
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

ФАКУЛЬТЕТ АЕРОНАВІГАЦІЇ, ЕЛЕКТРОНІКИ ТА

ТЕЛЕКОМУНІКАЦІЙ

Кафедра авіоніки 1

ДОПУСТИТИ ДО ЗАХИСТУ

Завідувач кафедри

 C.В. Павлова

“_____”____________2020 р.

ДИПЛОМНА РОБОТА

(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬО-КВАЛІФІКАЦІЙНОГО РІВНЯ

“БАКАЛАВР”

Тема: “Андроїд програма - "Pocket avionics" для електронного планшету

персоналу авіакомпанії”

Виконав: Козаков М.О.

Керівник: Белінський В.Н.1

Нормоконтролер: Левківський В.В.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/389153442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

КИЇВ 2020

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL AVIATION UNIVERSITY

FACULTY OF AIR NAVIGATION, ELECTRONICS AND

TELECOMMUNICATION

Department of avionics

APROVED FOR DEFENCE

Head of the Department

 S.V. Pavlova

“ ” 2019

GRADUATE WORK

(EXPLANATORY NOTE)

GRADUATE OF AN EDUCATIONAL DEGREE

"BACHELOR"

Theme: Android program - "Pocket avionics" for an electronic tablet of airline

staff

Done by: M.A.Kozakov

Supervisor: V.N.Belinskyi

Standart controller: V.V.Levkivskyi

Kyiv 2020

NATIONAL AVIATION UNIVERSITY

Faculty of Aeronavigation, Electronics and Telecommunications

Department of Avionics

Training Direction 6.051103 «Avionics»

APPROVED

Head of the Department

 S.V. Pavlova

“ ” 2020

TASK

For execution graduate work

Student’s name: Kozakov M.A.

1. Theme of bachelor work: «Android program - "Pocket avionics" for an

electronic tablet of airline staff », approved by the Rector’s order

2. Background to the work: Android programs about avionics

3. Contents of the explanatory notes:

4. What is Pocket Avionics? Education is in trend. All kinds of educational

applications today occupy the first lines in the App Store and are in demand by

hundreds of thousands of users. Educational apps are services that help users of all

ages and backgrounds to study certain academic disciplines.

5. Timetable

№

Task

Duration

Evaluation of

the

performance

1.
Selection of literature for performing of

bachelor’s graduation diploma work

01.10.2020-14.12.2020

2. Introduction 01.10.2020-14.12.2020

3. Occupational Safety and Health 01.10.2020-14.12.2020

4. Environmental protection 01.10.2020-14.12.2020

5.
Information noise problem. Weak

motivation and indifference

01.10.2020-14.12.2020

6. Application concept 01.10.2020-14.12.2020

7. Graphic component 01.10.2020-14.12.2020

8. Technical component 01.10.2020-14.12.2020

9. Сonclusions

8. Date of assignment: “ ” 2020

9. Supervisor V.N. Belinsky

The task took to perform M.A. Kozakov

ABSTRACT

Explanatory note to graduation work «Android program - "Pocket avionics" for an

electronic tablet of airline staff»: 60 pages, 11 pics

 UNITY 3D, PICKET VIONICS, C#

Learn Aircraft Avionics is an educational application Pocket Avionics. If you

are looking for basic Aircraft Avionics app so you are in a right place. This application

will provide you most important & informative lessons. This basic Aircraft Avionics

app will give you definition and classification.

Learn Aircraft Avionics app is essential for beginners. It will give you most

common & useful chapters. This app will provide you example and explanation. So

now you can carry your basic Aircraft Avionics book collection anywhere by Pocket

avionics app and can learn anytime.

Pocket avionics is app for:

-Electrical Engineering

-Automobile Engineering

-Pilots studies

-Airport Studies

-Avionics

-Aircraft Instruments

-Aerodynamics

-Airplane Structures

-Mechanical Engineering

CONTENT

INTRODUCTION

CHAPTER 1: THE PROBLEM OF INFORMATION NOISE

CHAPTER 2: GENERAL CONCEPT OF THE POCKET AVIONICS APP

2.1 Cards and their variety in the Pocket Avionics APP

2.2 Player card collection in the Pocket Avionics APP

2.3 Method of receiving cards in the Pocket Avionics APP

CHAPTER 3: TECHNICAL IMPLEMENTATION OF THE APPLICATION

FUNCTIONAL: “POCKET AVIONICS”

3.1 Using Unit3D engine to write an application

3.2 Using the C # language to write an application

3.2 Basic use of C# features for writing a Pocket Avionics APP

CHAPTER 4: LOGIC OF POCKET AVIONICS APP

4.1 Container with parameters for the card

4.2 Card availability check

4.3. Collection

4.5 Droping

CHAPTER 5: OCCUPATIONAL HEALTH AND SAFETY

CHAPTER 6: ENVIRONMENTAL PROTECTION

CONCLUSIONS

REFERENCES

INTRODUCTION

 Pocket Avionics defines Aviation terms in a way that is easy for anybody to

understand.

 This Pocket avionics app isn’t a simple that you find in the stationary some

aircrafts & in your Pocket avionics app. This Pocket avionics app is written and

explained in such a way that anyone can learn Aviation language within a short time

of duration. Each Aviation terms are given with the audio voice ability so you can

recognize the basic word behind the jargon.

 Pocket avionics app have a basic idea of an Aviation terms that assists people learn

new vocabulary and architectural engineering speedily that helps them to recall info

for the long time. Once you install the Pocket avionics app, enter the word in search

box that you are looking for and get the detail explanation with the usage of it.

Aviation is the activities surrounding mechanical flight and the aircraft industry.

Aircraft includes fixed-wing and rotary-wing types, morphable wings, wing-less

lifting bodies, as well as lighter-than-air craft such as hot air balloons and airships.

Aviation began in the 18th century with the development of the hot air balloon, an

apparatus capable of atmospheric displacement through buoyancy. Then a large step in

significance came with the construction of the first powered airplane by the Wright

brothers in the early 1900s. Since that time, aviation has been technologically

revolutionized by the introduction of the jet which permitted a major form of transport

throughout the world.

Department of Avionics

Page

NAU 20 02 07 000 EN

 Done by Kozakov M.A.

 Supervisor Belinskyi V.N.

 Consult Belinskyi V.N.

 N - control Levkivskyi V.V

 Head of dep Pavlova S.V.

THE PROBLEM OF

INFORMATION NOISE

Letters Pages

 173 Avionics

CHAPTER 1: THE PROBLEM OF INFORMATION NOISE

Information noise is a cultural phenomenon that arose in the 20th century, which

describes the presence in the text of elements that complicate its understanding,

distort the meaning of what is stated or completely prevent an adequate

understanding of its content. The concept of information noise refers to the modern

media space and the methods of disseminating information in conditions of

information "overload" of society. Information noise (or information overload)

occurs in conditions of an excess of information ("over-awareness"), which, as a

result, adversely affects the ability of an individual to adequately analyze the

situation and "filter" the received information due to the congestion caused by the

abundance of information messages.

It is worth noting that this concept, contrary to popular belief, arose before the

Internet and was partially described in literary works (in particular, in the book

"Shock of the Future" by Alvin Toffler in 1970).

Subsequently, the term became widespread: Bill Gates in his book "The Road to

the Future", published in 1996, noted that this phenomenon, namely "information

overload is quite common." It follows from this that the concept under study should

not be associated only with the online sphere: long before the Internet became a

network used all over the world, the problem of information overload took place (in

traditional media, for example).

This phenomenon was most substantively described in the book "My Life

After Death" by Robert Wilson. In one of the chapters ("Information Overload"), the

author, using the example of a frame from "Seal of Evil" by Orson Welles, shows

how seriously such a method as editing frames and correctly selected musical

sequence can become a way of propaganda and deliberately provoke a distorted

perception of information. analysis of this phenomenon, it is worth paying attention

to the classification given by the Moldavian scientist Arkady Dmitrievich Ursul. So,

the professor distinguishes two groups of information noise:

Noise arising from an overabundance of information unimportant to the

individual;

Noise is a consequence of an overabundance of important and relevant, but at

the same time, repetitive information.

Thus, Ursul considers advertising messages, any kind of propaganda

information, spam and contextual advertising to the first group of "noises". The

second group, in turn, consists of, in fact, information-filled and necessary for the

recipient messages, repeating each other, for example, note-taking.

However, information noise is usually divided into intentional (intentional) and

unintentional. Intentional noise is an informational background, often equated with

the process of disinformation. In other words, the creation of deliberate “noise” can

be characterized as the creation of an artificial situation in which informants rely on

the abundance and even an overabundance of information messages, which leads to

the complexity of the recipients' perception of information, as well as blurring the

boundaries between truth and fiction.

Department of Avionics

Page

NAU 20 02 07 000 EN

 Done by Kozakov M.A.

 Supervisor Belinskyi V.N.

 Consult Belinskyi V.N.

 N - control Levkivskyi V.V

 Head of dep Pavlova S.V.

GENERAL CONCEPT OF

THE POCKET

AVIONICS APP

Letters Pages

 173 Avionics

CHAPTER 2: GENERAL CONCEPT OF THE POCKET AVIONICS APP

2.1 Cards and their variety in the Pocket Avionics APP

There will be 3 types of cards in the game: planes, parts, personalities. Airplane

maps are displayed with an airplane symbol. Parts Cards with a Gear symbol.

Personality cards with the "Personality" symbol. Examples of maps (Pics 1.1)

Pics 2.1

Each card has a quality level:

- Rare

- Mythical

- Legendary

 The quality of a card determines its rarity and the number of free points that it

gives in case of repeated drops. The quality of the card also determines the historicity

of the aircraft / personality. The more individual the plane is in the world, the better it

is in the application. Fragment of the map responsible for the rarity (Pics 2.1)

2.2 Player card collection in the Pocket Avionics APP

From the start, the user does not have any cards. The player receives cards for

special tasks: passing a test, solving a puzzle, and so on. When a player receives a

new card, it appears in the collection. (Pics 2.2)

Pics 2.2

By clicking on the received card, the card opens in a new window. Different

types of cards have different descriptions. For example, if this map is an airplane,

then the map has a description of the aircraft parameters. If this is done, then the

methods of using this unit on the aircraft or a description of the part. (Pics 2.3)

Pics 2.3

2.3 Method of receiving cards in the Pocket Avionics APP

To receive a card, the user must fill in a special scale. The scale fills up as you

get repeated cards or as you progress through the levels / test. The general idea is to

encourage the player to take the test and memorize facts from the aviation field. For

this, the player will receive a random reward - 5 random cards (Among which there

may be repeated ones) (Pics 2.4)

Pics 2.4

Department of Avionics

Page

NAU 20 02 07 000 EN

 Done by Kozakov M.A.

 Supervisor Belinskyi V.N.

 Consult Belinskyi V.N.

 N - control Levkivskyi V.V

 Head of dep Pavlova S.V.

TECHNICAL IMPLEMENTATION

OF THE APPLICATION

FUNCTIONAL: “POCKET

AVIONICS”

Letters Pages

 173 Avionics

CHAPTER 3: TECHNICAL IMPLEMENTATION OF THE APPLICATION

FUNCTIONAL: “POCKET AVIONICS”

3.1 Using Unit3D engine to write an application

Unity3d is a modern cross-platform engine for creating games and applications

using Unity Technologies. With this engine, you can develop not only applications

for computers, but also for mobile devices (for example, based on Android), game

consoles and other devices.

Let's talk a little about the characteristics of the engine. First, it is worth noting

that the engine is integrated in the Unity development environment, in other words,

you can test the application without leaving the editor. Secondly, Unity supports a

huge number of different formats, which allows you to develop games, construct the

models themselves in a more convenient application, and use Unity for its intended

purpose - product development. Thirdly, scripting (scripting) is performed in the

most popular programming languages - C # and JavaScript.

Thus, Unity3d is a relevant platform with which you can create your own

applications and export them to various devices, mobile phone or Nintendo Wii

console. To create your application, you only need 1 programming language: C # /

JavaScript.

Unity is more than an engine, it is an environment for developing computer games

that combines various software tools used to create software - a text editor, compiler,

debugger, and so on. At the same time, thanks to its ease of use, Unity makes the

creation of games as simple and comfortable as possible, and the multiplatform

nature of the engine allows game developers to cover as many gaming platforms and

operating systems as possible.

First of all, as we have already mentioned, the Unity3D engine makes it possible

to develop games without requiring any special knowledge. It uses a component-

based approach, in which the developer creates objects (for example, the main

character) and adds various components to them (for example, the visual display of

the character and how to control it). Thanks to a convenient Drag & Drop interface

and a functional graphic editor, the engine allows you to draw maps and place objects

in real time and immediately test the result.

The second advantage of the engine is the presence of a huge library of assets and

plugins, with which you can significantly speed up the game development process.

They can be imported and exported, whole blanks can be added to the game - levels,

enemies, AI behavior patterns, and so on. No programming hassle. Many assets are

available for free, others are offered for a small price, and if you want, you can create

your own content, publish it to the Unity Asset Store and profit from it.

The third strength of Unity 3D is support for a huge number of platforms,

technologies, APIs. Games created on the engine can be easily ported between

Windows, Linux, OS X, Android, iOS, on the PlayStation, Xbox, Nintendo, VR and

AR devices. Unity supports DirectX and OpenGL, works with all modern rendering

effects, including the latest real-time ray tracing technology.

3.2 . Using the C # language to write an application

In June 2000, it became known about a new programming language that was born

in the bowels of Microsoft. It became part of a new Microsoft technology called

.NET (read "Dot Net"). This technology provides a single runtime environment for

programs (Common Language Runtime, CLR) written in different programming

languages. One of these languages, the main one in this environment, is C # (C #,

reads "C sharp", "C sharp"). By the name of the language, of course, they wanted to

emphasize its relationship with C ++, because # are two crossed pluses. But most of

all, the new language is similar to Java. And there is no doubt that one of the reasons

for its appearance was Microsoft's desire to meet the challenge of Sun.

Although the authors of C # are not officially named, Anders Hejlsberg, the

creator of Turbo Pascal and Delphi, who moved to Microsoft in 1996, and Scott

Wiltamuth are named on the title page of one of the preliminary editions of the

language reference.

The unified program execution environment is based on the use of the

intermediate language IL (Intermediate Language), which plays almost the same role

as the bytecode of the Java virtual machine. Compilers used in the framework of

.NET technology from various languages translate programs into IL-code. Like Java

bytecode, IL code is the instructions for a hypothetical stacked computer. But there is

also a difference in the design and use of IL.

First, unlike the JVM, IL is not tied to a single programming language. The

preliminary versions of Microsoft.NET include compilers from C ++, C #, Visual

Basic. Third-party developers can add other languages by building compilers from

those languages to IL code.

Secondly, IL is not intended for program interpretation, but for subsequent

compilation into machine code. This allows you to achieve significantly higher

performance of programs. The files containing IL-code contain enough information

for the optimizing compiler to work.

3.2 Basic use of C# features for writing a Pocket Avionics APP

 “C # is a simple, modern, object-oriented language with a safe type system,

derived from C and C ++. C # will be convenient and understandable for programmers

who know C and C ++. C # combines the productivity of Visual Basic with the power

of C ++. " These words begin the description of C #. We will consider the technical

features of the language.

1. A compilation unit is a file (as in C, C ++, Java). The file can contain one or

several type descriptions: classes (class), interfaces (interface), structures (struct),

enumerations (enum), types-delegates (delegate) with indication (or without

indication) of their distribution over namespaces.

2. Namespaces regulate the visibility of program objects (as in C ++).

Namespaces can be nested. The use of program objects is allowed without explicitly

specifying the namespace to which this object belongs. Just a general mention of the

use of this namespace in the using directive (as in Turbo Pascal) is enough. There are

aliases for namespace names in the using directive (as in Oberon).

3. Elementary data types: 8-bit (sbyte, byte), 16-bit (short, ushort), 32-bit (int,

uint) and 64-bit (long, ulong) signed and unsigned integers, single real (float) and

double (double) precision, Unicode characters (char), boolean type (bool, not

compatible with integers), decimal type providing 28 significant digits precision

(decimal).

4. Structured types: classes and interfaces (as in Java), one-dimensional and

multidimensional (as opposed to Java) arrays, strings (strings), structures (almost the

same as classes, but allocated not on the heap and without inheritance), enumerations

incompatible with integers (as in Pascal).

5. Types-delegates or simply "delegates" (similar to procedural types in Module

2 and Oberon, pointers to functions in C and C ++).

6. Types are subdivided into reference (classes, interfaces, arrays, delegates) and

value types (elementary types, enumerations, structures). Objects of reference types

are allocated in dynamic memory (heap), and variables of reference types are, in fact,

pointers to these objects. In the case of value types, variables are not pointers, but the

values themselves. Implicit type conversions are allowed only in cases where they do

not violate the type safety system and do not lead to loss of information. All types,

including elementary ones, are compatible with the object type, which is the base class

of all other types. There is an implicit conversion of value types to the type object,

called boxing, and an explicit inverse conversion, unboxing.

7. Automatic garbage collection (as in Oberon and Java).

8. Extensive set of operations with 14 priority levels. Overriding operations (as

in Algol-68, Ada, C ++). The checked and unchecked operators control overflow

control when performing integer operations.

9. Methods with parameter values, reference parameters (ref) and output

parameters (out). The ref and out words must be written before the parameter, not only

in the method description, but also when calling. The presence of output parameters

allows you to control the execution of defining assignments. According to the rules of

the language, any variable must be guaranteed to receive a value before attempting to

use it.

10. Control statements: if, switch, while, do, for, break, continue (as in C, C ++

and Java). A foreach statement that loops through each item in a "collection", several

flavors of the goto statement.

11. Handling of exceptions (as in Java).

12. Properties - elements of classes (objects), access to which is carried out in

the same way as to fields (you can assign or get a value), but implemented by

implicitly called get and set subroutines (as in Object Pascal - the input language of

the Delphi system).

13. Indexers are elements of classes (objects) that allow accessing objects in the

same way as arrays (by specifying the index in square brackets). Implemented by the

implicitly called get and set routines. For example, read access to the characters in a

string can be performed as to elements of an array because an indexer is implemented

for the standard string class.

14. Events are class members (fields or properties) of a procedural type

(delegates), to which outside the class where they are defined, only the + = and - =

operations are applicable, allowing you to add or remove event handler methods for

objects of this class.

15. Unsafe (unsafe) code using pointers and address arithmetic is localized in

the parts of the program marked with the unsafe modifier.

16. A preprocessor that provides, unlike C and C ++, only conditional

compilation facilities.

Let's consider first the simplest complete program, the process of its compilation and

execution.

class Hello {

static void Main() {

System.Console.WriteLine("Hello, World!");}}

To compile the program, you can use the csc compiler, which is included in the

Microsoft .NET Framework SDK - a development kit for the Microsoft .NET

environment and is run from the command line:

csc Hello.cs

After compilation, the executable file Hello.exe will be obtained. However, it can

only be run on a computer running Windows if Microsoft .NET support is installed on

that computer. The fact is that the file obtained after compilation (despite its name)

does not contain ordinary machine instructions, but IL-code that will be converted into

processor code when loading and running the program.

However, if the .NET Framework SDK is installed, it means that the corresponding

support is available. By running Hello.exe, we get:

Hello.exe

Hello, World!

Now let's turn to the text of the program. It defines a single class Hello, which

contains the description of the static method (class method) Main. A static method

called Main (uppercase and lowercase letters are different in C #) is the entry point to

a program written in C #. Execution of this method starts the work of the program.

Unlike Java, the Main method in C # can be without parameters or with parameters, it

does not matter whether it returns a value (being a function) or not. In our example,

Main has no parameters and no return value (void).

The only statement in the Main method is a call to the static WriteLine method. It is

a method of the Console class that provides access to the standard output and input

streams. The Console class belongs to the (predefined) System.

Console is referred to as its full name System.Console (qualified identifier),

including the System namespace. Using the using directive, you can abbreviate the

notation by using non-namespace-qualified designations

There is only one difference. The word "length" is written with a capital letter:

Length (in Java - length). Length is a property of the standard System.Array class,

which is the ancestor of arrays in C #.

At the time of this writing, there is only a preliminary description of the C #

language and a preliminary version of the development tools for programs in this

language. Therefore, it is too early to draw any general conclusions. But some

judgments can be made.

In C #, some traditional constructions are preserved and even put in order:

enumerations, structures, multidimensional arrays. Java in this regard shows a more

extremist approach: objects and nothing but objects. The obvious absurdities of Java,

such as the lack of passing parameters by reference in the absence of pointers, have

been eliminated. The mechanism for passing parameters in C # is well thought out,

providing for passing both by value and by reference.

At the same time, there are many constructs in C # that, at the very least, can raise

questions. The language is redundant and, as a result, difficult to use and implement.

Some C # tools can cause errors. Doubts about C # become especially strong when it

is compared with the languages created by N. Wirth, first of all with Oberon. In C #,

as in other languages derived from C, the simple and clear concept of the module has

not been embodied. Instead, namespaces are used - a tool that appeared in the late

stages of C ++ standardization. Namespaces are a very general mechanism, absorbing,

in particular, the capabilities provided by modules. But here there is an over-

generalization that is not due to urgent needs, which provides the programmer with

redundant tools, and with them opportunities for abuse. The nesting of namespaces,

their long compound designations serve as an obstacle to requiring the explicit

(qualified) use of names taken from these spaces, as is done in Oberon for identifiers

imported by the module. Implicit imports allowed by the using directive are a source

of name collision errors. Here's an example.

Consider a program in which the namespace Hello is defined, and within that

namespace are nested classes A and B. Class B contains a single static

namespace Hello {

public class A {

public class B {

 public static string C = "HELLO"; }

The content of the Hello.cs file is not an independent program, but it can be a

separate compilation unit, which can be translated into a dynamically linked library.

(file with dll extension). To do this, when starting the csc compiler, use the / target

parameter:

csc / target: library Hello.cs

As a result of compilation, the Hello.dll library will be obtained.

Now let's write a main program that can use the resources of our library. And the

resource, in fact, is one - a line containing "Hello!". We will print it:// Эта

Now in the statement Console.WriteLine (A.B.C); In the Print program, the

identifier A is understood to denote the namespace A, not the class A of the

namespace Hello! The C # language has failed us. Moreover, twice. The first time

there was a collision between the name of the class A of the namespace Hello and the

name of the namespace A. This collision was somehow resolved in favor of the

namespace name, while the using Hello directive created within its scope a local scope

in which local names should take precedence. Second, the resulting inconsistency was

not found even though the two different fields named C were of different types. If the

Write method were not so liberal with the type of its parameters, there was a chance to

find an error.

It may seem that the demonstrated situation was created artificially, but in practice

such coincidences are unlikely. But we can talk about programs in the hundreds of

thousands and millions of lines, and then fatal coincidences are by no means excluded.

Moreover, given the rules regarding namespaces that apply in C #, it turns out that the

programmer must know the list of all namespaces available to his program, otherwise

he risks distorting the work of already written and correctly working parts of his

program. The danger arises even if your own program is small, but uses something

from libraries written by others. The situation with the names of C # namespaces is

similar to the situation in the most primitive versions of BASIC, when all variables are

global, and you need to remember them all so as not to get confused.

What is the cause of such gaps and how could they be eliminated? The fact is that in

relation to the names of namespaces in C #, the general rule, recognized since the time

of Algol-60, does not apply, according to which any identifier in a program cannot be

used without a (preliminary) description. To avoid these collisions, the using

directives must be required, along with the mandatory qualification of identifiers by

the namespace name. That is, it would be necessary to require that the Print program

can only be written in this form:

using System;

using Hello;

class Print {

static void Main() {

 System.Console.WriteLine(Hello.A.B.C);}}

C # allows such writing, but, alas, does not require it. But in the Oberon language, the

import is organized in this way, and the occurrence of the problems considered is

excluded.

In C #, as in Java, neither field descriptions nor method descriptions can be placed

outside the definitions of classes (as well as interfaces and structures). This is a rather

strange rule, especially for a language like C #, where the boundaries of namespaces

are enclosed in explicit brackets.

Static (with the static descriptor) fields and methods - class members - are

objects that are completely different in their essence than non-static fields and

methods - elements of class instances. Static fields and methods are ordinary

procedures and variables that have nothing to do with objects of the class within which

they are defined. Just to mention them, you need to indicate the name of the class to

which they belong. It turns out that the description of a class plays two different roles -

it is a description of the type of objects and at the same time a container containing

definitions of static fields and methods. In its second role, a class acts, in fact, as a

module or имен namespace, which could replace classes in this capacity. There are no

obstacles in sight to allowing the definitions of static objects to be removed from

classes and immersed in namespaces that encompass class descriptions. In this case,

you can get several advantages at once.

First, there is no need for a static descriptor, which clutters up the code. Fields

described outside of classes will be considered static. It is also very natural for the

following reason. In the current situation in C # (and Java), the very space of the

program text is used ineffectively. The ownership of a field or method is determined

not by its location in the text, but by the presence or absence of the static specifier.

Secondly, the fully qualified identifier of a static field or method could in this

case have no longer triple, but only a double designation. This creates a prerequisite

for the mandatory use of qualified names and the using directive. The creators of C #,

for obvious reasons, did not require mandatory qualifications for at least three levels

of naming (namespace, class, field).

Finally, the class ceases to unnaturally combine two different roles - describing the

type and the space for static fields and methods. This combination, by the way, makes

it difficult to understand and learn the Java and C # languages.

Let's consider the listed possibilities using the already discussed example. Namespace

A containing a (static) field C could be defined like this

namespace A {

public double C = 2.71828182845904523}

Properties mask a call to a procedure (method) as a call to a variable (field). This is

widely used in visual programming systems when changing the value of a field that

determines the appearance of a screen element must be accompanied by a redrawing

of this element. When using properties, you can do both of these things by assigning a

value to the property.

Let the string (of string type) property Title of display objects of the Element class

specify the title caption of such objects. This property declaration might look like this:

public class Element {

string title;

public string Title { get { return title;}

 set {

 title = value;

 Repaint(); }

The constructions are a little more cumbersome, but they do not mislead the reader

of the program. It does not hide the fact that the title change is performed by a

subroutine, which, in addition to assigning a value, can perform other actions. In the

first case, it is impossible to distinguish the use of properties from the use of ordinary

fields in the text of the program (without referring to the description of the Element

class).

Programming in the environment of visual systems like Delphi, from where

properties migrated to the C # language, can be divided into several levels. The first is

application development. In this case, the programmer, creating a program with a

graphical user interface, as a rule, uses only ready-made components with already

programmed properties. In this case, the external indistinguishability of properties and

fields does not interfere too much, since we are talking about using already debugged

libraries, and the programmer has a built-in help system at his disposal. Moreover,

many of the properties of visual components do not even appear in the part of the

program that the programmer writes manually. The values of the properties of

windows, buttons and other interface elements are simply set in the dialog mode with

the visual system. An application programmer in a visual environment, in fact, does

not deal with the entire programming language, but only with that part of it, which

includes the possibility of using ready-made properties of ready-made classes, but

does not include their definition.

The second level is the development of visual components. In this case, the

programmer is fully responsible for the correctness of the created class system.

Finally, you should consider using a property-equipped language outside of the

context of the visual environment. In this situation, that is, in the general case, when

properties are applied not only for visual elements, the indistinguishability of calling

subroutines (get and set) from calling a field can do a bad job, impairing the ability to

understand the program. It is no longer possible to understand from the text of the

program whether the action is reduced only to changing or getting the value of the

field, or whether it is associated with the execution of other operations.

The C # construction called an indexer can be very ambiguous. Indexers are

elements of classes (as well as interfaces and structures) that allow objects to be

treated as arrays (by specifying the index in square brackets). This access is

implemented by implicitly called get and set routines.

For example, accessing individual bits of a 32-bit integer value (bits) can be

disguised as a logical array access. For this, the following description is created (in

this case, the structure):

public struct BitSet {

int bits;

public bool this[int i] {

get{return 0<=i && i<32? (bits & 1<<i) != 0: false;}

 set {

 if(i<0 || i>31) return;

 if(value) bits |= 1<<i; else bits &= ~(1<<i);}

When using properties and indexers, the programmer hides the costs that occur

during the work of get and set accessor programs, which provokes the use of

inadequate and ineffective techniques. For example, using an indexer to access the

elements of a linear list by their number with a significant length of the list is much

less effective than accessing an array element, although it looks the same. Using such

an indexer to step through the list is completely absurd, which, nevertheless, you are

nudged into.

The ability to understand the program is deteriorating. From its text, it becomes

impossible to know whether we are dealing with a field or a property, an array or an

indexer. This is despite the fact that accessing a field is always associated only with

getting or setting its value, and accessing a property can involve performing any

actions. The situation is similar for arrays and indexers.

I will give an example in C #, when the simplest fragment, whose operation in other

circumstances would be understood absolutely unambiguously, when using C # is

completely unpredictable.int i, s=0;

for (i=1; i<=100; i++) a[i]=i;

for (i=1; i<=100; i++) s += a[i];

System.Console.WriteLine(s);

Well, what's wrong with that? First, the elements a are alternately assigned the

values of the first hundred numbers of the natural series 1, 2, 3, , 99, 100. Then the

sum of these numbers is calculated and displayed, which must be equal to 5050.

Nothing like that! The value printed by this program can be anything. For example,

equal to 338350, if a is an indexable object of this type:class Array {

public int this[int i]{

 get{ return i*i; }

 set {}

A side effect is that the values of variables change when the expression is evaluated.

Many languages (including Pascal and Oberon) can define functions that have mutable

parameters or can change the values of global variables. These features have side

effects. Their use is considered bad practice as they pose a number of problems. The

meaning of the side-effect expression can depend on the order in which the operands

are evaluated.

Let's look at an example. Interpreters often use the stack when evaluating

expressions. Let Pop (S) be the function that returns the value popped from the S

stack, and Push (S, V) the procedure that pushes the value V onto the S stack. When

Pop (S) is called, the stack changes, this function has a side effect. To replace the top

two values in the stack with their difference (the value at the top must be subtracted

from the value below the top), you can try to write Push (S, –Pop (S) + Pop (S)). The

programmer expects that the first of the two recorded calls Pop (S) will be executed

first. In this case, the value taken from the top of the stack will participate in the

calculation with a minus sign. In fact, if the language does not set the order of

evaluation of the operands (this is the case, for example, in Pascal and C), the

compiler can swap the terms and program this action as Push (S, Pop (S) –Pop (S),

which will lead to the wrong result.

The presence of side-effect expressions makes the program difficult to understand

and is a potential source of errors. The task of optimizing compilers also becomes

more complicated.

However, in languages such as Algol-68 and C, side-effect exploitation is one of the

main techniques for obtaining a compact program record. In C and its derived

languages, increment and decrement operations (++, ––) and the use of operators (in

particular, assignments) as expressions create side effects. Having these capabilities is

one of the main prerequisites for getting confusing and obscure programs.

C # has even more room for side effects. The properties and indexers we've looked

at make a side effect normal since it's based entirely on it. A completely harmless

notation, similar to accessing a field or array element (which does not create a side

effect), in fact, can mean performing any action. And changing the value of a property

almost necessarily has a side effect.

Let's take an example. The loop below is fairly typical for C programs.

while (b = a [n ++]) {};

An expression in parentheses has a double side effect in C. Firstly, each of its

calculations assigns to the variable b the value of the nth element of the array a, and

secondly, increases the value of the variable n. In the absence of a habit of the C

language style, it is not easy to understand such a construction, but it is possible. The

same notation is allowed in a C # program. But looking at her, you can no longer tell

what is happening. After all, a can be an indexed object, and b - a property, and

"inside" both one and the other can be anything.

Such constructions of the C # language as namespaces, properties, indexers lead to

situations when it is impossible to understand the nature of the objects used in the

program from the text of the program (program unit). Class names can be mistaken for

namespace names and vice versa, properties are indistinguishable from fields, indexed

objects from arrays. When using the using directive, there is an ambiguity in

determining the belonging of identifiers to one or another namespace.

The noted problems with the unambiguous identification of program objects can be

partially solved using the hints system built into the programming environment. The C

language is intended primarily for use in the powerful Microsoft Visual Studio

programming environment. It is equipped with a developed help system and tools that

allow, in the course of a dialogue with the system, to determine the characteristics and

belonging of the program objects.

The foregoing means that the C # language assumes a "heavyweight"

implementation, when the programming system should include complex auxiliary

tools, without which the development of C # programs is complicated. Significant

costs for the creation of programming systems for the C # language, in addition to the

rather high complexity of the language itself, are also due to the fact that an extensive

system library (the System namespace) is an integral part of it. At one time, when

creating the Ada language, its authors put forward an important principle that guided

them in developing the language. The language should facilitate the production of

readable, clear and understandable programs. The ease of writing the program is not

the primary factor. However, the importance of improving "readability", albeit at the

expense of brevity and ease of writing, was recognized several years earlier, at the

time of the adoption of structured programming.

It's overloaded with adjectives. Of course, the description of the verbosity class is

deliberately made so verbose (verbosity). But the language allows it. The syntax of C

is designed in such a way that the use of multiple modifiers and descriptors is the

norm. Their following one after another without any separators makes it difficult to

perceive the program.

Let me explain the notation used in the example. All defined elements of a class

are of type verbosity. The protected internal modifiers mean that access to the

members of the class is restricted to the limits of the given project (internal) or

classes derived from verbosity. readonly means read-only access; virtual - the ability

to override a method in derived classes. The @ symbol in a constant name allows

you to use the const reserved word as an identifier. The word this, denoting this

instance of the class, is a mandatory element of the indexer description.

At the same time, the absence in the C # language of special words denoting a

method and a property (like the words procedure, function in Pascal-like languages)

makes us distinguish their descriptions from each other and from the description of

fields and indexers by indirect signs. There are parentheses after the method name in

the method description; in the property description - curly; the indexer has square;

there are no brackets in the field description, but an equal sign may be present. Just a

test for attentiveness is obtained.

The verbosity of C # (as well as Java) looks unattractive and stylistically flawed.

The rules borrowed from C allow you to write expressions and operators very

compactly using a variety of special characters. At the same time, object innovations

are cumbersome and, conversely, ignore the possibilities of punctuation marks. As a

result, it turns out that writing is difficult and not easy to read.

As mentioned, with judicious use of program space, the number of different

descriptors could be fewer. The static specifier would not be needed. The number of

words regulating access could have been less. An example of a simple, convenient

and visual design of access is given, again, by the languages Oberon and Oberon-2.

Of course, the discussed shortcomings of C # do not at all deprive the language of

prospects. It is preferable to C ++ in many ways. General dissatisfaction with the C

++ language, which is recognized by the very emergence of the new language, is one

of the main prerequisites for the success of C #.

Comparing C # to Java, you can see many similarities. True, if Java systems are

multi-platform, then the C # implementation exists so far only for the Windows

operating system and only one. But despite the cumbersomeness, the language can be

expected to be implemented for other systems as well. In addition, the Microsoft

.NET platform itself, with a unified program execution environment, can be

promoted to alternative architectures, primarily UNIX systems.

C # seems to be a more realistic language than Java. Unlike Java, it is self-

sufficient. That is, you can write any program in C # without resorting to other

languages. This is possible due to the presence of "unsafe" code blocks that open

access directly to the hardware. In Java, native methods must be used to access low-

level tools, and must be programmed in other languages.

Department of Avionics

Page

NAU 20 02 07 000 EN

 Done by Kozakov M.A.

 Supervisor Belinskyi V.N.

 Consult Belinskyi V.N.

 N - control Levkivskyi V.V

 Head of dep Pavlova S.V.

LOGIC OF POCKET

AVIONICS APP

Letters Pages

 173 Avionics

CHAPTER 4: LOGIC OF POCKET AVIONICS APP

4.1 Container with parameters for the card

A ScriptableObject is a data container that you can use to save large amounts of

data, independent of class instances. One of the main use cases for ScriptableObjects

is to reduce your Project’s memory usage by avoiding copies of values. This is useful

if your Project has a Prefab

 that stores unchanging data in attached MonoBehaviour scripts

Every time you instantiate that Prefab, it will get its own copy of that data. Instead

of using the method, and storing duplicated data, you can use a ScriptableObject to

store the data and then access it by reference from all of the Prefabs. This means that

there is one copy of the data in memory.

Just like MonoBehaviours, ScriptableObjects derive from the base Unity object

but, unlike MonoBehaviours, you can not attach a ScriptableObject to a GameObject

. Instead, you need to save them as Assets in your Project.

When you use the Editor, you can save data to ScriptableObjects while editing

and at run time because ScriptableObjects use the Editor namespace and Editor

scripting. In a deployed build, however, you can’t use ScriptableObjects to save data,

but you can use the saved data from the ScriptableObject Assets that you set up

during development.

Data that you save from Editor Tools to ScriptableObjects as an asset is written to

disk and is therefore persistent between sessions.

Using a ScriptableObject

The main use cases for ScriptableObjects are:

Saving and storing data during an Editor session

Saving data as an Asset in your Project to use at run time

To use a ScriptableObject, create a script in your application’s Assets

 folder and make it inherit from the ScriptableObject class. You can use the

CreateAssetMenu attribute to make it easy to create custom assets using your class.

For example Pics 4.1

Pics 4.2

4.2 Card availability check

Creates a new game object, named name.

Transform is always added to the GameObject that is being created. The creation

of a GameObject with no script arguments will add the Transform but nothing else.

Similarly, the version with just a single string argument just adds this and the

Transform. Finally, the third version allows the name to be specified but also

components to be passed in as an array Pics 4.3

Pics 4.3

Every time a player enters the game, the program checks the player's cards and

activates those cards that he has. Missing cards are shown blank.One canvas for all

UI elements is sufficient, but multiple canvases in a scene are acceptable. It is also

possible to use multiple canvases, with one exposed as a child of the other, for

optimization. The nested canvas uses the same Render Mode as its parent.

Traditionally, user interfaces are displayed directly on the screen as simple

elements. This means they have no idea of the 3D space displayed by the camera.

Unity supports this display-space rendering method, but also allows interfaces to be

drawn as objects in the scene, depending on the Render Mode. The available modes

are Screen Space - Overlay, Screen Space - Camera and World Space Pics 4.4.

Pics 4.4

4.3. Implementation of a collection of maps in the application

The Hierarchy window contains a list of every GameObject in the current Scene.

Some of these are direct instances of Asset files (like 3D models), and others are

instances of Prefabs, which are custom GameObjects that make up most of your

game. When you add or remove GameObjects the Scene (or when your gameplay

mechanic adds and removes them), they appear and disappear from the Hierarchy as

well Pics 4.5

Pics 4.5

By default, the Hierarchy window lists GameObjects by order of creation, with

the most recently created GameObjects at the the bottom. You can re-order the

GameObjects by dragging them up or down, or by making them “child” or “parent”

GameObjects (see below).

Unity uses a concept called Parenting. When you create a group of GameObjects,

the topmost GameObject or Scene is called the “parent GameObject”, and all

GameObjects grouped underneath it are called “child GameObjects” or “children”.

You can also create nested parent-child GameObjects (called “descendants” of the

top-level parent GameObject) Pics 4.6

Pics 4.6

4.4 Implementation of the "Test" block in the application

Every day the player gets the opportunity to take a test. For each correct answer in

the test, the player receives points. If the answer is incorrect, the player drops out of

the test, all points obtained during the test remain with the player. 4-Choice Tests

Pics 4.7

Pics 4.7

4.5 Implementing drops from cards and writing them to the collection

Having accumulated 50 points, the player can purchase 5 random cards that will

be added to the collection. Each repeated card instantly turns into points Pics 4.8

Pics 4.8

Pics 4.9

Department of Avionics

Page

NAU 20 02 07 000 EN

 Done by Kozakov M.A.

 Supervisor Belinskyi V.N.

 Consult Belinskyi V.N.

 N - control Levkivskyi V.V

 Head of dep Pavlova S.V.

OCCUPATIONAL

HEALTH AND SAFETY

Letters Pages

 173 Avionics

CHAPTER 5: OCCUPATIONAL HEALTH AND SAFETY

 Occupational safety is a system of legal, socio-economic, organizational and

technical, sanitary and hygienic, medical and preventive measures aimed at

preserving life, health and ability to work in the process of work.

 The main provisions on labor protection are enshrined in the Law of Ukraine

"On Labor Protection" (Resolution of the Verkhovna Rada of Ukraine of October

14, 1992 № 2695-XII), the Labor Code of Ukraine and in the regulatory and

technical documentation on labor protection, which provides for responsibilities on

labor protection, the content and procedure for approval of instructions on labor

protection, requirements for production facilities and equipment, free issuance of

overalls and personal protective equipment for work with harmful working

conditions, the issuance of milk, preventive nutrition, etc.

 List of dangerous and harmful production factors operating in the work area

The developed system of external television video surveillance is designed to work

around the aircraft, in the operating room, where a centralized surveillance panel is

installed.

 Classification ”on employees servicing such equipment may be subject to the

following dangerous and harmful production factors:

1. Increased or underestimated relative temperatures humidity, speed and dustiness

of the air flow.

2. Intense neuro-psychological state associated with mental tension and emotional

overload.

3. Increased voltage in the electrical circuit, the short circuit of which can pass

through the human body when touching and touching damaged parts of electrical

equipment on board the aircraft, erroneous supply of voltage during maintenance

and repair, as well as inspection of devices and equipment around the aircraft, in

operating room, as a result of insulation damage, etc.

4. Fire and explosion hazard.

 Organizational and technical measures to eliminate or reduce the level of

hazardous and harmful factors

Normalization of the microclimate

 "Sanitary and hygienic requirements for the air of the working area", means a

combination of temperature, relative humidity, speed and dust. These parameters

affect the functional activity of man, his health and well-being and the reliability of

technology.

 Under the optimal microclimatic parameters are understood those that with

long-term and systematic exposure to humans ensure the preservation of normal

functional and thermal state of the body without enhanced thermoregulatory

reactions, create a feeling of thermal comfort and are a prerequisite for a high level

of efficiency.

 A place where an employee is more than 50% of his working time or more

than 2 hours continuously is called a permanent place of work.

 When performing operator-type work related to nervous and emotional stress,

the optimal values of air temperature 22-24oС, its relative humidity 60-40% and

speed (not more than 0.1 m / s) must be observed.

 To maintain the optimal microclimate in the operating room requires the use of

central or autonomous heating, humidifier, ventilation devices, air conditioning.

Ensuring a stable neuro-psychological state

 To normalize the neuro-psychological state associated with mental tension and

emotional overload, the following measures are taken:

1) adheres to the established mode of work and rest;

2) complex automation and mechanization of processes is carried out;

3) employees are provided with the necessary, serviceable personal protective

equipment;

4) sanitary and technical propaganda and training in safe work practices are carried

out;

5) rational arrangement of equipment is applied;

6) architectural, planning and technological solutions aimed at isolating noise

sources are used.

Ensuring electrical safety

 Calculation of protective earthing of the remote equipment of the surveillance

system.

Grounding is made of tubular vertical grounding and is connected by a metal strip.

1. Determine the calculated value of the resistivity of the soil for vertical grounding

)('

.розр and)(''

.розр :

 ''

. nрозр k

 ""

. nрозр k

 "' , nn kk - coefficients of specific soil resistance, equal to 1.6 and 2.5,

respectively, for the third climatic zone.

мОмрозр 22'

. 106,16,110

 мОмрозр 22"

. 105,25,210

2. Determine the current resistance of one vertical grounding by the formula:

)
4

4
lg

2

12
(lg

2

1
'

.

lH

lH

d

l

l
R

розр

тр

where l is the length of the grounding pipe, 3 m;

d is the diameter of the pipe, 0.05 m;

H is the depth of the tubular ground, which is equal to the distance from the ground

to the middle of the rod, 2.3 m.

 ОмRтр 395,4)
33,24

33,24
lg

2

1

05,0

32
(lg

3

106,1

2

1 2

3. Determine the conditional number of vertical grounding:

.

.'

доп

тр

R

R
n

 1,1
4

395,4' n

The coefficient of use of a single ground, which takes into account the mutual

shielding of pipes:

 5,0. тр

Determine the actual number of vertical grounding:

 2,2
5,0

1,1'

n
n

Based on the conditional and refined calculations of vertical grounding conductors,

we take their number equal to 2.

4. The spreading current of the connecting strip:

hb

L

L
R розрc

2
"

.

2
lg

16,0

where L is the length of the line connecting the vertical grounding, 6.9 m;

h - depth of laying the strip, 0.8 m;

b - width of the strip, 0.04 m.

 ОмRc 62,4
8,004,0

9,62
lg105,2

9,6

16,0 2
2

Coefficient taking into account the mutual shielding of the strip and vertical

grounding:

 24,0с

5. Determine the current resistance of the entire grounding device:

..

.

трcтр

cтр

з
RnR

RR
R

 ОмRз 6,3
5,062,42,224,0395,4

62,4395,4

The organization of work on fire safety at the enterprise is entrusted to its head, and

in shops, services, departments and sections by the order of the head of the enterprise -

to the corresponding heads.

Combustion is a complex of physicochemical transformations that is accompanied

by the release of heat and, in most cases, the emission of light.

Fire is a combustion that develops in time and space and ceases to be controlled.

Fire safety of the designed external video surveillance system is provided in

accordance with “Fire safety. General requirements ”, explosive - according to

“Explosion safety. General requirements ”.

According to the designed devices are dangerous in the fire relation because the

electric current is a source of fire and in installation plastic, paint and varnish

coverings, vinyl isolation of wires, printed circuit boards are used.

Fire safety during operation of installation is provided:

- system of fire prevention measures;

- system of fire protection measures;

- organizational and technical measures.

Fire prevention is provided by the following:

- in the design of the installation there are no flammable materials;

- the cross section of the mounting wires is selected according to the allowable

current density

j=23 А/мм
2

- all resistors used are selected according to the allowable scattering power;

- capacitors are selected taking into account the allowable voltage;

- in the projected installation, the possibility of an explosion or the formation of a

spark is excluded, as in its design there are no open switching contacts, all elements of

the circuit are closed and hermetically sealed. The case and the front panel are made of

duralumin of the D16 brand which at blow on other metals does not form sparks;

- installation details and printed circuit boards are covered with an electrically

insulating varnish that excludes a possibility of hit on circuit elements of moisture,

and, accordingly, and short circuit, corrosion and ignition;

- Fuses are provided in the power supply unit to protect the network from overload

and short circuit.

Fire protection is provided by:

- application of the automatic fire alarm system, at the panel of the centralized

supervision;

- the use of fire extinguishers.

Organizational and technical measures include:

- training of engineering and technical personnel in fire safety rules;

- organization of fire protection;

- development of instructions on the procedure for working with fire-hazardous

substances and materials.

Admission to work with electrical installations of persons who have been

instructed and trained in safe methods and techniques of work, who have

passed the test according to the rules of safety of work with the assignment of

a qualification group for safety and not

have medical contraindications established by the Ministry of Health.

2. Safety requirements before starting work

- Before starting work, it is necessary to free the workplace from unnecessary

flammable objects and materials.

- Make sure that the fuses correspond to the ratings indicated on the front

panel of the device.

- Check that the device is grounded.

3. Safety requirements during work

- Connect and disconnect plug connectors, device cables with the power off.

- Repair work associated with the replacement of elements, modules of the

alarm system to carry out in a de-energized state.

- Repair and maintenance of the device to do only the serviceable tool having

external isolation and the corresponding marking.

- Carry out electrical measurements only with approved certified devices.

- It is allowed to install fuses only with the nominal data indicated in the

diagram.

4. Safety requirements after work

- At the end of the work, check the quality of the power supply connect ion of

the alarm system.

- You need to clean your workplace.

- Sanitary norms and rules of personal hygiene must be observed.

- If there are any defects in the operation of the device, you must notify the

supervisor.

5. Safety requirements in emergency situations

- In case of fire, use only carbon dioxide fire extinguisher.

There must be a carbon dioxide fire extinguisher (OU-2 or OU-5) in the room

where the centralized monitoring panel is located.

Conclusion:

We calculated the protective grounding for the remote equipment of the

external video surveillance system, the resistance of which satisfies the

requirements, Rs <4 Ohms.

Department of Avionics

Page

NAU 20 02 07 000 EN

 Done by Kozakov M.A.

 Supervisor Belinskyi V.N.

 Consult Belinskyi V.N.

 N - control Levkivskyi V.V

 Head of dep Pavlova S.V.

ENVIRONMENTAL

PROTECTION

Letters Pages

 173 Avionics

CHAPTER 6: ENVIRONMENTAL PROTECTION

Environmental protection is becoming a complex problem, which is determined

by the complexity of the system that combines nature, society and production. Along

with environmental problems, it also solves socio-economic problems - improving

human living conditions, maintaining their health. Obviously, a written, science-based

approach is needed to protect the environment. Any technical process to some extent

affects the protection of the environment, polluting it.

Digital cameras, when operated during aircraft protection, are not capable of

causing direct damage to the environment because they do not form any carcinogenic,

toxic or other harmful substances that affect the air, water bodies, humans, animals,

vegetation or soil. .

However, in the manufacture of the device is indirect damage to the

environment:

- high level of electricity consumption;

- electromagnetic radiation;

- acoustic pollution;

- soft X-rays;

The growth of use in various sectors of the economy requires the most serious

attitude to issues related to the impact of computers on the living environment.

The complexity of this problem can be analyzed on the example of the

manufacture of integrated circuits, which reveals a number of factors that

have an impact on the environment. The elements of the circuit are mounted on

printed circuit boards made of foil fiberglass. When processing its inevitable waste:

pieces of boards, powder dust, which, getting into the soil, is stored for a long time.

And the fumes that are formed during digestion have a detrimental effect on the

workers employed in this production and are released into the environment.

During operation, the elements of its design emit heat (heated chips, transistors,

resistors), resulting in heated protective varnishes, paints, creating toxic substances

in the atmosphere in the form of volatile fractions. This is only a superficial

analysis of one of the components

Electromagnetic energy is used in radio communication, radar, radio navigation,

television, metallurgy and metalworking industry for induction melting, welding,

metal spraying.

In production facilities, sources of electromagnetic radiation are unshielded

operating elements of high-frequency installations (inductors, capacitors, high-

frequency transformers, feeder lines, capacitor banks, coils of oscillating circuits,

etc.). When operating RF, VHF, UHF transmitters on radio and TV centers, the

sources of electromagnetic radiation are high-frequency generators, antenna

switches, devices for assembling the power of the electromagnetic field,

communications (from generator to antenna device), antennas.

The degree of exposure of workers depends on the number of transmitters

placed in the room (in some areas, radio and television centers can be up to 20),

their power, degree of shielding, placement of individual units inside and outside

the room.

In terms of production, electromagnetic radiation is characterized by a variety of

modes of generation and options for workers (radiation in the near zone, induction

zone, general and local, which often acts together with other adverse environmental

factors). Radiation can be an isolated combination of mixed and combined (when

another adverse factor is acting at the same time). It can be constant or intermittent.

The latter, in turn, can be periodic and aperiodic. The electromagnetic field has a

negative effect on the human body. There are two forms of electromagnetic

radiation in the radio frequency range - acute and chronic, which, in turn, is divided

into three stages: mild, moderate and severe. The chronic form is characterized by

functional disorders of the nervous, cardiovascular and other systems of the body,

manifested by asthenic syndrome, and autonomic disorders, mainly of the

cardiovascular system.

People who are exposed to chronic radiation are more likely (1.9 times men and

1.5 times women) than those who are not exposed to radiation, complain of poor

health, including headaches (1 , 5 times men and 1.3 times women), heart pain (1.8

times men and 1.5 times women), palpitations, general weakness, drowsiness,

tinnitus, paresthesia, etc.

Electromagnetic radiation is a powerful physical stimulus. Different organisms

have different sensitivities to natural and anthropogenic (artificial): the nature and

presence of the biological effect depend on the parameters and level of

organization of the biosystem. Millimeter waves affect mainly the receptor

apparatus, longer waves - on the central nervous system.

Radiofrequency radiation is absorbed differently by different organs and systems of

the body: their shape and linear dimensions, orientation relative to the source are

essential. Primary changes in the functions of the central nervous system and

related disorders cause biological effects at the level of organs and systems.

Prolonged exposure to high levels of electromagnetic radiation leads to overstrain

of adaptive-compensatory mechanisms, significant deviations in the functions of

organs and systems, metabolic disorders and enzymatic activity, hypoxia, organic

changes. Because electromagnetic radiation acts in the production environment,

usually in combination with other factors, its effect on the human body is

enhanced. Protective and adaptive reactions that occur in humans under the

influence of electromagnetic radiation are non-specific. The most common

adaptive reactions are excitation of the central nervous system and increased

metabolism.

The effects of exposure to human biological tissues of electromagnetic radiation

in the low-power radio frequency range are divided into thermal and non-thermal.

The thermal effect can be shown at the person or increase in body temperature, or

selective (selective) heating of its separate bodies which thermoregulation is

complicated, gall bladders, stomach, intestines, testicles, lenses, vitreous, etc.). The

effect of electromagnetic radiation on a biological object is detected when the

intensity of radiation is lower than its thermal threshold values, ie there are non-

thermal effects or specific action of radio waves, which is determined by the

information aspect of electromagnetic radiation perceived by the body and depends

on the source and communication channel . Obviously, information processes also

play a role in the thermal action of the electromagnetic field on the body. In

addition, the action of low-intensity electromagnetic radiation leads to local heating

- micro-heating.

Conditionally distinguish the following mechanisms of biological action:

- direct effect on tissues and organs, when the function of the central nervous

system changes and the associated neurohumoral regulation;

- reflex changes of neurohumoral regulation;

- a combination of the main mechanisms of pathogenesis, actions with a

predominant metabolic disorder, enzyme activity. The proportion of each of these

mechanisms is determined by physical and biological changes in the human body.

Therefore, the effect of electromagnetic radiation is systemic in nature and

requires appropriate systemic measures to protect against it.

The biological effect of the electrostatic field on a person depends on its

duration, the shape of the conductive parts of the equipment, the location of the

workplace relative to the radiation source, climatic conditions and so on.

Experimental animal studies have been shown to affect the nervous,

cardiovascular, endocrine and other body systems. In particular, changes in the

electrical activity of the cerebral cortex and conditioned reflex activity were

registered. The electrostatic field causes changes in blood pressure, which are

unstable and phase in nature, the rate of blood clotting, the content of sulfhydryl

groups in the blood.

Exposure to workers leads to irritability, headache, sleep disturbances, loss of

appetite, impaired central nervous system function, changes in heart rate (usually

bradycardia) and carbohydrate, lipid, protein and mineral metabolism, as well as a

decrease enzyme activity.

Measures to protect against static electricity are aimed at reducing the

generation of electric charges or their removal from the electrified material by

increasing its electrical conductivity. These measures include grounding of metal

and electrically conductive elements of equipment, installation of static

neutralizers, increasing the surface and bulk conductivity of dielectrics. The

elements of the equipment in which electric charges are formed and the isolated

electrically conductive sections of technological installations are subject to

grounding. Devices for protection against static electricity are almost always

combined with protective earthing devices.

The most effective of these measures to combat static electricity is to increase

the surface and bulk conductivity of dielectrics. Increasing the relative humidity to

60-75% significantly increases the surface conductivity of dielectric hydrophilic

materials (adsorb a thin film of moisture on its surface). The use of antistatic

substances is based on this principle. Surfactants are applied to the surface or

introduced into the mass of the material (the latter is more rational, as it promotes

long-term storage of polymers with antistatic properties).

It is also possible to neutralize electric charges by means of air ionization. To do

this, use static electricity neutralizers, the principle of which is to create near the

electrified materials of positive and negative ions. For antistatic protection, you can

also use the principle of shielding with metal sheets. The field formed on the walls

of the screen neutralizes the external field. In order for electric charges from the

human body to be diverted to the ground faster, electrically conductive floors are

used. Individual means of protecting the human body from static electricity include

antistatic robes, grounding wristbands, antistatic shoes, and others. When choosing

such means, it is necessary to take into account the peculiarities of the

technological process, physical and chemical properties of the processed material,

the microclimate of the premises, etc.

The television system of external video surveillance developed in this diploma

project is a necessary element and use accelerates process of calculations and

allows to receive results on development and improvement of system. Incoming

data:

Розрахунок видатку електроенергії визначають в залежності від потужності

базового обладнання, кількість годин роботи з урахуванням коефіцієнта

корисної дії:

вм

n

і

зідіyin

і

об
К

ККФM

W
*

1

0

1

 (6.1)

where: Myi - total power of the i-th equipment, kW; Fdi - the actual time

fund of the i-th equipment before the introduction of the complex: FdEOM = (365-

144) * 8 = 2652 h - before the introduction of the complex; FdEOM ’= (365-144) * 6

= 1768; Fd '= 365 * 24 = 8760 h - after the introduction of the complex; Kzi - load

factor of the i-th equipment; Kz = 0.8 - before the introduction of the complex; Kz '=

0.5 - after the introduction of the complex; Kz '= 0,2 (as in parallel the Server serves 4

more); K0 - renewal rate: K0 = 0.8; η - efficiency: η = 0.85; Kvs - coefficient of losses

in networks:

Kvs = 0.95; Wob = 3 * WEOM = 1261.13 KW * year;

Wе = (0.2 * 1768 * 0.5 * 0.8) / (0.95 * 0.85) = 175.1579 kW * year;

Wр = (0.23 * 8760 * 0.2 * 0.8) / (0.95 * 0.85) = 399.22 kW * year;

Determine the cost of electricity for lighting the production room by the

formula:

n

i

іціy

oy

КФFP
W

1 1000

 (6.2)

 The specific consumption of electricity per 1 m2 of area, depending on the type

of lamp, in this case is equal to 60 * 2/20 = 6 W;

Ftsi - area of the i-th section, 20 m2;

Fgi - the number of operating hours of lighting fixtures:

Fgi = 5 * 221 = 1105 h,

Fg = 4 * Fgi = 4420 h;

F’gi = 4 * 221 = 884 h,

Fg = 4 * Fg = 3536 h.

K - loss factor:

Total electricity consumption

oyоб WWW (5.3)

before the introduction of the complex:

oyоб WWW

057.181892.55613.1261 W

after the introduction of the complex:

oyоб WWW ’’’

069.119507.89143.1377 W

(5.4)

Averted economic damage to the environment:

Inflicted environmental damage

еел УWУ * (5.5)

 71,27215,0*057,1818* еел УWУ

26,17915,0*069,1195*’’ еел УWУ

As a result of using a new type of human-machine system and the transition to a

network structure, the program can improve working conditions, save electricity and

reduce not only the damage to the environment, but also the time spent on data

processing.

Conclusions

This section discusses the impact of harmful factors in the production of an

external video surveillance system on the human body that occur during the process,

as well as the impact of other related equipment on the environment.

The systems, during operation, are not capable of causing direct damage to the

environment because they do not form any substances of carcinogenic, toxic or other

harmful nature that affect the air, water bodies, humans, animals, vegetation or soil.

However, in the manufacture of the device is indirect damage to the environment,

namely:

- high level of electricity consumption;

- electromagnetic radiation;

- acoustic pollution.

CONCLUSIONS

Unity3d is a modern cross-platform engine for creating games and applications

using Unity Technologies. With this engine, you can develop not only applications

for computers, but also for mobile devices (for example, based on Android), game

consoles and other devices.

Let's talk a little about the characteristics of the engine. First, it is worth noting

that the engine is integrated in the Unity development environment, in other words,

you can test the application without leaving the editor. Secondly, Unity supports a

huge number of different formats, which allows you to develop games, construct the

models themselves in a more convenient application, and use Unity for its intended

purpose - product development. Thirdly, scripting (scripting) is performed in the most

popular programming languages - C #.

REFERENCES

[1] Skripets A.V. Fundamentals of Aviation Engineering Psychology.

Kyiv,2002.

[2] https://www.skybrary.aero/index.php/Pilot_Mental_Health

[3] https://www.coloradofirecamp.com/swiss-cheese/introduction.htm

[4] 1. Beregovoy G. T., Lomov B. F., Ponomarenko V. A. Experimental

psychological studies in aviation and astronautics. M., 1978.

[5] Hryschchenko Y. V., Kravets I.V. Signaling methods about deteriorating

quality of aircraft flight // Науково-технічна конференція «Проблеми розвитку

глобальної системи зв’язку, навігації, спостереження та організації повітряного

руху CNS/ATM», 21-23 листопада, 2018. – с. 66.

[6] Hryshchenko Y.V. Reliability problem of ergatic control systems in

aviation // Methods and Systems of Navigation and Motion Control // Y.V.

Hryshchenko / IEEE 4th International Conference (October 18-20, 2016) –

Kyiv, Ukraine, pp. 126-129.

[7] Gryshchenko Yu.V. Preparation of pilots for flights in special situations,

taking into account the phenomenon of strengthening the dynamic stereotype //

Cybernetics and computer technology. K.: NAS of Ukraine, 2003. - Vip. 139. P. 81-

85; UDC 629.735: 614.8

https://www.skybrary.aero/index.php/Pilot_Mental_Health
https://www.coloradofirecamp.com/swiss-cheese/introduction.htm

