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Management summary

The assessment of teaching methods and faculty performance is an important step

enabling educational institutions to continuously improve their teaching methods

and study offers. Typically, schools conduct internal surveys to assess their per-

formance. In most cases, however, the results of these surveys are not disclosed to

the public. Therefore, several online platforms have emerged, which allow students

to evaluate their teachers publicly. The most popular online evaluation platform,

RateMyProfessors.com, currently features over 15 million evaluations covering more

than 1.8 million teachers. So, how can schools use this large amount of publicly

available data to generate useful insights?

In order to answer this research question, a dataset containing 1,637,435 evalu-

ations for 134,375 teachers from 605 schools selected with a random approach using

web scraping techniques was built. Intermediate questions were defined in order to

answer the research question, such as whether it is possible to use computational

techniques to distinguish good from bad teachers based on the language used by the

students. The individual questions were elaborated and answered using theoretical

knowledge and statistical models.

Using natural language processing and machine learning techniques it was demon-

strated that it is possible to distinguish positive evaluations from negative evaluations,

easy subjects from difficult subjects as well as good teachers from bad teachers with

accuracies of over 90%. Furthermore, thanks to the correlations discovered between

the quality of teaching as perceived by students, the level of difficulty as perceived

by students and the helpfulness of the teacher, it was possible to predict the quality

of teaching and the level of difficulty based on the students language. Finally, it

was demonstrated that, using statistical models, it is possible to identify topics

concerning the faculty performance and teaching methods in evaluations of online

courses.

Although random approaches to data collection have been chosen to allow the

results to be generalized, this cannot be considered universally valid, as the platform

from which the data was extracted offers the possibility to evaluate only institutes

in the United States, Canada and the United Kingdom. It is therefore necessary to

consider possible differences in the way teachers in other cultures are evaluated.

In conclusion, natural language processing and machine learning techniques can
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be applied for the analysis of online evaluations. Schools can therefore use these

techniques to generate useful information about their teachers and their teachers’

performance based on online evaluations. This approach, however, should not be

looked at by schools as an alternative to the typical evaluation activity, but as an

extension, allowing them to analyze aspects not normally considered in typical school

evaluations.
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1 Introduction

The assessment of teaching methods and teachers by students is an important step

that enables schools to continuously improve their teaching methods and study offers

(Marsh, 1987, p. 259). Schools typically conduct internal surveys, asking their

students to evaluate the subjects and teaching methods applied by the teachers.

However, the results of these surveys may not be made publicly available or only

partially with the students who have attended the classes (Azab, Mihalcea &

Abernethy, 2016, p. 438). Due to the non-disclosure of the results of these surveys, the

emergence of many online platforms encouraging the evaluation of schools and teachers

was inevitable. Among these platforms, the most popular is RateMyProfessors.com1

(RMP). On RMP, students can evaluate their school and teachers in an anonymous

way. Students have the opportunity to present their assessment by evaluating

different aspects of the school and teachers. For teacher evaluation, these aspects

include clarity, helpfulness and difficulty. While assessing the campus, students can

present their assessment taking into account the following aspects: reputation of the

school, services offered, happiness, location, quality of food served, social activities,

opportunities and campus security. In addition to both teacher evaluation and

school assessment, students can provide an open comment. RateMyProfessors.com

currently features over 15 million ratings for over 1.8 million professors in the United

States, Canada and the United Kingdom (RateMyProfessors, 2020). Thanks to the

information published on these online platforms, students can make more thoughtful

decisions about their academic journey (e.g. which school to enroll in or which

courses to attend) (M. J. Brown, Baillie & Fraser, 2009, p. 91). Previous research

has found strong evidence that publicly available information about the reputation

of teachers and schools influences students’ educational career decisions (C. L. Brown

& Kosovich, 2015).

However, it may be argued that due to the fact that online ratings can be entered

by anyone at any time, they may be biased by several factors and therefore may

not reflect student learning and faculty performance (Otto, Sanford & Ross, 2008).

In fact, previous studies have found that online evaluations may be influenced by

teacher’s personality, charisma, physical appearance and grading leniency (Felton,

Mitchell & Stinson, 2003; Otto et al., 2008). Consequently, online evaluations may
1www.ratemyprofessors.com

1
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be influenced by emotions and therefore may present a halo effect. The halo effect

shows that students who make evaluations give either a high or a low rating without

providing detailed feedback on various aspects of faculty performance (Felton et al.,

2003). Furthermore, due to the fact that students decide of their own will to evaluate

their teachers and their institute, it can be argued that evaluations on their own are

affected by self-selection bias. In contrast, other studies suggest that it is possible

that online evaluations may not be biased in general. In fact, even if some students

provide biased evaluations, they may be balanced between other evaluations that do

not necessarily have a bias (Otto et al., 2008).

Aim of the thesis The objective of the thesis is to analyze students’ comments

on RMP using natural language processing (NLP) techniques to investigate language

patterns that can be used to generate useful insights about teachers and teaching

methods. So, the research question of the thesis is: how can schools use publicly

available data about their teachers to generate useful information? The question is

elaborated using the following questions which help to develop the discussion and

results:

• Is it possible to distinguish positive evaluations from negative evaluations?

• Is it possible to predict the quality score expressed by the student in the rating?

• Is it possible to distinguish easy from difficult subjects?

• Is it possible to predict the level of difficulty as perceived by students?

• Is it possible to distinguish between online courses and classroom courses?

In addition:

• Can all student comments be used to distinguish good teachers from bad

teachers?

• Is it possible to predict the teacher’s overall score using all student comments?

And finally:

• Is it possible to recognize specific topics that are discussed in the evaluations

of online courses?
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Web scraping2 and reverse engineering techniques are used in order to gather the

necessary data to build the dataset.

2 Theory

In order to be able to answer the research question in a clear way, as a first step it is

necessary to acquire knowledge about studies that have already been carried out in

the field of Natural Language Processing (NLP) and automated text classification.

Furthermore, it is necessary to understand the different concepts that revolve around

NLP and ML. The following points will serve to acquire knowledge about the current

state of research and to clarify the fundamental concepts of the thesis.

2.1 Definitions

Machine Learning is a subcategory of the artificial intelligence concept. Machine

Learning is a science that deals primarily with the development of efficient and

accurate algorithms for prediction purposes. These computational methods use

experience to make accurate predictions. Experience means the past information

that is made available to the algorithm. Machine learning is divided into three main

tasks: classification, regression and clustering (Mohri, Rostamizadeh & Talwalkar,

2012, p. 2-3).

The classification problem deals with assigning a category to each item. For

example, a classification algorithm could classify newspaper articles into the categories

politics, economics, sports and technology based on the content of the article. In

order for the algorithm to learn how to classify articles into the correct categories, it

is necessary to provide experience to the algorithm to learn from. This means that a

large number of newspaper articles would have to be collected and manually assign

a category to each article (Mohri et al., 2012, p. 3).

The regression problem is about predicting a value for each item. A concrete

example for a regression algorithm is predicting the market value of a real estate

property. In order to solve the problem, the algorithm should be able to have

experience of properties, their characteristics and market value available to it. For this

reason it is necessary to train the algorithm to recognize which are the characteristics
2Web scraping: a computer technique used to extract data from a website
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of the property that increase or decrease the value of the property (Mohri et al.,

2012, p. 3).

The clustering problem deals with identifying and partitioning groups within large

amounts of data. Clustering related tasks are mainly unsupervised. This means that

the algorithm tries to learn and perform the task almost completely autonomously.

An example of the clustering task is the analysis of traffic on the telephone network

to identify different groups and different behaviors within the network (Mohri et al.,

2012, p. 3).

Natural Language Processing is an area of research and application that deals

with understanding how computers can be used to understand and manipulate natural

language. NLP is based on the foundations of various disciplines such as mathematics,

statistics, linguistics and artificial intelligence. Thanks to the interdisciplinarity of

this research field, NLP deals with problems such as automated language transla-

tion, speech recognition, text classification and automated information extraction

(Chowdhury, 2005, p. 51).

Web Scraping, also known as screen scraping, data mining or web harvesting, is

an automated technique of collecting data from websites. Web scraping allows to

extract data from websites quickly and automatically without the need for human

intervention. Web pages are normally constructed with HTML code that composes

the graphic elements of the page. With web scraping techniques it is possible to

extract the information contained in the graphic elements that are displayed in the

web browser (Mitchell, 2018, p. 9).

2.2 State of research

When it comes to analysis and statistics, people almost always think only of numbers

and functions. However, in an increasingly digitalized world, the amount of data

generated becomes larger and larger and the variety of this data becomes greater

and greater. In this case, therefore, we are talking about a large quantity and a

large variety of data. Data can be structured (e.g. databases and tables), semi-

structured (such as XML3 and JSON4) or unstructured (text, images, video and
3XML is a metalanguage for the definition of markup languages.
4JSON is a format used for the exchange of data between client/server applications.
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audio). Structured and semi-structured data are very easy to analyze by a computer as

they have a structure, whether it be strong or weak. Structured and semi-structured

data have metadata that often describe their structure and the relationships between

them. However, a large part of the content that is generated online by users and

within companies is not structured (see Facebook, Instagram, company reports, blogs,

etc.). In fact, it has been estimated in a study conducted at IBM that around 80% of

the world’s data is unstructured (Schneider, 2016). A large part of the value of data

is stored in text, audio, images and videos. Therefore, the analysis of unstructured

data represents both a challenge and a potential for extracting valuable information

(Manning & Schütze, 1999). Economically, it was estimated in a study by Gualtieri

and Yuhanna (2016) that companies on average use only between 27% and 40% of

their data to generate useful insights for the company. This means that companies

have enormous unexploited potential. In fact, if companies were able to analyze

also unstructured data they own (and the data freely available on the web) they

could greatly increase the value of the insights generated. To exploit this untapped

potential, classic statistical and analytical techniques are not sufficient. Therefore,

new techniques to extract information from unstructured data are necessary.

Research in natural language processing (NLP), a subfield of linguistics and

computer science began in the 1940s when there was a need to decode enemy ciphers

during World War II (Liddy, 2001). At that time, the term machine translation

(MT) rather than the term NLP was used.

MT models used the ideas from cryptography and language translation theory.

However, MT was based on a very trivial approach. As a matter of fact, it was

mainly a dictionary lookup and rearrangement of the words in the order required

by the target language (Liddy, 2001). Initially, the results produced by MT were

of poor quality, and it was soon realized that this task was much more complex

than expected. In the post-war period, other areas of NLP research, such as speech

recognition, began to emerge. Thanks to the continuous development of new language

theories and new parsing algorithms, progress was made in the research of this area.

In the 1950s, models were expected within just a few years that would be capable of

producing results comparable to those of a human being (Liddy, 2001). However,

the researchers of the time were once again wrong.

Due to the excessive enthusiasm on the part of the researchers and consequently the

little progress made in this area, the funds allocated to NLP research were drastically

5



Figure 1: SHRDLU’s interface (Winograd, 1972, p. 8)

reduced. For this reason, applied research in this field faced a slowdown (Liddy, 2001).

However, theoretical research in the field of linguistics was able to continue. Despite

the slowdown in research, at the beginning of the 1970s, thanks to a program created

by Winograd (1972), it was demonstrated that computers could understand and

interpret natural language. In the program created by Winograd called SHRDLU, a

three-dimensional space was shown in which some three-dimensional shapes with

different characteristics and colours were arranged. Some objects shared the same

characteristics. The goal of the program was to capture the user’s requests by

writing them in the command line and then perform the required operation. The

requests could be for example “put the green pyramid in the box” or “move the

blue parallelepiped over the green cube”. SHRDLU had to be able to distinguish

the various geometric figures based on the characteristics described by the user and

then perform the required operation. The difficulty in the task was in recognising

the object the user intended, because on the three-dimensional plane there were

objects that shared the same characteristics. The program, although limited in its

functionality, proved that a computer could understand natural language. Figure 1

on page 6 shows the interface designed by Winograd.

In the 1990s the NLP research field started to grow rapidly again thanks to

several factors such as the availability of better performing computers to a wider

audience and the availability of large quantities of digital text. At the end of the 20th

century, research in the field of NLP mainly used a linguistic approach based on the

rules of language and theoretical foundations. With the arrival of the Internet and

thus digitalisation, large amounts of electronic data began to be generated. With it

6



also came the concept of big data. Using large datasets and thanks to the gains in

computing power due to technological developments, research in the field of NLP

shifted to a data-based approach (Connolly et al., 2016). Despite the change of

approach, hybrid approaches are still often used to produce robust systems capable

of generating high quality results. A hybrid approach makes it possible to create

systems that are able to interpret with great accuracy thanks to the rule-based

approach and that are robust in input variation thanks to the data-based approach.

Thanks to the progress made in the field of NLP more and more subfields of

research were created, and with these also a growing number of practical applications.

The most widely used practical applications of NLP are the following: information

retrieval, information extraction, question answering, summarization, machine trans-

lation, text classification and named entity recognition. NLP techniques can be

applied virtually anywhere, as natural language is used in any context where there is

interaction with a human being. Examples of a widely used NLP-based applications

are google translate and DeepL. A practical example of text classification is that

applied by email providers, which automatically sorts incoming mail into the user’s

various folders basing on the email’s content. However, text classification techniques

can be applied in many other areas, as it is one of the most widely used applications

of NLP.

Thanks to the extensive activity within the NLP research community, several

open-source libraries have been developed to support the creation of new NLP

applications. These include NLTK5, SpaCy6, SciKit7 and AllenNLP8. These libraries

provide a set of features that allow users to perform operations on text data, such as

lemmatisation, stemming ans TF-IDF vectorisation .

So far only one study that tried to classify good and bad teachers listed on

RateMyProfessors.com with NLP techniques has been identified. However, the study

conducted by Azab et al. (2016) was limited to simple binary classifications (good

and bad). Although their study was limited to a binary classification, it showed that

it is possible to distinguish the quality of teaching with very high accuracy using

NLP techniques. Based on the knowledge generated and described in Azab et al.

(2016) study, this thesis aims to go beyond a binary classification, trying to predict
5nltk.org
6spacy.io
7scikit-learn.org
8allennlp.org
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the quality perceived by students by mixing different NLP and ML techniques.

2.3 Hypotheses

This part of the thesis focuses on hypotheses that have been developed based on

previous research. We present the hypotheses with their rationale, which will be

either accepted or rejected on the basis of the results provided by the analysis.

Hypothesis 1a: NLP and ML techniques can be used to predict the quality of

teaching perceived by students based on the textual comments of the evaluations.

Hypothesis 1b: NLP and ML techniques can be used to predict the level of

difficulty perceived by students based on the textual comments of the evaluations.

Rationale: In their study, Azab et al. (2016) proved to be able to distinguish

a good teacher from a bad teacher with an accuracy of about 90% using only the

comments provided by the students. However, in their study, Azab et al. (2016)

distinguished only between a good and a bad teacher, without estimating the grade

given by the student. Theoretically, since the grade given by the student is a whole

number between [1, 5], instead of two classes (good and bad) the comments could be

classified into five classes (1 to 5). Probably, having more classes in which to classify

comments, it will be necessary to fine-tune the model further in order to avoid false

classifications and consequently a decrease in accuracy.

Hypothesis 2: By including the helpfulness score in the analysis it is possible to

predict more accurately the quality of teaching perceived by students.

Rationale: In a study conducted by Otto, Sanford and Wagner (2005) it was

shown that there is a correlation between the quality of teaching perceived by students

and the teacher’s helpfulness. In fact, following logical reasoning one can come to the

conclusion that a teacher who makes his time available to the students, the students

perceive a higher quality of teaching. On the other hand, if a teacher is not available

to the students, the students perceive a lower quality of teaching. Therefore, it is

expected that by exploiting this correlation, it is possible to better predict the quality

of teaching perceived by students.

8



Hypothesis 3: By including the difficulty score in the analysis it is possible to

predict more accurately the quality of teaching perceived by students.

Rationale: In a study by Otto et al. (2005), the various correlations between

the variables reported in teaching evaluations on RMP were researched. In the study

it was shown that the difficulty of the subject is positively correlated with the quality

of the teacher’s teaching. Since one of the questions we want to answer is whether it

is possible to predict the quality of teaching perceived by students, we expect that

by exploiting the correlation between the difficulty of the subject and the quality of

teaching, it is possible to predict more accurately the quality perceived by students.

Hypothesis 4: If the teacher’s gender is included in the analysis of the students’

comments, then it is possible to predict more accurately the teacher’s overall score.

Rationale: Mengel, Sauermann and Zölitz (2019) have demonstrated the exist-

ence of a gender bias in teaching evaluations. In fact, the findings of Mengel et al.

(2019) showed that female teachers generally receive lower evaluations than their

male colleagues. This bias may be due to stereotypes such as the questioning of

female instructors’ competences or the lack of confidence perceived by students in

female teachers (Mengel et al., 2019, p. 28). The bias described by Mengel et al.

(2019) may be leveraged to adjust the weights of the model to increase its accuracy.

Hypothesis 5: NLP and ML techniques can be used to distinguish between online

and classroom courses, based on the textual comment of the evaluation.

Rationale: If it is possible to distinguish between good and bad professors

using purely the language of students’ comments, as demonstrated in the study of

Azab et al. (2016), then we suppose that it is also possible to distinguish online

courses from classroom courses by interpreting the language used by students.

Hypothesis 6: It is possible to recognise specific topics discussed in the comments

of the evaluations concerning online courses using NLP techniques.

Rationale: If the online evaluations are not biased by the halo effect described

in the study by Otto et al. (2008), then it is possible to recognise topics concerning

9



the performance of the faculty that are discussed in the evaluations. However, if due

to the self-selection of samples and personality, charisma and physical appearance of

the teacher the online assessments are biased by the halo effect, then it should not

be possible to detect distinct aspects of faculty performance.

3 Data harvesting

The collection and preliminary analysis of data is perhaps the most important step

in the Machine Learning process. In fact, data preparation represents 80% of the

work in the ML process (Wilder-James, 2016). The gathering of the necessary data

is the step that allows to start the whole process. Indeed without data it would not

be possible to create any model. Whereas the preliminary analysis of the collected

data allows to comprehend in detail the data that will be processed and used for the

creation of the model. A detailed knowledge of the dataset is necessary to define

which aspects of the data can be leveraged to create a robust and accurate model.

In addition, a detailed preliminary analysis of the collected data allows the discovery

of any missing or dirty data that could create problems in the subsequent steps.

For instance, it has been estimated by IBM that poor data quality costs the US

economy around $3 trillion each year (Redman, 2016). For this reason it is important

to collect data in an orderly manner and carry out a preliminary analysis to find

any missing or dirty data. This chapter discusses data extraction techniques and

proposes a preliminary statistical analysis of the collected data.

3.1 Data extraction

In order to create a ML model that is able to predict the quality of teaching perceived

by students based on their textual comments, it is necessary to compile a dataset to

train and validate the model. As schools often do not disclose the results of internally

conducted teaching quality surveys, the data available on RateMyProfessors.com is

used. The legal aspects of extracting data from websites and the techniques used

to extract data from RateMyProfessors.com are discussed in the following points.

Furthermore, in this chapter a statistical analysis of the dataset is proposed in order

to better understand how to proceed with data processing.
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3.1.1 Legal aspects

Before collecting data from RateMyProfessors.com it is necessary to consider the legal

aspects related to the extraction of data from third party websites. Web scraping

is often considered a data collection technique of dubious legality. Indeed, over the

past few years, large companies such as LinkedIn and Ryanair have filed lawsuits

against companies that have extracted data from their websites (Kernel, 2019). The

case filed by Ryanair against Expedia was settled between the two parties without

the intervention of the court of appeal. Expedia agreed to remove Ryanair’s flight

information from its website (Schaal, 2019). On the contrary, in the decree no.

17-16783 issued by the U.S. Court of Appeal regarding LinkedIn v. HiQ Labs, the

judge decided that LinkedIn could not deny HiQ to collect information about users

with a public profile on the professional social network. The decision taken by the

U.S. Court of Appeals represented a very important point in the era of data and

privacy regulations.

From these two cases the legal conditions that define the boundary between

legality and illegality of web scraping techniques can be deduced. In Ryanair’s case,

the data extracted by Expedia was used for commercial purposes, so it must be

inferred that scraping data from third party websites for commercial purposes was

and remains illegal. Scraping of copyrighted content, such as videos on YouTube,

is also illegal. However, it is theoretically legal to extract other information from

YouTube, such as video titles and user comments. Whereas, in the case of LinkedIn

it can be deduced that it is illegal to collect information from websites that require

registration and authentication. Theoretically, for websites that do not require

authentication, it is completely legal to extract data, as these sites cannot require

the user to accept any terms of service before the user sees the data. However,

if the scraping algorithm causes, in any way, problems for the website, such as

server congestion and consequently creates connection problems for other users, the

company may still take legal action. In any case, for companies that do not want

third-party algorithms to collect data from their website, there are countermeasures

to prevent it. For example, it is possible to use a robots.txt file on the web server to

block requests not coming from a web browser. Alternatively, it is possible to use

CAPTCHA technology to request human verification to proceed to the website.

Therefore it is possible to summarize the legal conditions that make scraping
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legal or illegal in the following points:

1. Data extracted from third party websites may not be used for commercial

purposes unless the website owner specifically consents.

2. It is strictly forbidden to extract data from websites that require authentication.

3. Extracting content subject to copyright is also prohibited.

4. The scraping algorithms must work in such a way that the functionality of

the website and the web server is not compromised in any way, otherwise the

website owner may take legal action.

To understand whether the extraction of data from RateMyProfessors.com is crimin-

ally punishable, a small analysis has been made using the listed conditions. Condition

number 1 is met as the data is extracted for educational purposes and purely for

research purposes. The RateMyProfessors.com website does not require any kind of

authentication to display the data, so the second condition is also fulfilled. For the

third condition the discussion becomes a bit more complicated. In fact, point 4 of

the Terms of Use Agreement9 on RateMyProfessors.com states that the content of

the website, such as design, text, images and illustrations are subject to copyright.

However comments and reviews made by users are considered User Generated Con-

tent (UGC) and therefore are not property of RateMyProfessors.com. Although user

comments are still subject to copyright, they are used for research purposes only and

are under no circumstances redistributed or republished anywhere else. Therefore

condition number 3 is also satisfied. The data that will be extracted from RMP

will only be textual and numerical data, therefore of small dimensions. Accordingly

it is assumed that the functionality of the website and the web server will not be

compromised, so condition number 4 is also respected.

3.1.2 The dataset

The school rankings are often biased and do not represent a real ranking. In fact,

there are multiple rankings that try to rank the various schools (see Times Higher

Education, QS World University Ranking, etc.), and in each of these rankings, the

same order is rarely found. The reason for this may be that different aspects are
9Terms of Use Agreement RateMyProfessors.com
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used to assess different schools or simply because the ones who draw up the rankings

favors the schools in their own country (Holmes, 2018). For this reason, unlike the

approach chosen by Azab et al. (2016), a random approach has been chosen. This

means that instead of selecting universities manually based on a ranking, universities

are selected randomly using an algorithm. This detaches us from the rankings

and creates an equal probability of selecting any school. Furthermore, by selecting

universities randomly, there is theoretically a higher probability of collecting more

evenly distributed data. Finally, the lack of bias allows us to generalize the results

and apply them to the broader frame (Horton, 2019).

The scraping process was launched several times to avoid generating excessive

traffic on the RMP servers and, therefore, to comply with condition number 4

described in section 3.1.1. The scraping algorithm requires a list of all universities

registered on RMP, then randomly selects a number of them. Once the schools have

been selected, the algorithm requires the list of all teachers for each of the schools.

Finally, the algorithm collects all the evaluations for each teacher of each university.

Since the scraping algorithm is launched more than once, it is possible that a school

is randomly selected more than once, and with it also the teachers of that school

and the teachers’ evaluations. For this reason, duplicates are deleted from the three

datasets. Table 1 on page 13 reports the number of records in each dataset.

Schools Professors Evaluations

Number of records 605 134,375 1,637,435

Table 1: Number of records for each dataset

Professors dataset The teacher dataset is composed of the following characterist-

ics: the name of the teacher, the unique ID assigned by RMP, the department where

the professor teaches, the name and ID of the school where the instructor teaches,

the average of the helpfulness scores assigned by the students, the average of the

difficulty scores assigned by the students, the average of the clarity scores assigned

by the students and the general score which represents the average of the availability

and clarity scores. Table 2 on page 14 shows a section of the professors dataset.
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pk_id teacherfullname_s teacherdepartment_s schoolname_s school_id averagehelpfulscore_rf averageeasyscore_rf averageclarityscore_rf averageratingscore_rf

1364631 Brian Zack Languages Princeton University 780 4.8 2.3 4.5 4.7

136441 Elizabeth Bogan Economics Princeton University 780 4.0 3.2 4.0 4.0

556516 Rober George Political Science Princeton University 780 4.54 4.17 4.71 4.62

243005 Paul Krugman Economic Princeton University 780 3.12 2.94 3.18 3.15

Table 2: Section of professors dataset

Evaluations dataset In addition to the professor’s name and the name of the

class, there are many other attributes in the evaluation dataset, such as the number

of thumbs up and thumbs down given by other users to the evaluation. The number

of thumbs up and thumbs down shows the opinion of other users on what is stated

in the evaluation. The evaluation also shows whether the student would take the

course again and some tags that the student may associate with the teacher. In

addition, the student has the option to report in the assessment the note received in

the subject. Furthermore, the dataset contains the attribute isForOnlineClass which

reports if the student has followed the course online or in class. Additionally each

grade has an attribute that describes how the textbook was. This attribute ranges

between 0 and 5, where the value 0 represents non-use and the number 5 an extensive

use. Finally, each evaluation has scores for clarity, helpfulness and difficulty. These

attributes take an integer value between 1 and 5. To complete the evaluation, a

textual comment provided by the student is also reported. Table 3 on page 15 gives

an overview of the ratings dataset.
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3.2 Preliminary analysis

To better understand the content of the two datasets a preliminary analysis of the

data is performed.

Percentage of evaluations without comment Since the focus of this paper is

mainly on the use of NLP, we want to find out what percentage of the evaluations

do not have a textual commentary. In addition to evaluations without comment,

evaluations with minimal commentary, such as "OK", "...", ":)", etc. are also considered.

The analysis showed that only about 0.21% of the evaluations have no comment.

Percentage of evaluations with grade The grade received by the student in

the subject may influence the teacher’s assessment. For this reason we want to know

what percentage of the assessments include the student’s grade. The analysis shows

that only 6 out of 25 assessments (24%) report the grade. Although the percentage

is not very high, this translates into about 150,000 assessments.

Correlations To understand which features are correlated with others, correlations

are searched. Figure 2 shows a heatmap describing the correlations between the

variables in the evaluation dataset. The analysis also confirms the hypotheses of

the study conducted by Otto et al. (2005). Moreover, it can be seen from figure

2 that there are several other correlations between the variables of the dataset.

The variable wouldTakeAgain is strongly positively correlated with the variables

clarityRating and helpfulRating, while the same shows a moderate negative correlation

with the feature difficultyRating. The same type of correlation can be seen between

the variable grade_numerical and clarityRating, difficultyRating and helpfulRating.

The grade_numerical variable has been computed to transform the grade from the

American format (A±−F ) to a number from 0 to 12, where the number 0 represents

the F and the number 12 the grade A+. It is also possible to see that there is a

positive correlation between the grade and the wouldTakeAgain feature.
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Figure 2: Correlations in evaluations dataset

Distribution Since one of the questions to be answered is whether it is possible to

predict the scores given by the students based on their comments, we are interested

in viewing the distribution of the various scores. Figure 3 shows the distributions

for the variables clarityRating, helpfulRating and difficultyRating. The clarity and

helpfulness scores show a very similar but very imbalanced distribution. In fact, the

clarity and helpfulness scores tend upwards. In contrast, difficulty scores show a

typical normal distribution.

Figure 3: Distributions clarity, helpfulness & difficulty scores

Furthermore, in order to analyze hypothesis number 4 concerning the existence

of a bias on the gender of the teacher, we are interested in the gender distribution

of teachers. However, RMP does not specify whether the teacher is male or female

and therefore this data is not even present in our dataset. For this reason we use

the open-source library called gender-guesser to determine the gender of the teacher
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based on the first name.

Figure 4 shows the gender distribution of teachers. As can be seen, in most cases

it has been possible to derive gender from the first name. However, there is still a

good part where it has not been possible to derive gender from the first name. This

may be due to the fact that there are teachers who have an exotic name that is not

present in the database. There is a small part labelled asandy which means that the

teacher’s name is androgynous (both male and female).

Figure 4: Distributions of professor gender

Moreover, in order to better understand the content of the dataset we are

interested in visualizing which are the teaching departments with the most teachers

and which departments are the most evaluated. Figure 5 shows the number of teachers

per department, while Figure 6 shows the number of assessments per department. Not

surprisingly, both graphs show the same departments, as the number of assessments

is also influenced by the number of teachers. Interestingly, the order of departments

in the two graphs is not the same. This shows that students in certain departments

are more likely to share their opinion about teachers than others.
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Figure 5: Distribution professors by department (top 20)

Figure 6: Distribution ratings by department (top 20)

Most used words Since this thesis is mainly based on the use of Natural Language

Processing techniques, we also want to deepen our knowledge about the textual

content of the dataset. Figure 7 shows the most used words in the corpus of the

dataset. The terms that appear larger are the most quoted. Not surprisingly, the

most used terms are positive terms or expressions, since, as seen in the distribution

graphs in Figure 3, ratings tend to be mainly positive.
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Figure 7: Most used words in corpus

4 Methodology

This section focuses on the processing of data collected in the data harvesting process

described in section 3. Initially, an introduction on the methods used for data

preparation and preprocessing of textual data is given. An explanation of how the

textual data is transformed so that it can be used to answer the various research

questions is also given. In addition, an understanding of the method used to select the

most representative features to answer each research question is given. Finally, the

methodology used to answer the questions presented in the introduction of the thesis

is discussed. For each question the results obtained are also shown and discussed.

4.1 Data preparation

Preparing data for analysis is typically a time-consuming process. In fact, according

to statistics based on research conducted by CrowdFlower, data scientists spend

about 80% of their time preparing and cleaning data for analysis (Press, 2016).

However, since our dataset has already been built taking into account its use and

since the data comes from a single source, the preparation and cleaning process will

not be very demanding.

The first measure of preparation that has been taken is to remove the evaluations

that do not report a textual comment since our analysis will be based mainly on

NLP. Furthermore, as seen in section 3.2 the data is not balanced in terms of scores.

For this reason we will experiment with data balancing techniques.
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4.2 Data preprocessing

Text preprocessing is one of the key steps in a text classification problem. In

fact, before performing any feature extraction and feature selection operation it is

necessary to normalize the text data. The preprocessing stage typically consists of

tasks such as conversion to lowercase, stop-words removal, lemmatization, stemming

and tokenization. Preprocessing is a very important step in a text classification

framework. As shown in previous studies, this step allows to increase the accuracy

levels of the models in most cases (Uysal & Gunal, 2014). The removal of stop-words

allows to remove terms that most commonly appear in a text and that do not depend

on a specific topic (e.g. articles and prepositions). The conversion to lowercase

task, on the other hand, allows to remove the difference between words written in

lowercase and words written in uppercase, as the meaning does not change, but are

still differentiated by a computer. Finally lemmatization allows to transform a word

from an inflected form to its canonical form (Lemma; e.g. from successfully, successes,

successfulness to success). Since the results of previous studies on the effects of

text normalization on the accuracy of classification models have observed that in

most cases accuracy is increased, a preprocessing text step has been implemented.

The preprocessing stage is divided into five steps. The first step converts text to

lowercase, the second step removes numbers, the third step removes punctuation, the

fourth step removes stop-words and lastly a lemmatization operation is performed.

4.3 Feature extraction

Since typical algorithms are unable to understand text in its pure form, it is necessary

to extract the characteristics of the text and transform them into vectors that the

algorithm can interpret. There are several methods to do this. The simplest of all

is Bag of Words (BoW). BoW creates a list, called vocabulary, of all the unique

words by parsing the entire collection of documents. This allows each document

to be represented in vectorial form, where each word is represented with a 1 if the

word exists in the document or with a 0 if the term is not present in the document

(Trstenjak, Mikac & Donko, 2014, p. 1360). Another representation can be the

number of occurrences of a term within a document (Term Frequency; TF) (Trstenjak

et al., 2014, p. 1360). However, these two representations do not consider the rarity

of terms, because a word that appears less in the text will have lower importance than
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frequently recurring terms that often have no value (such as articles and prepositions)

(Sewwandi, 2019). A technique that also allows to consider the rarity of terms is

TF-IDF (Term Frequency - Inverse Document Frequency). In this technique, TF

has the same meaning as in the BoW technique, which can be represented in the

following way:

TFij = nij

| dj |
where nij is the number of occurrences of term i in document j, while dj is the

number of terms in document j. Whereas IDF expresses the general importance of

the term i in the whole collection of documents. IDF is represented as follows:

IDFi = log
| D |

| {d : i ∈ d} |

where | D | is the number of documents in the collection, while the denominator is

the number of documents containing the term i. TF-IDF can then be represented in

the following form:

(TF − IDF )ij = TFij × IDFi

This technique weighs the frequency of terms present in a document against the

prevalence of the term in the collection, making it possible to consider terms that do

not appear frequently in the collection.

The TfidfVectorizer processor provided by the Scikit-Learn library was used to

extract the features of the dataset corpus. Using the TfidfVectorizer processor the

vocabulary of the unique terms of the collection was built. In order to ensure that

expressions formed by multiple terms were also considered, a mixture of unigrams,

bigrams and trigrams was experimented. In addition, in order to ignore specific

terms in the collection (e.g. in our case, terms such as class, professor and student)

a maximum document frequency of 0.5 has been set, which means that terms that

appear in more than 50% of documents are ignored.

4.4 Feature selection

The resulting vectors from the feature extraction process described in section 4.3

have a great dimensionality due to the fact that (almost) every term in the corpus of

the collection is represented as a feature. However, not all terms in the vocabulary

generated by the TF-IDF vectorization process are representative and often a large

proportion of the vocabulary terms deflect the classification task. Therefore it is
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necessary to select a number of features that most represent the original meaning

of the document. To do this, the SelectKBest selector provided by the open-source

Scikit-Learn library is used. This selector uses the matrix generated by the feature

extraction process to select the most representative K features, where K is the

number of features to be selected. Chi-square (χ2), which measures the degree of

dependency between two stochastic variables, has been chosen as the scoring system

for the selection of the most representative features. χ2 can be formulated as follows:

χ2 =
n∑

i=1

(Oi − Ei)2

Ei

where Oi is the number of observations of type i, Ei are the expected values of type

i and n is the number of cells in the table.

However, chi-square does not represent the performance of the model. For

this reason, feature percentages from 1% to 100% are tested using a 5 folds cross

validation method to find the most representative number of features in each of the

tasks described in sections 4.5 and 4.6. Applying this method to each of the tasks

allows us to find the most representative features to solve specific problems.

4.5 Comment level processing

The first part of our experiments focuses on the processing of individual evaluations

made by students. In this section, we discuss four experiments applied at the

comment level. In the first experiment, an attempt is made to distinguish positive

comments from negative comments. In the second experiment, besides trying to

predict the polarity of the comment, an attempt is made to predict the quality

score given by the student. Whereas, similar to the second experiment, in the third

experiment, we try to predict the difficulty score given by the student. Finally, in the

last experiment, we try to use ML and NLP techniques to distinguish the evaluations

of students who have followed the course online or, respectively, physically in the

classroom.

4.5.1 Can we distinguish positive from negative comments?

Before we try to predict the quality score given by the student we want to see if it is

possible to distinguish positive from negative comments. For this task the quality

score is also used, considering evaluations with a score of 1 or 2 as negative evaluations,
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while evaluations with a score of 4 or 5 as positive evaluations. Assessments with

a score equal to 3 are not considered as the score represents an average or neutral

opinion. After removing ratings without a textual comment and ratings with a score

equal to 3, 1,453,373 ratings remain, either classified as positive or negative. Figure

8 on page 24 shows the distribution of ratings for each of the two classes. As can be

seen in the distribution there is a great disparity between the amount of positive

and negative comments. This is due to the fact that, as seen in section 3.2, student

assessments tend to be rather upward.

Figure 8: Distribution of evaluations by positive and negative classes

Data imbalance is often a problem in classification tasks, as most algorithms are

designed to maximize accuracy and reduce error (Boyle, 2019). When working with

imbalanced data, it is very likely that the classification algorithm will prevail over

the classes with the highest number of values and ignore the classes with the lowest

number of records (Chawla, Japkowicz & Kotcz, 2004). For this reason we decided to

evaluate and discuss the differences between training the algorithm with imbalanced

data and balanced data. This will expose the problems of using imbalanced datasets.

To determine the training and test datasets we use a random split method,

ensuring that the same proportion of classes are present in both datasets. The split

ratio between training and test has been set to 70% for training and 30% for testing.

Imbalanced data For the experiment with imbalanced data we took the dataset

as it results after the preparation, cleaning, preprocessing and feature extraction

processes described in the respective sections 4.1, 4.2 and 4.3. In order to find the

most representative features to solve this task with imbalanced data we use the

method mentioned in section 4.4. Figure 9 shows the different average scores for the

different metric systems obtained by applying the 5 folds cross validation method on

the training data. The graph also shows the scores for both in-sample testing and
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out-of-sample testing. The best accuracy score is obtained using 10% of the top-K

features, meaning about 139,339 features.

Looking at figure 9 we can see a certain instability in the various performances.

To better understand what the trend of the different graph curves means, we train

the algorithm using 10% of the features with the training dataset and we test it

using the test dataset. Table 4 reports the confusion matrix obtained by testing the

model using the test data.

Figure 9: Model scores using different k-values for feature selection for the clas-

sification of positive and negative evaluations at comment level using imbalanced

data

n = 436,012 Actual: positive Actual: negative

Predicted: positive 312,121 37,395 Positive Predictive Value = 0.893

Predicted: negative 5,918 80,578 Negative Predictive Value = 0.932

True Positive Rate = 0.981

False Negative Rate = 0.018

True Negative Rate = 0.683

False Positive Rate = 0.317

Table 4: Confusion matrix for classification of positive and negative evaluations at

comment level using imbalanced data

Looking at the confusion matrix we immediately noticed that the algorithm

cannot distinguish between positive and negative comments in an optimal way. In

fact the value of False Positive Rate is quite high. As discussed previously, the

problem of imbalanced data causes the algorithm to prevail over the class with more

25



values. When the algorithm trained with imbalanced data will have to predict new

data, it will classify it with a very high rate in the class with more values.

Balanced data To balance the two classes we decided to use the down-sampling

method. This method reduces the number of values in the class with the most values,

bringing the total equal to the class with the least number of values. This results in

393,256 values for each class.

In order to find the most representative features with balanced data we used the

same method used for imbalanced data. Figure 10 shows the different average scores

for each of the metric systems obtained with the cross validation method. The best

accuracy score is obtained using 15% of the features.

Figure 10: Model scores using different k-values for feature selection for the clas-

sification of positive and negative evaluations at comment level using balanced

data

The graphs in figure 10 show significantly more stable curves compared to the

curves resulting from the use of imbalanced data shown in figure 9. To make a more

detailed comparison we train the classification algorithm using 15% of the features

with the balanced training dataset and test it with the test dataset. Table 5 reports

the confusion matrix for the test data.
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n = 235,954 Actual: positive Actual: negative

Predicted: positive 105,406 10,813 Positive Predictive Value = 0.907

Predicted: negative 12,546 107,189 Negative Predictive Value = 0.895

True Positive Rate = 0.894

False Negative Rate = 0.106

True Negative Rate = 0.908

False Positive Rate = 0.092

Table 5: Confusion matrix for classification of positive and negative evaluations at

comment level using balanced data

In this case, the confusion matrix reports much more uniform values than the

values resulting from the classification with imbalanced data. The classifier still

makes classification errors, but of smaller magnitude than those made by the classifier

trained with imbalanced data. In fact it is possible to notice a marked difference in

the value of False Positive Rate (−0.225∆).

Therefore it is safe to say that it is possible to distinguish positive comments

from negative comments with very high accuracy. It has also been confirmed that

the classifier is more effective when trained with balanced data. Table 6 summarizes

the top-10 features that represent the most positive and negative evaluations.

Class Top-10 features

Negative comment, class, take, hard, test, teacher, dont, doesnt, professor, worst

Positive class, comment, great, professor, teacher, easy, best, good, really, take

Table 6: Top-10 most representative features for positive and negative evaluations

It can be seen that the classifier clearly distinguishes positive words from negative

words such as the term worst associated with negative evaluations and the term great

associated with positive evaluations. However, there are terms such as professor and

teacher that appear among the most associated terms for both classes.

4.5.2 Can we predict the evaluation quality score?

Now that we know that it is possible to distinguish between positive and negative

comments with very high accuracy we want to go further and try to predict the

clarity score based on the language of the students. This experiment presents a

challenge because, unlike a binary distinction (positive or negative), we expect that

there are no terms that are specific to a score. Furthermore, reading the RMP

assessments carefully, it can be noticed that some assessments are contradictory. In
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fact, there are evaluations in which the comment is fully positive, while the given

score is very low. For this reason we will try to use the correlations found in section

3.2 to facilitate the experiment.

In contrast to the experiment described in section 4.5.1, evaluations with a score

equal to 3 are also considered in this experiment. After removing the evaluations

without a textual comment 1,635,693 evaluations remain distributed over the 5 score

categories. Figure 11 shows the distribution of the evaluations.

Figure 11: Distribution quality scores

As already seen in section 3.2, the clarity scores are not evenly distributed. In

fact there are 727,846 ratings with the clarity score equal to 5 and the remaining

907,847 ratings are distributed over the remaining 4 classes. Hence also in this case

the data is highly imbalanced. For this reason we will train the algorithm with both

imbalanced and balanced data.

Imbalanced data As in the previous experiment we start to evaluate the per-

formance of the classification algorithm using the imbalanced dataset. Also for this

experiment we use the dataset as it results after the preparation, preprocessing and

feature extraction phases. We also use the feature selection method described in

section 4.4 to find the most representative features to solve this task. Figure 12

shows the different average accuracy scores obtained by applying the cross validation

method.

28



Figure 12: Average accuracy scores using different k-values for feature selection for

quality score classification at comment level using imbalanced data

From the graph it can be immediately noticed that the maximum peak of accuracy

is relatively high (obtained with 10% of the features), but to better understand what

this means we need to investigate further. Table 7 shows the classification report,

which shows the precision, recall and F1 values for each of the classes resulting from

training the classifier with 70% of the data and testing with the remaining 30%.

Precision Recall F1 Support

1 0.60 0.69 0.64 69,090

2 0.41 0.07 0.13 48,778

3 0.35 0.07 0.11 54,634

4 0.33 0.14 0.19 99,608

5 0.60 0.96 0.74 218,598

Accuracy 0.57 490,708

Macro average 0.46 0.39 0.36 490,708

Weighted average 0.50 0.57 0.48 490,708

Table 7: Report of the classification of quality scores at comment level using imbal-

anced data

From the classification report we can see that, even if the reported accuracy is

relatively high, the classification algorithm does not work precisely. In fact looking

at the scores obtained for each class it can be noticed that the algorithm is able to

distinguish more or less accurately classes 1 and 5 (which represent the opposite

poles), but everything between classes 1 and 5 is distinguished with a lower frequency

than it would be by chance. The main reason why this happens is the fact that

the data with which the algorithm has been trained are imbalanced, therefore the

algorithm prevails the class with the highest number of values. The second reason

why the algorithm cannot distinguish between classes 2, 3 and 4 is that, as explained
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above, there are no specific terms for each of the classes. For this reason we try

to exploit other variables related to the clarity score discovered in section 3.2 to

improve the performance of the classifier. Figure 13 shows the average accuracy score

obtained taking into account also the features helpfulRating and difficultyRating.

Figure 13: Average accuracy scores using different k-values for feature selection for

quality score classification at comment level using imbalanced data and additional

features

The maximum accuracy, reached using 10% of the features is about 62% (+5%∆);

to better understand if there are actual improvements we need to investigate further.

Table 8 shows the classification report resulting from training the algorithm using

70% of the data and testing with the remaining 30%. The classification report shows

the precision, recall and F1 scores for each of the classes.

Precision Recall F1 Support

1 0.70 0.83 0.76 69090

2 0.44 0.26 0.33 48778

3 0.38 0.12 0.19 54634

4 0.39 0.29 0.34 99608

5 0.68 0.89 0.77 218598

Accuracy 0.61 490708

Macro average 0.52 0.48 0.48 490708

Weighted average 0.57 0.61 0.57 490708

Table 8: Report of the classification of quality scores at comment level using imbal-

anced data and additional features

The recall values of the different classes indicate that there has been a significant

improvement in terms of performance. In fact, the proportion of ratings correctly

classified in classes 2 and 4 has increased considerably. However, ratings with a score

of 3 are still not classified in an acceptable way. Here, too, it is assumed that the
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cause is a mix due to the imbalanced data and the neutrality of ratings with a score

of 3. We also experimented with other variables correlated with the clarityRating

feature, such as the features wouldTakeAgain and grade_numerical, but due to the

fact that this data is not available for all evaluations in the dataset, it results in a

loss of performance.

Balanced data To determine whether there is a difference between training the

algorithm with imbalanced data and balanced data, as in the case of the binary

classification described in section 4.5.1, we make an attempt with balanced data.

As for the binary classification experiment (positive & negative) we use the down-

sampling balancing method. After applying the balancing method there remain

162,495 evaluations for each of the classes.

In order to determine the best accuracy we apply the same feature selection

method to find the most representative features. Initially, we try to predict the

clarity score using only features extracted from the corpus. Figure 14 shows the

average scores obtained by applying the 5 folds cross validation method on top-K

features.

Figure 14: Average accuracy scores using different k-values for feature selection for

quality score classification at comment level using balanced data

As can be seen from the graph, the maximum accuracy reached is lower than that

achieved using imbalanced data. This is caused by the fact that the accuracy formula

only considers the correct classifications. Therefore, if the algorithm has been trained

with an imbalanced dataset, it predicts more frequently the most present values. To

make a more detailed comparison, table 9 shows the classification report resulting

from training with 70% of the data and testing with the remaining 30 per cent.

31



Precision Recall F1 Support

1 0.55 0.65 0.60 48563

2 0.41 0.37 0.39 48954

3 0.38 0.37 0.38 48837

4 0.41 0.37 0.39 48685

5 0.59 0.61 0.60 48704

Accuracy 0.48 243743

Macro average 0.47 0.48 0.47 243743

Weighted average 0.47 0.48 0.47 243743

Table 9: Report of the classification of quality scores at comment level using balanced

data

From the recall scores it can be observed that by training the algorithm with

balanced data it is possible to classify the evaluations in their correct score class

with a much higher rate than by using imbalanced data. However, the problem

that the classifier correctly recognizes the extreme pole ratings (with scores 1 and

5) much better than the ratings with scores 2, 3 and 4 persists. For this reason

we try to exploit, in addition to the features extracted from the corpus, the other

features correlated with the clarity score mentioned in section 3.2. Figure 15 shows

average accuracy scores including, in addition to the TF-IDF matrix, the features

helpfulRating and difficultyRating.

Figure 15: Average accuracy scores using different k-values for feature selection for

quality score classification at comment level using balanced data and additional

features

The maximum accuracy score achieved (∼ 57.5%) using 30 percent of the most

representative features does not show a great increase in performance. To better

understand which portion of the evaluations was rated correctly, the classification

report resulting from classifier training with 70 percent of the data and testing with
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30 percent of the dataset is proposed.

Precision Recall F1 Support

1 0.69 0.73 0.71 48,563

2 0.50 0.43 0.46 48,954

3 0.45 0.42 0.43 48,837

4 0.43 0.44 0.44 48,685

5 0.61 0.69 0.64 48,704

Accuracy 0.54 243,743

Macro average 0.54 0.54 0.54 243,743

Weighted average 0.54 0.54 0.54 243,743

Table 10: Report of the classification of quality scores at comment level using

balanced data and additional features

As can be seen from the classification report, the recall scores are much higher

than the scores obtained using only features extracted from the imbalanced dataset

corpus. The proportion of ratings that have been correctly classified represents

almost double the score that would be obtained by randomly assigning a class to the

ratings (by chance). It can therefore be inferred that balancing the data, in our case,

increases the model’s performance. It can also be deduced that the use of features

difficultyRating and helpfulRating, in addition to the features extracted from the

corpus of the dataset using the TF-IDF vectorisation method, helps to increase the

performance of the model, thus confirming the assumptions made in the hypotheses

number 2 and 3. Table 11 summarises the top-10 most representative features for

each quality rating category.

Quality score Top-10 features

1 teach, student, doesnt, dont, professor, ever, teacher, worst, take, comment

2 like, grade, teacher, time, dont, lecture, take, test, hard, comment

3 teacher, take, nice, lot, really, easy, hard, good, test, comment

4 take, lot, test, really, professor, easy, teacher, good, great, comment

5 good, awesome, really, take, easy, best, professor, teacher, great, comment

Table 11: Top-10 most representative features for quality score class

Analyzing carefully the table with the top-10 features, it can be observed that

in the classes at the extreme poles (1 and 5) there are mainly the same terms

that appeared in the classification of positive and negative evaluations. The terms

associated with these two classes are mainly very polar. To better visualize the

meaning of the table, a simple analysis can be made where the number of positive
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terms and the number of negative terms for each rating category are counted. The

analysis can be summarized as follows:

• Class 1: 3 negative terms

• Class 2: 2 negative terms

• Class 3: 1 negative term and 3 positive terms

• Class 4: 3 positive terms

• Class 5: 5 positive terms

It follows that the closer the evaluation score get to the poles, the more positive or

negative terms there are. The central class (3), being neutral, is represented by both

positive and negative terms.

Through this experiment we have collected enough evidence to accept hypothesis

1a. In fact, it has been observed that using purely NLP and ML techniques for the

analysis of the students’ language it is possible to classify the students’ assessments

in their correct score classes with a much higher frequency than the statistical

randomness frequency. It is also possible to accept the hypotheses number 2 and 3,

as it was possible to observe an increase in accuracy of the model by including in the

analysis the helpfulness score and the level of difficulty perceived by the students.

4.5.3 Can we distinguish difficult from easy subjects?

As for the prediction of the quality score, we begin in this case too with a binary

classification to determine whether it is possible to distinguish difficult from easy

subjects. To perform this experiment we use the feature difficultyRating which is

transformed into a binary label. Evaluations with a difficulty rating of 1 or 2 are

considered to be evaluations that relate to an easy subject. Evaluations with a score

of 4 or 5 are considered to be evaluations of a difficult subject. Whereas evaluations

with a score of 3 are not considered in this experiment. As seen in section 3.2 the

difficulty scores have a normal distribution, so the binary classes have about the

same number of assessments each. Also in this experiment the feature selection

method is applied using the 5 folds cross validation function in order to find the most

representative features to answer the question. Figure 16 shows the performance of

the model using different metrics.
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Figure 16: Model scores using different k-values for feature selection for the classific-

ation of easy and difficult subjects at comment level

As can be seen from the graphs in figure 16 the maximum accuracy of about 80%

is obtained using 15% of the most representative features. To better understand the

results of the classification is proposed the table 12 that reports the confusion matrix

obtained by testing the algorithm using the test portion of the data.

n = 344,433 Actual: difficult Actual: easy

Predicted: difficult 121,719 30,120 Positive Predictive Value = 0.802

Predicted: easy 47,746 144,848 Negative Predictive Value = 0.752

True Positive Rate = 0.718

False Negative Rate = 0.282

True Negative Rate = 0.828

False Positive Rate = 0.172

Table 12: Confusion matrix for classification of easy and difficult subjects at comment

level

From the confusion matrix it can be seen that the model is able to predict more

accurately the evaluations concerning an easy subject. In fact, the recall value for

the class easy (true negative rate) is about 11% higher than the recall value for the

class difficult (true positive rate). To visualize the words most associated to each

class, the weights assigned by the model to the features are used. Table 13 reports

the 10 features with the highest weight coefficient for each class.
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Class Top-10 features

easy easy, great, teacher, professor, good, take, really, best, awesome, helpful

difficult hard, professor, take, teacher, good, great, students, dont, really, tests

Table 13: Top-10 most representative features for easy and difficult subjects

As can be seen in table 13 the most representative term chosen by the model for

the class easy is precisely the term easy. For the class easy the model has also chosen

other predominantly positive terms. For the class difficult the most representative

term chosen by the model is the term hard. However, there are still some terms

that appear among the features with the highest weight coefficient of both classes

(i.e. the terms good, professor and teacher). The results show that it is possible to

distinguish between easy and difficult subjects using NLP and ML techniques.

4.5.4 Can we predict the level of difficulty perceived by students?

The hypothesis number 1b assumes that it is possible to predict the difficulty of the

subject perceived by the student based on the comment provided in the evaluation.

Like the experiment that focuses on the prediction of the clarity score, described in

section 4.5.2, this experiment also presents itself as a challenge, as it is expected that

there are no specific terms for each scoring class.

Given the much better results obtained using a balanced dataset, we adopt this

approach right away. Also to answer the question whether it is possible to predict

the level of difficulty of the subject perceived by the student, the feature selection

method mentioned in section 4.4 and used in the other tasks is applied. Figure

17 shows the graph that reports the average accuracy scores obtained by applying

the 5 folds cross validation method on the top-K features obtained by applying the

chi-squared test method.
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Figure 17: Average accuracy scores using different k-values for feature selection for

difficulty score classification at comment level

As can be seen from the graph the maximum accuracy obtained (about 45.5

percent) is not very high. But to better understand how the algorithm classifies the

evaluations in the 5 classes of difficulty score it is necessary to investigate further.

Table 14 proposes the classification report obtained by testing the classifier using

the test dataset composed by 30% of the data.

Precision Recall F1 Support

1 0.48 0.42 0.45 65,887

2 0.34 0.39 0.36 66,035

3 0.31 0.20 0.25 65,930

4 0.34 0.34 0.34 65,923

5 0.51 0.67 0.58 65,832

Accuracy 0.40 329,607

Macro average 0.40 0.40 0.40 329,607

Weighted average 0.40 0.40 0.40 329,607

Table 14: Report of the classification of difficulty scores at comment level

From the classification report it can be immediately understood that the situation

is very similar to the quality score prediction described in section 4.5.2. In fact,

evaluations with a difficulty score of 1 and 5 are classified in a relatively good way.

On the other hand, evaluations with an average difficulty score have considerable

resistance to being classified correctly. For this reason we try to use the clarityRating

and helpfulRating features in order to find out whether it is possible to improve

the performance of the algorithm. So in addition to the features resulting from the

feature extraction process we include the features clarityRating and helpfulRating.

Figure 18 shows the performance in terms of accuracy.
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Figure 18: Average accuracy scores using different k-values for feature selection for

difficulty score classification at comment level using additional features

As can be seen from the graph there is very little difference in terms of accuracy

compared to the graph generated by using only the features extracted from the

corpus. Apparently the features clarityRating and helpfulRating have a very small

effect on the model accuracy in this case. But to better understand if there are any

other positive effects produced by the use of additional features it is necessary to

compare the performance in more detail. Table 15 shows the classification report.

Also in this case the classification report results from training with 70% of the data

and testing with the remaining 30% of the dataset.

Precision Recall F1 Support

1 0.43 0.56 0.48 65,887

2 0.34 0.36 0.35 66,035

3 0.31 0.28 0.29 65,930

4 0.37 0.23 0.29 65,923

5 0.58 0.63 0.60 65,832

Accuracy 0.41 329,607

Macro average 0.40 0.41 0.40 329,607

Weighted average 0.40 0.41 0.40 329,607

Table 15: Report of the classification of difficulty scores at comment level using

additional features

A detailed analysis of the classification report shows that the proportion of ratings

categorized correctly in the correct difficulty score class has increased slightly, but

there is still no significant increase. So we deduce that it is easier, though still not

very accurate, to predict the quality score in comparison to the difficulty score.

To better understand what may be the source of this difficulty, the most associated

terms for each of the scoring classes are analyzed. Table 16 shows the top-10 most
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informative features for each scoring class.

Difficulty score Top-10 features

1 test, good, really, best, take, professor, great, teacher, comment, easy

2 make, test, take, really, good, professor, easy, teacher, great, comment

3 lecture, make, student, take, really, good, teacher, professor, great, comment

4 student, lot, test, good, take, great, teacher, hard, professor, comment

5 student, ever, worst, dont, professor, test, teacher, take, hard, comment

Table 16: Top-10 most informative features for each difficulty score class

As can be seen in the table containing the top-10 most representative features for

each of the classes, classes 1 and 2 contain terms that refer to the ease of the subject

taught by the teacher such as the term easy. Classes 3 and 4 are also associated,

along with other terms, with the term hard which refers to the difficulty of the

subject taught by the teacher. However, for class 3 the algorithm does not use terms

referring to the difficulty/easiness of the subject.

On the basis of the results obtained, it is possible to evaluate hypothesis 1b. The

recall scores obtained show that the algorithm is able to recognize relatively well

evaluations with a high or low difficulty score. However, evaluations with a difficulty

score [2, 4] are not classified with the same accuracy. However, it can be observed

that the portion of correctly identified positive identifications (precision) for each

class is higher than the value of statistical randomness. Therefore it is possible to

accept hypothesis 1b.

4.5.5 Can we distinguish online classes?

RateMyProfessors also allows students who have taken an online version of a course

to evaluate the instructor. In this experiment we want to try to use NLP and ML

techniques to distinguish the assessments of students who have taken an online course

or in class.

Since on RateMyProfessors, when creating a new assessment, it is possible to

specify whether the course to be assessed was taken online, the target data is already

present in our dataset. Figure 19 shows the distribution of assessments according to

their class (online & not online).
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Figure 19: Online class distribution

In our dataset, ratings for courses taken online are clearly scarce in quantity,

while ratings for courses taken in class are in great abundance. However, a short

analysis has shown that the isForOnlineClass flag is not always used correctly in

the ratings. In fact, several evaluations were found whose content of the comment

reported that the student followed the online course, while the isForOnlineClass flag

was not positive. For this reason we have defined buzzwords such as online, Coursera

and YouTube which if they appear in the comment, most likely indicate that the

course was followed online.

By applying this method, it was possible to increase the portion of ratings for

online courses by about 60,000 units. However, the dataset still shows a great

imbalance between classes. Given the much better results obtained using a balanced

dataset it was decided to apply the down-sampling method to balance the classes.

After balancing the classes there remain 125,287 evaluations for each class, of which

70% are used for training and the remaining 30% for testing.

In order to find the most representative features to answer the question whether

it is possible to distinguish the ratings for a course held online we apply the feature

selection method with the 5 folds cross validation function. Figure 20 shows the

performance of the model in terms of accuracy, recall and precision for the top-K%

features.
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Figure 20: Model scores using different k-values for feature selection for the classific-

ation of online and not-online classes

The maximum accuracy score (86 percent) is achieved using 10 percent of the

top-K features. Table 17 shows in detail the confusion matrix that reports the

results of the classification. The confusion matrix clearly shows that the classification

algorithm is able to distinguish the ratings for courses taken online. The false positive

and false negative rates are relatively high, however, the evidence shows that the

distinction between online and offline courses is significant.

n = 75,173 Actual: online Actual: not online

Predicted: online 32,857 7,967 Positive Predictive Value = 0.805

Predicted: not online 4,710 29,639 Negative Predictive Value = 0.863

True Positive Rate = 0.875

False Negative Rate = 0.125

True Negative Rate = 0.788

False Positive Rate = 0.212

Table 17: Confusion matrix for classification of online and not-online classes

To better understand at a concrete level the features used for this task, we propose

table 18 that summarises the most representative features for each of the classes.

The features are listed in order of importance.

Class Top-10 features

not online helpful, teacher, great, good, take, really, easy, students, best, hard

online online, easy, take, great, work, took, assignment, tests, course, teacher

Table 18: Top-10 most representative features for online and offline classes
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The most significant term for assessments concerning courses held in class is the

term helpful which could mean the helpfulness of the teacher towards the students

during and after class, which is not always possible for online courses. By contrast,

it is not surprising that the most important term for assessments regarding online

courses is precisely the term online.

To get consistent results, the results reported above are compared with the results

of the trained model using the feature isForOnlineClass already present in the dataset

and without considering the feature extracted using buzzwords. Figure 21 shows

the results of the feature selection and cross validation method for the case of using

the feature extracted from buzzwords and for the case of using only the pre-existing

feature isForOnlineClass.

Figure 21: Model scores using different k-values for feature selection for the classific-

ation of online and not-online classes using only the preexisting target feature

The graph lines shown in figure 21 primarily show a worse performance when only

the pre-existing isForOnlineClass feature is used. However, to better understand

how evaluations are classified into the classes online and not online, it is necessary

to analyze the confusion matrix shown in Table 19.
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n = 36,539 Actual: online Actual: not online

Predicted: online 14,816 3,180 Positive Predictive Value = 0.823

Predicted: not online 3,594 14,949 Negative Predictive Value = 0.806

True Positive Rate = 0.805

False Negative Rate = 0.195

True Negative Rate = 0.825

False Positive Rate = 0.175

Table 19: Confusion matrix for classification of online and not-online classes using

only the preexisting target feature

As can be seen from the confusion matrix the value of true positive rate is about

7% lower than in the first case, while the value of true negative rate is slightly higher

in the second case. This means that by using the target extraction method based on

the use of buzzwords it is possible to better recognize the evaluations that concern

an online course. The general decrease in performance when only the pre-existing

feature isForOnlineClass is used can be mainly due to the fact that, as discussed

before, there are many ratings whose comment content concerns an online course,

while the isForOnlineClass feature is negative.

Therefore, the answer to the question whether it is possible to distinguish between

assessments concerning an online course is yes. In fact, the results show an accuracy

of about 86%, which is significant evidence. Thus, it is possible to accept the

hypothesis number 5.

4.6 Professor level processing

The second part of our experiments focuses on teachers. In this section we discuss

2 experiments applied at teacher level. In the first experiment, similar to what is

discussed in section 4.5.1, we try to distinguish good teachers from bad teachers,

while in the second experiment we try to estimate the teacher’s teaching quality

perceived by students. For these two experiments we use the dataset containing

information about the teachers of the different schools. In order to be able to use the

comments of the student assessments, a feature called all_comments, which contains

all the textual comments of the assessments related to the teachers is added to the

teachers dataset.
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4.6.1 Can we distinguish good from bad teachers?

Similar to the experiment described in section 4.5.1, in this experiment we try to

distinguish good professors from bad professors. For this task the feature averager-

atingscore is transformed into a binary label, where teachers with an average score

below 3 are considered bad teachers, while teachers with an average score above

3 are considered good teachers. After removing the teachers who do not have any

ratings, 134,221 teachers remain distributed in the classes good and bad, 70 percent

of which will be used for model training and the remaining 30 percent will be used

for testing. Figure 22 shows the distribution of teachers in the classes good and bad.

Figure 22: Distribution of good and bad professors

In this case, as in the case of the classification of positive and negative evaluations,

good and bad professors are not balanced. Given the clearly better results obtained

using a balanced dataset in previous experiments, a balanced dataset is used directly

to train the algorithm. The down-sampling method is also used to balance the

dataset. After balancing the dataset 27,843 teachers remain for each class.
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Figure 23: Model scores using different k-values for feature selection for the classific-

ation of good and bad professors

Figure 23 shows the performance of the model by applying the 5 folds cross

validation method in order to find the most representative features. The maximum

accuracy of about 92% is reached by using 15% of the most representative features.

Table 20 shows the confusion matrix obtained from algorithm training using 70% of

the dataset and 15% of the most representative features and from testing with the

test dataset.

n = 16,706 Actual: good Actual: bad

Predicted: good 7,330 854 Positive Predictive Value = 0.899

Predicted: bad 1,021 7,501 Negative Predictive Value = 0.880

True Positive Rate = 0.878

False Negative Rate = 0.122

True Negative Rate = 0.899

False Positive Rate = 0.101

Table 20: Confusion matrix for classification of good and bad professors

As can be seen in the confusion matrix in Table 20 the recall value for the class

good (true positive rate; 87.8%) and the recall value for the class bad (true negative

rate; 89.9%) are very close.This means that the algorithm can clearly distinguish

good professors from bad professors.

Table 21 shows the most representative terms for each class. The most represent-

ative terms are obtained by consulting the weight coefficient for each feature.
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Class Top-10 features

bad hard, worst, dont, doesnt, time, like, questions, work, know, never

good best, helpful, lot, work, help, one, interesting, nice, always, fun

Table 21: Top-10 most representative features for good and bad teachers

As can be seen from the most representative terms, for the class bad are listed

mainly negative terms such as worst and hard. In contrast, for the class good the

terms listed are mainly positive terms such as best and nice. Interestingly, unlike the

classifications discussed in previous experiments, in this case the most representative

terms are much more distinct for each of the classes. In fact in this case there is only

the term work which is repeated in both classes.

The answer to the question whether it is possible to distinguish good professors

from bad professors using NLP and ML techniques is therefore yes.

4.6.2 Can we predict the professor’s overall score?

Similar to the experiment discussed in section 4.5.2, in this experiment we try to

predict the quality of teaching perceived by students at the teacher level using NLP

and ML techniques. In the teacher dataset there is the feature averageratingscore

that represents the average of all the quality and helpfulness scores reported in the

teacher’s assessments. This feature takes the form of a real number between 1 and 5.

In order to answer the question of this experiment using a classification algorithm it

is necessary to transform the teacher’s average score into a categorical target. For

this reason it was decided to divide teachers into four categories, where teachers with

an average score between 1 and 2 belong to category 1, teachers with an average

score between 2 and 3 belong to category 2 and so on up to category 4. Figure 24

shows the distribution of teachers within the 4 categories.

Figure 24: Distribution of professors into 4 quality score classes
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Again, as in previous experiments, we are confronted with imbalanced data.

Given the considerably better results obtained in the previous experiments with

balanced data, in this experiment we adopt the down-sampling method as well. After

applying the down-sampling method, 9,191 professors remain for each scoring class.

In order to find the most representative features to perform this experiment,

as in previous experiments, we use the feature selection method based on the chi-

squared test. Figure 25 shows the average accuracy scores obtained by applying

cross validation on the top-K% features resulting from the feature selection method.

Figure 25: Average accuracy scores using different k-values for feature selection for

overall score classification at professor level

As can be seen from the graph in figure 25 the maximum accuracy of about 68%

is reached using 0.1% of the features, which translates into about 1,720 features. To

better understand how teachers are classified in each class, it is necessary to analyze

the results further. Table 22 shows the classification report resulting from model

training using 70% of the data and testing with the remaining 30%.

Precision Recall F1 Support

1 0.77 0.74 0.76 2,823

2 0.56 0.62 0.59 2,695

3 0.60 0.59 0.60 2,758

4 0.81 0.77 0.79 2,754

Accuracy 0.68 11,030

Macro average 0.69 0.68 0.68 11,030

Weighted average 0.69 0.68 0.68 11,030

Table 22: Report of the classification of overall score at professor level

As shown in the classification report, the correct classification rate for each class

is relatively high. It can also be observed that, as in the experiment discussed in

section 4.5.2, the scoring classes at the poles report significantly higher recall and
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precision values than the middle classes. The cause of this behavior can be traced

back to the fact that, as can be seen in table 23, for the classes representing the

lowest and the highest score (1 and 4) there are clearly positive and clearly negative

terms such as worst and hard for the lowest scoring class.

Overall score Top-10 features

1 worst, dont, doesnt, hard, never, ever, even, know, time, teach

2 lectures, hard, questions, dont, work, like, time, tests, doesnt, easy

3 lectures, dont, help, nice, tests, lot, work, hard, easy, great

4 best, helpful, lot, interesting, work, one, fun, help, easy, great

Table 23: Top-10 most informative features for each overall scoring class

In addition to the features extracted from the corpus of the dataset, we now

want to include the gender of the teacher in order to evaluate what is assumed in

hypothesis number 4. Indeed, hypothesis number 4 assumes that by including the

gender of the teacher in the process it is possible to increase the performance of the

model. To do this we use the feature professor_gender extracted by us using the

first name of the teacher and described in section 3.2. In order to correctly test the

hypothesis it is necessary to remove from the dataset the professors whose gender

extracted from the first name is unknown or androgynous. This results in a reduction

in the number of teachers for each class by 1,614 units.

Figure 26 illustrates the average scores obtained from the cross validation applied

to the feature selection method including the professor_gender feature. From the

graph no difference can be observed between using only the TF-IDF matrix and

adding the professor_gender feature. Therefore, it is necessary to analyze in more

detail the classification report resulting from the separate training and testing.

Figure 26: Average accuracy scores using different k-values for feature selection for

overall score classification at professor level including feature professor_gender
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Table 24 shows the classification report resulting from the training with 70% of

the data and the testing with the remaining 30%. As can be seen, the accuracy

score obtained is exactly the same in both cases. However, comparing the precision

and recall scores of both cases, a slight difference can be observed. Generally it can

be noticed that by including the feature professor_gender there is a deterioration

in performance. However, the drop in performance is not necessarily caused to the

use of the feature professor_gender, but more likely it is caused by the loss of data

due to the selection of professors whose gender derived from the first name is not

unknown or androgynous. So in this case, the use of the gender of the teacher does

not seem to have any effect on the performance of the model.

Precision Recall F1 Support

1 0.74 0.79 0.76 2,262

2 0.64 0.54 0.58 2,327

3 0.56 0.65 0.60 2,214

4 0.81 0.75 0.78 2,290

Accuracy 0.68 9,093

Macro average 0.68 0.68 0.68 9,093

Weighted average 0.68 0.68 0.68 9,093

Table 24: Report of the classification of overall score at professor level including

feature professor_gender

By including the gender of the professor in the analysis it was not possible to

observe a significant difference in the results. In fact, we suppose that the differences

shown in the results are caused by the reduction of data due to the selection of

professors whose gender is not unknown or androgynous. Therefore hypothesis

number 4 cannot be accepted.

4.7 Topic detection

The results presented in the previous sections have shown that it is possible to use

NLP and ML techniques to accurately classify positive and negative evaluations,

evaluations of online courses as well as good and bad professors based on student

language. Although these are already interesting results, we are also interested in

giving a little more context to the results obtained by the various classifications. For

this reason we want to detect which topics are most discussed in the evaluations of

a course held online. In fact we want to find out if there are any main topics that
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are discussed when students evaluate an online course, such as topics about online

communication or topics about digital material management.

In this experiment we are therefore focusing specifically on evaluations concerning

online courses.

Since we do not have a list of topics to look for in the online course evaluations,

it is necessary to treat this experiment as an information extraction task. Therefore

it is not possible to rely on the typical machine learning training and testing process.

Instead, this experiment needs an approach based on clustering and therefore unsu-

pervised learning, where the algorithm uses the same information contained in the

documents to learn (Wartena & Brussee, 2008). This task consists mainly of two

steps. The first step consists in extracting the terms used in the corpus (building

the dictionary), while the second step consists in identifying clusters (topics) formed

from the dictionary terms (Wartena & Brussee, 2008).

The dictionary is built first by dividing the documents into sentences, then

tokenizing the sentences in terms. Each token is lemmatized and tagged with the

corresponding part of speech tag (POS tagging) in order to build meaningful bigrams

and trigrams. This allows for example to construct the "give extra credit" trigram

where the POS tags of the individual tokens are considered. If the POS tags of the

tokens are not taken into account, bigrams or trigrams such as "school highly" could

happen, which may be of great importance for the algorithm, but would not make

great logical sense. Since we are also interested in semantics for topic detection, it is

important that bigrams and trigrams are constructed correctly.

To identify clusters of terms in order to discover the main topics we use the

generative statistical model Latent Dirichlet Allocation (LDA). LDA allows to

consider each single document as a set of topics and to understand the semantic

meaning of the text by analyzing the similarity between the distribution of terms in a

document and that of a specific topic (Blei, Ng & Jordan, 2003). LDA assumes that

there are a defined number of topics in the entire collection. Each topic is defined

as a set of terms from the dictionary extracted from the document collection (Blei,

2012, p. 78).

To implement topic detection using LDA we use the LDA model provided by the

Gensim10 library for Python.

In order to identify topics it is necessary to define the number of topics (k)
10Gensim
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to be identified. A low k value allows to identify more general topics, but also

presents the risk of generalizing the topics too much and therefore not being able

to distinguish specific topics. A high k value allows to identify more specific topics,

but this, depending on the data used, also carries the risk that the topics identified

are too similar to each other and therefore not easily distinguishable. Therefore it is

necessary to find the optimal number of topics to identify.

To find the optimal value of k we build multiple LDA models with different values

for the number of topics. To understand which model clusters the topics optimally,

we compare the coherence score of each model. Figure 27 shows the coherence score

for different k-values.

Figure 27: Coherence score for different k-values

As can be seen from the graph in figure 27 the highest coherence score is obtained

with k = 8, so we build the final LDA model using k = 8. The graph in figure 28

shows the topics identified by the LDA model. Each bubble represents a topic. The

size of the bubble represents the prevalence of the topic within the collection. A

good model should show well distributed bubbles in the four quadrants and there

should be no overlying bubbles, just as shown in figure 28.
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Figure 28: Topic clustering map and top-30 most salient terms

To the right of the clusters graph in figure 28 are also shown the most salient

terms in the collection, but to better visualize the terms of each topic identified is

proposed table 25 showing the 10 terms that most contribute to the formation of the

topic.

As discussed previously, the Latent Dirichlet Allocation, in simple words, groups

together the terms most conducive to the formation of a topic, therefore the results

produced may not appear clear and require human interpretation. Thus we attempted

to give a context to the terms of each identified topic by deriving an assumption of

the topic from the terms. In table 25 it is possible to read our assumptions about

the topics.
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Topic number and topic assumption Weight Top-10 terms Topic number and topic assumption Weight Top-10 terms

1

good and helpful teacher

5.2%

4.5%

2.4%

2.4%

2.3%

2.0%

2.0%

2.0%

1.8%

1.6%

online

professor

work

course

great

teacher

helpful

give_help

good

lot

5

weekly assignments

7.7%

3.6%

3.0%

3.0%

2.8%

2.5%

2.2%

1.6%

1.5%

1.4%

assignment

week

online

grade

work

time

course

due

day

post

2

weekly online quiz

5.6%

5.3%

3.5%

2.0%

1.8%

1.8%

1.6%

1.5%

1.2%

1.1%

quiz

weekly

online

test

easy

question

textbook

chapter

every_week

require

6

demanding course

3.4%

3.2%

2.6%

2.6%

2.5%

2.4%

2.3%

2.2%

2.0%

1.9%

professor

teacher

work

hard

online

ever

much

learn

course

teach

3

online final exam

5.4%

4.4%

3.8%

3.5%

2.3%

2.3%

1.9%

1.7%

1.7%

1.7%

exam

online

study

question

hard

give

time

extra_credit

pass

final

7

good and fast feedback

3.0%

2.5%

2.2%

2.0%

1.9%

1.8%

1.6%

1.5%

1.4%

1.4%

feedback

respond_email_quickly

grade

paper

write

encouraging

creative

manageable

improve

ability

4

poor feedback

6.5%

5.3%

3.5%

2.9%

2.7%

2.1%

1.8%

1.8%

1.7%

1.7%

never

give

email

feedback

question

ask

grade

assignment

thing

point

8

well organised summer course

5.1%

2.9%

2.7%

2.0%

1.9%

1.9%

1.8%

1.7%

1.7%

1.7%

summer

course

online

lecture

material

well

video

provide_content

organize

textbook

Table 25: Identified topics and terms for each topic

The results of the analysis based on the LDA model show that it is possible to re-

cognize specific topics on faculty performance within the comments of the assessments

concerning online courses. Therefore, it can be inferred that the evaluations are not

necessarily influenced by the halo effect as assumed in previous studies (Felton et al.,

2003; Otto et al., 2008). Consequently it is possible to accept hypothesis number 6.
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5 Conclusions

This thesis investigated the use of natural language processing and machine learning

techniques for the processing of text data, with the aim of discovering language

patterns used by students in the evaluation of their teachers on online platforms such

as RateMyProfessors. The main objective of the thesis was to use possible language

patterns to answer questions such as whether it is possible to predict the quality of

teaching perceived by students based solely on the students’ language.

The thesis discussed the various aspects of classic faculty performance assessments

conducted internally by schools as well as the aspects and possible bias of online

evaluations. In addition, the current state of research in the field of natural language

processing was researched, providing also some historical context of this research

field. Subsequently, 6 hypotheses were developed based on previous studies and

research to be discussed and evaluated on the basis of the results obtained from the

various experiments conducted.

In addition, the techniques of data extraction from websites, with which the

necessary datasets for the experiments were created, were exposed and discussed.

Using these techniques, three datasets containing 1,637,435 evaluations of 134,375

teachers from 605 schools were constructed using a random approach. The various

legal aspects involved in the extraction of data from third party websites were also

discussed. We also proposed a preliminary analysis of the content of the three datasets

to provide a preview of the distribution of the data and the various correlations

between the collected variables.

In the part of the thesis where the methodology is discussed the various approaches

adopted for the data preparation, the pre-processing of the textual data, the extraction

of features from the corpus and the feature selection method based on the chi-squared

statistical method for the selection of the most representative features were discussed.

The experiments were divided into two main parts, where in the first part the

experiments were focused on the commentary level, while the experiments in the

second part focused on the processing of the evaluations at the professor level.

At the commentary level it was shown that it is possible to distinguish positive

evaluations from negative evaluations with an accuracy of over 90% based exclusively

on the language used by the students in the comments of the evaluations. In addition,

it was demonstrated that it is possible to predict the quality of teaching perceived
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by students with a baseline accuracy of about 55%. It was also demonstrated that

it is possible to distinguish difficult subjects from easy subjects with an accuracy

of about 80%. Using this as a starting point, it was also proven that it is possible

to predict the level of difficulty perceived by students with a baseline accuracy of

about 41%. Finally, for the experiments at the commentary level it was confirmed

that it is possible to distinguish between online courses and classroom courses with

an accuracy of 86%.

For data processing at the teacher level it was also shown that it is possible to

distinguish between good and bad teachers with an accuracy of over 91%.

For each of the experiments, both at commentary and teacher level, the terms

most associated with each class were presented to highlight the language patterns. In

addition, the difference between using imbalanced and unbalanced data was discussed

in the experiments.

Finally, we asked the question whether it is possible to distinguish specific topics

concerning the performance of the faculty within the evaluations of courses held

online. Using the statistical model latent Dirichlet allocation it was possible to find

out that in the evaluations concerning online courses, topics concerning students’

learning and the quality of teaching methods are discussed.

Therefore, schools can use publicly available data about their teachers along

with natural language processing and machine learning techniques to generate useful

information about faculty performance and student learning. However, it is assumed

that surveys conducted internally by schools are still an important activity since

they remove the possible biases created from online assessments. Therefore, the use

of natural language processing and machine learning techniques applied to data from

online platforms is to be seen as an extension of internal surveys, which gives the

possibility to capture aspects of the performance of the institution and teaching

methods that may not be fully considered in internal assessments.

An interesting possible development of this work could be the comparison of

the results obtained in the thesis with the results that would be obtained from the

processing of data collected internally by schools. It would be interesting to analyze

possible discrepancies in the way teachers are evaluated between online evaluations

and official evaluations, in order to understand if there are aspects that are discussed

differently.
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