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Abstract

Neural networks possess an ability to generalize well to data distribution, to an extent that they are capable
of fitting to a randomly labeled data. But they are also known to be extremely sensitive to adversarial
examples. Batch Normalization (BatchNorm), very commonly part of deep learning architecture, has been
found to increase adversarial vulnerability. Fixup Initialization (Fixup Init) has been shown as an alternative
to BatchNorm, which can considerably strengthen the networks against adversarial examples. This robustness
can be improved further by employing smaller batch size in training. The latter, however, comes with a
tradeoff in the form of a significant increase of training time (up to ten times longer when reducing batch
size from the default 128 to 8 for ResNet-56). In this paper, we propose a workaround to this problem by
starting the training with a small batch size and gradually increase it to larger ones during training. We
empirically show that our proposal can still improve adversarial robustness (up to 5.73%) of ResNet-56 with
Fixup Init and default batch size of 128. At the same time, our proposal keeps the training time considerably
shorter (only 4 times longer, instead of 10 times).

Keywords: adversarial examples, batch normalization, fixup initialization, batch size variation

1. Introduction

Deep learning has progressed rapidly for the
last couple of years, capable of achieving super
human performance. In the field of computer vision,
Convolutional neural network (ConvNet) has gained
momentum after AlexNet [1] won the ImageNet
Challenge in 2012 [2], surpassing the performance
of traditional computer vision. Despite its lack of
interpretability, it has made its way to security-
or safety-critical systems such as medical analysis
[3, 4], face recognition [5, 6] and autonomous cars
[7].

In 2013, Szegedy et al. found surprising prop-
erties of neural network [8]. One of those is that
because how ConvNet processes an image, we could
craft an adversarial image which has imperceptible
change to human eye, but enough to make ConvNet
misclassify an image. In 2014, Goodfellow et al.
proposed a simple yet efficient technique, called
Fast Gradient Sign Method, to craft an adversarial
examples [9]. Several stronger methods have been
proposed (e.g. Projected Gradient Descent Attack
[10], Carlini & Wagner Attack [11], Momentum
Iterative Fast Gradient Sign Method Attack [12]).

These stronger attacks with larger perturbation value
can reduce the accuracy of undefended ConvNet
models to zero. One of the extreme examples is
one-pixel attack that only modified one pixel using
differential evolution algorithm [13]. One-pixel at-
tack does not require the gradient of the model; only
the probability of each label is needed to compute
the perturbation and it has 31.40% success rate
when performed against VGG [13]. Transferrability
of adversarial perturbations between ConvNet archi-
tectures also has been observed [14].

In 2019, Galloway et al. studied the effect of
Batch Normalization (BatchNorm) [16] on adversar-
ial robustness [15] and found that by avoiding the
usage of BatchNorm, adversarial robustness can be
increased. They proposed to use Fixup Initialization
(Fixup Init) [17] as an alternative to increase adver-
sarial robustness.

The use of a larger batch size has been observed
to reduce accuracy [18, 19]. Similarly, our exper-
iments show that using smaller batch size reduces
adversarial vulnerability, i.e., lessens the accuracy
reduction due to adversarial examples. However, it
makes training longer (up to 10 times from the
default batch size of 128 to 8). Consequently, reduc-
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Figure 1. Example of Adversarial Attack: Fast Gradient Sign Method (FGSM) by [9]

ing batch size may not feasible in some scenario,
especially when a large dataset such as ImageNet
is being used. Increasing batch size has a similar
effect to decaying learning rate [20]. Based on these
observations we raise the following question: Can
we increase adversarial robustness by reducing
the starting batch size and gradually increase
it during training? In this paper, we show that
adversarial robustness of Fixup Init can be further
increased by modifying the learning schedule while
keeping training time reasonably low.

2. Preliminaries

2.1. Adversarial Examples

It has been argued that deep learning works by
encoding a non-local generalization prior over the
input space [21]. It assumes that the target function
is smooth or can be approximated with a smooth
function. Given a training example (xi, yi), a func-
tion f(xj) will outputs yi if xj is within a small
radius of xi. This helps the generalization because
xj might represent xi from different point of view or
different scale. By exploiting the smoothness prior,
we can make a perturbation in the input space, which
is small enough for human eyes not to notice but
large enough to make the output jump to a region
of the input space with non significant probabilities
that contains no training examples in their vicinity
[8]. The perturbation is usually constrained by ε
to ensure that the perturbation is small enough.
Szegedy et al. demonstrated this intriguing property
by proposing a method to compute the perturbation
using L-BFGS algorithm [22]. This method is able
to fool ConvNet although rather weak and, consid-
ering the result, is expensive to compute by today’s
standard.

One of the simplest yet very efficient adversar-
ial attack algorithms is Fast Gradient Sign Method
(FGSM) [9]. This method is a pure one-shot opti-
mization problem. It computes adversarial examples
by adding one-pixel-wide perturbation in the oppo-
site direction of the gradient of the cost function
for the input. The magnitude of the perturbation is
scaled by a constraint which makes the magnitude of
the gradient is not important and only the direction
(sign) is used. The formula to compute FGSM is
defined as follows:

Zadv = Z + ε · sign(∇xJ(θ,Z, y)) (1)

where Zadv is the perturbed image, Z is the original
image, ε is the constraint, J is the cost function for
the input, θ is the weight of the model, and y is the
original label. This is an untargeted attack because
the goal is only to maximize the error that would
change the prediction.

Kurakin et al. modified FGSM to be an iterative
method [10]. This method is often called Basic Iter-
ative Method (BIM) or Projected Gradients Descent
(PGD) without random start, which is formulated as
follows.

Zadv
0 = Z

Z ′ = Zadv
N + α · sign(∇xJ(θ,Z

adv
N , y))

Zadv
N+1 =


Z − ε if Z ′ < Z − ε
Z ′ if Z − ε ≤ Z ′ ≤ Z + ε

Z + ε if Z ′ > Z + ε

(2)

where α is the magnitude of the perturbation for
each iteration and N is the number of iteration.

2.2. Batch Normalization

BatchNorm can be considered one of best dis-
coveries for the progress of deep learning [16].
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Nevertheless despite its indisputable success, there is
no consensus where the benefit of using BatchNorm
comes from [23, 24]. The authors of the original
paper hypothesized that BatchNorm reduces the in-
ternal covariate shift problem, the distribution of
activation tends to drift during training which affects
subsequent layers. BatchNorm attempts to stabilize
the distributions of layer inputs by controlling its
mean and variance. BatchNorm can be formulated
as:

X ′ ←
X − µ
√
σ2 + δ

(3)

where µ is the mini-batch mean, σ2 is the mini-batch
variance, and δ is a small constant added for numeri-
cal stability. After normalizing, affine transformation
is applied.

X̂ ← γX ′ + β (4)

where γ and β are learnable parameters, used to
scale and shift the values respectively.

Santurkar et al. argues that BatchNorm might
not even reduce internal covariate shift [23]. The
success of BatchNorm comes from how BatchNorm
regularize the optimization problem itself that makes
the gradient smoother, thus more predictive. That is
how BatchNorm allows the use of larger learning
rate and faster convergence.

2.3. Fixup Initialization

Zhang et al. proposed Fixup Initialization (Fixup
Init) to solve the exploding gradient problem of skip
connection by scaling down the initialization [17].

Figure 2. Residual Block from ResNet [25]

As we can see in Figure 2, in residual block,
skip connection adds the original value to the final
value of the block. Combining ReLU [26] and skip
connection solves the vanishing gradient problem
where during backpropagation, gradient information
will be lost as it passes through many layers. Skip
connection can be formulated as:

Xi =Xi−1 + F(Xi−1,θi−1). (5)

where θ is the weight of the layers inside the block.
However, combined by He Initialization [27], skip
connection may double the magnitude of the vari-
ance of input to each layer. This causes the gradient
to grow exponentially:

Var(Xi) = Var(Xi−1) + Var(F(Xi−1,θi))

≈ 2Var(Xi−1)
(6)

Balduzzi et al. demonstrated that we can solve
the exploding gradient problem by scaling down the
above input to each subsequent layer [28]:

Xi = α · (Xi−1 + F(θ,Xi−1)) (7)

where α = 1√
2

. On the other hand, in the original
ResNet, BatchNorm is employed to solve the above
problem [25].

Fixup Init solves the exploding gradient problem
at early stage of training by scaling down the initial-
ization of the first convolution layer from residual
block by the number of layers (

√
L). Scaling down

alone is enough to be able to train deep network with
skip connections, but the network will not be able
to perform as good as ResNet with normalization
layer. To match the performance of ResNet with nor-
malization layer, Fixup Init performs the following
further modifications:

• Initialize classification layer and the last con-
volution layer from residual block to 0.

• Add learnable parameter as multiplier to the
last convolution layer from residual block.

• Add learnable parameter as bias to every
linear, convolution and activation layer.

The latter two modifications above are similar to the
affine transformation performed by BatchNorm.

3. Increasing Adversarial Robustness of
Fixup Initialization

Our proposed solution to increase adversarial
robustness of ResNet with Fixup Init through two
main steps: a reduction of initial batch size, and then
gradually increasing the batch size during training.
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3.1. Reduce Starting Batch Size

As has been observed before, using larger batch
size tends to reduce accuracy [18, 19]. Therefore first
we simply reduce the batch size from 128 (FRN-56-
BS128) to 32 (FRN-56-BS32) and 8 (FRN-56-BS8).
We also use Linear Scaling Rule as proposed by
Goyal et al. which states that ”When the minibatch
size is multiplied by k, multiply the learning rate by
k.” [19] The following formula is used to calculate
the initial learning rate:

η = ηorig/bs ∗ bsorig (8)

where η is the current learning rate, ηorig is the
original learning rate (0.1), bs is the current batch
size, and bsorig is the original batch size (128).
Linear Scaling Rule is also used by the original
Fixup Init implementation, although the intention is
to increase learning rate if larger batch size is used.
Both batch size and learning rate are multiplied by
the number of GPUs.

3.2. Increase Batch Size during Training

Reducing batch size to 8 significantly increases
training time. Training Fixup ResNet-56 with batch
size of 128 takes 36:53, while with batch size of
8 takes 6:00:26. To reduce the training time, we
borrow the idea from Smith et al. to increase batch
size during training [20], they proposed to increase
the batch size when learning rate should be decayed
and keep learning rate constant. The difference from
what Smith et al. proposed is that we reduce starting
batch size, and gradually increase to the original
batch size before epoch 100, when the learning rate
starts to be decayed. We consider the following
learning schedule:

• Batch Size 8 Schedule 1 (FRN56-BS8-S1):
Reduce the starting batch size to 8, gradually
increase it to 512, multiply by 2 at epoch
20, 40, 60, 80, 100, and 150. The idea is
to divide evenly for the first 100 epochs to
increase batch size. So we multiply by 2
every 20 epochs.

• Batch Size 32 Schedule 1 (FRN56-BS32-
S1): Reduce the starting batch size to 32,
gradually increase it to 512, multiply by 2 at
epoch 20, 40, 100, and 150. In this scenario,
we simply increase batch size as early as
possible.

As we can see from Figure 4a, test accuracy is
still increasing at epoch 20, which is a sign that the
model has not converged using the current learning
rate and batch size. Thus, we also propose to modify

the schedule by delaying the starting batch size
multiplier from epoch 20-40-60-80-100-150 to 60-
70-80-90-100-150 (Schedule 2 or FRN56-BS8-S2).
Similar to FRN56-BS8-S2, we also delay the starting
batch size multiplier for Fixup ResNet-56 with a
batch size of 32 from 20-40-100-150 to 60-80-100-
150 (FRN56-BS32-S2). By looking at Figure 4b,
we can see that test accuracy is still improving at
epoch 60. Thus, we further delay the starting batch
size multiplier from 60-80-100-150 to 80-90-100-
150 (Schedule 3 or FRN56-BS32-S3).

Because at epoch 100 and 150, batch size is mul-
tiplied by 2, learning rate is decayed by a factor of 5
as opposed to 10 from the original implementation
of ResNet and Fixup ResNet [17, 25]. This will help
to speed up the training while still adhering to the
Linear Scaling Rule.

4. Experiment & Result

4.1. Experiment Configuration

The code of the experiment is written in Python
3.5.2, using PyTorch 1.3.1 and we run the experi-
ments on a machine with Intel Core i7 8700 CPU
and 2 NVIDIA RTX 2080 TI GPUs. Unless stated
otherwise, we use the same configuration as the
original paper for ResNet-56 [25] and Fixup ResNet-
56 [17]. Fixup Init experiment does not use mixup, a
data augmentation technique which can be combined
with Fixup Init to improve accuracy as proposed in
[17]. We set Python’s random seed, NumPy seed,
and PyTorch seed to 0. We use CIFAR-10 dataset
with the commonly used data augmentation tech-
nique for the dataset, random horizontal flip and a
32x32 sample is randomly cropped from the 4-pixel
padded image.

We have observed that network without Batch-
Norm is more sensitive to input normalization, that
is if we scale the input to [0,1] range compared to
normalize the input using z-score with input mean
and input standard deviation, the latter has higher
accuracy. But normalizing each channel with input
mean and input standard deviation makes it more
difficult to correctly compute the perturbation within
the constraint. To simplify the computation, we nor-
malize the input using mean of 0.45 and standard
deviation of 0.25 which affects the magnitude of the
ε. So, we multiply the ε by 4 to have the same
magnitude of perturbation as what most of other
papers reported. For example if we say ε = 0.05,
the actual ε is 0.2.

To check adversarial robustness, we use the im-
plementation of FGSM and PGD-`∞ by Ding et al.
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(a) FGSM (b) PGD-`∞

Figure 3. Result of FGSM and PGD∞ on ResNet-56, Fixup ResNet-56 with batch size of 128, 32, and 8

(a) Batch Size of 8 (b) Batch Size of 32

Figure 4. Test Accuracy of Fixup Init with a batch size of 32 and 8

1 [29] with ε from 0.005 to 0.05 with step of 0.005.
For PGD-`∞, we use step size of ε/10, iteration
of 20, and disable random initialization. Using both
one-shot attack and iterative attack with the same
epsilons will show that the proposed solution does
not exhibit the obfuscated gradient problem [30].
The code snippets to generate the attack are listed
in Appendix B.

4.2. Result

First we see the adversarial robustness of the
original ResNet-56 (RN56), Fixup ResNet-56 with

1https://github.com/BorealisAI/advertorch

a batch size of 128 (FRN-56-BS128), 32 (FRN-56-
BS32), and 8 (FRN-56-BS8). As we can see from
Figure 3a and Figure 3b, FRN-56-BS8 has the high-
est adversarial robustness. Attacked with FGSM, the
difference is up to over 20% compared to ResNet-56
and up to over 6% compared to FRN-56-BS128, but
at the cost of increased training time.

Naively modifying the learning schedule signifi-
cantly reduces robustness. As seen on Figure 5a and
Figure 5b, while FRN56-BS8-S1 performs slightly
better than Fixup ResNet-56 with a batch size of
128, they fare far below Fixup ResNet-56 with a
batch size of 8. Similarly, increasing batch size
starting from epoch 20 for Fixup ResNet-56 with
a batch size of 32 also reduce robustness, from

https://github.com/BorealisAI/advertorch
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(a) FGSM (b) PGD-`∞

Figure 5. Result of FGSM and PGD-`∞ on Fixup ResNet-56 with batch size of 128, 32, and 8 and Fixup ResNet-56
Schedule 1 with a batch size of 32 and 8 attacked

(a) FGSM (b) PGD-`∞

Figure 6. Result of FGSM and PGD-`∞ on Fixup ResNet-56 with batch size of 128, 32, and 8 and Fixup ResNet-56
Schedule 2 & 3 with a batch size of 32 and 8 attacked with PGD-`∞

the same figures we can see that FRN56-BS32-S1’s
performance is similar to FRN56-BS128.

As we can see from Figure 6a and Figure 6b, de-
laying the starting batch size multiplier to the point
where test accuracy has stabilized can improve ro-
bustness. FRN56-BS8-S2’s performance is the clos-
est to FRN-56-BS8’s performance, albeit slightly
lower. As seen on Figure 6b, for some ε, FRN56-
BS8-S2 even has better performance than FRN-
56-BS8. And FRN56-BS8-S2 only takes 2:19:07,
which is significantly faster than the time it takes
to train FRN56-BS8. FRN56-BS32-S2 is another
example of blindly modifying the learning schedule,

where the starting increment is taken from FRN56-
BS8-S2, the result shows that FRN56-BS32-S2 fails
spectacularly, performs worse than even FRN56-
BS128. But FRN56-BS32-S3 which is chosen by
looking at Figure 4b surprisingly has better robust-
ness than FRN56-BS32 when attacked with FGSM,
and slightly lower compared to FRN56-BS32 when
attacked with PGD-`∞. The detailed result of the
attacks can be seen in Appendix A. Choosing the
correct schedule also affects accuracy. The accuracy
is shown in 1, where the accuracy of FRN56-BS32-
S1 drops 1.16% from FRN56-BS32, but FRN56-
BS32-S3 and FRN56-BS32 have similar accuracy
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(+0.1%).

5. Related Work

A large number of research works have been
conducted to devise a defense method against adver-
sarial examples. Several techniques has been stud-
ied, such as adversarial training [9, 31], modify-
ing network architecture [32], and modifying input
[33, 34]. Defensive quantization has been proposed
to improve both robustness and efficiency [35]. More
recently, a number of certified defence researches
have been proposed [36–38]. Certified defence is a
type of defense with a proof that prediction at any
point inside a small norm-bounded ball around point
x will be constant.

Stutz et al. has disentangled the relationship be-
tween robustness and generalization [39]. But they
also showed that on-manifold adversarial examples
are a result of generalization errors, if we train with
an intent to reduce on-manifold adversarial exam-
ples, it would also increase test accuracy.

In 2019, Galloway et al. showed that by us-
ing Fixup Initialization [17] instead of BatchNorm,
Wide ResNet [40] is more robust against adversarial
examples. Similarly, adding BatchNorm to VGG-
like network improves performance at the cost of
increased adversarial vulnerability [15].

6. Conclusion & Future Works

Szegedy et al. found a property of neural network
that can be exploited to fool them and methods to
defend against adversarial examples keep getting cir-
cumvented. For example, Athalye et al. immediately
published techniques to circumvent six of adversarial
defence methods after those defence papers were ac-
cepted to ICRL 2018 [30]. We do not try to improve
robustness by devising a specific defence technique,
but by simply naturally increase it. The increment is
not large, but combined with an adversarial defence
technique, it might be able to retain a degree of
accuracy when the defence technique fails.

The differences between each proposed sched-
ules are as follow.

• Schedule 1 (S1) with Batch Size of 8 divides
evenly for the first 100 epochs. S1 with
Batch Size of 32 simply follows the schedule
but with larger starting batch size.

• Schedule 2 (S2) with Batch Size of 8 de-
lay the starting batch size multiplier due
to test accuracy is still increasing at epoch
40. Again, S2 with Batch Size of 8 simply
follows the schedule.

Table 1. Training time & accuracy

Model-BS Schedule Training Time Accuracy
RN56-BS128 46:33 (± 15) 93.38%

FRN56-BS128 37:02 (± 12) 93.24%
FRN56-BS32 1:39:19 (± 21) 93.29%
FRN56-BS8 6:00:43 (± 47) 93.45%

FRN56-BS32-S1 41:16 (± 13) 92.34%
FRN56-BS32-S2 52:49 (± 14) 93.13%
FRN56-BS32-S3 58:53 (± 14) 93.39%
FRN56-BS8-S1 1:25:33 (± 15) 92.48%
FRN56-BS8-S2 2:18:51 (± 17) 93.28%

• Schedule 3 (S3) with Batch Size of 8 further
delay the starting batch size multiplier again
due to test accuracy is still increasing at
epoch 60.

As our experiment has shown, we can improve
the adversarial robustness of Fixup ResNet56 by
simply reducing batch size. But reducing batch size
from the default 128 to 8 increases training time
by a magnitude of approximately 10 (from 37:02
to 6:00:43). Modifying the learning schedule by
increasing batch size during training can greatly
reduce training time, while keeping the adversar-
ial robustness closer to FRN56-BS8. However, ran-
domly picking the learning schedule tends to worsen
adversarial robustness (i.e., Schedule 1).

Table 1 shows the training time and clean ac-
curacy of each proposed schedule and the baseline
model. Training time is an average of three with
standard deviation shown next to it. As we can see
from Table 1, compared to Fixup ResNet-56 with a
batch size of 8, can halve the training time while
slightly reducing adversarial robustness and even in
some cases improve robustness and accuracy. Com-
pared to RN56, FRN56 has a faster training time due
to less layers in the architecture (i.e., BatchNorm
layer is removed).

We have empirically proven that this method in-
creases robustness. We use one architecture (ResNet-
56) and one dataset (CIFAR-10), this is a standard
benchmark dataset for training many deep learning
architectures. We need to conduct in-depth analysis
to better understand this behaviour. Furthermore, the
schedule is handpicked by looking at the progress of
test accuracy during normal training, we might be
able to automate this by implementing a technique
similar to early stopping but increase the batch size
when test accuracy has not been improved for a
number of epochs.
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Appendix A.
Details of Adversarial Robustness

Table 2. Fixup ResNet-56 - FGSM

Epsilon (ε)
BS Schedule 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

128-Fixed 60.24% 43.85% 35.37% 30.89% 28.56% 26.8% 25.75% 25.12% 24.49% 24.12%
32-Fixed 61.98% 45.60% 37.48% 32.89% 30.35% 28.51% 27.28% 26.32% 25.36% 24.33%
8-Fixed 63.89% 49.07% 41.75% 37.76% 35.41% 33.86% 32.7% 31.48% 29.92% 28.43%

BS32-S1 59.38% 43.73% 36.08% 31.72% 29.16% 27.52% 26.61% 25.92% 25.22% 24.51%
BS32-S2 58.98% 42.44% 34.53% 30.27% 27.5.% 26.21% 25.2% 24.1% 23.26% 22.37%
BS32-S3 61.52% 46.44% 39.21% 34.89% 31.97% 30.71% 29.48% 28.48% 27.54% 26.3%
BS8-S1 60.25% 45.09% 38.01% 33.26% 30.25% 28.01% 26.48% 25.41% 24.64% 23.73%
BS8-S2 61.67% 46.35% 39.16% 35.55% 33.44% 32.36% 31.48% 30.48% 29.4% 27.88%

Table 3. Fixup ResNet-56 - PGD-`∞

Epsilon (ε)
BS Schedule 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

128-Fixed 34.44% 8.18% 1.62% 0.4% 0.07% 0.04% 0.00% 0.00% 0.00% 0.00%
32-Fixed 38.63% 9.70% 2.08% 0.57% 0.19% 0.05% 0.02% 0.00% 0.00% 0.00%
8-Fixed 41.26% 13.54% 4.81% 1.83% 0.67% 0.32% 0.14% 0.11% 0.06% 0.03%

BS32-S1 36.88% 9.49% 2.20% 0.47% 0.09% 0.01% 0.00% 0.00% 0.00% 0.00%
BS32-S2 35.77% 9.25% 2.34% 0.59% 0.24% 0.10% 0.08% 0.04% 0.03% 0.01%
BS32-S3 37.21% 9.34% 2.11% 0.49% 0.20% 0.08% 0.01% 0.01% 0.01% 0.00%
BS8-S1 39.71% 10.45% 2.57% 0.74% 0.25% 0.06% 0.02% 0.02% 0.01% 0.00%
BS8-S2 37.78% 12.34% 4.79% 2.18% 1.21% 0.74% 0.44% 0.28% 0.20% 0.14%

Appendix B.
Attack Implementation

The code is written in python using PyTorch and to attack we use AdverTorch by Ding et al. [29]. A
code snippet to iterate and construct the FGSM attack object is shown below:

Listing 1. FGSM code snippet

epsilons = np.arange (0.005 , 0.051, 0.005)

for eps in epsilons:
eps = round(eps , 3)

adversary = GradientSignAttack(
model , loss_fn=nn.CrossEntropyLoss(reduction="sum"),
eps=eps * 4,
clip_min =-1.8, clip_max =2.2,
targeted=False)

A code snippet to iterate and construct PGD-`∞ attack object is shown below:

Listing 2. PGD-`∞ code snippet

epsilons = np.arange (0.005 , 0.051, 0.005)

for eps in epsilons:
eps = round(eps , 3)
adversary = LinfPGDAttack(

model , loss_fn=nn.CrossEntropyLoss(reduction="sum"),
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eps=eps * 4, nb_iter =20,
eps_iter =(eps * 4) / 10, rand_init=False ,
clip_min =-1.8, clip_max =2.2,
targeted=False)
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