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Modern applications in chemometrics and bioinformatics result in compositional data sets with a high proportion
of zeros. An example are microbiome data, where zeros refer to measurements below the detection limit of one
count. When building statistical models, it is important that zeros are replaced by sensible values. Different
replacement techniques from compositional data analysis are considered and compared by a simulation study and

examples. The comparison also includes a recently proposed method (Templ, 2020) [1] based on deep learning.
Detailed insights into the appropriateness of the methods for a problem at hand are provided, and differences in
the outcomes of statistical results are discussed.

1. Introduction

On the face of it, compositional data appears to be multivariate pos-
itive observations. However, care has to be taken not to simply apply
multivariate data analysis methods as per usual. The key difference is
that with compositional data it is the relative information of the obser-
vations that is relevant. Consider a D-part composition x = [x7, ...,xD]'
with strictly positive parts xj, ...,xp. The same relative information is
contained in x;/x; and ax;/ax; for any non-zero scalar value a. The
composition can be re-expressed as proportions, x” = ax by setting a =
1/ x;. The composition x* belongs to the (D — 1)-standard simplex
defined by

D
{x*:[xi xz)}’x:>0, Zx::l}.
=1

In order to apply standard multivariate data analysis methods, the
compositions need to be transformed from the simplex to the Euclidean
space. Two isometric transformations to achieve this goal are the centred
log ratios (clr) and isometric log ratios (ilr), discussed in detail in Filz-
moser, Hron and Templ [1] or Filzmoser and Hron [2].

Both the clr and ilr transformations make use of ratios of the
compositional components, as well as the log of a ratio. Since a zero value
in the denominator of a ratio, or the logarithm of a zero value is not valid,
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zeros have been excluded from the above definition. However, zeros can
occur in compositional data, and there are different kinds of zeros:
essential or structural zeros are values that are truly zero while rounded
and count zeros occur due to imprecision, values below the detection
limit or insufficient sample size. These values are not truly zero and it
makes sense to replace these zeros with suitable small values in order to
proceed with the usual compositional data analysis techniques (for de-
tails, see e.g. Ref. [1]. In this paper, different zero replacement alterna-
tives are evaluated, and the interest is specifically to evaluate their
performance where the majority of the observations are zero.

In applications such as chemometrics and microbiome analyses, large
proportions of zero values often occur. For example, the output in high
throughput sequencing data counting genes as in 16S rRNA gene
sequencing, transcriptomics and metagenomics or single-nucleotide
variant abundances is in the form of a table of counts. Often these ta-
bles are sparse with up to around 90% of the cells containing zero values
[3]. Gloor et al. [4] discuss at length why these tables should be
considered as compositional data where the total read count is irrelevant
and the counts represent a random sample of the relative abundance of
the molecules in the underlying ecosystem. It is therefore important to be
aware of the performance of zero replacement methods in very sparse
compositional count tables.

This paper is organized as follows. Section 2 briefly reviews existing
methods for zero replacement in compositional data. Here, the focus is on
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continuous data, as for this type of data there are more methods avail-
able. We also refer to a recently developed method based on a deep
learning approach. A comprehensive simulation study in Section 3
compares the different methods for their ability to replace zeros by
positive values. The different methods are also compared in real micro-
biome data examples in Section 4. The findings are discussed in the final
Section 5.

2. Methodology

The simplest option in a sample to replace zeros in a compositional
part is to only consider the non-zero values of this particular part (uni-
variate replacement). As compositional data are multivariate by their
nature, important information of the observations is ignored in this
approach. However, particularly with a high proportion of zeros, multi-
variate replacement methods suffer from the fact that more and more
parts in a compositional observation have zero entries, and depending on
the method, this may lead to severe computational problems.

Table 1 lists several of the existing zero replacement methods,
together with a brief description and availability in the software envi-
ronment R [5]. The univariate replacement methods considered here are
const and unif. Both methods replace the zero value by a value between
zero and the detection limit (DL). While const uses always the same value
for a variable, unif draws a value from a random uniform number, and
thus the multivariate data distribution might be less distorted. Note that
such simple replacement strategies are also quite common in microbiome
studies, where an arbitrary constant, e.g. 1, is added to each entry of the
covariate matrix before performing a log-transformation (see, e.g.,
Ref. [6]. Whereas the choice of the positive constant is not based on a
rigorous statistical theory, the method const selects the constant such that
the bias in the covariance structure in minimized (Martin-Fernandez
et al. [7]. Furthermore, only zeros are replaced in our approaches, and
the non-zeros are unchanged in order to avoid any bias. In any case, such
univariate replacement methods are in conflict with the fact that
compositional data are by definition multivariate data, which should be
taken into account by a replacement method.

The R package zCompositions [8] provides several methods for the
multivariate imputation of zeros and non-detects in compositional data.
The methods build on an appropriate coordinate representation of the
compositional data in the usual Euclidean geometry. The replacement is
done in an iterative manner, and for that purpose the EM algorithm,
Markov Chain Monte Carlo (MCMC) or multiple imputation are utilized.
The algorithm multLN performs a multiplicative lognormal replacement,
which means that for the imputation a log-normal distribution is fit and
the parameters are iteratively estimated. The algorithm multRepl refers
to a multiplicative simple replacement [7]. It basically uses the method
const, but in addition the remaining non-zero parts are multiplicatively
adjusted. This does not require a coordinate representation of the
composition. The package zCompositions contains several other methods
(the most prominent are listed in the bottom part of Table 1). However,
some of the algorithms are only intended for count data, and others have
computational difficulties if the proportion of zeros becomes very high.
For this reason, these methods are not further considered.

Further methods for the replacement of zeros in (continuous)
compositional data are implemented in the R package robCompositions
[15] and described in detail in Filzmoser et al. [1]. The algorithm BDLs
(BDL is the abbreviation of “below detection limit”) is an iterative
model-based procedure which performs regressions to replace the zeros.
Different options for regression are implemented, such as ordinary
multiple linear regression, robust regression, and partial least-squares
(PLS) regression. The regression is performed in a coordinate represen-
tation of the compositional data. A similar procedure is based on
k-nearest-neighbour imputation (algorithm impKNNa), but for a large
number of zeros there are too few neighbours with non-zeros available,
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Table 1
Zero imputation methods considered for the simulation study.

Method R Function R Pakcage Description/comment

const 0.65*DL The simplest method is
replacing all zeros with a
constant value smaller than
the detection limit. Martin-
Fernandez et al. (2003) found
that 65% of the detection
limit minimizes the distortion
in the covariance structure.
Using a constant value in the
majority of cells leads to
underestimation of the
compositional variability.
Although uniform values
between 0 and the detection
limit (DL) is often used,
setting the first parameter at
0.1DL prevents imputed
values from being too close to
zero.

Model-based multiplicative
lognormal imputation [8].
Non-parametric
multiplicative simple
imputation [7].

EM-based parametric
replacement using partial
least squares (PLS) with a
special choice of balances [9].
The PLS option is used since
the classical and robust
regression cannot be
performed on too sparse
compositional data tables.
Imputation with deep
learning methods, particularly
using deep artificial neural
networks in an EM-based
approach [10].

unif runif(0.1*DL,DL)

multLN multLN() zCompositions

multRepl multRepl() zCompositions

BDLs imputeBDLs() robCompositions

deepImp deepImp() deepImp

Methods not implEmented
IrDA IrDAQ) Simulation-based Data
Augmentation (DA) algorithm
to impute left-censored values
[11]. An initial covariance
matrix needs to be specified
which is challenging to
estimate for very sparse
compositional data tables.
Model-based ordinary and
robust Expectation-
Maximisation algorithms to
impute left-censored data [12,
13]. An initial covariance
matrix needs to be specified
which is challenging to
estimate for very sparse
compositional data tables.
Non-parametric
multiplicative Kaplan-Meier
smoothing spline imputation
of left-censored values [8]. In
very sparse compositional
data tables the number of
knots is larger than non-zero
observations for the spline
fitting.

K-nearest neighbour methods
for imputation [14]. With
very sparse compositional
data tables too few non-zero
neighbours are present.

zCompositions

IrEM IrEM(Q) zCompositions

multKM multKM() zCompositions

impKNNa impKNNa(Q robCompositions
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which makes the algorithm not applicable in this context. The algorithm
deepImp has been proposed only recently [10]. It employs artificial neural
networks (ANNs) to replace zeros, but represents the compositions first in
coordinates. The algorithm works like a typical EM algorithm (as
described e.g. in Ref. [16] for the imputation of missing values, i.e. after
an initial imputation, the missing values are sequentially updated for
each variable. This means that one ANN per variable and run is fitted to
impute initial missing values in this variable. Before every fit, the data are

100

75

50

25

multLN

100

75

50

deeplmp

25

100

75

50

25

25
50
75
100

-1.0 -0.5

Chemometrics and Intelligent Laboratory Systems 210 (2021) 104248

presented in isometric log-ratio coordinates, and after the fit, the inverse
transformation is used to return the data in the original scale. The method
has several tuning parameters, such as the number of layers, the number
of neurons in each layer, or the number of training epochs for the
network. The default setting is to use 10 layers, 1000 neurons in the first
hidden layer, 900 in the second, ..., 100 in the last hidden layer. The
activation functions used are reLu [17] and adam [18] as adaptive
moment estimation stochastic gradient approach that uses an adaptive

unif

const

multRepl BDLs

o =}
o 0 S] 0 o 0 S
[} ~ -~ o 3N 0 ~ -
~
0.0 0.5 1.0

Fig. 1. Visual representation of pivot correlation matrices to compare data structure between an original simulated compositional data matrix X and different zero

imputed matrices when 50% of the values are zero.
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learning rate, a mean squared loss function, and mean absolute error
evaluation metric. More details on this procedure and parameter settings
can be found in Templ [10]. Naturally, this leads to a time-consuming
procedure, and so far there is no experience of how this procedure per-
forms with compositional data containing a high number of zeros.

3. Simulation study

In order to investigate different replacement techniques, a simulation
study was performed in R [5] to compare the imputation methods listed
in the upper part of Table 1. Imputation functions from the R packages
zCompositions [8] and robCompositions [15] were included in the study.
Further details on the replacement methods can be found in the refer-
ences in the R packages, and in Filzmoser, Hron, Templ [2]. Since the
simulated data is continuous, only methods which are designed for the
zero replacement of continuous compositional data are included. The
idea of the simulation design is to generate two blocks of data: one block
of variables which are uncorrelated, and another block with correlated
variables. The data have to be generated in the Euclidean geometry, and
then transformed to the simplex appropriately in order to keep the block
structure. Values are replaced by zeros, and the performance of the
imputation methods can be evaluated according to the distortion of the
correlation and distance structure.

3.1. Simulation design

More specifically, in each simulation run a data set of 200 observa-
tions on 100 parts was generated. The data generation followed the
methodology described in Hron et al. [19]. Two blocks of parts are
formed in the Euclidean space: Z; : 200 x 49 of uniform values on a
49-dimensional sphere and Z, : 200 x 49 from a multivariate normal
distribution. The R package geozoo [20] is used to generate Z; to obtain
observations from a distribution with all pairwise correlations theoreti-
cally zero. The multivariate normal distribution used to generate Z, has
parameters g = 0 and X = {0} with 6; =1 and 6;; = 0.6. A column z; :
200 x 1 = 0 is added to link the two blocks forming a matrix Z : 200 x
99 =[z1 Z: Z:].Intheilrtransformation a set of contrasts needs to be
specified. Based on so-called sequential binary partitioning contrasts, a
back transformation is performed to obtain a matrix X : 200x 100 in the
simplex space. The resulting compositional data set X now consists of a
block of 50 parts which are uncorrelated and a second block of highly
correlated parts. See the “full” panel of Fig. 1 for a visual representation
of the correlation structure in one realization of the matrix X.

This panel “full” in Fig. 1 reveals that the first block (lower left)
indeed does not contain any correlation structure, but the second block
(upper right) shows a range of strong positive and negative correlations.
One could modify the values 6;; = 0.6 for this second block to obtain
stronger (or weaker) correlations, but the main focus in the subsequent
analysis is on the contrast between the uncorrelated first and the corre-
lated second block. One could also think of simulation settings with more
variables than observations, which, however, would lead to difficulties
for some of the zero replacement methods later on (see also example
section).

The simulated compositional matrix X does not contain any zero
values. In the evaluation of imputation methods, the proportion of zero
values in the matrix is specified, say p. In order to create a matrix Xp,
based on X, with p100% zero values, the p-th sample quantile of each
column of X is set as the detection limit (DL). After setting X, < X all
observations in Xy smaller than DL are set to zero.

To evaluate how well the zero imputation procedures reproduce the
original structure in the data set X, the correlation matrices are
compared. The pivot correlation matrix R(X) as defined in Kynclova,
Hron, and Filzmoser [21], which collects correlations between ortho-
normal logratio coordinates capturing all relative information about the
original compositional parts within a given composition (a special for of
ilr coordinates, so called symmetric pivot coordinates), is computed. In
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addition to evaluating the relationships between the variables with cor-
relations, relationships between the samples are compared by computing
the pairwise distances between the samples, D(X), using the Aitchison
distance [22].

In Fig. 1, a visual representation of the D x D (100 x 100) pivot
correlation matrices and in Fig. 2, n x n (200 x 200) distance matrices,
are given as computed, based on one realization of X and matrices Ximpured
obtained by imputing a proportion p = 0.5 of zero values in Xj.

Perusal of Figs. 1 and 2 shows that all but the multRepl method re-
produces the correlation structure and intersample distances fairly well;
the algorithm multLN produces a distorted distance matrix, but the cor-
relation structure is still quite well preserved. A closer look at the figures
shows that the correlation structure of the 50 highly correlated variables
is reflected very well by the methods BDLs and deepImp, while the cor-
relation structure of the 50 less correlated variables is best reproduced by
the method unif, while other algorithms introduce a small artificial cor-
relation structure. In summary, the methods const and unif do not perform
as well as the methods BDLs and deepImp. The methods multLN and
multRepl reflect the correlation structure worst. This is also the case in the
comparison of intersample distances (Fig. 2), where BDLs performs best
(followed by deepImp), while multLN and multRepl change the distances
significantly.

3.2. Evaluation measures

Two quantitative measures are defined to compare an imputed matrix
with the original compositional data matrix X:

1 1 «\ 2
Cimp :ﬁR(X) - R(erpu/ed)i- = ﬁ Z / (ri/ - r,’j)

=1 j=1

where ry is the ij-th element of R(X) and ry is the ij-th element of the
matrix R(Ximputed);

1 Ll L 2
iy :n—QD(X) — D(Ximpmd)F = Z (dij - d,-j)
g

where dj is the ij-th element of D(X) and d; is the ij-th element of the
matrix. D(Ximputed)-

The simulation study was performed at p = 0.01, 0.05, 0.10, 0.15,
..., 0.80, 0.85, 0.90, 0.99 proportion of zeros, with 5 replicates at each
proportion. From the simulation it was found that beyond 50% zero
values the multLN and multRepl methods do not provide useful imputa-
tions — either the function returns an error result or imputed values
outside the permissible range, i.e. negative imputations.

3.3. Simulation results

In Fig. 3 the mean ¢y and dy, values for the 5 simulation replicates
are shown. Since these are essentially measuring the deviation from the
original data structure, smaller values are more desirable.

The multLN and multRepl methods do not perform well for more than
20% zeros and these methods break down at around 55% zero values. For
correlations, BDLs performs best until about 35 or 40% zeros. For larger
proportions of zeros, deepImp performs best, but it cannot handle greater-
equal 95% zeros well. In terms of distances BDLs performs best until
about 70% zeros. The deepImp method has an unexpected behaviour
below 25% zeros, otherwise it is quite competitive. The simplest impu-
tation methods, const and unif, perform reasonably well. Although const
outperforms unif in terms of retaining the correlation structure, the unif
method is superior for retaining the intersample distances with more
than 50% zeros.

Next to preserving correlations and distances, it is also desirable that a
zero replacement algorithm is stable. Fig. 4 represents a new simulation
with more replications in order to reveal the variability of the resulting
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Fig. 2. Visual representation of distance matrices to compare data structure between an original simulated compositional data matrix X and different zero imputed
matrices when 50% of the values are zero.

error measures. The different panels arranged in the rows refer to the 4. Examples

proportions of zeros indicated on the right-hand side. The figure shows

essentially the same picture as Fig. 3 in terms of the performance of the In this section the different zero replacement techniques are
different methods. However, some algorithms often deliver quite compared with real microbiome data examples. Microbiome data are
different result, as seen for BDLs, which is an indication that the algo- count data, and if the count is not at least one, a zero is reported. Thus,
rithm has convergence issues. the detection limit is one. We use the different replacement methods to

impute values in the interval (0,1]. In order to refer to the same setting
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and to the same statistical task, the focus below is on regression prob-
lems, where a real response is regressed on the microbiome composition.

4.1. Example datasets

The following four data sets are considered, where the name (printed
in bold) will refer to the corresponding results of the analyses:

Sulfate: Altenbuchinger et al. [23] studied the association between
the microbiome composition of allogeneic stem cell transplants patients
and urinary 3-indoxyl sulfate (3-IS) levels. They selected a small set of
160 operational taxonomic units (OTUs) that are jointly associated with
the 3-IS levels. We reduced this set further to 119 variables by excluding
OTUs with less than two non-zeros. The resulting composition has
dimension 37 x 119, and contains 68% zero values. The response vari-
able, the 3-IS levels, was log-transformed to better approximate
normality.

BMI: In this study of Wu et al. [24], a microbiome dataset originated
by high-throughput sequencing of 16S rRNA of fecal samples from 98
healthy individuals, resulting in 6674 OTUs. From these individuals, also
the body mass index (BMI) is available (transformed to with the normal
quantiles to follow a normal distribution), which is considered as a
response in order to study the association with obesity based on the
microbiome data as covariate composition. As the composition has many
zeros, the OTUs were combined into bacteria species and genera, and we
retained only those OTUs which are associated to at least 6 genera
classes, and where the number of non-zeros was at least two. The
resulting data matrix has dimension 98 x 78, and the fraction of zeros is
0.69.

Coffee: The same composition as for the BMI data set is used, but here
we removed OTUs with prevalence less than 10%, as well as those which
had zeros in more than 73 samples. The compositional data matrix finally
has dimension 98 x 241, and the proportion of zeros is 0.49. As response

Sulfate

|

99

const

A unif

+ multLN

X multRepl
BDLs

v deeplmp

T 1 T 1 1 T
0.0 0.2 0.4 0.6 0.8 1.0

Probability [%]
5 30 80
LIl 1l

0.1

Imputed values

Coffee

const

A unif

+ multLN

X multRepl
BDLs

v deeplmp

T 1 T 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

5 30 80 99
LL LIt it

Probability [%]

0.1

Imputed values
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variable we considered the caffeine intake, since coffee consumption has
an impact on the gut microbiota [25]. The response has been transformed
as in Xiao at al. (2018) to approximate normality.

Nugent: Vaginal bacterial communities of four ethnic groups of 388
North American women were sampled and pyrosequencing of barcoded
16S rRNA genes resulted in a microbiome data set [26], where only those
OTUs were selected where the OTU taxa were present in at least 5% of
the samples. This results in a composition of dimension 388 x 84, with
82% zeros. The response is a Nugent score with 11 categories, where
higher score values relate to higher risk of bacterial vaginosis [26].

Various methods for regression on a compositional response are
available. We select the method zeroSum proposed by Lin et al. [27],
because it makes use of the compositional nature of the data by working
with the so-called linear log-contrast model. Moreover, it is appropriate
for high-dimensional regression because of an L1 penalty on the regres-
sion coefficients, similar to Lasso regression, which results in sparsity of
the regression coefficient vector. Altenbuchinger et al. [23] further
extended the estimation procedure with an elastic net penalty. The
sparsity, controlled by a tuning parameter, produces many zeros in this
vector and thus leads to a variable selection, where ideally the most
relevant OTUs are selected for explaining the relationships to the
response. zeroSum is implemented in R and available in the Github
project https://github.com/rehbergT/zeroSum [23].

4.2. Zero replacement

Before starting with building a model based on zeroSum, the zeros are
first replaced by the different methods. Fig. 5 compares in more detail the
imputed values from the different algorithms by means of probability
plots, referring to probabilities of a normal distribution. Every single
imputed data point is shown here, with a specific symbol and color for
each algorithm. Trivially, the methods const and multRepl result in

BMI

99
1

..... B SUEODIIRIIRICRY IO const

A unif

| + multLN

X multRepl
BDLs

v deeplmp

1 T 1 1 T T
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5 30 80
L LLLln

0.1
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0.1
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Fig. 5. Comparison of the imputed values from the different algorithms in a probability plot. The values for const and multRepl are on top of each other. multLN failed

to give results for the data sets Sulfate and BMI.
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vertically arranged points with values 0.65. Also as expected, the algo-
rithm unif leads to a characteristic S shape in the range 0.05 and 1. The
structure of the values from multLN looks somehow distorted, with
several identical values at the extremes, which are still in a much smaller
range than (0,1), and gaps in between. This algorithm did not yield re-
sults for the data sets Sulfate and BMI, and this happens if there are too
many zeros in one variable. The algorithm BDLs leads to extremely left-
skewed imputed values, and the maximum is still clearly away from 1.
The values imputed by deepImp look much more symmetric, with a me-
dian clearly lower than 0.5. Note that all imputations are just “technical
values”, satisfying some underlying rule or model, while in reality one
would have to have an integer (e.g. if the abundance would be higher).
Nevertheless, the distribution of these values affects the log-ratios, which
are the basis for a compositional data analysis approach. Intuitively,
having continuously distributed imputed values in the whole range (0,1)
is a desirable outcome of an imputation algorithm, and deepImp seems to
satisfy this goal.

Table 2 provides insight into the computation time of the different
methods for replacing the zeros. The reported time is in seconds, and
computations were done on an Intel(R) Xeon(R) Gold 5120 CPU with
2.20 GHz, 16 GB RAM (under Ubuntu). The algorithms BDLs and deepImp
require much more time than the other methods, but this also heavily
depends on the parameter settings. For BDLs we used in the respective R
function the parameters maxit = 50, eps = 0.1 (both for convergence),
and R = 50 (number of bootstrap samples to determine the number of
PLS components). For deepImp there are several more parameters for
tuning, also related to convergence (iterations = 2, eps = 1), but also
related to the specifics of the neural networks (patience.val = 40, epochs
= 500, dropout = 0.1, 10 layers starting with 1000 neurons).Table 2

4.3. Regression modeling

Based on the imputed composition, we used the zeroSum procedure
with the default settings, and by using only an 11 penalty, applied on the
log-transformed compositional values. These are first total-sum normal-
ized in order to refer to log-contrasts, as requested for this procedure. The
tuning parameter selection is performed with 5-fold cross-validation, and
we select that tuning parameter which gives the smallest error measure.
This leads to a sparse model, and the cross-validated mean-square error
(MSE-CV) for this model can be extracted. Since these values were quite
instable, we repeated the whole tuning parameter selection procedure 50
times, resulting in 50 models. Fig. 6 shows all 50 MSE-CV values in
boxplots, per imputation method. The results are quite comparable for
the datasets BMI and Coffee, but there are more pronounced differences
for the other two datasets. For the dataset Sulfate, which has about 3
times more variables than observations, BDLs leads to clearly higher
variability. In such a setting, this imputation algorithm might bring in too
complex multivariate data information, possibly also caused by a very
varying number of PLS components, which leads to quite different
models. For the dataset Nugent, the algorithm deepImp yields much
smaller prediction errors in general compared to the other algorithms.
This dataset has much more observations than the other datasets, which

Table 2

Computation time (in seconds) for the different replacement methods for the four
data sets. The second row provides the dimension of the microbiome data sets
(no. of rows x no. of columns) and their percentage of zeros.

Time [s] Sulfate BMI Coffee Nugent
39 x 119,68% 98 x 78,69% 98 x 241,49% 388 x 84, 82%
const 0.000 0.007 0.001 0.000
unif 0.017 0.428 0.102 0.165
multLN - - 1.685 0.844
multRepl ~ 0.003 0.013 0.015 0.079
BDLs 744 792 8362 2918
deepImp 1378 909 3894 1588
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is a preferable setting for methods based on deep learning.

A further outcome of the different models is the vector of regression
coefficients. Particular interest is in the non-zero values, as the associated
variables are used to interpret the relationship of the microbiome data
with the response. Here we do not compare with those OTUs considered
relevant in the related literature (i.e. the potential ground truth), but we
only compare the results from the different imputation algorithms.
However, since zeroSum has been applied 50 times, we end up with 50
models per imputation algorithm and dataset, with corresponding spar-
sity of the regression coefficient vectors. We took a simple approach to
aggregate this information: if a variable had a regression coefficient of
zero in at least half (i.e. 25) of the models, the corresponding entry was
set to zero; otherwise, the sign of the majority of the coefficients was
reported. Thus, for each variable we obtain values from the set { —
1,0,1}, which were color-coded as {blue, white, red} and presented as
vertical bars in Fig. 7. The horizontal axes of the plots show the variable
numbers of the four data sets, while the rows represent the replacement
algorithms. Except for the Nugent data set, the models are highly sparse,
with many regression coefficients being zero. Moreover, the methods
seem to have high agreement on the non-zero coefficients, as well as on
their sign. The algorithm BDLs gives a much more sparse solution for the
Coffee dataset. Also for the Nugent data, BDLs involves several other
variables compared to the other methods, and unif also leads to a
somewhat different answer. Although deepImp had a clearly smaller
prediction error for the Nugent data (see Fig. 6), it is surprising to see that
the variables involved in the models are very similar to the algorithms
const and multLN.

In practice it is common to verify if the variables associated with non-
zero regression coefficients are related to the response. This can be done
by plotting those variables against the response, or by computing cor-
relations. Here, we computed correlations between the response and the
variables which are reported as non-zero (per method) in Fig. 7. The
correlations are summarized as absolute values in Fig. 8 by boxplots.
Generally, the correlations for the datsets BMI and Coffee are much lower
than for the other datasets, which indicates that there is a less clear
relationship between the response and the composition. For these data-
sets one can see much lower medians for some algorithms — but this is
also because there are only few non-zero coefficients (see Fig. 7). The
algorithm unif has a much lower median for the Sulfate data, and when
comparing with Fig. 7, there are several more variables involved, which
seem to be not strongly connected to the response. Also for the Nugent
data, unif yields the smallest median, and Fig. 7 shows the same picture
that unif involves more and different variables compared to the other
algorithms. For this datset, deepImp has the highest median, and also the
smallest prediction error (Fig. 6), and thus it seems that this algorithm
included valuable information in the zero-replaced values.

5. Discussion and conclusions

There are various reasons for the occurrence of zeros in compositional
data, and these are known in the literature as rounded zeros, count zeros,
and structural zeros (see, e.g., Ref. [1]. In either case, if standard
compositional data analysis methods are considered, zeros cannot be
processed because these methods use log-ratios as basis information. For
rounded and count zeros it is common to replace the zeros by “small”
values — depending on the type of data. However, if the proportion of
zeros in the data gets very high, such as in microbiome data, it will be
increasingly important which replacement methods are consulted.

We have compared several well-known algorithms for zero replace-
ment, and also included a recently proposed method based on deep
learning [10]. The comparison was based on simulated data and on real
microbiome data. The focus in the simulation was purely on the quality of
the imputed data in terms of how well the distances and correlations are
preserved. In the examples it was not possible to get information about
the ground truth of distances and correlations in the composition, and
thus the focus was on the predictive performance of the model. We
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Fig. 6. Cross-validated mean-square errors (MSE-CV) for 50 replications of the zeroSum algorithm, based on different replacement methods for the four data sets. The

50 MSE-CV values are summarized in boxplots.
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Fig. 7. Comparison of the sparsity of the regression coefficients as outcome from the models based on differently imputed data. Vertical bars indicate non-zero
coefficients, blue color for negative and red color for positive coefficient (aggregated from 50 replications). (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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Fig. 8. Absolute correlations (summarized by boxplots) of the response with all variables corresponding to the non-zero coefficients, see Fig. 7.

considered the regression setting, where a real response was regressed on
the imputed composition.
The main findings of this study are summarized and discussed below:

e Some of the considered replacement methods (multLN, multRepl) did
not work if more than about half of the entries in the compositional
data matrix were zero. This, however, also depends on how the zeros
are distributed among the variables. Finally, the applicability also
depends on how the algorithms are implemented, and there may still
be possibilities to improve the behavior.

The simplest strategies const and unif trivially work even if the per-
centage of zeros in the data gets very high — but also the much more
complex algorithms BDLs and deepImp still work in such a situation.
The price to pay is a much longer computation time (see Table 2).
The simulation results reveal that if the zero proportion gets very
high, say more than 0.8, the distances get distorted — only unif still
gives stable results. Also the correlation structure gets distorted at
some point, and const, unif and deepImp are quite reliable (Fig. 3).
BDLs has the problem of yielding instable results (Fig. 4). This goes
back to the selection of an appropriate number of PLS components,
which is based on bootstrapping. Increasing the number of bootstrap
samples could resolve the issue, however, this would increase the
computation time even further.

The example datasets did not go towards the limits concerning the
proportion of zeros (only up to 82%), and thus we obtained results in
almost all cases. The distribution of the imputed values naturally
differs a lot for the different replacement algorithms, but since the
response is not considered for the imputation, it is not so clear what
the effects are on the resulting regression models. Then it also de-
pends on the purpose of the model: Is the main focus on a reliable
determination of OTUs in order to interpret the relationships with the
response? Or is the focus on prediction accuracy? Often, both aspects
are important, and we observed that BDLs and unif lead to somewhat
different OTUs. This does not necessarily have a big impact on the
prediction quality of the model, but the correlations of several of
those OTUs with the response are typically lower [28].

10

e Fig. 6 revealed a clearly better prediction performance of the algo-
rithm deepImp for the Nugent dataset. This dataset has almost 400
observations, and thus clearly more than the other datasets. Also our
simulations have been conducted on datasets with 400 observations.
Templ [10] showed (although for datasets with small amounts of
zeros) that deepImp becomes competitive once the sample size is in the
hundreds, and delivers increasingly better results with increasing
sample size. The Nugent dataset has 82% zeros, and for such a high
fraction, the errors caused by the replacement in the distance or the
correlation structure explode (Fig. 3). The method unif is still quite
reliable in this respect, but seems rather unreliable to identify the
important OTUs (Fig. 7).

A final recommendation for an appropriate replacement method de-
pends on the purpose of the analysis, on the dataset at hand (dimension,
fraction of zeros), and on the available time to spend on replacing the
zeros. If there is a time constraint, one should not use BDLs and deepImp.
If not, and in particular if the dataset has a reasonably high number of
observations (also compared to the number of variables), we recommend
the algorithm deepImp, because this procedure seems to replace the zeros
in a way which is well adjusted to the multivariate data structure
imposed by the possibly few non-zeros. This is an important basis for
statistical modeling, where prediction accuracy or the identification of
marker variables are of concern.
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