of Experiments

Experiments were conducted in the closed-loop wind tunnel located at the University of Waterloo’s
Fluid Mechanics Research Laboratory (Section 3.1.1). The tunnel test section is 0.61 × 0.61 m in
cross-section, 2.44 m long, and has a nominal free-stream turbulence intensity less than 0.1%.
Furthermore, the free-stream was verified to have no significant spectral content within the
frequency range of interest to this investigation, 100 ≤ 𝑓 ≤ 2000 Hz (2 ≤ St𝑐 ≤ 42). The test
section free-stream uniformity was verified to be within ±0.5%. The free-stream velocity was set
based on the measured pressure drop across the contraction calibrated against a Pitot-static tube in
the empty test section, with the associated uncertainty in the free-stream velocity estimated to be
less than 2%.

Tests were performed using the NACA 0018 airfoil model described in Section 3.1.3. A
surface-attached coordinate system is employed, where 𝑥, 𝑦, and 𝑧 are defined as the wall-tangent,
wall-normal, and spanwise coordinates, respectively, with the origin set to the airfoil model’s
leading edge and mid-span point. The model is equipped with twenty-five Panasonic WM-62C
back electret condenser microphones installed under 0.8 mm diameter ports, twenty-two of which
are distributed along the chord in a staggered row. Each microphone was calibrated in the airfoil
model relative to a reference 4189 Brüel and Kjær microphone. All microphones have a flat
response (±1 dB) in the range 100 ≤ 𝑓 ≤ 2000 Hz (2 ≤ St𝑐 ≤ 42). For all acoustic measurements,
up to eight microphones were sampled simultaneously at 40 kHz for a total of 222 samples using a
National Instruments PCI-4472 data acquisition card, which applies a hardware low-pass filter at
the Nyquist limit to all sampled signals.

All tests were performed at an angle of attack of 4° and a free-stream velocity of 𝑢∞ = 9.6 m s−1,
corresponding to a chord-based Reynolds number of Re𝑐 = 125 000. The solid blockage ratio at
the investigated angle of attack is 6.1%, and no blockage corrections were applied to the measured
surface pressure distributions [21]. The angle of attack was set using a digital protractor with a
resolution of 0.1°. For the given flow conditions, separation bubbles form on both the suction and
pressure surfaces, with the latter forming close to the trailing edge. To avoid the establishment of
a feedback loop between the suction side transition process and tonal noise emissions due to the
pressure side LSB [190], the pressure side boundary layer was tripped at 𝑥/𝑐 = 0.4 by a 10 mm
wide strip of randomly distributed three-dimensional roughness elements.
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Time-resolved, two-component PIV was employed in two separate planes to characterize
spatio-temporal flow development in the separation bubble and the effect of acoustic excitation.
The tests were performed in the two configurations depicted in Fig. A.1. The flow was seeded using
a glycol-water based fog with a mean particle diameter of 4 µm and illuminated by a laser sheet
produced by a Photonics DM20-527 high-repetition rate Nd:YLF pulsed laser. The laser beam
was introduced through the side wall of the test section and conditioned into a sheet approximately
1 mm thick. For the side-view configuration, Fig. A.1a, the sheet was oriented parallel to the
airfoil cross-section and passed through the mid-span plane. For the top-view, Fig. A.1b, the sheet
was oriented parallel to the airfoil surface within the investigated field of view (FOV). For both
configurations, images were captured by two Photron SA4 high-speed cameras synchronized with
the laser via a LaVision timing unit controlled through LaVision’s DaVis 8 software.

Table A.1 provides an overview of the parameters for the PIV experiments. For the side view
configuration (Fig. A.1a), the high-speed cameras were fitted with Nikon 200 mm fixed focal
length macro lenses set to an aperture number ( 𝑓#) of 4. The cameras’ sensors were cropped to
1024 × 512 px and the fields of view were adjusted to maximize the spatial resolution in the aft
portion of the separation bubble, while maintaining equal magnification factors of 0.67 for both
cameras. The fields of view were overlapped by 10% and images were acquired in double-frame
mode at a sampling rate of 3.8 kHz. For the top-view PIV measurements (Fig. A.1b), the cameras
were fitted with Nikon 105 mm fixed focal length macro lenses set to 𝑓# = 3.8. The streamwise
extent of the FOV was set to match that of the combined FOV for the side-view configuration.
The second camera was employed to extend the FOV in the spanwise direction, while maintaining
an overlap of 10%. For both cameras, the full sensor resolution of 1024 × 1024 px and equal
magnification factors of 0.33 were used. Images were acquired in double-frame mode at a rate of
1.95 kHz. In this configuration, one camera was set normal to the field of view and the second
camera had to be tilted (Fig. A.1b). Thus, to maintain the entire field of view in focus, the second
camera was equipped with a Scheimpflug adapter.

For both PIV configurations, the focus was adjusted to produce particle images approximately
2 to 3 px in diameter. An iterative multi-grid cross-correlation scheme with window deformation
[212] was used to compute velocity fields. A final interrogation window size of 16 × 16 px with
75% overlap was selected, with each window containing, on average, 14 particles. As a result, the
vector pitches in the PIV data are 0.12 mm and 0.24 mm for the side and top view configurations,
respectively. The results were post-processed using the universal outlier detection algorithm [247].
Once the respective vector fields were calculated, the mean velocity fields for each camera were
cross-correlated in the overlap region to align the FOVs. The vector fields were then interpolated
onto the surface-attached coordinate system with a cosine weighted blending function employed in
the overlap region. The random errors in the PIV measurements were evaluated using the particle
image disparity method [217, 218], with the associated average uncertainties in the velocity
fields estimated to be less than 6% and 6.5% within 95% confidence for the side and top view
configurations, respectively. Comparable uncertainties for the two configurations were achieved
by minimizing the out-of-plane loss of particles for the top-view by selecting a frame separation
time that kept particle displacements less than or equal to 9 px, in comparison to 17 px for the
side-view.

Sound excitation was provided by a Pyramid WH88 sub-woofer placed within the test section
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Figure A.1: (a) Side view and (b) top view experimental configurations for PIV measurements.
1 High-speed cameras; 2 laser with focusing optics; 3 field of view; 4 speaker; 5 side

view sheet optics located 3𝑐 downstream of airfoil trailing edge; 6 top view sheet optics; 7
Scheimpflug adapter.

on an vibration isolating pad, 6𝑐 downstream of the airfoil trailing edge. The presence of the
speaker and the PIV sheet forming optics within the test section (Fig. A.1a) were confirmed
via pressure measurements to have no measurable influence on mean LSB characteristics. The
speaker was driven by an amplifier, with the excitation signal supplied by a National Instruments
USB-6259 data acquisition unit. A 4189 Brüel and Kjær microphone was used to quantify the
background noise level in the test section at Re𝑐 = 125 000, as well as sound excitation at the
airfoil suction surface in quiescent conditions. Based on the instrument’s accuracy for a frequency
range of 40 to 1000 Hz, the uncertainty in the measured sound pressure levels (SPLs) is estimated
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Table A.1: Parameters for PIV experiments.

Parameter Side-view Top-view Unit

Laser Photonics DM20-527
Cameras Photron SA4

Lens focal length 200 105 mm
Lens 𝑓# 4 2.8

Magnification factor 0.67 0.33
Sensor resolution 1024 × 512 1024 × 1024 px
Total field of view 54 × 12.5 54 × 102 mm

PIV mode Double-frame
Sampling rate 3.8 1.95 kHz

Frame separation time 40 60 µs
Outer-flow displacement 17 9 px

Number of samples 5456 2728
Window size 16 × 16 px
Vector pitch 0.12 0.24 mm

to be ±0.2 dB. In addition, the amplitude of the sound excitation was verified to be uniform over
the chordwise and spanwise extents of the investigated areas, as SPLs varied within ±0.6 dB.

In addition to the naturally developing flow, two types of excitation are investigated: (i) tonal
excitation at the frequency of the most amplified disturbances in the unperturbed flow, i.e. the
fundamental frequency, St0𝑐 = 15.6, and (ii) broadband: white noise band-pass filtered to the
unstable frequency band of the unperturbed flow, 10.4 ≤ St𝑐 ≤ 20.8. Spectra of fluctuating surface
pressure near the natural separation point for all the investigated cases are presented in Fig. A.2.
For the natural case, a broad elevated energy content is seen around the fundamental frequency
(St0𝑐 = 15.6) in the spectrum and is attributed to natural transition occurring in the separated
shear layer downstream of the measurement location. As expected for unforced transition in a
low disturbance environment, the natural spectrum is devoid of any significant peaks near the
fundamental frequency, therefore ensuring no narrow-band environmental emissions are affecting
the shear layer transition process. Figures A.2a and A.2b show the spectra for the tonal and
broadband excitation cases, respectively. The results demonstrate that any given excitation is
composed of only its intended frequencies and do not excite any resonant modes in the test facility.
In order to facilitate proper comparison between tonal and broadband excitation cases, care was
taken to ensure equivalent acoustic energy levels within the unstable frequency band of the natural
flow, 10.4 ≤ St𝑐 ≤ 20.8. A measure of such energy is the SPL for a given case computed within
the unstable frequency band. For both excitation types considered, the same excitation amplitudes,
in terms of SPL, were investigated: 89.5, 90.4, 97.2, and 94.9 dB. The cases studied and their
characteristic SPLs are summarized in Table A.2.
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Figure A.2: Spectra of fluctuating surface pressure measured near the natural separation point for
(a) tonal and (b) broadband excitation.

Table A.2: Investigated sound pressure levels. All SPLs calculated within 10.4 ≤ St𝑐 ≤ 20.8.

Case SPL [dB]

Natural 88.9 – – – –
Tone (T) – 89.5 90.4 92.7 94.9
Broadband (B) – 89.5 90.4 92.7 94.9

A.3 Results

The results presented herein pertain to experiments performed at an angle of attack of 4 degrees
and a chord Reynolds number of 125 000. For these conditions, the effects of tonal and broadband
acoustic excitation on the transition process within a separation bubble are considered.

A.3.1 Time-Averaged Flow Field

Figure A.3 depicts the effect of excitation of the time-averaged velocity field characteristics of
the separation bubble. The mean outline of the separation bubble is identified using the locus of
zero streamwise velocity points [55], and is used to estimate the separation (𝑥s) and reattachment
(𝑥r) points, in addition to the maximum bubble height (𝑦h) and its streamwise location (𝑥h). The
uncertainties in determining 𝑥s, 𝑦h, 𝑥h, and 𝑥r from the 𝑢 = 0 streamline are indicated by the dotted
lines in Fig. A.3, which are determined by propagating the PIV random error estimates and the
uncertainty in locating the airfoil surface through the determination of these locations [158].

The mean streamwise velocity contours in Fig. A.3 show the presence of a separation bubble
that extends from 𝑥s/𝑐 = 0.352 ± 0.027 to 𝑥r/𝑐 = 0.565 ± 0.009 and reaches its maximum height
at 𝑥h/𝑐 = 0.514± 0.005 for the natural case. Reverse flow is present near the airfoil surface within
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Figure A.3: Mean (𝑢) and rms (𝑢′rms, 𝑣′rms) fluctuating velocity contours, and Reynolds shear stress
(𝑢′𝑣′) contours. Solid lines mark the 𝑢 = 0 streamlines, whose uncertainty limits are indicated by
the dotted lines. Circle, triangle, and square markers denoted mean separation, maximum bubble
height and reattachment points, respectively. Dashed lines indicate displacement thickness.

the separation bubble, and the maximum reverse flow velocity across all cases examined is 4%
of 𝑢∞, thus indicating the flow is only convectively unstable [2, 196, 201, 202]. In the presence
of forcing, both tonal and broadband excitation cause the streamwise extent and height of the
bubble to decrease. In particular, boundary layer separation is delayed, the maximum bubble
height reduces, and the mean reattachment point advances upstream, as has been reported for
separation bubbles subjected to locally introduced periodic excitation [135, 260, 261].

A comparison of integral shear layer parameters is presented in Fig. A.4 for all excitation
cases. Regardless of the excitation type, increasing in excitation amplitude causes reductions in
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Figure A.4: Effect of excitation on integral shear layer parameters. From left-to-right: displace-
ment thickness, momentum thickness, and shape factor. Diamond markers denote shape factor
maxima.

the displacement thickness (𝛿1). The momentum thickness (𝛿2) does not change appreciably in the
fore portion of the bubble, 𝑥/𝑐 . 0.5, where flow in the near wall region is nearly stagnant. The
onset of the rapid increase in the momentum thickness is advanced upstream when the excitation
is applied at higher amplitudes. The observed increase in 𝛿2 is due to the later stages of flow
transition in the aft portion of the bubble, and it takes place where the growth in displacement
thickness begins to saturate and, thus, the shape factor (𝐻) peaks. Shape factor maxima are
indicated by the diamond markers in Fig. A.4, whose streamwise location is denoted as 𝑥𝐻 . Good
agreement is found between 𝑥𝐻 and the streamwise locations of maximum bubble height (Fig. A.3).
The observed trends are in agreement with previous reports of experimentally measured integral
shear layer parameters in separation bubbles [24, 260].

The root-mean-square (rms) contour plots in Fig. A.3 show the spatial amplification of velocity
fluctuations in the separation bubble. In particular, the streamwise rms velocity field (𝑢′rms) shows
distinct triple peak in wall-normal profiles, which are consistent with those reported in previous
investigations [20, 118, 243, 260]. Upstream of mean reattachment, significant amplification
follows the two near-wall peaks, indicating the growth of disturbances within the reverse flow region
and the separated shear layer, with the latter following the displacement thickness. The strong
amplification of wall-normal velocity fluctuations (𝑣′rms) is also observed within the separated shear
layer, with maximum values attained at the wall-normal location of the displacement thickness. As
expected, the streamwise development of the Reynolds shear stress (𝑢′𝑣′) is similar to that of the
velocity fluctuations, with the locus of 𝑢′𝑣′ minima following the separated shear layer closely. In
the presence of excitation, the rms contours reveal shear layer disturbances reach higher amplitudes
at earlier streamwise locations; more clearly seen in the 𝑣′rms fields. Of particular interest is the
amplitude of fluctuations reached at the bubble maximum height location. For the exemplary
cases shown in Fig. A.3, and all other excitation amplitudes investigated, a relatively constant
value of 𝑢′rms = 𝑣′rms ≈ 0.06𝑢∞ is found at the maximum height location, regardless of excitation
type or amplitude. The observation is noteworthy since this location is where the momentum
thickness and wall shear stress begin to increase rapidly, and the 𝐻 factor reaches maximum
values, indicating that the time-averaged transition takes place when velocity fluctuations in the
shear layer reach a fixed critical amplitude.
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Figure A.5: Effect of excitation on (a) mean streamwise locations of separation, maximum shape
factor, and reattachment, and (b) maximum bubble height. Points of equal SPL are offset slightly
in the vertical direction for clarity.

The effects of excitation type and amplitude on the mean separation bubble characteristics
are summarized in Fig. A.5. Regardless of the type of excitation, increasing excitation amplitude
leads to a continuous reduction in the streamwise and wall-normal extents of the separation bubble.
Upstream of 𝑥𝐻 , i.e., in the fore portion of the bubble, disturbance amplitudes are relatively low
(Fig. A.3), and therefore their growth is expected to be well modelled by LST [20, 68, 135]. It
can be conjectured that the upstream movement of the maximum shape factor is due to excitation
providing higher initial disturbance amplitudes to which the LSB transition process is receptive.
This assertion is examined in Section A.3.2, where linear stability analysis is performed on the
experimental data, in conjunction with an assessment of the effects of non-linear interactions
among disturbances. Such analysis sheds light on the differences between tonal and broadband
excitation, as the results in Fig. A.5 give a preliminary indication that broadband excitation can be
as effective at accelerating transition in the separation bubble as tonal excitation.

Excitation also reduces the size of the aft portion of the bubble, i.e. the region between 𝑥𝐻
and 𝑥r. However, for all cases examined, the extent of the aft portion relative to the total bubble
length, (𝑥r − 𝑥𝐻) /(𝑥r − 𝑥s), is nearly constant at approximately 25%. Therefore, both types of
acoustic excitation are effective in proportionally decreasing both the fore and aft portion of the
bubble. It is in the aft portion where shear layer roll-up occurs and the role of coherent structures
is important [113, 134, 261]. How these phenomena are affected by the forcing is examined in
detail in Section A.3.3.

A.3.2 Growth and Interaction of Disturbances

To study the convective streamwise amplification of forced disturbances, LST is employed, which
provides a model for the amplification of small amplitude disturbances in a parallel laminar flow,
as discussed in Section 3.3.1. The Orr-Sommerfeld equation (Eqn. 3.6) is employed in a spatial
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Figure A.6: Measured velocity profiles (markers) in the natural flow and corresponding hyperbolic
tangent fits (solid lines, Eqn. 5.3) used in LST calculations.

formulation (e.g., Ref. [215]), where Ω is prescribed and the eigenvalue problem is solved for
𝛼, thus modelling the convective amplification of single frequency disturbances. Equation 3.6
is solved numerically using Chebyshev polynomial base functions, with the companion matrix
technique used to treat eigenvalue non-linearity [25]. Additional information regarding the solution
method can be found in van Ingen & Kotsonis [240].

Measured mean streamwise velocity profiles at given streamwise locations serve as input to
the LST calculations, therefore making the analysis local. Spatial gradients estimated from PIV
measurements often have a relatively high noise level due to the finite spatial resolution of the
measurement technique [248], to which LST predictions can be highly sensitive [23]. Therefore,
stability analysis is performed using hyperbolic tangent fits (Eqn. 5.3) to the experimental data,
which have been shown to provide reasonable stability predictions [20, 45] that are relatively
insensitive to scatter in the data [23]. Exemplary velocity profiles and their corresponding fits for
the natural flow conditions are shown in Fig. A.6.

For validation purposes, results from the LST predictions and the experimental data are
compared for the natural case in Fig. A.7. A measure of amplitude growth is quantified from the
LST results by integrating the spatial growth rates (𝛼𝑖) according to Eqn. 3.7 to recover 𝑁 factors.
To do so, the streamwise location where the disturbance first becomes unstable (𝑥cr) must be
known, which falls upstream of the PIV field of view and therefore cannot be determined directly.
However, in the fore portion of the LSB, 𝛼𝑖 may be approximated by a second-order polynomial
(e.g., see figure 11 from Jones et al. [91]). Based on this, 𝑥cr can be estimated by extrapolating the
curve fit to 𝛼𝑖 = 0. In Fig. A.7a, the experimental spectrum of wall-normal velocity fluctuations
shows an amplified band of disturbances within 10 . St𝑐 . 20, with the highest energy content
found approximately at St𝑐 = 15.6, i.e., the fundamental frequency. The overlaid plot of 𝑁 factors
shows good agreement between the LST predicted and experimental measured unstable frequency
ranges, with the most unstable frequency predictions differing by approximately 17%. Such a
discrepancy has been reported in similar studies [20, 259] and does not significantly impact the
present investigation since here the interest lies in the relative changes in stability characteristics
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Figure A.7: Validation of LST results for the natural flow. (a) LST 𝑁 factors and experimental
spectrum of 𝑣′ at the streamwise location of maximum bubble height. (b) LST and experimental
𝑁 factors for St𝑐 = 15.6.

when the flow is excited.
Figure A.7b shows a comparison of LST and experimental N factors for St𝑐 = 15.6, where the

measured wall-normal velocity fluctuations have been bandpass filtered to within St𝑐 = 15.6 ± 0.2
in order to compute amplification factors associated with this frequency. A direct comparison of 𝑁
factors is not possible since disturbances in the experiment can only be detected well downstream
of 𝑥cr, where they reach measurable amplitudes. Therefore, following Schmid & Henningson
[215], the amplification factors are matched at a reference location where the measured disturbance
amplitude reaches 𝐴 = 0.005𝑢∞ (𝑥/𝑐 = 0.44 in Fig. A.7b), thus allowing for an estimate of 𝐴0
for a given frequency, according to Eqn. 3.7. Comparing the LST and experimental 𝑁 factors
reveals that the linear growth of disturbances is accurately captured within 0.42 < 𝑥/𝑐 < 0.46 in
the experiment, downstream of which disturbance growth begins to saturate and the agreement
with LST deteriorates due to non-linear effects becoming significant. Similar results are also
obtained for both the tonal and broadband excited cases, confirming that LST reliably predicts
stability characteristics in the fore portion of the studied separation bubbles.

The changes in stability characteristics with excitation are depicted in Fig. A.8, where contours
of the LST predicted spatial growth rates are presented. As per the spatial formulation employed,
negative values of 𝛼𝑖 correspond to convectively amplified disturbances. For the natural case,
downstream of separation the frequency of the maximal growth rates increases to a value of
approximately St𝑐 = 13.6 reached at 𝑥/𝑐 = 0.45, after which the frequency decreases toward
the maximum bubble height location. It is in this region where amplification of disturbances
is detected in the experiments and agrees well with the LST predictions (Fig. A.7b). For both
types of excitation considered, their application results in significant decrease in the magnitude of
growth rates, as the maximum growth in the natural flow, −𝛼𝑖𝑐 ≈ 52, decreases by approximately
30% for both excitation cases shown (Figs. A.8b and A.8c). A less significant effect is seen on the
frequency of maximum growth rates, as both tonal and broadband excitation reduce this frequency
to approximately St𝑐 = 13.1 at 𝑥/𝑐 = 0.42, i.e., a reduction of approximately 4%. The more
significant effect of excitation on maximum growth rate than the corresponding frequency is also
reported in Refs. [134, 135, 261], and is attributed to the mean flow deformation (Fig. A.3). As
excitation reduces the size of the separation bubble, the region of disturbance growth (i.e., the
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Figure A.8: Contours of LST predicted spatial growth rates. Dashed lines indicate loci of growth
rate maxima.

separated shear layer) is brought closer to the wall, which has a damping effect [47].
As established throughout Section A.3.1, tonal and broadband excitation at equivalent SPLs

(i.e., equivalent input energy levels) produce comparable changes in the mean flow fields (e.g.,
Figs. A.3 and A.5), despite tonal excitation providing a higher initial disturbance amplitude at or
close to the frequency at which the LSB is most unstable (Fig. A.8). One hypothesis for this result
is that, as seen in Fig. A.8, excitation modifies the frequency of most unstable disturbances, albeit
minimally, and so the tonal excitation becomes less effective, while the broadband case is able to
excite this new most unstable frequency. This hypothesis is examined in Fig. A.9, where LST
predicted 𝑁 factors and disturbance amplitudes are compared for equivalent tonal and broadband
excitation cases.

Consistent with the closely matching spatial growth rates for the considered excitation cases
(Figs. A.8b and A.8c), the amplification curves in Fig. A.9a show nearly equivalent 𝑁 factors
for frequencies near and below the tonal excitation frequency, St0𝑐 = 15.6. Using these LST 𝑁

factors, the streamwise growth in disturbance amplitude is determined using Eqn. 3.7 and initial
disturbance amplitudes, which are estimated by matching LST and experimental 𝑁 factors (as
outlined by the discussion of Fig. A.7b). The resulting LST predicted disturbance amplitudes
(Fig. A.9b) show, as expected, the highest initial disturbance amplitude for tonal excitation (cf.
Fig. A.2), which, coupled with its 𝑁 factor curve, results in the tonally excited disturbance
outgrowing all disturbances in the broadband case. Thus, according to LST and the theory of
transition onset at some critical disturbance amplitude [224, 239], tonal excitation should lead to
earlier transition, which is clearly not the case in the experimental data (Figs. A.3–A.5).

It is evident that the assumptions inherent to LST render the technique unable to accurately
model the entire transition process. To assess the degree to which disturbance interaction and
competition impacts the studied transition processes, spatial growth rates are estimated from the
experimental measurements. Such estimates are made by extracting the fluctuating wall-normal
velocity signals along 𝑦 = 𝛿1, and then band-pass filtering the time signals via integration of their
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Figure A.9: Comparison of LST predicted (a) 𝑁 factors and (b) disturbance amplitudes for
frequencies within the excitation bands. Initial disturbance amplitudes are estimated through
matching LST and experimental 𝑁 factors (Fig. A.7b). Curves for all broadband excited frequencies
fall within the red shaded regions.

frequency spectra using a band of width St𝑐 = ±0.2 centred at the desired frequency. The resulting
spatial curves are then smoothed using a sliding kernel with width 0.03𝑐, and the local spatial
growth rates are determined from the local curve slopes. The results are presented in Fig. A.10 for
the natural, tonal and broadband cases, where overall growth rate magnitudes compare favourably
with the LST predictions (Fig. A.8). For the natural case (Fig. A.10a), amplification of disturbances
is first detected at approximately 𝑥/𝑐 = 0.41 and at the fundamental frequency, followed by
disturbances within the unstable frequency band, 10 . St𝑐 . 20, amplifying farther downstream.
Near the streamwise location of maximum shape factor, there is rapid growth at all measurable
frequencies, which is indicative of the onset of transition. A similar progression is seen for the
broadband case (Fig. A.10c), except that earlier amplification of disturbances is detected due to
the excitation. Most notably, the rapid emergence of growth at all frequencies shifts upstream to
approximately 𝑥/𝑐 = 0.49, consistent with the location of shape factor maximum. For the case
of tonal excitation (Fig. A.10b), a drastic change in the growth of disturbances is observed, as
excitation at St0𝑐 = 15.6 effectively confines growth to only that frequency from the beginning of
the measured domain to 𝑥/𝑐 ≈ 0.47. Growth of disturbances over a wide band of frequencies only
begins to occur at 𝑥/𝑐 = 0.5, which is where the process takes place for the natural case, despite
the drastically different energy input levels (Fig. A.2).

It can be concluded from Fig. A.10b that the strong amplification of the tonally excited
disturbance damps growth of all other disturbances, thus affecting the transition process. This
is examined further in Fig. A.11, where experimentally determined perturbation modes for
frequencies within the naturally unstable frequency band are presented and compared to LST
predicted growth rates. For the natural case (Fig. A.11a), good agreement is found for frequencies
St𝑐 ≤ 15.6 where disturbance amplification is first detected, 0.43 . 𝑥/𝑐 . 0.46. Thus, the growth
of these disturbances is independent and is not affected by non-linear interactions until downstream
of 𝑥/𝑐 ≈ 0.46. The same can be said for the broadband excited flow (Fig. A.11c), except here
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Figure A.10: Contours of experimentally measured spatial growth rates of frequency filtered
wall-normal disturbances in the separated shear layer (𝑦 = 𝛿1). Dashed and dotted lines denote
𝑥𝐻/𝑐 and 𝑥r/𝑐, respectively.

agreement with LST is found across all frequencies within the excitation band. The agreement
with LST at the higher frequencies, St𝑐 > 15.6, is attributed to the broadband excitation providing
disturbances of significant amplitude at these frequencies for amplification. When the flow is
excited tonally (Fig. A.11b), the damping effect on the growth of disturbance all frequencies other
than that of the excitation becomes immediately apparent, as only the excited frequency grows
according to its LST predictions, while the growth at all other frequencies is delayed. Moreover,
the agreement between LST predictions and experimental measurements for the tonal excitation
frequency persist further downstream, where non-linear interactions resulted in decreased growth
for the natural and broadband excitation cases.

The observed differences in the development of disturbances can be explained through the
weakly non-linear disturbance growth model proposed by Landau & Lifschitz [117] and further
developed by Stuart [231]:

d |𝐴1 |2

d𝑥
= 2 |𝐴1 |2

©­«−𝛼𝑖 +
𝑛∑︁
𝑗=1

ℓ 𝑗
��𝐴 𝑗

��2ª®¬ , (A.1)

which describes the spatial amplification of a disturbance of amplitude 𝐴1 as a result of its initial
linear growth rate, 𝛼𝑖, and the non-linear effects imposed by self-interaction ( 𝑗 = 1) and interaction
with disturbances of all other frequencies ( 𝑗 ≠ 1). The Landau coefficients (ℓ 𝑗 ) describe the
nature of the interactions, with ℓ 𝑗 > 0 and ℓ 𝑗 < 0 corresponding to non-linear effects resulting in
additional amplification or damping, respectively, while linear theory is recovered when ℓ 𝑗 = 0.
Drazin & Reid [48] note that, for external flows over bodies, the Landau coefficients are generally
negative and thus non-linear effects serve to damp disturbance growth. This is corroborated by the
present results, as all instances of good agreement between LST and experimental measurement are
followed by a damping of the experimentally measured disturbance, leading to growth saturation
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Figure A.11: Growth of frequency filtered wall-normal disturbances within the separated shear
layer (𝑦 = 𝛿1). Grey lines indicate LST predicted growth rates at 𝑥/𝑐 = 0.43. Dashed and dotted
lines denote 𝑥𝐻/𝑐 and 𝑥r/𝑐, respectively.

soon after (e.g., Figs. A.7b and A.11). Furthermore, in addition to the Landau coefficients,
Eqn. A.1 highlights that the degree to which disturbances are damped depends on the amplitude
of the disturbance with which the interaction is taking place. Therefore the presence of a relatively
high amplitude disturbance is expected to damp disturbance growth at all other frequencies. Such
is the case observed in Figs. A.10b and A.11b for the tonal excitation case, while for the broadband
case (Figs. A.10c and A.11c) perturbation amplitudes are more moderate, and so all unstable
disturbances grow initially at their LST predicted rates, followed by non-linear damping taking
place farther downstream.

The non-linear interactions and their impact on transition reported here are, to the authors’
knowledge, have not been previously reported for separation bubbles. However, similar observations
have been reported for boundary layers [95] and free shear layers [154, 155]. Specifically, Miksad
[155] notes that when exciting free shear layers using two strong acoustic tones, the competing
growth of the two instabilities leads to reduced growth rates in comparison to the single excitation
cases. Furthermore, excitation at multiple frequencies was found to promote the redistribution
of fluctuating energy to all possible frequencies, which Miksad linked to a faster increase in the
shear layer momentum thickness, and hence an accelerated transition of the shear layer. Similar
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reports are made by Kachanov et al. [95], who excited multiple TS modes in a laminar boundary
layer. In the present investigation, tonal and broadband excitation lead to strikingly different
transition processes but can lead to very similar mean effects on the flow field (Figs. A.3 and A.5).
Further, transition in a laminar separation bubble can be either dominated by a large amplitude
disturbance of a single frequency which damps the growth of all other disturbances (Figs. A.10b
and A.11b), or by a band of disturbances of moderate and equal amplitudes, that all initially grow
in accordance with linear theory (Fig. A.11c). For both cases, a rapid redistribution of spectral
energy to all frequencies follows (Figs. A.10b and A.10c), with this phenomena occurring earlier
for the broadband case, despite equal energy inputs. The ‘broadband transition route’ is also
representative of the natural transition case (Figs. A.10a and A.11a).

Important ramifications regarding the comparison of LST predictions with experimental and
numerical results are made clear from the findings of this investigations. Numerous authors have
noted this agreement to be surprisingly good (e.g., Refs. [135, 136, 261]), with the valid region
extending until very close to where disturbance growth saturates [118], despite the relatively large
amplitudes of the instability waves in this region. Furthermore, and perhaps counter-intuitively,
it has been reported that the agreement improves with increasing disturbance input levels [260].
In general, these assertions are supported by the findings presented here (Fig. A.11), with the
crucial caveat being that the degree to which LST and experimental/numerical results agree is
entirely dictated by the relative importance of non-linear effects for the particular disturbance
mode being considered. For example, when all unstable disturbance amplitudes are small, and
thus non-linear effects are not important, excellent agreement is found with LST until disturbance
amplitudes become more moderate (i.e., the broadband excitation case, Fig. A.11c). On the other
hand, if one disturbance mode is preferentially excited, then its development dominates all others
via non-linear damping, while experiencing strong linear growth of its own (Fig. A.11b). Thus, it
can be conjectured that if only one dominant disturbance mode is present in the flow, then the
non-linear effects imposed by the other, relatively weak, disturbances are not significant and so the
dominant mode grows in strong accordance with LST predictions.

A.3.3 Coherent Structures

Thus far, mean features and disturbance development in the separation bubble have been charac-
terized (Sections A.3.1 and A.3.2, respectively). The link between these two facets of the flow
is established in this section, as the coherent structures that manifest from the disturbances are
examined and their role in producing the observed mean flow field and its statistics is elucidated.

Flow development in the aft portion of the separation bubble for the natural, tonal, and
broadband cases is depicted in Fig. A.12 using instantaneous contours of spanwise vorticity
(𝜔𝑧). Contours of the 𝜆2-criterion [88] are added to aid in identifying coherent structures, in
addition to dashed lines to assist in tracking individual structures between frames. The spacing
and slope of these lines give an indication of the streamwise wavelength (𝜆𝑥) and convective
velocity of the structures, respectively. For all cases, the flow development is characterized by the
roll-up of the separated shear layer into vortices upstream of the maximum shape factor location
(𝑥𝐻/𝑐 = 0.51 for the natural case). These shear layer vortices then convect downstream and
undergo deformations within the vicinity of mean reattachment (𝑥r/𝑐 = 0.56 for the natural case),
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Figure A.12: Sequences of instantaneous contours of spanwise vorticity. Consecutive frames are
separated by 𝑡∗𝑐 = 3.8 × 10−2. Black lines indicate 𝜆2-contours [88]. Black dashed lines trace the
same vortices in a sequence. Grey dashed and dotted lines denote 𝑥𝐻/𝑐 and 𝑥r/𝑐, respectively.

leading to their breakdown to smaller scales. Both the natural and broadband excited flows are
quasi-periodic (Figs. A.10a and A.10c), and so significant temporal variability is expected in the
flow development. An example of such an occurrence is shown for the natural case (Fig. A.12a),
where two vortices develop with sufficiently different convective velocities that they coalesce to
form a merged structure. The process may also occur for the broadband excited flow, however,
identification of clearly merged structure is difficult due to the earlier onset of breakdown. Vortex
merging in naturally developing separation bubbles has also been observed by Kurelek et al. [113]
and Lambert & Yarusevych [115].

From Fig. A.12, it is clear that excitation significantly affects flow development, as both tonal
and broadband excitation cause vortex formation at earlier streamwise positions, consistent with
the upstream shift in 𝑥𝐻 and earlier detectable disturbance amplification (Fig. A.10). However, the
mean convective velocity and streamwise wavelength of the shear layer vortices in the excited
flows (Figs. A.12b and A.12b) remain largely unchanged compared to those of the natural case
(Fig. A.12a), which is attributed to the close matching of the excitation frequency and the naturally
unstable frequencies. Estimating the average streamwise wavelength of the structures from the
spacing of the black dashed lines in Fig. A.12 gives a value of 𝜆𝑥/𝑐 ≈ 0.04. By promoting
the development of a single harmonic disturbance (Fig. A.11b), it is clear that tonal excitation
locks the vortex formation process to the excitation frequency, thus resulting in significantly
reduced temporal variability in both the convective velocity and streamwise wavelength of the shed
structures. As such, vortex merging is not observed throughout the entire recorded sequence for the
presented tonal excitation case. Similar observations have been made for free shear layers forced
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Figure A.13: Sequnces of instantaneous contours of streamwise velocity. Flow is from top-
to-bottom. Consecutive frames are separated by 𝑡∗𝑐 = 2.5 × 10−2. White dashed lines indicate
smoothed spline fits to the centre of selected structures.

at their ‘fundamental’ vortex shedding frequency [73, 81]. The coherence of the tonally excited
structures also appears to be increased in comparison to the broadband case, as the structures in
Fig. A.12b tend to persist further downstream than those seen in Fig. A.12c. This assertion will be
examined in detail through the analysis that follows in this section.

PIV measurements completed in the top-view configuration (Fig. A.1b) allow for quantitative
assessment of both the streamwise and spanwise development of the shear layer vortices. The
measurement plane was positioned such that it passed through the top-halves of the spanwise
rollers, thus allowing for their identification as periodic spanwise bands of high streamwise velocity
in the planar fields, as seen in Fig. A.13.

Flow is from top-to-bottom in Fig. A.13 and smoothed spline fits are added to the centre
of selected vortices to aid in tracking their development. Spanwise coherent structures are first
identifiable near the maximum shape factor location (𝑥𝐻/𝑐 = 0.51 for the natural case), consistent
with where roll-up is observed in the side-view measurements (Fig. A.12). Shortly downstream of
roll-up, the structures develop spanwise deformations within the vicinity of the mean reattachment
point (𝑥r/𝑐 = 0.56 for the natural case). These deformations intensify as the structures continue to
convect downstream, which eventually leads to the emergence of localized vortex breakup, i.e.,
the regions of low velocity fluid that appear over the span of the vortex filaments at 𝑥/𝑐 & 0.55
throughout Fig. A.13. The formation of spanwise uniform shear layer vortices is consistent with
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Figure A.14: First row: Exemplary fluctuating streamwise velocity sampled across the span at
𝑥𝐻 . Second row: Corresponding wavelet coefficients. Maximum wavelet coefficient denoted by ×
marker.

the observations of Refs. [92, 137, 170], which according to Michelis et al. [153] is an indication of
the relative dominance of normal over oblique modes. Furthermore, the development of spanwise
deformations leading to localized regions of vortex breakup is consistent with the vortex breakup
mechanism for an LSB proposed by Kurelek et al. [113].

While general trends in spanwise flow development are similar between the natural and
excitation cases, the upstream shift in the roll-up location due to excitation, identified previously in
the side-view measurements (Fig. A.12), is also clearly seen in Fig. A.13. Furthermore, both types
of excitation appear to modify the predominant spanwise deformation wavelength(s) of the vortex
filaments, as a visual comparison between the cases presented in Fig. A.13 suggests that spanwise
deformations of shorter wavelengths tend to initially develop when the flow is excited. To affirm
this observation, spanwise wavelength characteristics are quantified through wavelet analysis
(Section 3.3.3), which is preferred over spatial Fourier analysis due to the limited spanwise extent
of the field of view. From the top-view PIV measurements, streamwise fluctuating velocity signals
are extracted at several streamwise locations, smoothed using a spatial kernel of width 0.02𝑐,
and wavelet coefficients are calculated using the Morlet wavelet [43]. Exemplary instantaneous
spanwise distributions of velocity fluctuations and their corresponding wavelet coefficients are
presented in Fig. A.14. For a given time instant, the predominant spanwise wavelength is estimated
from the maximum wavelet coefficient, with the process repeated for all time realizations and
statistical samples obtained as a result. The data is presented using histograms in Fig. A.15 at
three reference streamwise locations. For the natural case (Fig. A.15a) at 𝑥𝐻/𝑐, the distribution
of 𝜆𝑧 is nearly symmetric about a mean value of 𝜆𝑧/𝑐 = 0.19, with predominant wavelengths
concentrated within 0.08 . 𝜆𝑧/𝑐 . 3.2, which is in good agreement with the visualized structures
in Fig. A.13. Furthermore, comparing the predominant spanwise and streamwise wavelengths of
the structures gives a range of 2 . 𝜆𝑧/𝜆𝑥 . 7, which is consistent with the results of previous
investigations [113, 137, 153].

From Fig. A.15a, the mean spanwise deformation wavelength shifts to lower values as the
vortices convect from the maximum shape factor location to the mean reattachment point and
beyond it, reaching a value of 𝜆𝑧/𝑐 = 0.11 at the furthest downstream station. This shift is
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Figure A.15: Spanwise wavelength probability distributions determined from spatial wavelet
analysis (Fig. A.14). Dotted lines indicate standard deviation from the mean (solid line).

associated with the aforementioned localized vortex breakup regions seen in Fig. A.13a, with
the low velocity zones being separated by a spanwise spacing of about 0.1𝑐. In Section A.3.2,
it was established that disturbances in the broadband excited flow grow in an accelerated, yet
similar manner to the natural case, which is also reflected in the development of the spanwise
deformations, as Fig. A.13c shows that initial deformations occur over a relatively broad range of
wavelengths centred at 𝜆𝑧/𝑐 ≈ 0.2, which shifts to 𝜆𝑧/𝑐 ≈ 0.1 as the vortices convect downstream
and begin to break down. In contrast, when the flow is subjected to tonal excitation (Fig. A.13b), at
𝑥𝐻/𝑐 there is a more pronounced mean tendency in the distribution toward 𝜆𝑧/𝑐 = 0.1, indicating
that tonal excitation promotes deformations of this wavelength. Thus, tonal excitation is shown
to organize shear layer vortex development, not only by locking the shedding frequency and
streamwise wavelength (Fig. A.12b), but also by reducing variability in spanwise deformations,
promoting a spanwise wavelength equal to approximately two times the streamwise wavelength of
the structures.

To further analyze the effect of excitation on coherent structure characteristics, POD analysis is
performed on the top-view (𝑥–𝑧 plane) measurements using the snapshot method [223]. Figure A.16
presents the first four most energetic spatial modes coloured by the streamwise component (𝛾 (𝑛)𝑢 ).
From Fig. A.16 it is clear that all modes are paired, i.e., modes 1 and 2, and modes 3 and 4. A
distinct streamwise phase offset of 𝜋/2 can be seen for each mode pair, which is typical for a
number of different flows involving propagating coherent structures [124, 241, 244, 260]. For
all cases, the two most energetic modes are associated with the spanwise shear layer vortices, as
these mode shares several key features with previous results, namely, a consistent streamwise
wavelength (cf. Fig. A.12), and spanwise uniform structures that form further upstream when
excited (cf. Fig. A.13). The associated temporal coefficients, not shown for brevity, also feature
dominant periodicity at the shedding frequency of the rollers. It is instructive to compare the
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Figure A.16: Streamwise component of the normalized POD spatial modes. Dashed and dotted
lines denote 𝑥𝐻/𝑐 and 𝑥𝑟/𝑐, respectively.

𝛾
(1)
𝑢 and 𝛾

(2)
𝑢 modes for the tonal and broadband cases in Figs. A.16b and A.16c, respectively.

Such a comparison reveals that while the structures form at similar streamwise locations, they
persist further downstream in the presence of tonal excitation, presumably since tonal excitation
specifically targets this mode while the broadband excitation does not. This is further supported
through the examination of the relative (𝐸R) and cumulative (𝐸C) modal energy distributions,
presented in Fig. A.17. Consistent with its excitation input spectrum (Fig. A.2b), broadband
excitation leads to a small increase in the relative energy of the first two modes (Fig. A.17a), and a
comparable cumulative distribution over the first twenty modes to the natural case (Fig. A.17b). In
contrast, tonal excitation leads to an increase of approximately 125% in the most energetic mode
pair, which is to be expected given that tonal excitation specifically targets these modes.

Analysis of the top-view measurements revealed that spanwise deformations with a wavelength
of 𝜆𝑧/𝑐 ≈ 0.1 tend to develop in the vortex filaments in the aft portion of the bubble and downstream
of mean reattachment for all cases (Figs. A.13 and A.15). Added insight into these deformations is
provided by the POD results, as structures with a corresponding spanwise wavelength are evident
in the POD spatial modes (e.g., modes 3 and 4 in Fig. A.16). The capture of these structures by the
POD analysis indicates that these deformations tend to occur repeatedly with prevalence at some
spanwise locations. A similar observation is made in the experiments of Michelis et al. [152] (see
their Fig. 3b), who studied a separation bubble formed on a flat plate. In theirs and this experiment,
careful attention was paid to the model and facility to prevent triggering any spanwise modulation
of disturbances, however, whether the occurrence of these spanwise deformations at these preferred
spanwise locations is a result of the underlying physics or is due to some minute imperfection
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Figure A.17: Effect of excitation on POD (a) relative and (b) cumulative modal energy distributions.

in the experimental setup is unclear. Nevertheless, it is apparent that such repeated spanwise
deformations associated with some preferential wavelength are inherent to the development and
breakup of the main shear layers rollers.

A.4 Concluding Remarks

The present investigation examined the effects of tonal and broadband acoustic excitation on flow
development and transition in a laminar separation bubble. The bubble was formed on the suction
side of a NACA 0018 airfoil in a closed-loop wind tunnel facility at a Reynolds number of 125 000
and an angle of attack of 4°. Disturbances were introduced in a controlled manner from an external
source to decouple the interdependence of flow development and acoustic emissions inherent to
airfoil self-noise production. The flow field was assessed via time-resolved, two-component PIV.
Two separate configurations were employed to evaluate streamwise and spanwise aspects of the
flow development. The results show that, for equivalent energy input levels within the naturally
unstable frequency band, tonal and broadband excitation produce similar changes in the mean
separation bubble topology. In particular, both result in delayed boundary layer separation, a
reduction in the maximum bubble height, and upstream advancement in the shape factor maximum
and mean reattachment locations.

Local linear stability analysis is shown to accurately model incipient disturbance growth for
all cases examined. Consistent with previous investigations [134, 135, 261], the LST results
show that excitation significantly reduces disturbance growth rates, while only slightly modifying
the frequency of the most amplified disturbances. Despite this modification, according to the
LST predictions, the most amplified mode in the presence of tonal excitation should outgrow all
broadband excited individual modes and thus lead to earlier transition for the former case, which
is in contradiction with the experimental observations. This is shown to be the result of non-linear
effects. Specifically, in the case of tonal excitation, transition is dominated by the amplification
of a single excited wave, which grows in strong accordance with linear theory and significantly
damps the growth of all other disturbances as a result of its relatively high amplitude. In contrast,
disturbance amplitudes across the entire unstable frequency range are more moderate for the
natural and broadband excited flows, and so all unstable disturbances initially grow in accordance
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with linear theory. For all cases, a rapid redistribution of perturbation energy to a broad range of
frequencies follows, with the phenomenon occurring earliest for the broadband case and at more
or less equivalent streamwise locations for the tonal and natural cases, despite drastically different
input energy levels.

The significance of non-linear disturbance interactions reported herein have important ramifi-
cations regarding the comparison of LST predictions with experimental and numerical results.
Several authors have noted this agreement to be surprisingly good [118, 135, 136, 261] even
in flow regions where instability waves attain relatively large amplitudes. In general, these
assertions are supported, with the crucial caveat being that agreement is entirely predicated on the
relative importance of non-linear effects for the particular disturbance mode being considered.
For example, when all unstable disturbance amplitudes are small and thus non-linear effects not
important, excellent agreement is found with LST until disturbance amplitudes become relatively
large, as is observed for the broadband and natural cases. On the other hand, if one disturbance
mode is preferentially excited, then its development dominates all others via non-linear damping.
As a consequence, the non-linear effects imposed on the dominant mode are weak, and so the
dominant mode grows in strong accordance with LST.

Examination of the time-resolved flow development reveals that the unstable flow disturbances
produce quasi-periodic shear layer vortices, that form through the roll-up of the separated shear
layer just upstream of the maximum shape factor location. For all cases, these structures are strongly
two-dimensional and oriented in the spanwise direction at formation, before undergoing significant
spanwise deformations, ultimately leading to their breakdown. The spanwise deformations of
the shear layer rollers are shown to fall within a range of wavelengths that covers two to seven
times their streamwise wavelength. Tonal excitation is shown to have the most distinct effect on
the development of the shear layer vortices. Specifically, it leads to earlier formation, a fixed
shedding frequency and streamwise wavelength, increased spanwise coherence, and enhances
the organization of spanwise deformations at a wavelength equal to two times the streamwise
wavelength.
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Appendix B

Uncertainty Estimation
Details are provided regarding the estimation of uncertainty for all critical results presented in
this thesis.
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The uncertainty analysis framework was established in Section 3.4. Here, detailed information is
provided on the steps followed to produce the uncertainty estimates presented throughout the main
chapters.

B.1 Experimental Conditions

B.1.1 UW Experiments

The chord-based Reynolds number for the experiments of Chapter 4 and Appendix A was
Re𝑐 = 125 000 ± 2.90%. The uncertainty estimate is based on uncertainties in three measured
quantities: the free-stream velocity, 𝑢∞, airfoil chord length, 𝑐, and fluid kinematic viscosity,
𝜈. The airfoil chord length is known to a high degree of precision and therefore does not
contribute significantly to the uncertainty. The kinematic viscosity was determine indirectly
through measurement of the ambient temperature and pressure. Temperature was measured by
means of a K-type thermocouple installed in the wind tunnel, with measurements taken after
a minimum 30 minute run time to allow for tunnel conditions to reach steady state. Ambient
pressure was measured outside the tunnel using a mercury barometer. The uncertainty in the
ambient temperature and pressure are estimated at ±0.1% and ±0.01%, respectively, which
combine to give an estimate of 𝑈𝜈 = ±0.1% on the kinematic viscosity. The free-stream velocity
was determined by measuring the pressure drop across the tunnel contraction, relating this to
the free-stream dynamic pressure through a calibration relationship, and then calculating 𝑢∞
using Bernoulli’s principle. The contraction pressure drop was measured using a Setra Model
239 differential pressure transducer with full range of 500 Pa, resulting in an uncertainty of
±0.3%, which takes into account the innate accuracy of the device and temporal fluctuations in
the measurement. This uncertainty in the contraction pressure drop is then converted to one of
the free-stream dynamic pressure using Eqn. 3.10 and the calibration relationship, resulting in
an uncertainty on 𝑝dyn of ±5.76%, with the major contributing factor being the quality of the
calibration fit. Then, this uncertainty is converted to one on 𝑢∞ according to Bernoulli’s principle,
which is root-sum-squared with the fluid density uncertainty (±0.1%) to give a final estimate of
the free-stream velocity uncertainty, 𝑈𝑢∞ = ±2.89%. The uncertainty in the Reynolds number is
then calculated using Eqn. 3.10, resulting in 𝑈Re𝑐 = ±2.90%.

The airfoil’s angle of attack was 4° ± 0.16, and was set using a digital protractor with an
angular resolution of 0.1°. The main contributor to the uncertainty in the angle of attack is a
possible bias error introduced through the determination of the aerodynamic zero angle of attack.
This angle was determined by measuring lift coefficients over a range of negative and positive
angles within which the lift slope is expected to be linear. By fitting a linear trend to these data
and finding the angle that gives zero lift via interpolation, the uncertainty in the aerodynamic
zero angle of attack is estimated, and found to be ±0.15°. Thus, the combined uncertainty is
𝑈AOA = ±0.16°, or approximately 4% of the investigated value.

The sound pressure level (SPL) in the test section with and without acoustic excitation was
measured to be 88.9 dB ± 0.1 and 89.5 dB ± 0.1, respectively. These were measured using a
Brüel and Kjær 4192 condenser microphone, with a manufacturer reported accuracy of ±0.1 dB
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within the frequency range of 40 to 1000 Hz, which spans the range of frequencies relevant to the
investigation. For all cases, SPLs were verified to be uniform, within the uncertainty of the device,
over the spanwise of the model. Therefore, the uncertainty in the reported SPLs is estimated to be
±0.1 dB.

B.1.2 TU Delft Experiments

The Reynolds number for the experiments of Chapters 5 and 6 was Re𝛿1s = 750 ± 15.2, with a
similar approach to that outlined in Section B.1.1 followed to obtain the uncertainty estimate.
The length scale, the displacement thickness at the natural separation point, 𝛿1s = 2.0 mm ± 0.25,
was determined from planar PIV measurements, with the process followed in determining its
uncertainty described in Section B.2. The kinematic viscosity was again determined indirectly
through measurement of the ambient temperature and pressure, with both measured within the
anechoic plenum that serves as the open test section of the TU Delft A-Tunnel (Fig. 3.2). Ambient
temperature was measured using an Omega PT100-1/3 DIN accuracy class RTD probe, while
ambient pressure was measured using an Amphenol NPA-201 barometric pressure sensor, resulting
in accuracies of 0.5% and 0.01%, respectively. Therefore, the uncertainty on the kinematic
viscosity is 𝑈𝜈 = ±0.5%. The free-stream velocity was measured via a pitot-static tube installed
in the test section, with the dynamic pressure measured via a Honeywell HSC series differential
pressure transducer with a full range of ±160 Pa and an accuracy of ±0.8 Pa. Taking into account
both this, the uncertainty associated with temporal fluctuations in the measured mean dynamic
pressure, and the uncertainty in the fluid density (±0.11%), the uncertainty in the free-stream
velocity is ±2.0% (𝑢∞ = 5.75 m s−1 ± 0.11). Thus, taking into account the uncertainty on the
free-stream velocity, kinematic viscosity, and employed length scale, the uncertainty in the
Reynolds number is ±2.1%.

B.2 PIV Measurements

Uncertainty estimates for PIV measurements are challenging, as the complexity of the measurement
system lends to a multitude of errors, some of which cannot be quantified [191]. The research
community has put forward a number of methods for PIV uncertainty quantification [217],
with the correlation statistics method of Wieneke [251] selected for use in this thesis due to
its implementation in the commercial DaVis software package. That being said, this method
does not provide an all encompassing estimate of the uncertainty. Sources of uncertainty in
PIV measurements are generally divided into two categories: (i) bias errors arising due to the
calibration procedure, and (ii) randoms errors present in the particle images. The latter are
propagated by the correlation analysis, which can introduce random errors of its own, into the
velocity field result.

The uncertainties that arises due to the calibration procedure can be quantified. For both
planar and tomographic configurations, a calibration relationship is determined by a imaging
a target consisting of marks at known locations. The targets used throughout this work were
CNC machined and as such the mark spacing is known to a high degree of precision (less than
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±0.01 mm), and therefore this aspect does not contribute to the calibration uncertainty. For planar
PIV configurations, a pinhole camera calibration relationship was used to relate the image and
physical spaces, with fits matching the calibration images to a typical standard deviations of
±0.1 px, with some at higher values (±0.2–0.33 px). This is expressed as a percentage of the
measurement based on the average particle displacement for a given planar configuration, which
ranged between 10 and 20 px, therefore equating to uncertainties between 1.0% and 1.65%.

For the tomographic configuration, a pinhole calibration model was also used for the initial
volume calibration, with a standard deviations between ±0.36–0.46 px across the four cameras.
Volume self-calibration [250] was used to refine the accuracy of the calibration. A limited number
of particles was introduced into the volume and imaged. Optical triangulation is used to estimate
the particle positions, which is then compared across the cameras and the residual triangulation
error (disparity) is used to correct each camera’s calibration function. In doing so the standard
deviation of the volume calibration was reduced to approximately ±0.1 px, which corresponds
to approx. ±0.6% of the tomographic particle displacements. This calibration result is highly
sensitive to camera positioning, with even slight changes introducing significant errors if they
go undetected (e.g., due to bumping a camera or vibrations from the operating the wind tunnel).
Therefore, the volume self-calibration process was repeated before every test run, thus guaranteeing
an uncertainty level related to calibration of less than ±0.6% for all datasets.

The random errors that occur in PIV measurements are more difficult to quantify, as they stem
from many sources. Some examples that can significantly undermine a measured include: (i)
changes in particle intensity between the first and second exposures, (ii) fluctuating background
intensity, (iii) inherent camera noise, (iv) high velocity gradients, and (v) improper selection of
cross-correlation parameters. Some studies have examined how these and other sources contribute
to uncertainty in PIV through Monte-Carlo type simulations [101, 191, 246], finding that all these
sources combine to give a general uncertainty level within ±0.04–0.1 px. However, this approach
does not account for local variations in uncertainty (e.g., in regions of high shear or low velocity
magnitudes) and the benefits gained by advanced cross-correlation methods, such as iterative
window deformations and weighting. A more comprehensive estimate of uncertainty due to random
error sources is provided by the correlation statistics method [251], which incorporates the effects
particle disparity, camera noise, and particle out-of-plane motions into a single estimate. The
uncertainty is estimated by identifying residual intensity differences between the two interrogation
windows that are correlated. Specifically, regardless of the overlap, the two interrogation windows
never match perfectly and therefore the correlation peak is asymmetric. The contribution of each
pixel in the cross-correlation to this asymmetry is quantified, producing a standard deviation that
corresponds to a local uncertainty. Thus, the correlation statistics method gives an estimate of
uncertainty for all interrogation window pairs, yielding an uncertainty field of the same size of the
velocity field for each time instant.

A few examples are provided here to demonstrate how the uncertainty estimates from the
correlation statistics method are handled. The first is presented in Fig. B.1, where the uncertainty
fields for the time-resolved, side view PIV measurements of Chapter 4 (Table 4.1) are time-averaged
and plotted in Fig. B.1a. This result in itself is useful, as it can be root-sum-squared with the
uncertainty associated with calibration to give a ‘total’ uncertainty estimate for a PIV configuration,
with these values reported throughout Chapters 4–6 and Appendix A (e.g., Tables 4.1, 5.1, 6.1,
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Figure B.1: (a) Exemplary time-averaged uncertainty field from the correlation statistics method
[251], and (b) result of uncertainty propagation (dashed line) on the estimate of the mean dividing
streamline (solid line).

and A.1). Furthermore, this uncertainty can be propagated through any analysis applied to the
mean velocity field. For example, in Fig. B.1b the mean dividing stream (solid line) is determined
from the time-averaged streamwise velocity field. Adding and subtracting the uncertainty field
from the time-averaged one (𝑢 ±𝑈𝑢) provides upper and lower limits, on which the streamline is
recomputed, giving the dashed lines in Fig. B.1b. This can be carried forward into further analysis,
for example, in the determination of LSB characteristics, such as the mean separation, maximum
height and reattachment locations. This gives the random error contributions to the uncertainty in
these quantities, which is then root-sum-squared with other contributions, such as those related to
calibration. This is the general approach followed in the analysis of time-averaged PIV velocity
fields.

The approached is revised for the evaluation of uncertainty on instantaneous PIV velocity
fields. Figure B.1a represents a map of the random error magnitude that may be present during
at any particular instant during the measurement. Therefore, a random error/uncertainty field
can be generated according to this map, with the result shown in Fig. B.2a where the errors
are assumed to be normally distributed about zero with a standard deviation of the local value
in 𝑈𝑢. Then, this uncertainty can be propagated into an instantaneous velocity field, which is
demonstrated with Figs. B.2b and B.2c. In doing this, any analysis method can be applied to these
two fields, and the difference in the end results on account of the added noise can be quantified.
For example, all instantaneous fields in a dataset can have this random noise added and then used
as inputs for proper orthogonal decomposition (Section 3.3.2), giving a measure of the impact of
the uncertainty on modal energy values and spatial topology. Or a time signal can be extracted,
e.g., Fig. B.2d, and the error contributions to PSD frequencies and amplitudes can be quantified.
In all these approaches, in order to establish the uncertainty bounds to a statistical certainty, the
process is repeated for a large numbers of randomly generated error fields (e.g., 104 iterations),
and the standard deviation in the change of the result is taken as the uncertainty bound.

Quantifying random error contributions to uncertainty in tomographic PIV measurements
is less straightforward, as a robust uncertainty framework like the correlation statistics method
has yet to be developed for the technique. Therefore, one must rely on empirical data to get an
estimate of the uncertainty for a given configuration. Furthermore, all of the aforementioned
random error sources present in planar measurements also apply to tomographic measurements,
in addition to others that stem from the increased complexity of the technique. Most notably,

189



0.02

0.01

0

(a)

0

(b)

0.4 0.45 0.5 0.55 0.6

0.02

0.01

0

(c) (d)

0.05

-0.05

0

1 2 3

0-0.06 0.06 0-0.6 0.6

0-0.6 0.6

Figure B.2: (a) Exemplary randomly generated instantaneous uncertainty field. (b) Exemplary
instantaneous fluctuating streamwise velocity field and (c) the same field with uncertainty added.
(d) Time signal extracted at × marker in (c) with and without uncertainty added.

the tomographic reconstruction process introduces ghost particles, which are particles rendered
into the reconstructed volume at points where there were no physical particles present. This is
unavoidable due to ambiguities in the triangulation operation, however the introduction of ghost
particles can be minimized through careful consideration of several factors, which Scarano [211]
outlines as the proper selection of number of cameras, seeding density, light sheet thickness,
volume calibration procedure, image pre-processing steps, and reconstruction algorithm settings.

First, a four camera setup was used, which offers a significant increase in reconstruction
accuracy over two and three camera setups, while returns diminish as more cameras are added [129].
Second, with the respect to calibration, it was already established that the standard deviation of the
initial physical volume calibration (±0.36–0.46 px) was refined down to ±0.1 px using the volume
self-calibration technique, with the process repeated for each dataset to ensure any minor changes
in the setup that may have occurred did not effect the accuracy of the calibration. With respect to
the other factors, Scarano [211] recommends an a posteriori assessment through evaluation of
the light intensity in the reconstructed volume. This is presented in Fig. B.3 for an exemplary
volume. Figures B.3a and B.3b show the reconstructed light intensity distribution projected onto
𝑥-𝑧 and 𝑦-𝑧 planes, respectively, while the average intensity profiles in the 𝑧-direction are plotted
in Fig. B.3c for the two laser pulses (the first pulse is shown in Figs. B.3a and B.3b).

Figures B.3a–c show appropriately sized reconstructed particles (approx. 2–3 vox in diameter)
at a seeding density level that maximizes the number of particles without resorting to excessive
particle overlap. Furthermore, the intensity is relatively uniform throughout the volume, with
the peak at 𝑧 = 0.75 mm corresponding to the actual position of the wall, where particles stuck
to the surface contribute to a higher intensity. There is some uneven illumination between the
two laser pulses, however, this is usually inherent to a particular laser and cannot be remedied
without sending the laser to the manufacturer for tuning. Most importantly, there is a sharp roll-off
in intensity between the illuminated and non-illuminated regions, which is attributed to careful
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Figure B.3: (a) 𝑥-𝑧 and (b) 𝑦-𝑧 projections of an exemplary reconstructed tomographic volume.
(c) Average intensity profiles in the 𝑧-direction.

tunning of the laser sheet and cameras. Since ghost particles are introduced everywhere and
not just within the illuminated region, the intensity levels at 𝑧 < 0.75 mm and 𝑧 > 8 mm give a
measure of the intensity of the ghost particles, which is approximately 30 counts. Comparing this
to intensity of the particles in the illuminated region (approx. 300 counts) produces an estimated
signal-to-noise ratio of 10, which is well above the minimum recommended ratio of 2 [211].
Therefore, ghost particles are not expected to have any significant impact on the correlation
procedure, and thus on the final velocity field, as their intensity an order of magnitude lower than
the real particles and, as outlined by Scarano [211], the probability of ghost particles forming a
pair in the two interrogation windows being correlated is low for flows that exhibit a wide range of
length scales, such as the LSB considered.

Lynch & Scarano [129] estimated the error in instantaneous tomographic velocity fields by
comparing measurements from configurations that utilized 12, 6, 4, and 3 cameras, finding an error
level of approximately ±0.5 vox for a carefully calibrated and well-tuned 4 camera setup. While
the flow configuration under consideration (wake of a circular cylinder) is vastly different from the
LSB considered in Chapter 6, the current investigation has followed all recommended guidelines
for maximizing accuracy of tomographic PIV measurements, and therefore it is expected that
the error level reported by Lynch & Scarano can serve as a rough estimate for this investigation.
However, this is a rough estimate only, and the reliability of the tomographic measurements must
be validated by other means. This is achieved in Chapter 6 by comparing equivalent results from
the tomographic and planar PIV configurations (Fig. 6.4), as a robust estimate of uncertainty is
available for the latter.
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B.3 Hot-Wire Measurements

The accuracy of hot-wire measurements depends on many factors, including probe geometry, the
calibration method, flow incidence angle, turbulence intensity, flow velocity, and proximity to solid
surfaces [30]. Errors caused by obstructing the flow due to the presence of the probe and incidence
angle have been limited by using a boundary layer type normal probe (Dantec 55P15) angled at
10° to the wall, as recommended by Brendel & Mueller [24] for HWA measurements in LSBs. A
rigorous calibration procedure (details below) was followed that ensured the associated uncertainty
was kept below 2% within the measured velocity range (3.5 ≤ 𝑢 ≤ 4.8 m s−1). Near wall effects,
such as rectification errors, high uncertainty due to low velocities, and conduction to the surface,
also do not contribute significantly since all measurements were performed at a minimum distance
of 2 mm from the wall [30, 50, 120]. The work of Kawall et al. [100] established the uncertainties
in HWA measurements related to turbulent fluctuations, with a broad range of cases covered (see
their Tables 1 and 2). For generally representative conditions (flow velocities on the order of
2 m s−1 and free-stream fluctuations less than or equal to 5%), Kawall predicts an uncertainty due
to turbulent fluctuations of 1.7%. Combining this through a root-sum-square with the calibration
uncertainty gives the total estimate of uncertainty for the HWA measurements of this thesis,
which is found to be 2.6% of 𝑢∞ (±0.07 m s−1). It must be noted that this uncertainty can be
reduced significantly through time and/or phase-averaging, since uncertainty reduces in proportion
to the square root of the number of samples taken. This is one of the major benefits of HWA
measurements, as a large number of samples can be taken at a high sampling rate, thus allowing
for low amplitude disturbances to be detected at relevant frequencies in a time or phase-averaged
sense (e.g., Section 6.4).

Calibration of the hot-wire sensor was performed in-situ in order to eliminate additional
uncertainties related to changing the mounting and orientation of the probe between calibration and
measurements. The reference velocity was provided by a TSI 1127 Velocity Calibrator installed in
the test section with the tunnel off, which was used in lieu of the tunnel’s free-stream velocity
due to a much higher accuracy at low flow velocities. The reference velocity was established by
measuring the pressure drop across the calibrator’s nozzle using a Honeywell HSC series pressure
transducer with a full range of ±160 Pa and a 0.26% full-scale accuracy. Thus, the uncertainty on
reference velocities greater than 1.75 m s−1 is 2%. HWA calibration relationships are sensitive to
the ambient temperature [30], and therefore calibration was performed daily, using 17 calibration
points that spanned 0 ≤ 𝑢 ≤ 11.5 m s−1. A fourth order polynomial relating the voltage response
of the probe to flow velocity was used.

B.4 Pressure Measurements

At the University of Waterloo, the mean surface pressure distributions of the airfoil (Fig. 4.17) were
measured using Setra Model 239 high accuracy differential pressure transducers with a full range of
±500 Pa and a total accucracy of 0.14% of full-scale (±0.7 Pa). Each transducer was individually
calibrated, using 10 references pressure that spanned their operaring range provided by a Druck
DPI 610 low pressure calibrator. The uncertainty, as quantified by the root-mean-squared error

192



of the linear fits, is ±0.12 Pa. Strain gauge based pressure transducers, such as those employed,
are sensitive to temperature [237]. Therefore, prior to each set of measurements, the drift due to
temperature from the original calibration relationship was corrected for by measuring and applying
a zero-pressure voltage offset. This kept uncertainty due to ambient temperature changes under
±0.2 Pa. Finally, the geometry of the pressure tap contributes to the measurement uncertainty.
According to the results of Chue [37], the estimated uncertainty due to the geometry of the
employed taps is ±0.14 Pa. Combining all these uncertainty estimates using Eqn. 3.9 produces a
total uncertainty of ±0.75 Pa, which is equivalent to ±0.8% of the free-stream dynamic pressure.

At TU Delft, the flat plate’s imposed pressure distribution (Figs. 5.4 and 6.2) was measured
using Honeywell Honeywell HSC series pressure transducer with a full range of ±160 Pa and a
total accuracy of 0.26% of full-scale (±0.8 Pa). This uncertainty estimate covers the contributions
due to calibration, hysteresis, non-linearity and non-repeatability effects. Sensitivity to ambient
temperature changes was again addressed by correcting the original calibration by applying a
zero-pressure voltage offset that was determined prior to each data collection period. This kept the
uncertainty associated with temperature drift less than ±0.2 Pa. The pressure tap geometry for the
flat plate is identical to the airfoil (both are 0.4 mm diameter holes), and therefore the uncertainty
due to tap geometry is once again ±0.14 Pa according to Chue [37]. Thus, combining all these
uncertainty estimates gives a total uncertainty of ±0.84 Pa, which is equivalent to ±4.6% of the
free-stream dynamic pressure.
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Appendix C

Supplementary Results
Additional results are provided that support the findings presented in Chapters 4 through 6.
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C.1 Chapter 4 Supplementary Results

C.1.1 Three-Dimensional Features

In Section 4.3.3, it was found that the energy content of the POD modes that captured the shear
layer vortices (modes numbers 𝑚 = 1 and 2) did not increase when forcing was applied at the
fundamental frequency (F forcing case), despite this forcing specifically targeting the vortices.
This is seen in the results of Fig. 4.24, and is the result of two compounding factors. First, the
forcing amplitude of the F case is relatively weak (only 0.6 dB above the SPL of the natural flow)
and therefore a significant increase in the energy levels is not expected. This is confirmed through
POD analysis at the plane presented in Figs. 4.24 and 4.25 (𝑦/𝑐 = 3 × 10−3) at others in Fig. C.1,
where the energy levels of the first two modes of the Nat. and F cases are always within 1% of each
other, which falls within the uncertainty on 𝐸R. Second, the 𝑦/𝑐 = 3 × 10−3 plane presented in
Figs. 4.24 and 4.25 is close to the surface, which appears to have a significant effect on the energy
levels recovered in the POD analysis. This is also confirmed in Fig. C.1, where results from a
higher amplitude forcing case, F + 3.2 dB, are included. Even at the higher excitation amplitude,
an increase in the energy of the first modes at the near wall plane is not seen (𝑦/𝑐 = 3 × 10−3),
while the expected result is seen at planes further from the wall (𝑦/𝑐 = 6 × 10−3 and 16 × 10−3).
While the result is interesting and may merit future investigation, it does not impact the results
presented in Section 4.3.3, as the purpose of the presented POD analysis was to establish the
presence of near-wall spanwise velocity fluctuations in the natural flow, which was successfully
demonstrated (Fig. 4.25).
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Figure C.1: POD relative modal energy distributions for (𝑢, 𝑤) modes at several 𝑦-planes and the
same domain as Figs. 4.24 and 4.25. F + 3.2 dB is the same forcing as the F case from Chapter 4,
with a 3.2 dB higher forcing amplitude.
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C.2 Chapter 5 Supplementary Results

C.2.1 Quiescent Characterization

In Section 5.3 flow visualizations results were presented for only the two-dimensional and 𝜆𝑧 = 25
cases (Fig. 5.5). This was due to completing the flow visualization component of the quiescent
characterization campaign prior to having established all forcing cases that would be carried
forward into future experiments. Therefore, flow visualizations are not available for the 𝜆𝑧 = 12.5
and 18.75 cases. Other spanwise wavelengths were tested, namely 𝜆𝑧 = 8 and 16, which ultimately
were not selected for future investigations, however the results do provide some interesting
observation. These are presented alongside the two-dimensional and 𝜆𝑧 = 25 cases in Figs. C.2
and C.3, which show the induced flow during the start-up and steady state phases of the actuation,
respectively.

As was noted in Section 5.3, the flow visualizations in Figs. C.2 and C.3 show that actuation
produce a streamwise jet that is spanwise uniform across continuous regions of electrode overlap
during both the start-up and steady state phases. Therefore, the induced flow by the two-
dimensional actuator is spanwise uniform across the entire actuator length. For the spanwise
modulated actuators, the streamwise jets are only produced with the regions of the electrode
overlap, with the flow remaining essentially stagnant in between. This is most evident for the
𝜆𝑧 = 16 and 25 cases (Figs. C.2c–d and C.3c–d), whereas jet interaction effects may be present
for the 𝜆𝑧 = 8 case as both Figs. C.2b and C.3b show jets that are noticeably wider than those of
the larger wavelength cases. It is for this reason that the 𝜆𝑧 = 8 case was not selected for further
investigation, as spanwise modulated actuators that produced the same total amount of momentum
per active region were desired, which was achieved with the 𝜆𝑧 = 12.5, 18.75 and 25 actuators.

C.2.2 In-Flow Characterization

Prior to the in-flow characterization and subsequent preliminary LSB study of Chapter 5, the
fundamental disturbances characteristics of the natural LSB needed to be determined so that the
appropriate forcing parameters could be selected. This was accomplished by performing high
speed, planar PIV measurements for the natural LSB (i.e., the same dataset presented in Figs. 5.17a
and 5.18a), which were then analyzed to identify the frequency and streamwise wavelength of the
fundamental disturbances. These results are presented here, which begins with POD analysis of the
PIV velocity dataset. Figure C.4 presents the relative and cumulative modal energy distributions,
which show that the two most energetic modes are of approximately the same energy level and
combine to account for 35% of the flow’s total turbulent kinetic energy. Thus, as has been seen
through this thesis, this highly energetic mode pair captures shedding and propagation of the
shear layer vortices in the LSB. This is made clear through visual inspection of the POD spatial
eigenfunctions for these modes, presented in Fig. C.5. The mean dividing streamline for the
natural case, determined in Chapter 5 (Fig. 5.17a), is also plotted.

Figure C.5 shows strong, spatially coherent streamwise and wall-normal velocity fluctuations
that reach measurable amplitudes in the fore portion of the LSB (𝑥̃ . 45) and undergo convective
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Figure C.2: Visualization of flow induced for various plasma actuators during the start-up phase
(𝑉pp = 6 kV, 𝑓c = 5 kHz, 100% duty cycle). Flow is from top-to-bottom.

amplification. The streamwise wavelength of these disturbances is determined by identifying local
extrema in the wall-normal spatial modes, 𝛾 (1)𝑣 and 𝛾

(2)
𝑣 , which are denoted by the × markers

in Fig. C.5. The streamwise distance between these marks, averaged across the two modes,
is Δ𝑥̃ = 6.30 which is a measure of half the disturbance streamwise wavelength, and thus 𝜆𝑥
for the natural case is estimated at 𝜆𝑥 = 12.6. This value is of significance as it allows for
spanwise-to-streamwise wavelength ratio of the considered forcing cases to be determined. The
spanwise wavelengths of the cases are 𝜆𝑧 = 12.5, 18.75, and 25, and thus the ratios are 𝜆𝑧/𝜆𝑥 = 1,
1.5, and 2, respectively. These are the values carried forward into Chapters 5 and 6.

The fundamental disturbance frequency also needed to be determined so that the plasma
forcing could be modulated to this frequency, and thus the fundamental K-H instability targeted.
This was determined through spectral analysis of the wall-normal velocity fluctuations in the aft
portion of the LSB (sampled at 𝑥̃ = 46.5, 𝑦̃ = 2) and the POD temporal coefficients of the two
most energetic modes, 𝑏 (1) and 𝑏 (2) . These results are presented in Fig. C.6, where the spectrum
of 𝑏 (2) is not plotted as it is nearly identical to that of 𝑏 (1) . For the both the wall-normal velocity
fluctuations and the POD temporal coefficients, the spectra show the highest energy levels within
a band centred at 133 Hz, thus this frequency is taken as the fundamental disturbance frequency,
𝑓0/St0, and is to be used in modulating the output of plasma forcing (alongside an appropriate duty
cycle) in order to target the LSB’s primary K-H instability.

To summarize, through analysis of the natural flow, the streamwise wavelength and frequency
of the fundamental disturbances present in the LSB have been identified as 𝜆𝑧 = 12.6 and
𝑓0 = 133 Hz. These values are used throughout Chapters 5 and 6, both for selection of appropriate
forcing parameters and in the analysis of the experimental results that follows.
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Figure C.3: Visualization of flow induced for various plasma actuators during the steady state
phase (𝑉pp = 6 kV, 𝑓c = 5 kHz, 100% duty cycle). Flow is from top-to-bottom.
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Figure C.4: POD relative and cumulative modal energy distributions for the Chapter 5 natural
case (side view PIV measurements).

C.2.3 Effect on LSB Flow Development: Preliminary Study

In Section 5.5 analysis at different 𝑥-𝑦 planes for the 𝜆𝑧 = 25 forcing case revealed significantly
different disturbance development depending on the plane’s location relative to the undulations
that the developed in the vortex filaments. Specifically at 𝑧̃ = 0, where the vortex filaments surged
forward in the streamwise direction and tilted away from the surface (Fig. 5.16b)), disturbance
development, in terms of the 𝑣′rms contours, was largely similar to the two-dimensional case
(Fig. 5.18). However, at 𝑧̃ = 12.5, where the filaments lagged behind in the streamwise direction
and tilted toward the wall (again Fig. 5.16b), the regions of high velocity fluctuations were found
to be closer to the surface, and did not increase monotonically with increasing streamwise position
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Figure C.5: Streamwise and wall-normal components of normalized POD spatial modes for the
natural case. × markers denote selected local extrema. Solid lines mark the dividing streamline.

10-8
0 100 300200 400

10-6

10-4

10-4

10-2

100

Figure C.6: Frequency spectra of wall-normal velocity fluctuations sampled at 𝑥̃ = 46.5, 𝑦̃ = 2,
and POD temporal coefficients for the most energetic mode, 𝑏 (1) .

in the aft portion of the bubble (Fig. 5.18c). In particular, disturbance amplitudes in terms of 𝑣′rms
did not continually increase in the region 50 ≤ 𝑥̃58, and it was speculated that the wall-normal
velocity fluctuations were re-distributed into other directions by the vortex dynamics. Figure C.7
presents rms contours of the streamwise velocity fluctuations for the same cases and at the same
planes as Fig. 5.18. For the 𝜆𝑧 = 25 case at the 𝑧̃ = 12.5 plane, streamwise disturbance amplitudes
do rise continuously and quite rapidly within 50 ≤ 𝑥̃ ≤ 58, both at the wall (𝑦̃ ≈ 0.25) and at the
second peak from the wall (𝑦̃ ≈ 2). Thus the assertion that the wall-normal velocity fluctuations
are redistributed is supported. However, given that this PIV configuration only measured 𝑢 and 𝑣,
it is impossible to say if the fluctuations were also redistributed into the spanwise direction. This
was part of the motivation behind pursuing tomographic PIV measurements in Chapter 6 (also
Tomo PIV is cool and I got to go back to Delft).
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Figure C.7: Rms of fluctuating streamwise velocity contours at same spanwise locations as
Figs. 5.17 and 5.18. Solid lines mark the dividing streamlines. Triangle and square markers
denote estimated mean maximum bubble height and reattachment points, respectively.
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Appendix D

Code Repository
A few of the Matlab codes developed as part of this thesis are provided and briefly described.
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D.1 Vortex Filament Model

The implementation of the vortex filament model presented in Section 5.5.1 is provided in
Section D.1.1, alongside several of its subroutines (Sections D.1.2–D.1.5). The main routine is
straightforward, as it serves to initialize the conditions for the simulations (filament in terms of
its parametric equations and other parameters, external flow parameters, time step duration and
number of steps), after which the simulation subroutine is called (Section D.1.3), which does all
the heavy lifting. Of note in the main routine, is the modelling of the external flow velocity profile
using Eqn. 5.3, which is the profile proposed by Dini et al. [45] and is evaluated by calling the
Dini subroutine (Section D.1.2).

The variables passed into the simulation subroutine include the initial location of the filaments
(defined by a set of parametric equations that give discrete points in space when evaluated), the
circulation of each filament, Γ, flags indicating if each filament forms a closed loop, the parametric
equations defining the external flow, and time stepping parameters. First, some housekeeping is
done (lines 46–65 in Section D.1.3), with the simulation beginning on line 68. For each time step
and for each filament, first the velocity that the filament self-induces is calculated on line 72 where
the Biot-Savart self-induction subroutine (Section D.1.4) is called. The result is stored in a variable
for the velocity of the filament at each of its points, which is then updated based on the velocity
induced by all other filaments (lines 76–81), which is determined by calling the Biot-Savart
induction subroutine (Section D.1.5). The final contribution to the filament’s velocity is that of the
free-stream (lines 85–88), after which the filament’s position at the next time step is predicted
based on all velocity contributions and the prescribed time step (lines 91–93). This process is
then repeated for the prescribed number of time steps, thus completing the simulation. Some final
housekeeping is performed to prepare the output (lines 98–105), which includes filament locations
and velocities at all time steps.

Two of the critical operations in the simulation subroutine are the calculation of the velocity
components that a filament self-induces (Section D.1.4), and are induced by other filaments
(Section D.1.5). For the former, a filament (in terms of its spatial location), its circulation, a solid
core radius, and a flag indicating if the filament forms a closed loop are passed in. The essential
steps to calculating the self-induced velocity include discretizing the filament and determining each
segment’s length (lines 48–49), and then calculating the direction of the vorticity vector for each
segment (lines 52–58). This is why a closed loop indicator is required, as a central differences can
be used for all segments if the filament is a closed loop, while forward and backward differences
need to be used for the end points in the case the filament is not closed. This may seem like a
minor detail, however, significant numerical errors were created in earlier implementations of
this subroutine by not treating the end points, which would then propagate across throughout the
domain. In the current implementation, the numerical errors present at the end points (since no
real vortex filament can have a abrupt start and end point) are at least confined to the start and end
regions, while a central region where the effects of the errors are insignificant can be identified.
With the filament segments and corresponding vorticity vector directions determined, the velocity
at each filament point is then evaluated by summing all other point’s contribution according to the
Biot-Savart law (Eqn. 2.6). This is done over (lines 64–73), where the ‘solid core radius’ comes
into effect, where the contribution of points within that distance are neglected entirely (line 68),
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thus avoiding the singularity for |®𝑟 | → 0.
The Biot-Savart induction subroutine in Section D.1.5 is very similar to the self-induction

subroutine (Section D.1.4) and could likely have been combined into one elegant implementation
if the author wasn’t a sub-par coder and (somewhat) lazy. But, hey, this is a thesis based in fluid
mechanics, not computer science, so it will do just fine. In essence the function discretizes the
passed in filament (lines 50–51), determines the direction of its vorticity vectors (lines 54–55),
with no treatment of end points or the solid core region needed since the points being evaluated
do not lie on the filament itself. The probed points are evaluated (lines 61–68) and the output is
returned.

D.1.1 Main Routine

1 %-------------------------------------------------------------------------
2 % Setup
3 %-------------------------------------------------------------------------
4 clear; clc
5

6 % Filament parametric equation
7 a = 1.25; % amplitude
8 l = 25; % wavelength
9 t = (0:(pi/36):32*pi-(pi/36))';
10 xf = @(t) a*sin(2*pi/l*t)+31;
11 yf = @(t) t;
12 zf = @(t) t*0+2;
13 f = {xf,yf,zf,t};
14 % Filament circulation
15 Gamma = -19.5;
16 % Filament solid core radius
17 r = 0.99*pi/18;
18 % Does filament form a closed loop?
19 closed = 0; % 0 => No, 1=> Yes
20

21 % Mirrored filament
22 zfm = @(t) t*0-2;
23 xfm = @(t) a*sin(2*pi/l*t)+31;
24 fm = {xfm,yf,zfm,t};
25

26 % Mean velocity field
27 u = @(x,y,z) diniMod(0.01114,5.553e+04,2.021,4.791e+04,3125,z);
28 v = @(x,y,z) x*0;
29 w = @(x,y,z) x*0;
30 V = {u,v,w};
31

32 % Mirrored velocity field
33 um = @(x,y,z) diniMod(0.01114,5.553e+04,2.021,4.791e+04,3125,-1*z);
34 Vm = {um,v,w};
35

36 % Package
37 f_p = {f,fm};

203



38 G_p = {Gamma,-1*Gamma};
39 r_p = {r,r};
40 closed_p = {closed,closed};
41 V_p = {V Vm};
42

43 %-------------------------------------------------------------------------
44 % Simulate
45 %-------------------------------------------------------------------------
46 dt = 1/30000; % Time step
47 n = 500; % Number of steps
48

49 [fS,vS] = biotSavartSim(f_p,G_p,r_p,closed_p,V_p,dt,n);

D.1.2 Dini et al. [45] Subroutine

1 %-------------------------------------------------------------------------
2 % Evaluates the function
3 % U/U_edge = (1-c1)/2 + (1+c1)/2 * tanh(c2(y-c3)/c4))
4 %-------------------------------------------------------------------------
5 % INPUTS
6 % c1 = c1
7 % c2 = c2
8 % c3 = c3
9 % c4 = c4
10 % c5 = U_edge
11 % y = wall-normal points at which to evaluate solution
12 %-------------------------------------------------------------------------
13 % OUTPUT
14 % u = streamwise velocity
15 %-------------------------------------------------------------------------
16 function u = diniMod(c1,c2,c3,c4,c5,y)
17 u = c5.*((1-c1)/2+(1+c1)/2.*tanh(c2.*(y-c3)./c4));

D.1.3 Simulation Subroutine

1 %-------------------------------------------------------------------------
2 % Simulates the motion of a vortex filament due to Biot-Savart
3 % self-induction , Biot-Savart induction from other vortex filaments ,
4 % and a mean flow field.
5 %-------------------------------------------------------------------------
6 % INPUTS
7 % f = cell of cells, each containing parametric equations defining the
8 % filaments.
9 % f{1}{1} = x1(t) f{2}{1} = x2(t)
10 % f{1}{2} = y1(t) f{2}{2} = y2(t)
11 % f{1}{3} = z1(t) f{2}{3} = z2(t)
12 % f{1}{4} = t1 f{2}{4} = t2, etc..
13 %
14 % Gamma = cell of filament circulation [L^2/T]
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15 %
16 % r = cell of filament solid core radii [L], within which Biot-Savart
17 % self induction does not apply
18 %
19 % closed = cell of logicals. Are the filaments closed loops?
20 % 0 = No
21 % 1 = Yes
22 %
23 % V = cell of cells, each containing parametric equations defining mean
24 % flow fields.
25 % V{1}{1} = u1(x,y,z) V{2}{1} = u1(x,y,z)
26 % V{1}{2} = v1(x,y,z) V{2}{2} = v2(x,y,z)
27 % V{1}{3} = w1(x,y,z) V{2}{3} = w2(x,y,z) etc...
28 %
29 % dt = time step for simulation [T]
30 %
31 % n = number of steps for simulation
32 %-------------------------------------------------------------------------
33 % OUTPUTS
34 % f = cell of filament points, within each cell dim 3 is time
35 % f{1}(:,1,:) = x1 f{2}(:,1,:) = x2
36 % f{1}(:,2,:) = y1 f{2}(:,2,:) = y2
37 % f{1}(:,3,:) = z1 f{2}(:,3,:) = z2 etc...
38 %
39 % vf = cell of velocity at filament points, within each cell dim 3 is time
40 % vf{1}(:,1,:) = u1 vf{2}(:,1,:) = u2
41 % vf{1}(:,2,:) = v1 vf{2}(:,2,:) = v2
42 % vf{1}(:,3,:) = w1 vf{2}(:,3,:) = w2 etc...
43 %-------------------------------------------------------------------------
44 function [f,vf] = biotSavartSim(f,Gamma,r,closed,V,dt,n)
45 % Unpackage
46 for i = 1:length(f)
47 temp = f{i};
48 % Parameter
49 t = temp{4};
50

51 % Filament
52 if i == 1
53 ft = [temp{1}(t) temp{2}(t) temp{3}(t)];
54 elseif i == 2
55 ft = cat(3,ft,[temp{1}(t) temp{2}(t) temp{3}(t)]);
56 end
57 end
58 f = ft;
59 clearvars temp ft
60

61 % Initialize
62 temp = zeros(size(f,1),size(f,2),size(f,3),n);
63 vf = temp;
64 temp(:,:,:,1) = f;
65 f = temp;
66
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67 % Loop time
68 for i = 1:size(f,4)
69 % Loop filaments
70 for j = 1:size(f,3)
71 % Self-induced velocity
72 [uBSS,vBSS,wBSS] = biotSavartSelf(f(:,:,j,i),Gamma{j},r{j},closed{j

});
73 vf(:,:,j,i) = [uBSS vBSS wBSS];
74

75 % Induced velocity
76 for k = 1:size(f,3)
77 if k ~= j
78 [uBS,vBS,wBS] = biotSavart(f(:,:,k,i),Gamma{k},f(:,:,j,i),0);
79 vf(:,:,j,i) = vf(:,:,j,i) + [uBS vBS wBS];
80 end
81 end
82

83 % Free-stream velocity
84 Vt = V{j};
85 u = Vt{1}(f(:,1,j,i),f(:,2,j,i),f(:,3,j,i));
86 v = Vt{2}(f(:,1,j,i),f(:,2,j,i),f(:,3,j,i));
87 w = Vt{3}(f(:,1,j,i),f(:,2,j,i),f(:,3,j,i));
88 vf(:,:,j,i) = vf(:,:,j,i) + [u v w];
89

90 % Update position
91 f(:,1,j,i+1) = f(:,1,j,i) + vf(:,1,j,i)*dt;
92 f(:,2,j,i+1) = f(:,2,j,i) + vf(:,2,j,i)*dt;
93 f(:,3,j,i+1) = f(:,3,j,i) + vf(:,3,j,i)*dt;
94 end
95 end
96

97 % Package for output
98 tempf = cell(1,size(f,3));
99 tempv = tempf;
100 for i = 1:length(tempf)
101 tempf{i} = permute(f(:,:,i,:),[1 2 4 3]);
102 tempv{i} = permute(vf(:,:,i,:),[1 2 4 3]);
103 end
104 f = tempf;
105 vf = tempv;
106

107 close(h);

D.1.4 Biot-Savart Self-Induction Subroutine

1 %-------------------------------------------------------------------------
2 % Computes self-induced velocity on a vortex filament as a result of
3 % Biot-Savart induction.
4 %-------------------------------------------------------------------------
5 % INPUTS
6 % f = parametric equations defining filament
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7 % f{1} = x(t)
8 % f{2} = y(t)
9 % f{3} = z(t)
10 % f{4} = t
11 % OR
12 % f = filament points
13 % f(:,1) = x
14 % f(:,2) = y
15 % f(:,3) = z
16 %
17 % Gamma = filament circulation [L^2/T]
18 %
19 % r = radius of filament solid core [L]
20 % filament radius within which Biot-Savart does not apply
21 %
22 % closed = Does filament form a closed loop?
23 % 0 = No
24 % 1 = Yes
25 %-------------------------------------------------------------------------
26 % OUTPUT
27 % u, v, w = induced velocity components at probed points [L/T]
28 %-------------------------------------------------------------------------
29 function [u,v,w] = biotSavartSelf(f,Gamma,r,closed)
30 % Parametric or points
31 if iscell(f) % Parametric
32 % t
33 t = f{4};
34 if size(t,2) > size(t,1)
35 t = t';
36 end
37

38 % Filament
39 f = [f{1}(t) f{2}(t) f{3}(t)];
40 else % Points
41 % Check for correct probed points format
42 if size(f,2) ~= 3
43 error('Filaments points formatted incorrectly. Exiting');
44 end
45 end
46

47 % Filament segment lengths
48 dl = [diff(f(1:2,:)); diff(f(:,:))]/2 + [diff(f(:,:)); diff(f(end-1:end,:))

]/2;
49 dl = sqrt(dl(:,1).^2+dl(:,2).^2+dl(:,3).^2);
50

51 % Filament vorticity vectors
52 if closed
53 F = [gradient([f(end,1); f(:,1); f(1,1)]) gradient([f(end,2); f(:,2); f

(1,2)]) gradient([f(end,3); f(:,3); f(1,3)])];
54 F = F(2:end-1,:);
55 else
56 F = [gradient(f(:,1)) gradient(f(:,2)) gradient(f(:,3))];
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57 end
58 F = F./repmat(vecnorm(F,2,2),1,size(F,2)); % Normalize
59

60 % Intialize
61 V = zeros(size(f));
62

63 % Loop probed points
64 for i = 1:size(f,1)
65 % Sum contributions of filament
66 for j = 1:size(f,1)
67 R = f(i,:) - f(j,:);
68 if norm(R) > r
69 V(i,:) = V(i,:) + cross(F(j,:),R)/(norm(R)^3)*dl(j);
70 end
71 end
72 end
73 V = Gamma/(4*pi).*V;
74

75 % Output
76 u = V(:,1);
77 v = V(:,2);
78 w = V(:,3);

D.1.5 Biot-Savart Induction Subroutine

1 %-------------------------------------------------------------------------
2 % Computes induced velocity at probed points as a result of Biot-Savart
3 % induction from vortex filament of circulation Gamma.
4 %-------------------------------------------------------------------------
5 % INPUTS
6 % f = parametric equations defining filament
7 % f{1} = x(t)
8 % f{2} = y(t)
9 % f{3} = z(t)
10 % f{4} = t
11 % OR
12 % f = filament points
13 % f(:,1) = x
14 % f(:,2) = y
15 % f(:,3) = z
16 %
17 % Gamma = filament circulation [L^2/T]
18 %
19 % probe = probed points
20 % probe(:,1) = x
21 % probe(:,2) = y
22 % probe(:,3) = z
23 %-------------------------------------------------------------------------
24 % OUTPUT
25 % u, v, w = induced velocity components at probed points [L/T]
26 %-------------------------------------------------------------------------
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27 function [u,v,w] = biotSavart(f,Gamma,probe)
28 % Parametric or points
29 if iscell(f) % Parametric
30 % t
31 t = f{4};
32 if size(t,2) > size(t,1)
33 t = t';
34 end
35 % Filament
36 f = [f{1}(t) f{2}(t) f{3}(t)];
37 else % Points
38 % Check for correct filament points format
39 if size(f,2) ~= 3
40 error('Filaments points formatted incorrectly. Exiting');
41 end
42 end
43

44 % Check for correct probed points format
45 if size(probe ,2) ~= 3
46 error('Probed points formatted incorrectly. Exiting');
47 end
48

49 % Filament segment lenths
50 dl = [diff(f(1:2,:)); diff(f(:,:))]/2 + [diff(f(:,:)); diff(f(end-1:end,:))

]/2;
51 dl = sqrt(dl(:,1).^2+dl(:,2).^2+dl(:,3).^2);
52

53 % Filament vorticity vectors
54 F = [gradient(f(:,1)) gradient(f(:,2)) gradient(f(:,3))];
55 F = F./repmat(vecnorm(F,2,2),1,size(F,2)); % Normalize
56

57 % Intialize
58 V = zeros(size(probe));
59

60 % Loop probed points
61 for i = 1:size(probe ,1) % Normalize
62 % Sum contributions of filament
63 for j = 1:size(f,1)
64 r = probe(i,:) - f(j,:);
65 V(i,:) = V(i,:) + cross(F(j,:),r)/(norm(r)^3)*dl(j);
66 end
67 end
68 V = V*Gamma/(4*pi); % Normalize
69

70 % Output
71 u = V(:,1);
72 v = V(:,2);
73 w = V(:,3);

D.1.6 Dini et al. Subroutine [45]
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1 %-------------------------------------------------------------------------
2 % Evaluates the function
3 % U/U_edge = (1-c1)/2 + (1+c1)/2 * tanh(c2(y-c3)/c4))
4 %-------------------------------------------------------------------------
5 % INPUTS
6 % c1 = c1
7 % c2 = c2
8 % c3 = c3
9 % c4 = c4
10 % c5 = U_edge
11 % y = wall-normal points at which to evaluate solution
12 %-------------------------------------------------------------------------
13 % OUTPUT
14 % u = streamwise velocity
15 %-------------------------------------------------------------------------
16 function u = diniMod(c1,c2,c3,c4,c5,y)
17 u = c5.*((1-c1)/2+(1+c1)/2.*tanh(c2.*(y-c3)./c4));

D.2 POD of Large Datasets

As outlined in Section 3.3.2, the snapshot implementation of proper orthogonal decomposition
requires the construction of a matrix that contains all the snapshots (Eqn. 3.8). This can lead to
significant memory requirements, as the entire dataset must be loaded into memory, on top of
which more memory is required in order to perform the needed operations. This can be prohibitive
for even POD analysis on planar PIV data, as for example, a single dataset collected in Chapter 5
consists of 5000 snapshots (each consisting of two 1 megapixel images) that is approximately
4 GB in total size, and thus the computation will likely fail on any personal computer with 8 GB
of RAM or less. Modern workstation PC are often equipped with much more RAM and so the
computation can be performed, however, the tomographic PIV datasets collected in Chapter 6
are each approximately 128 GB in size and therefore either a PC with 256–512 GB of RAM or a
modified approach to the computation was needed. The latter was opted for since the former is
relatively expensive compared to the time it would take a graduate student to develop the new
code.

A solution to performing POD on datasets too large to fit into memory was developed using
the tall array functionality built into Matlab. The implementation is provided in Section D.2.1.
In essence, Matlab tall arrays are arrays that exist on a local disk, rather than in memory, for
which Matlab has extended a number of its operation to be able to work with tall arrays, meaning
a computation can be performed on the array without having to load it entirely into memory.
Luckily, Matlab’s SVD function, which is used to perform POD, has been updated to included
tall array support. Working with tall arrays requires some special considerations, which is why the
dedicated function provided in Section D.2.1 was developed.

Here, a brief summary on the operation of the code is provided. First, the function is directed
to the directory that contains all the snapshots, and its total size is analyzed to determine what
portion of the data will fit into memory, and therefore the corresponding number of cycles it will
take the read the data in (line 131). If data can be read in a single cycle then the user is warned

210



that the ‘traditional’ computational approach should be taken (line 137). Next the tall array source
must be created (referred to in Matlab terminology as a ‘datastore’), with the raw snapshot
files proving unsuitable since a specific form is expected for the tall array, which depends on the
operations that will be performed. For the SVD operation, the tall array must be arranged with
the realizations/measurements in the first dimension and the snapshots in the second dimension.
Therefore, as the data is looped through (lines 167–225), each snapshot is read in (line 186) and
trimmed down to only a portion of its realizations (line 189), with the snapshots concatenated in
the second dimension and written to the datastore (line 210). As a result, the operation is relatively
time inefficient since the most time consuming operation, which is reading in the snapshots, must
be performed 𝑛 times, where 𝑛 is the number of cycles.

Once the datastore is in place, the rest is rather straightforward, as the source of the tall array
is set to the datastore (lines 255–258) and the built-in SVD function is evaluated (line 275) to
give the POD spatial eigenfunctions, eigenvalues, and temporal coefficients. Since the latter two
require small memory footprints, their result can brought into memory immediately (line 281),
in operation referred to as ‘gathering’ in Matlab terminology, and then written to disk as final
outputs (lines 283–284). The eigenfunctions/spatial modes cannot be gathered all at once, and so
are written to disk in manageably sized groups (lines 258–334).

D.2.1 Big POD Routine

1 %-------------------------------------------------------------------------
2 % Computes the proper orthogonal decomposition of a data set too large to
3 % fit into memory
4 %-------------------------------------------------------------------------
5 % REQUIRED INPUTS
6 % dirs = Cell of directories.
7 % dirs{1} = Input directory containing ONLY snapshots (no other
8 % files in this folder). Each snapshot must be a mat file containting
9 % a separate varaible per vector component. Each component can be
10 % n-dimensional (1, 2 and 3 component data is supported).
11 %
12 % dirs{2} = Output directory where POD result will be written.
13 %
14 % dirs{3} = Path to mean mat file. Must be the same format as
15 % the snapshots. Variable type of mean file is important (e.g., single,
16 % double) since this sets the variable type for the POD result and has
17 % significant impact on memory allocation.
18 %
19 % dirs{4} (optional) = Directory where temporary files will go. If not
20 % provided a tmp folder will be created in the output directory.
21 %
22 % NAME/VALUE PAIR OPTIONAL INPUTS
23 % MemUsage = Decimal value between 0 and 1 (exclusive).
24 % Default = 0.5
25 % Percentage of memory to use. Higher values will result in faster
26 % processing times (fewer cycles) but may result in out of memory
27 % or conversion errors (char to cell).
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28 %
29 % ModesExport = 'all' or integer range (see examples)
30 % Default = 'all'
31 % Number of modes to export (written to disk).
32 % Numeric range examples: 1:10 (first ten modes)
33 % 1:2:200 (every other mode up to mode 200)
34 %
35 % TmpExists = true or false.
36 % Default = false.
37 % Set to true if the temporary files already exsist (previously created
38 % by this function).
39 %
40 % KeepTmp = true or false.
41 % Default = false;
42 % Set to true to keep temporary files after processing.
43 %
44 % Suppress = true or false.
45 % Default = false.
46 % Set to true for reckless abandon (suppress warnings and the
47 % verification of temp files).
48 %
49 % NOTES
50 % - Modes are exported into individual mat files (M001.mat, etc.).
51 % Each contains a cell array (phi) whose indices correspond to the
52 % variables in the snapshot files. i.e., snapshot var1 <=> phi{1},
53 % snapshot var 2 <=> phi{2}, etc..
54 % - Temporal coefficients and modal energy are exported as A.mat and
55 % E.mat, respectively.
56 % - All values of E and A are exported, regardless of ModesExport.
57 %-------------------------------------------------------------------------
58 function bigPOD(dirs,varargin)
59 %% Prep work
60 clc;
61

62 % Check MATLAB version
63 if verLessThan('matlab','9.6')
64 error('MATLAB R2019a or newer required');
65 end
66

67 % Input handling
68 p = inputParser;
69 addRequired(p,'dirs',@iscell);
70 addOptional(p,'MemUsage',0.5,@(x) isnumeric(x) && (x>0) && (x<1));
71 addOptional(p,'TmpExists',false,@islogical);
72 addOptional(p,'KeepTmp',false,@islogical);
73 addOptional(p,'Suppress',false,@islogical);
74 addOptional(p,'ModesExport','all');
75 parse(p,dirs,varargin{:});
76

77 % Check dir for trailing /
78 for i = 1:length(dirs)
79 if ~strcmp(dirs{i}(end),'\') && i ~= 3
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80 dirs{i} = [dirs{i} '\'];
81 end
82 end
83

84 % Directory handling
85 inDir = dirs{1};
86 outDir = dirs{2};
87 meanFile = dirs{3};
88 if length(dirs) < 4 % No tmp dir provided
89 tmpDir = [outDir 'tmp\'];
90 % Check if it exists and if not create it
91 if exist(tmpDir,'dir') ~= 7
92 mkdir(tmpDir);
93 end
94 else
95 tmpDir = dirs{4};
96 end
97

98 % Snapshots
99 snapshots = dir([inDir '*.mat']); % name of snapshots
100 n = length(snapshots); % number of snapshots
101 filesize = sum([snapshots.bytes]); % total file size of snapshots [bytes]
102

103 % Issue warning
104 if ~p.Results.Suppress && ~p.Results.TmpExists
105 clc;
106 disp(['WARNING: This operation will create ' num2str(round(filesize

/(1024^3))) ' GB of temporary files in ' tmpDir]);
107 disp('Ensure you have sufficient space (and patience).');
108 disp('Press any key in the command window to continue');
109 pause; clc;
110 end
111

112 % Mean data
113 Uavg = struct2cell(load(meanFile))';
114 dims = size(Uavg{1}); % spatial dimensions
115 l = prod(dims)*3; % 1D size
116 Uavg = cell2mat(cellfun(@(x) reshape(x,numel(x),1),Uavg','UniformOutput',

false));
117 varType = class(Uavg); % variable type to use throughout
118

119 % Memory available
120 mem = memory;
121 mem = p.Results.MemUsage*(mem.MemAvailableAllArrays - mem.MemUsedMATLAB);
122

123 % Variable type
124 if strcmp(varType,'single') %#ok<STISA>
125 bytesP = 4; % bytes per element for single
126 else
127 bytesP = 8; % bytes per element for double
128 end
129
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130 % Number of cycles
131 cycles = ceil(l/(mem/(n*bytesP + 100)));
132

133 % Number of rows per 30 MB (~26 MB w compression) temp file
134 nRows = ceil(30E6/n/bytesP);
135

136 % 1 cycle warning
137 if cycles == 1 && ~p.Results.Suppress && ~p.Results.TmpExists
138 disp('WARNING: You can likely fit all your data into memory.');
139 disp('Consider using the ''traditional'' POD calculation method, which

will be MUCH faster.');
140 disp('Press any key in the command window to continue');
141 pause; clc;
142 end
143

144 %% Temporary files
145 if ~p.Results.TmpExists
146 % Delete any existing mat files in tmpDir
147 toDelete = dir([tmpDir '*.mat']);
148 for i = 1:length(toDelete)
149 delete([tmpDir toDelete(i).name]);
150 end
151

152 % Determine ranges for cycles
153 step = ceil(l/cycles);
154 if rem(l,cycles) == 0
155 range = [1:step:l; step:step:l];
156 else
157 range = [1:step:l; step:step:l l];
158 end
159

160 % Determine number of temp files per cycle
161 nFiles = ceil(step/nRows);
162

163 % Print spec
164 printFormat = ['%0' num2str(ceil(log10(nFiles*cycles))) 'd.mat'];
165

166 % Loop cycles
167 for i = 1:cycles
168 tic; % Start timer
169

170 % Initialize
171 U = zeros(range(2,i)-range(1,i)+1,n,varType);
172

173 % Loop snapshots
174 for j = 1:n
175 % Show progress
176 if i == 1
177 fprintf(['Step 1 of 3: Temporary Files \n',...
178 'Cycle: ' num2str(i) '/' num2str(cycles) ', Loading

Snapshots: ' num2str(j) '/' num2str(n) '\n']);
179 else
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180 fprintf(['Step 1 of 3: Temporary Files \n',...
181 'Time to complete previous cycle: ' formatSecs(ct)

' \n',...
182 'Cycle: ' num2str(i) '/' num2str(cycles) ', Loading

Snapshots: ' num2str(j) '/' num2str(n) '\n']);
183 end
184

185 % Load
186 temp = struct2cell(load([inDir snapshots(j).name]));
187

188 % Re-arrange and subtract mean
189 temp = cell2mat(cellfun(@(x) reshape(x,numel(x),1),temp,'

UniformOutput',false));
190 U(:,j) = temp(range(1,i):range(2,i)) - Uavg(range(1,i):range(2,i

));
191 clc;
192 end
193

194 % Write files
195 for j = 1:nFiles
196 % Show progress
197 if i == 1
198 fprintf(['Step 1 of 3: Temporary Files \n',...
199 'Cycle: ' num2str(i) '/' num2str(cycles) ', Writing

temp file: ' num2str((i-1)*nFiles+j) '/'
num2str(nFiles*cycles) '\n']);

200 else
201 fprintf(['Step 1 of 3: Temporary Files \n',...
202 'Time to complete previous cycle: ' formatSecs(ct)

' \n',...
203 'Cycle: ' num2str(i) '/' num2str(cycles) ', Writing

temp file: ' num2str((i-1)*nFiles+j) '/'
num2str(nFiles*cycles) '\n']);

204 end
205 if j == nFiles
206 data = U((j-1)*nRows+1:end,:);
207 else
208 data = U((j-1)*nRows+1:j*nRows ,:);
209 end
210 save([tmpDir sprintf(printFormat ,(i-1)*nFiles+j)],'data');
211 clc;
212 end
213

214 % Cycle time
215 ct = toc;
216

217 % Clean up
218 clearvars data U temp
219 end
220 else
221 clc;
222 fprintf(['Step 1 of 3: Temporary File \n',...
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223 'Temporary files are in place. Skipping creation.']);
224 pause(2);
225 end
226

227 % Clean up
228 clearvars Uavg
229

230 %% POD
231 clc;
232 fprintf(['Step 2 of 3: POD \n',...
233 'Deleting existing POD exports \n']);
234

235 % Delete any existing mat files in outDir
236 toDelete = dir([outDir '*.mat']);
237 for i = 1:length(toDelete)
238 delete([outDir toDelete(i).name]);
239 end
240

241 % Modes
242 if strcmp(p.Results.ModesExport ,'all')
243 modes = (1:n);
244 else
245 modes= p.Results.ModesExport;
246 end
247 nModes = n/(cycles*2); % Modes per cycles
248 cycles = ceil(length(modes)/nModes); % Number of cycles needed
249 groups = reshape([modes(:); NaN(mod(-numel(modes),cycles),1)],[],cycles);
250

251 % Create data store
252 clc;
253 disp('Step 2 of 3: POD');
254 ds = fileDatastore([tmpDir '*.mat'],'ReadFcn',@(fname) getfield(load(fname),

'data'),...
255 'UniformRead', true);
256

257 % Create velocity fluctuations tall array
258 Uf = tall(ds);
259

260 % Verify
261 if ~p.Results.Suppress
262 clc;
263 fprintf(['Step 2 of 3: POD \n',...
264 'Verifying temp files \n']);
265 tall_size = gather(size(Uf));
266 if tall_size(1) ~= l || tall_size(2) ~= n
267 error('Unexpected array size returned. Recreate your temporary files

.');
268 else
269 disp('Expected array size returned. Continuing.');
270 pause(2);
271 end
272 end
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273

274 % POD
275 [phi_tall,E,A] = svd(Uf,'econ');
276

277 % Energy and time coefficients
278 clc;
279 fprintf(['Step 2 of 3: POD \n',...
280 'Exporting temporal coefficients and modal energy.\n']);
281 [E,A] = gather(E,A);
282 E = diag(E).^2;
283 save([outDir 'A.mat'],'A');
284 save([outDir 'E.mat'],'E');
285

286 % Modes
287 printFormat = ['M%0' num2str(ceil(log10(n))) 'd.mat'];
288 c = 1;
289 for i = 1:size(groups ,2)
290 tic; % start timer
291

292 % Show progress
293 clc;
294 if i == 1
295 fprintf(['Step 2 of 3: POD \n',...
296 'Cycle: ' num2str(i) '/' num2str(size(groups ,2)) ',

Gathering Modes.\n']);
297 else
298 fprintf(['Step 2 of 3: POD \n',...
299 'Time to complete previous cycle: ' formatSecs(ct) ' \n',...
300 'Cycle: ' num2str(i) '/' num2str(size(groups ,2)) ',

Gathering Modes.\n']);
301 end
302

303 % Create group
304 group = groups(:,i);
305 group = group(~isnan(group));
306 phiGather = gather(phi_tall(:,group));
307

308 % Reshape and export
309 for j = 1:length(group)
310 clc;
311 if i == 1
312 fprintf(['Step 2 of 3: POD \n',...
313 'Cycle: ' num2str(i) '/' num2str(size(groups ,2)) ',

Exporting Mode: ' num2str(c) '/' num2str(numel(modes
)) '\n']);

314 else
315 fprintf(['Step 2 of 3: POD \n',...
316 'Time to complete previous cycle: ' formatSecs(ct) ' \n

',...
317 'Cycle: ' num2str(i) '/' num2str(size(groups ,2)) ',

Exporting Mode: ' num2str(c) '/' num2str(numel(modes
)) '\n']);
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318 end
319

320 % Reshape
321 phi = cell(1,length(dims));
322 for k = 1:length(phi)
323 phi{k} = reshape(phiGather((k-1)*prod(dims)+1:k*prod(dims),j),

dims);
324 end
325

326 % Export
327 save([outDir sprintf(printFormat ,group(j))],'phi');
328 c = c + 1;
329 end
330 clc;
331

332 % Cycle time
333 ct = toc;
334 end
335

336 %% Clean up
337 clc;
338 disp('Step 3 of 3: Clean Up');
339

340 % Shutdown parrellel pool
341 pool = gcp;
342 delete(pool);
343

344 % Temp files
345 if ~p.Results.KeepTmp
346 toDelete = dir([tmpDir '*.mat']);
347 for i = 1:length(toDelete)
348 delete([tmpDir toDelete(i).name]);
349 end
350 disp('Temporary files deleted.');
351 else
352 disp('Temporary files left in place.');
353 end
354 disp('Operation completed.');
355 disp(['All files output to ' outDir]);
356 end
357

358 % Format seconds into display friendly time
359 function [timeString] = formatSecs(s)
360 if s < 60
361 timeString = [num2str(round(s)) ' s'];
362 elseif s < 3600
363 timeString = [num2str(rem(floor(s/60) ,60)) ' m, ' num2str(rem(round(

s),60)) ' s'];
364 else
365 timeString = [num2str(floor(s/3600)) ' h, ' num2str(rem(floor(s/60)

,60)) ' m, ' num2str(rem(round(s),60)) ' s'];
366 end
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367 end
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