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Abstract

The matrix property of diagonal dominance has been applied in many different ways, and

proved truly beneficial in diverse areas of research. Therefore, the main motivation of

this thesis is to make a unifying framework to the subject of diagonal dominance and its

generalizations, that will alow some new insights in the already known facts, and open

some new areas of research. Due to space limitations, the main focus of the thesis will be

on the author’s most recent published results, and on the new and unpublished material

that is obtained through the work on this thesis. Some other areas in which diagonal, and

generalized diagonal dominance can be applied and produce significant benefits, will be

just briefly mentioned together with some of the author’s references on it.

The outline of the thesis is the following. In the first chapter we introduce the basic

concepts of diagonal dominance, its extensions and its generalization. While the first

section consists of the traditional nonsingularity results, the second one includes some the

original contributions of the author, which could be found in Theorems 1.2.13, 1.2.17,

1.2.23, 1.2.25, 1.2.26 and 1.2.27, which have already been published in [19], [13] and [11].

Third section focuses on the new concept of a DD-type class of matrices, given in Definition

1.3.7. This term is defined here for the first time, in order to make a unifying framework for

all the classes of matrices that define some kind of diagonal dominance. The main result

is Theorem 1.3.9, which can, besides to the classes presented in the thesis, be applied to

many others, found in the literature. The utility of the new concept is closely related to

the following chapters, where it will be used extensively, to produce new practical results.

Final section of the first chapter covers the scaling technique, concept that was extensively

developed by Ljiljana Cvetković, and the author, in several papers on different subjects.

The main benefits of this technique, beside the ones presented in detail in this thesis, lie in

the application to the convergence theory of the (pointwise and block) iterative methods

for solving systems of linear equations: for more detail see [15, 16], then to the treatment

of matrix properties, such as invariance of the Schur, and diagonal Schur complements,
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[17], invariance under subdirect sums, [6, 12], and in obtaining new nonsingularity results,

[18]. The main part of this section was published in the papers [19] and [14].

The second chapter is treatment of the benefits of the various generalizations of diagonal

dominance in the field of eigenvalue localization. This material is, in most of the parts,

present in author’s M.Sc. thesis. Apart form the Varga’s Equivalence Principle, which

was for the first time explicitly written in [34], the main new contribution is the Isolation

Principle, given in Theorem 2.2.3, which generalizes some very well known results on

the disjoint localization sets, while at the same time produces new facts that were not

published up to now: Theorems 2.2.5, 2.2.10, 2.2.16 and 2.2.22. Also, a full treatment

of the important subject of computation of the minimal Geršgorin set, published in [52]

together with R. S. Varga and Lj. Cvetković, is given in the third section of this chapter.

Third chapter consists, almost in full, of completely new material. The starting point is

author’s very recent joint work with Lj. Cvetković and R. S. Varga, published in [35], which

covers a part of Section 3.2 and Section 3.5. The rest of the chapter consists of completely

new material, which represents the development of the Geršgorin-type localization theory

for the generalized eigenvalues. The backbone of the approach that is used is generalized

diagonal dominance, presented in the concepts of the DD-type and SDD-type classes of

matrices, from which the fundamental principles were proven: Varga’s Equivalence Prin-

ciple, Isolation Principle, Boundedness Principle, and Approximation Principle. Coupling

these principles together with the results of the first chapter, theorems of this theory are

obtained, and each of them is illustrated through numerical examples. In addition, a new

parameter dependent approximation technique was proposed for future research.

The forth, and the final chapter, discuses the application of generalized diagonal domi-

nance coupled with noncooperative game theory in the modeling of ad-hoc multihop wire-

less sensor networks. A certain power consumption optimization problem was proposed by

Yuan and Yu in [55], and solved in the case when the network satisfies, in a certain way,

strict diagonal dominance. In the last chapter of this thesis, a review of the basics of the

proposed model is given, and then the main result is generalized to a wider set of realistic

network setups. In addition, possible benefits from the scaling technique, developed in

the first chapter, were presented, and some new insights of the application of the matrix

iterative methods for solving systems of linear equations in wireless network power control

algorithms were given. The material of the last chapter is published in this thesis for the

first time.



Apstrakt

Matrične osobine tipa dijagonalne dominacije primenjivane su na mnoge različite načine

i pokazale se istinski korisnim u različitim oblastima linearne algebre i njenih primena.

Osnovna motivacija ove teze je da stvori jedinstveni radni okvir za temu dijagonalne dom-

inacije i njenih uopštenja, koji treba da omogući nove uvide u već poznate činjenice, kao i

da otvori neke nove oblasti istraživanja. Usled prostornog ograničenja, u fokusu ove teze

biće autorovi najnoviji objavljeni rezultati, kao i novi neobjavljen materijal koji je nastao

tokom rada na ovoj tezi. Neke od ostalih oblasti u kojima se dijagonalna i generalizovana

dijagonalna dominacija mogu upotrebiti i dovesti do značajnih pobolǰsanja, kratko će biti

pomenuti, zajedno sa nekim od autorovih referenci na tu temu.

Sastav teze je sledeći. U prvom poglavlju uvodimo osnovni koncept dijagonalne domi-

nacije, njegova proširenja i uopštenja. Dok se prva sekcija sastoji od tradicionalnih rezul-

tata o regularnosti, druga sadrži neke od autorovih originalnih doprinosa, koji se mogu

naći u Teoremama 1.2.13, 1.2.17, 1.2.23, 1.2.25, 1.2.26 i 1.2.27, a koji su već objavljeni u

radovima [19], [13] i [11]. Treća sekcija se fokusira na novi koncept klasa matrica DD-tipa,

dat u Definiciji 1.3.7. Taj pojam je definisan po prvi put u ovoj tezi, sa ciljem da pruži

jedinstveni okvir za sve klase matrica koje su definisane pomoću nekog oblika dijagonalne

dominacije. Glavni rezultat ovog poglavlja je Teorema 1.3.9, koja se može, pored klasa

prezentovanih u okviru ove teze, primeniti na mnoge klase matrica koje se nalaze u litera-

turi. Korisnost ovog novog koncepta je blisko povezana sa narednim poglavljima, gde će on

biti intenzivno korǐsćen u cilju dobijanja novih praktičnih rezultata. Poslednja sekcija pr-

vog poglavlja se bavi tehnikom skaliranja, konceptom koji su Lj. Cvetković i autor razvili i

iscrpno koristili u nekoliko radova na različite teme. Osnovne prednosti ove tehnike, pored

onih koje su iznete u ovoj tezi, nalaze se u primenama u teoriji konvergencije (tačkastih

i paralelnih) iterativnih postupaka za rešavanje sistema linearnih jednačina, za vǐse de-

talja pogledati [15, 16], u ispitivanju matričnih osobina, kako što su invarijantnost Šurovog

komplementa i dijagnoalnog Šurovog komplementa, [17], invarijantnost pri subdirektnom
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sabiranju, [6, 12], kao i primene u ostvarivanju novih rezultata o regularnosti matrica, [18].

Najveći deo poslednje sekcije prvog poglavlja obljavljen je u [19] i [14].

Drugo poglavlje se bavi prednostima različitih uopštenja dijagonalne dominacije u

oblasti lokalizacije krakterističnih korena matrica. Ovaj materijal je u svom najvećem

delu prisutan u autorovoj magistarskoj tezi. Pored Varginog principa ekvivalencije, koji je

po prvi put eksplicitno zapisan u [34], osnovni doprinosi su Princip izolacije, dat u Teoremi

2.2.3, koji uopštava dobro poznate rezultate o disjunktnim oblastima lokalizacje, istovre-

meno dajući nova tvrdjenja koja nisu objavljena do sada: Teoreme 2.2.5, 2.2.10, 2.2.16 i

2.2.22. Pored toga, u poslednjoj sekciji ovog poglavlja, u potpunosti je obradjena važna

tema o izračunavanju minimalnog Geršgorinovog skupa, objavljena u [52], zajedno sa R.

S. Vargom i Lj. Cvetković.

Treće poglavlje se sastoji, gotovo u potpunosti, od novog materijala. Polazna tačka je

autorov skorašnji rad sa Lj. Cvetković i R. S. Vargom, objavljen u [35], koji je prezentovan

u Sekciji 3.2 i Sekciji 3.5. Ostatak poglavlja se sastoji od novog materijala, koji predstavlja

razvoj teorije lokalizacije generalizovanih karakterističnih korena Geršgorinovog tipa. Os-

nova pristupa koji je korǐsćen je generalizovana dijagonalna dominacija, prisutna u koncep-

tima klasa matrica DD-tipa i SDD-tipa, na osnovu kojih su dokazani osnovni principi: Var-

gin princip ekvivalencije, princip izolacije, princip ograničenosti i princip aproksimacije.

Povezujući ove principe sa rezultatima iz prvog poglavlja, dokazane su odgovarajuće teo-

reme su dobijene i svaka od njih je ilustrovana numeričkim primerima. Pored toga, tehnika

aproksimacije, koja zavisi od slobodnih parametara, predložena je za dalja istraživanja.

Četvrto i poslednje poglavlje razmatra primenu generalizovane dijagonalne dominacije,

zajedno sa teorijom nekooperativnih igara u modelovanju ad-hoc multihop bežičnih senzor

mreža. Polazna tačka je odredjeni problem optimizacije potrošnje struje, koji je predložen

od strane Yuan i Yu u [55], gde je i rešen u slučaju kada mreža zadovoljava, u odredjenom

smislu, strogu dijagonalnu dominaciju. Nakon pregleda osnova predloženog modela, glavni

rezultat je uopšten na širi skup relističnih mrežnih postavki. Pored toga, prikazana je i

moguća korist od tehnike skaliranja, razvijene u prvom poglavlju, kao i novi uvidi u primenu

matričnih ierativnh postupaka za rešavanje sistema linearnih jednačina u okviru algoritma

za optimizaciju kontrole napona u bežičnim senzor mrežama. Materijal ovog posledenjeg

poglavlja je, takodje, originalni doprinos ove teze.
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3.3.3 Cvetković-Kostić-Varga set for Generalized Eigenvalues . . . . . . . 116

3.3.4 Ostrowski sets for Generalized Eigenvalues . . . . . . . . . . . . . . 125

3.4 Improved Approximations of the

Generalized Geršgorin-type Sets . . . . . . . . . . . . . . . . . . . . . . . . 129
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Introduction

Although this may seem a paradox, all exact science is dominated by the idea

of approximation.

Bertrand Russell

(1872-1970)

Diagonally dominant matrices drew the attention of several great mathematicians of

the nineteenth century, and inspired important research in the mathematics of twentieth

century. Actually, from the very beginning of the matrix theory, when Sylvester1 in 1850

distinguished the notion of ’matrix’ from the concept of ’determinant’, the question of

nonsingularity was one of the main topics. Various properties were studied in order to

catch the connection between the value and the structure of the entries in a matrix, and

the value of its determinant. The beautiful idea of investigating the dominance of the

diagonal in a matrix, in order to ensure a nonzero determinant, can be traced back to

the paper of Lévy2 in 1881, [36]. Nevertheless, the fact that strictly diagonally dominant

matrices are nonsingular has been repeatedly rediscovered, in several different equivalent

formulations, and not always explicitly, by quite a few mathematicians, throughout 1881-

1949. In the work of Desplanques, [22] it can be found for all real matrices, while in

the work of Minkowski3 in 1900, [38], and, independently Hadamard4 in 1903, [27], it

is stated for any complex matrix. In the work of Nekrasov5 in 1892 it was implicitly

stated through the convergence of Gauss-Seidel iteration, while Hopf6 obtained it, most

probably independently, in 1929, in order to prove a fixed point theorem. It is interesting

1James Joseph Sylvester (1814 - 1897), an English mathematician who made fundamental contributions
to matrix theory, invariant theory, number theory, partition theory and combinatorics.

2L. Lévy, a French mathematician, who discovered, under certain limitations on the sign of the matrix
entries, that a matrix whose diagonal entries are, by absolute value, strictly greater than the sum of the
absolute values of the off-diagonal entries from the same row, has a nonzero determinant.

3Hermann Minkowski (1864 - 1909), a German mathematician, who created, and developed the geome-
try of numbers, and used geometrical methods to solve difficult problems in number theory, mathematical
physics, and the theory of relativity.

4Jacques Salomon Hadamard (1865 - 1963), a French mathematician, who made major contributions
in number theory, complex function theory, differential geometry and partial differential equations.

5Pavel Alekseevich Nekrasov (1853 - 1924), a Russian mathematician, who made important contribu-
tions to algebra, analysis, probability and mechanics.

6Heinz Hopf (1894 - 1971) a German mathematician who made a major influence in algebraic topology.
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to note, also, that Bankwitz in 1930 proved it, by referring to Perron7-Frobenius8 theory

(1907-1912), and applied it to knot theory.

But, definitely, one of the most important formulation of this theorem is due to

Geršgorin9, who stated in his, paper [25] from 1931, that the eigenvalues of an arbi-

trary matrix of order n ∈ N , can be localized in the complex plane using n simple circles.

This result was a sensation of that time, and in a scientific community, it initiated the

lot of enthusiasm in the direction of ”simple approximations” of the spectra of matrices.

The reason, of course, lies in the elegance of the result and its wide applicability, both

theoretical, and practical. By this theorem, and its generalizations obtained during the

years, many matrix properties that depend of the structure of its eigenvalues, found an

alternative formulations and effective testing methods. Until today, this subject remaines

an active area of research, and it still attracts by its elegance and simplicity.

But, the work of Geršgorin had another important influence to the theory of matrices.

Namely, Geršgorin, who at that time worked in the Leningrad Mechanical Institute, luckily

had published his result in his only paper written in German. But, nevertheless, it did not

attract the full attention of the scientific community until the beginning of World War II,

and the growing need for the applications of mathematics in engineering. Predecessors of

the first computers motivated research in the matrix theory via numerical computation.

And, at that time, in the period between the 1943 and 1949, Olga Taussky10 was working

in the National Physics Laboratory in Teddington, near London. She was doing research

on the problem of an airplane design that guarantees stability of the aircraft. In order to

speed up the necessary calculations of the eigenvalues of a certain square 6 × 6 matrix,

she uses the elegant result of a Russian mathematician. Charmed with its elegance and

simplicity, she promotes it through her further studies, corrections and applications. In

this period she publishes her results, first for the British Ministry of Aviation, and then in

the American Mathematical Monthly, and, thus, opens a new exciting chapter of the use

of diagonal dominance and the localization of eigenvalues.

Techniques introduced by Olga Taussky became an inspiration to many, and this field

of research grows, and develops even today. Works of Ostrowski, Brauer, Brualdi and

Varga are just some of many contributions. It is interesting to note that, although in her

paper ”A recurring theorem in determinants”, from the American Mathematical Monthly,

Olga Taussky makes a link between Geršgorin’s theorem and the theorem on the nonsin-

gularity that dates from the end of the nineteenth century, the relationship of the diagonal

dominance and the localization of eigenvalues, although in the continuous use, remained

without a precise and complete formulation until the end of the twentieth century, when

7Oskar Perron (1880 - 1975), a German mathematician, who made numerous contributions concerning
differential equations and partial differential equations, and was also famous for his encyclopedic book on
continued fractions.

8Ferdinand Georg Frobenius (1849 - 1917), a German mathematician, best-known for his contribu-
tions to the theory of differential equations and to group theory, also gave the first full proof for the
CayleyHamilton theorem.

9Semyon Aranovich Gershgorin (1901 -1933), a Russian mathematician, famous for his circle theorem.
10Olga Taussky Tod (1906 - 1995) an Austrian mathematician famous for her work in matrix theory,

algebraic number theory and differential equations, also known as a torchbearer for the matrix theory.
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it was stated in the book of Richard Varga, ”Geršgorin and His Circles”.

As we could notice, the idea of diagonal dominance has been, from the very beginning,

applied in many different ways, and proved truly beneficial in many different areas of

research. So, the main motivation of this thesis is to make a unifying framework to the

subject of diagonal dominance and its generalizations, that will alow some new insights in

the already known facts, and open some new areas of research. Due to space limitations,

the main focus of the thesis will be on the author’s most recent published results, and on the

new and unpublished material that is obtained through the work on this thesis. Therefore,

some other areas in which diagonal, and generalized diagonal dominance can produce

significant benefits, will be just briefly mentioned in the following of this introduction,

together with some of the author’s references on it.

The outline of the thesis is the following. In the first chapter we introduce the basic

concepts of diagonal dominance, its extensions and its generalization. While the first

section consists of the traditional nonsingularity results, the second one includes some the

original contributions of the author, which could be found in Theorems 1.2.13, 1.2.17,

1.2.23, 1.2.25, 1.2.26 and 1.2.27, which have already been published in [19], [13] and [11].

Third section focuses on the new concept of a DD-type class of matrices, given in Definition

1.3.7. This term is defined here for the first time, in order to make a unifying framework for

all the classes of matrices that define some kind of diagonal dominance. The main result

is Theorem 1.3.9, which can, besides to the classes presented in the thesis, be applied to

many others, found in the literature. The utility of the new concept is closely related to

the following chapters, where it will be used extensively, to produce new practical results.

Final section of the first chapter covers the scaling technique, concept that was extensively

developed by Ljiljana Cvetković, and the author, in several papers on different subjects.

The main benefits of this technique, beside the ones presented in detail in this thesis, lie in

the application to the convergence theory of the (pointwise and block) iterative methods

for solving systems of linear equations; for more detail see [15, 16], then to the treatment

of matrix properties, such as invariance of the Schur, and diagonal Schur complements,

[17], invariance under subdirect sums, [6, 12], and in obtaining new nonsingularity results,

[18]. The main part of this section was published in the papers [19] and [14].

The second chapter is treatment of the benefits of the various generalizations of diagonal

dominance in the field of eigenvalue localization. This material is, in most of the parts,

present in author’s M.Sc. thesis. Apart form the Varga’s Equivalence Principle, which

was for the first time explicitly written in [34], the main new contribution is the Isolation

Principle, given in Theorem 2.2.3, which generalizes some very well known results on

the disjoint localization sets, while at the same time produces new facts that were not

published up to now: Theorems 2.2.5, 2.2.10, 2.2.16 and 2.2.22. Also, a full treatment

of the important subject of computation of the minimal Geršgorin set, published in [52]

together with R. S. Varga and Lj. Cvetković, is given in the third section of this chapter.

Third chapter consists, almost in full, of completely new material. The starting point is

author’s very recent joint work with Lj. Cvetković and R. S. Varga, published in [35], which
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covers a part of Section 3.2 and Section 3.5. The rest of the chapter consists of completely

new material, which represents the development of the Geršgorin-type localization theory

for the generalized eigenvalues. The backbone of the approach that is used is generalized

diagonal dominance, presented in the concepts of the DD-type and SDD-type classes of

matrices, from which the fundamental principles were proven: Varga’s Equivalence Prin-

ciple, Isolation Principle, Boundedness Principle, and Approximation Principle. Coupling

these principles together with the results of the first chapter, theorems of this theory are

obtained, and each of them is illustrated through numerical examples. In addition, a new

parameter dependent approximation technique was proposed for future research.

The forth, and the final chapter, discuses the application of generalized diagonal domi-

nance coupled with noncooperative game theory in the modeling of ad-hoc multihop wire-

less sensor networks. A certain power consumption optimization problem was proposed by

Yuan and Yu in [55], and solved in the case when the network satisfies, in a certain way,

strict diagonal dominance. In the last chapter of this thesis, a review of the basics of the

proposed model is given, and then the main result is generalized to a wider set of realistic

network setups. In addition, possible benefits from the scaling technique, developed in

the first chapter, were presented, and some new insights of the application of the matrix

iterative methods for solving systems of linear equations in wireless network power control

algorithms were given. The material of the last chapter is published in this thesis for the

first time.



Chapter 1

Diagonal and Generalized Diagonal
Dominance

Starting from the concepts of diagonal and strict diagonal dominance, [36], [38], [22] and

[27], given in the first Section of this Chapter, in the following one we will investigate

different extensions of these two concepts that have been developed during the years. The

third Section will introduce the class of generalized diagonally dominant matrices that

coincides with the class of H-matrices, and, by that fact, has a strong connection with

nonnegative matrices, [3]. The final Section of this Chapter will introduce the original

technique that was developed and used throughout the dissertation in order to obtain

different improvements of known facts in various fields of applied mathematics, and to

discover new ones.

5
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1.1 Diagonally and Strictly Diagonally Dominant Ma-

trices

Throughout this dissertation, for an arbitrary n from the set of positive integers N, by Cn,

we denote a complex n-dimensional vector space of column vectors x = [x1, x2, . . . , xn]T ,

where xi ∈ C, i = 1, 2, . . . , n, and, for arbitrary m,n ∈ N, by Cm,n, we denote the collection

of all m × n matrices with complex entries. A matrix A ∈ Cm,n is denoted by A = [ai,j],

or by

A =




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




, (1.1.1)

where ai,j := (A)i,j ∈ C, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

We denote the set of indices by N := {1, 2, . . . , n}, and

ri(A) :=
∑

j∈N\{i}
|ai,j| (i ∈ N) (1.1.2)

is called the i-th deleted absolute row sum1 of the matrix A. If the matrix A is of the

dimension n = 1, we define r1(A) := 0.

In a similar way, by Rn and Rm,n, we denote, respectively, the real n-dimensional vector

space of vector columns and the collection of rectangular matrices with real entries.

With In we denote the n × n identity matrix, i.e., a matrix whose diagonal entries

are all equal to one, while its off-diagonal entries are all zero.

With the previous notations, we state the famous first nonsingularity result, which

appeared in the early paper of Lévy in 1881, [36], and then latter, independently, in the

work of Minkowski in 1900, [38], (in both cases stated only for real matrices). The complex

case was covered in a paper of Desplanque in 1887, [22], and the book of Hadamard in

1903, [27]. In contemporary notation, basically, all of them stated the following.

Theorem 1.1.1. (Lévy-Desplanques)2 Let A = [ai,j] ∈ Cn,n be an arbitrary matrix. If

|ai,i| > ri(A) for all i ∈ N, (1.1.3)

then A is nonsingular.

Proof. Let us suppose the contrary, i.e., that the matrix A is singular. Then, there exists a
nonzero vector x = [x1, x2, . . . , xn] ∈ Cn, such that Ax = 0, or, equivalently,

∑
j∈N ai,jxj =

0, for each i ∈ N . Since x 6= 0, there exists an index k ∈ N , so that 0 < |xk| =
max {|xj| : j ∈ N}. For this index k we have that

∑

j∈N\{k}
ak,jxj = −ak,kxk,

1In the following, we will use the term ”i-th row sum”, or simply, ”row sum”, whenever there is no
possible confusion.

2Since the theorem was published in the well-known book [27] it is also know as ”Hadamard’s Theorem”.
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which, on taking absolute values, and applying the triangle inequality, gives

|ak,k||xk| ≤
∑

j∈N\{k}
|ak,j||xj| ≤ |xk|

∑

j∈N\{k}
|ak,j|.

By dividing the last inequality by |xk| > 0, we get

|ak,k| ≤ rk(A),

which obviously contradicts the assumption (1.1.3). Thus, A is a nonsingular matrix.

Based on the condition (1.1.3) which defines them, matrices that satisfy the previous

theorem are called strictly diagonally dominant matrices, or, briefly, SDD matrices.

Their beauty lies in the fact that, while it takes a lot of computation to determine whether

det(A) is equal to zero or not, the condition (1.1.3) is rather easy to verify. On the other

hand, condition (1.1.3) is not a necessary condition for nonsingularity, as the subsequent

example easily shows, so we are working with a subclass of the class of all nonsingular

matrices. How one can use its nonsingularity in various ways, knowing that a matrix is an

SDD matrix, will be studied in the following pages.

For a square matrix of dimension n, it suffices to check n inequalities, i.e., to check if,

in each row, the diagonal entry has an absolute value which is strictly greater than the

sum of the absolute values of off-diagonal entries. The rows which fulfill this condition will

be called the SDD rows of a matrix. So, SDD matrices are matrices that have all rows

SDD. A natural question to ask is the: Is it necessary to have all the rows to be SDD, in

order to guarantee nonsingularity? The next example gives us first insights.

Example 1.1.2. For each of the following matrices, their determinant is computed and
their SDD rows are shown in boldface.

A1 =

[
1 1
i 2i

]
, det(A1) = i 6= 0,

A2 =




1 −i 0
2 1 0
1 1 3


 , det(A2) = 3 + 6i 6= 0,

A3 =




i 1 0 1 0 1
1 −i 0 0 1 1
0 0 0 1 2 1
0 0 0 2 i i
0 0 0 1 0 1
0 0 0 i i -3




, det(A3) = 0.

A4 =




1 0.2 0.5 0.2
0 1 0.4 0.5
0 0 1 1
0 0 0 1


 , det(A4) = 0,

A5 =




1 0.2 0.5 0.2
0 1 0.4 0.5
0 0 1 1
1 0 0 1


 , det(A5) = 1.32 6= 0.
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After a closer look at the matrices of the previous example, it is interesting to note

that, first, even one non-SDD row can be sufficient to cause singularity of a matrix. On

the other hand, even one SDD row can lead to nonsingularity, too. So, it is of interest

to discover at which point less then all SDD rows will assure nonsingularity of a matrix,

and what are the other factors that can interfere. From the first steps in this direction,

up to know, many different extensions of the notion of strict diagonal dominance were

developed. Here, in the second section of this chapter we will cover some of them.

Before we continue any further, a first observation that arises is what can happen if

the strict inequalities of (1.1.3) are replaced by non-strict ones. In another words, is the

matrix A = [ai,j] ∈ Cn,n, for which

|ai,i| ≥ ri(A) for all i ∈ N, (1.1.4)

nonsingular, or not.

Since we are dealing with diagonal dominance, a natural restriction to the inequalities

(1.1.4) is to have at least one of them to be strict. Such matrices we will call diagonally

dominant matrices. Otherwise, if all inequalities in (1.1.4) are in fact equalities, there

is no reason to call the matrix in any way ”diagonally dominant”.

More precisely we use the following definition.

Definition 1.1.3. An arbitrary matrix A = [ai,j] ∈ Cn,n is called diagonally dominant
matrix3 if

|ai,i| ≥ ri(A) for all i ∈ N, (1.1.5)

and for at least one index k ∈ N ,

|ak,k| > rk(A). (1.1.6)

Question of nonsingularity of DD matrices arose first with the works of Geršgorin in

1931, [25], and Olga Taussky-Todd in 1948, [45]. Both of these papers dealt with the

localizations of eigenvalues that were directly related to the nonsingularity of diagonally

dominant matrices, which we will present in detail in the second chapter. In the sense

of eigenvalue localization, Geršgorin prematurely concluded that DD matrices are always

nonsingular, but as matrices A4 and A5 of the previous example imply, that is not, in

general, true. Interested in his work, and especially intrigued by this case, Olga Taussky-

Todd noticed, in her famous paper [45], the Geršgorin error. In order to fix it, she opened

a beautiful chapter in the theory of matrices, by introducing graph theory and the notion

of irreducibility.

1.1.1 Irreducibility

As we have already mentioned, for a DD matrix, it is not sufficient to observe only the

number of strict inequalities and equalities in (1.1.4), in order to determine nonsingularity

3Or, briefly, DD matrices.
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criteria. In fact, we need to take into account a matrix structure, as one can see from

matrices A4 and A5 of Example 1.1.2. Namely, the singular matrix A4 has a block of zero

entries in lower left corner, while that is not the case for nonsingular matrix A5.

Motivated by this observation, we introduce the following definitions.

Definition 1.1.4. A matrix P ∈ Rn,n is said to be a permutation matrix if there is a
permutation π, i.e., an one-to-one mapping π : N → N , such that P = [pi,j] := [δi,π(j)] ∈
Rn,n, where δk,l is a familiar Kronecker delta function, i.e.,

δk,l :=

{
1, k = l,
0, k 6= l.

Definition 1.1.5. Given a matrix A = [ai,j] ∈ Cn,n, n ≥ 2, then A is reducible if there
exists a permutation matrix P ∈ Rn,n and an integer r, 1 ≤ r < n, such that

P T AP =

[
A1,1 A1,2

O A2,2

]
, (1.1.7)

where A1,1 ∈ Cr,r, and A2,2 ∈ Cn−r,n−r. Otherwise, if such a permutation matrix does not
exist, we say that matrix A is irreducible. If A ∈ C1,1, then A is irreducible if its single
entry is nonzero, and reducible otherwise.

The matrix property of irreducibility, as a tool in linear algebra, appears in a clear

form, at first, in early papers of Olga Taussky in 1949, [46], Theorem 1.12. It illustrates an

extremely close relation between matrix theory and graph theory. Namely, we can observe

matrices as weighted directed graphs, or weighted digraphs, where the indices of rows,

or columns, represent vertices, while nonzero matrix entries represent directed edges with

respected weights.

However, in our study of irreducibility, only the zero/nonzero structure of a matrix

is important. Thus, instead of observing all the matrix data represented by a weighted

digraph, we can restrict attention to the standard digraph of a matrix A. More precisely,

given an arbitrary matrix A = [ai,j] ∈ Cn,n, with {v1, v2, . . . , vn}, we denote n distinct

objects, or points, which we call vertices. For every nonzero entry ai,j of a matrix A, we

create a directed edge −−→vivj which connects the vertex vi with a vertex vj. In the case when

i = j, i.e., when ai,i 6= 0, the edge −→vivi is called a loop.

The set of all such directed edges E(A) := {−−→vivj : ai,j 6= 0, i, j,∈ N}, together with

the set of vertices V(A) := {v1, v2, . . . , vn} makes the digraph G(A) attributed to the

matrix4 A. To illustrate this, let us observe the matrices A1, A2 and A3, of Example

1.1.2, whose graphs G(A1) and G(A2) are given in Figure 1.1.1, and G(A3) in Figure 1.1.2.

Based on these examples, we can note a few interesting facts. First, concerning the

connectivity of the vertices in graphs, the edges can abut one another and form, in such

a way, paths which connect one vertex with another. So, in the graph of the matrix A,

4Throughout the text, we will also use the term ”graph of a matrix”.
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Figure 1.1.1: From left to right, graphs of matrices A1 and A2 of the Example 1.1.2
(Sa leva na desno, grafovi matrica A1 and A2 iz Primera 1.1.2)

Figure 1.1.2: Graph of a matrix A3 of the Example 1.1.2
(Graf matrice A3 iz Primera 1.1.2)
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there exists a path −−−→vi0vi1 ,
−−−→vi1vi2 , . . . ,

−−−−→vi`−1
vi` , if and only if the sequence of matrix indices

{ij}`
j=0 ⊆ N is such that aij−1,ij 6= 0, for all 1 ≤ j ≤ `, which can also be written as

∏̀
j=1

aij−1,ij 6= 0.

Second, the structure of the graph of a matrix can be such that it consists of a ”block”

in which all vertices are connected with each other, as in the case of graph G(A1), or,

in turn, may consists of several such ”blocks”, which are not mutually connected to each

other, as in the case5 of graphs of matrices A2 and A3. Inspired by this, we can observe

the following definition.

Definition 1.1.6. The digraph G(A) of the matrix A = [ai,j] ∈ Cn,n is strongly con-
nected if, for each ordered pair of distinct vertices 〈vi, vj〉, there exists a directed path in
G(A) from the vertex vi to the vertex vj.

Third, notice that a permutation of the matrix entries leaves the graph structure un-

changed, i.e., the graph G(P T AP ), for an arbitrary permutation matrix P , is just G(A)

after an adequate enumeration of its vertices. This observation leads to the following

proposition.

Theorem 1.1.7. ([3]) An arbitrary matrix A = [ai,j] ∈ Cn,n is irreducible if and only if
its graph G(A) is strongly connected.

Now, we are ready to deal with the question of diagonal dominance. Going back to our

example, we see that the singular matrix A4 is reducible, while the nonsingular matrix A5

is irreducible. Thus, one could suppose that irreducibility was needed to be coupled with

the diagonal dominance in order to achieve nonsingularity of a matrix.

That this observation is true, is, in fact, the result of the Theorem 1.4 of Olga Taussky

in [46], which we present here as it was given in [51].

Theorem 1.1.8. (Olga Taussky) Every irreducible matrix A = [ai,j] ∈ Cn,n that is
diagonally dominant is nonsingular.

Proof. Since the case n = 1 directly follows from the Definition 1.1.3, we can assume
that n ≥ 2. Having n ≥ 2, we suppose, on the contrary, that the matrix A is singular.
Then, zero is an eigenvalue of the matrix A, and there exists its (nonzero) eigenvector
x = [x1, x2, . . . , xn]T ∈ Cn such that Ax = 0. Since the last equation is homogenous in x,
we can normalize it so that max {|xi| : i ∈ N} = 1. Letting S := {j ∈ N : |xj| = 1}, then
S is a nonempty subset of N . Now, the equation Ax = 0 implies that

∑
j∈N ak,jxj = 0,

for all k ∈ N , or equivalently,

−ak,kxk =
∑

j∈N\{k}
ak,jxj (k ∈ N).

5In G(A3), from the ”block” {4, 5, 6} there is no directed edge to the ”block” {1, 2}.
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Then, considering i ∈ S and applying the triangle inequality, after taking absolute values,
we get, from the previous equation for k = i, that

|ai,i| ≤
∑

j∈N\{i}
|ai,j||xj| ≤ ri(A) (i ∈ S).

Because the reverse inequality of the above must hold by hypothesis from (1.1.5), then

|ai,i| =
∑

j∈N\{i}
|ai,j||xj| = ri(A) (i ∈ S). (1.1.8)

Now, consider an arbitrary i ∈ S. The terms in the sum of (1.1.8) cannot, due to
irreducibility, all vanish. So, for an arbitrary ai,j 6= 0, where j ∈ N , j 6= i, from the last
equality in (1.1.8), it follows that |xj| = 1, i.e., j ∈ S.

On the other hand, since strict inequality must hold, by hypothesis, in (1.1.6), for at
least one index i, it follows that S has to be a proper subset of N , i.e., ∅ 6= S ( N .
Thus, we can take i0 ∈ S and i` ∈ N \ S. Since the graph G(A) is strongly connected
by Theorem 1.1.7, there exists a path of directed edges from the vertex vi0 to the vertex
vi` , i.e., there exist a series of nonzero entries ai0,i1 , ai1,i2 , . . . , ai`−1,i` . But, applying the
previous conclusions consecutively on the series, we obtain that i` ∈ S, which is an obvious
contradiction. Thus, the matrix A is nonsingular.

Matrices defined by the Taussky theorem will be simply called irreducibly diagonally

dominant, or, briefly, iDD matrices.

1.1.2 Alternatives to Irreducibility

We will finish this section with a few interesting results on DD matrices that can assure

nonsingularity and avoid irreducibility, which is, in practice, rather difficult to check.

Given a matrix A = [ai,j] ∈ Cn,n, consider the standard splitting A = D−L−U , where

D is a diagonal matrix, while L and U are, respectively, strictly lower and strictly

upper triangular matrices. More precisely, let D = diag(a1,1, a2,2, . . . , an,n), L = [li,j],

where

li,j =

{
−ai,j, j < i,

0, otherwise,

and U = [ui,j], where

ui,j =

{
−ai,j, j > i,

0, otherwise.

We define the quantities li(A) := ri(L) and ui(A) := ri(U), or, equivalently li(A) :=∑
j<i |ai,j| and ui(A) :=

∑
j>i |ai,j|. Using these notations, we present the result of

Beauwens, [2].

Definition 1.1.9. A matrix A = [ai,j] ∈ Cn,n is called lower semistrictly diagonally
dominant (lsDD) if |ai,i| ≥ ri(A) for all i ∈ N , and |ai,i| > li(A) for all i ∈ N .
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Definition 1.1.10. A matrix A = [ai,j] ∈ Cn,n is called semistrictly diagonally domi-
nant (sDD) if there exists a permutation matrix P such that P T AP is lower semistrictly
diagonally dominant.

Theorem 1.1.11. (Beauwens) A matrix is irreducibly diagonally dominant if and only
if it is semistrictly diagonally dominant.

Since every permutation matrix is nonsingular, this means that lsDD matrices are

nonsingular, too. So, the real practical benefit from this result lies in the fact that we

do not need to have a special structure of a matrix, or to investigate the connectivity

of its graph in order to obtain nonsingularity. Instead, we need to check additional n

inequalities.

Another interesting result is due to Cvetković, [51], Exercise 1 on page 17. It covers a

special case of DD matrices, when only one row is not an SDD one. In this case too, no

irreducibility is needed to conclude nonsingularity.

Theorem 1.1.12. (Cvetković) Given a matrix A = [ai,j] ∈ Cn,n, n ≥ 2, such that
|ai,i| > ri(A), while 1 ≤ i ≤ n− 1, and |an,n| = rn(A), then A is nonsingular if rn(A) > 0,
and singular if rn(A) = 0.

Proof. The case when rn(A) = 0 is obvious, since the whole n-th row of a matrix is zero.
So, we assume that |an,n| = rn(A) > 0. Since for every i = 1, 2, . . . , n − 1, we have that
|ai,i| > ri(A), or equivalently

|ai,i| >
n−1∑
j=1

|ai,j|+ |ai,n|,

there exists sufficiently small ε > 0, such that

|ai,i| >
n−1∑
j=1

|ai,j|+ (1 + ε)|ai,n|, for all i = 1, 2, . . . , n− 1. (1.1.9)

On the other hand, for this ε > 0 we have that

(1 + ε)|an,n| = rn(A) + ε|an,n| > rn(A). (1.1.10)

Now, consider the nonsingular diagonal matrix W = diag(1, 1, . . . , 1, 1 + ε) ∈ Rn,n. From
(1.1.9) and (1.1.10), it follows that the matrix AW = [ai,jwj] is SDD; thus, it is nonsingular,
implying that the matrix A is nonsingular, too.

While simple, the proof of this result gives us a first insight in what is to become a

very useful technique and an excellent tool for improving known results and producing new

ones. Since the main idea was to construct a nonsingular diagonal matrix that will scale,

from the right hand side, the original matrix into an SDD one, we will address this as a

scaling technique. More precisely, this technique will be presented in the last section of

this chapter, while its full potential will be explored in the consecutive ones.
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1.2 Extensions of (Strictly) Diagonal Dominant

Matrices

The simplicity and the beauty of the SDD matrices are obvious. But, on the other hand,

the condition that defines them is quite restrictive, i.e., the corresponding class of matrices

is not ”sufficiently large”. So, in this section, we will give several extensions of the non-

singularity result of SDD matrices. Until now, through iDD, nDD and sDD matrices, we

could obtain only equalities, instead of strict inequalities in each row, which is an improve-

ment. But, as the examples show, it a natural thing to expect to obtain nonsingularity,

despite the fact that in one, or few rows, the SDD property could be made worst than

being an equality. In each of the following subsections we will present an approach used

to extend nonsingularity result from SDD matrices to ”SDD-like” matrices. In the next

section, the precise definition of the term ”SDD-like” will be given.

1.2.1 Extensions by multiplication

The following result is due to Ostrowski, [41], and it represents one of the first gener-

alizations of strict diagonal dominance. We state it here in the form as it was given in

[51].

Theorem 1.2.1. Let A = [ai,j] ∈ Cn,n, n ≥ 2, be an arbitrary matrix. If

|ai,i||aj,j| > ri(A)rj(A), (1.2.1)

where ri(A) is given by (1.1.2), holds for every two distinct indices i, j ∈ N , then A is
nonsingular.

Proof. Suppose, on the contrary, that A satisfies (1.2.1) is singular. As before, this implies
that there exists a vector x = [x1, x2, . . . , xn]T 6= 0 such that Ax = 0, or, equivalently,

−ai,ixi =
∑

j∈N\{i}
ai,jxj, (i ∈ N). (1.2.2)

Similar to the proof of Lévy-Desplanques theorem, since x 6= 0, there exist indices k, ` ∈ N ,
such that |xk| ≥ |x`| ≥ max {|xi| : i ∈ N \ {k, `}}, where the last quantity is defined to be
zero if n = 2, which, according to (1.2.2) and triangle inequality, implies that

|ak,k||xk| ≤
∑

j∈N\{k}
|ak,j||xj| ≤ |x`|rk(A). (1.2.3)

In the case when |x`| = 0, all the quantities in the last relation reduce to zero, which is a
clear contradiction with the fact that (1.2.1) holds for all indices. Thus, |x`| > 0. Taking
i = `, after applying again the triangle inequality, (1.2.2) becomes

|a`,`|x`| ≤
∑

j∈N\{`}
|a`,j||xj| ≤ |xk|r`(A). (1.2.4)
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Finally, after multiplying (1.2.3) and (1.2.4), we get

|ak,k||a`,`||xk||x`| ≤ rk(A)r`(A))|xk||x`|,
Since |xk||x`| > 0, the last inequality implies that |ak,k||a`,`| ≤ rk(A)r`(A)), which contra-
dicts (1.2.1).

In the literature, these matrices are called doubly diagonally dominant matrices, or

briefly doubly DD matrices. Here, in order to point out the difference between strict in-

equalities and non-strict ones, the matrices from the previous theorem we will call doubly

strictly diagonally dominant matrices, or, briefly, doubly SDD.

Note that if A is an SDD matrix, then (1.2.1) is valid for each two different indices.

Thus, every SDD matrix is doubly SDD, too. The reverse is not true in general, as Example

1.2.3 illustrates below.

On the other hand, if a matrix is not an SDD matrix, at least one row is not an SDD

row. Obviously, in order to apply Theorem 1.2.1, there has to be not more than one non

SDD row, and, thus, we need to check additional n− 1 inequalities, namely combinations

of non SDD row with all the others.

Similar to the notion of DD matrices, we can define doubly diagonally dominant ma-

trices as follows.

Definition 1.2.2. An arbitrary matrix A = [ai,j] ∈ Cn,n is called doubly diagonally
dominant matrix6 if

|ai,i||aj,j| ≥ ri(A)rj(A) for all i, j ∈ N, i 6= j, (1.2.5)

and for at least one pair of indices k, ` ∈ N , k 6= `,

|ak,k||a`,`| > rk(A)r`(A). (1.2.6)

It comes as no surprise that doubly DD matrices are not, in general, nonsingular; see

matrix A7 of the following example.

Example 1.2.3. Let

A6 =




1 0 0
1 1 0
0 0 1


 ,

A7 =




1 1 0
1 1 0
0 0 1


 .

As before, the SDD rows in given matrices are shown in boldface. We notice that the
nonsingular matrix A6, det(A6) = 1, is not an SDD matrix, while it is a doubly SDD
matrix. On the other hand, the singular matrix A7 is neither SDD nor doubly SDD. But,
it is a singular doubly DD matrix.

In the same fashion, in which nonsingularity for iDD matrices was proven in Theorem

of Taussky, Ostrowski proved the following theorem.

6Or briefly doubly DD matrix.
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Theorem 1.2.4. (Ostrowski) Every irreducible matrix A = [ai,j] ∈ Cn,n that is doubly
diagonally dominant is nonsingular.

Matrices defined by the Theorem 1.2.4 will simply be called doubly irreducibly

diagonally dominant, or doubly iDD) matrices.

A natural question, of course, is to ask whether we can continue in this way and

generate nonsingular classes of strictly triple diagonally dominant matrices, and so on.

This is not so, as the matrix A7 of the previous example shows. There, we have that

|(A7)1,1(A7)2,2(A7)3,3| = 1 > 0 = r1(A7)r2(A7)r3(A7), while det(A7) = 0. Actually, this

counter-example was first given by Morris Newman. Thus, other properties must come into

the play in order to ensure nonsingularity, which is the subject of the following subsection.

1.2.2 Extensions via graph theory

This direction of generalization of the results on diagonal dominance was championed

by Brualdi in his paper in 1982, [7], in the field of eigenvalue localization. Developing

the connection between graph theory and theory of matrices, he introduces the notion of

the cycle in the graph of a matrix, which is the missing link leading to nonsingularity of

matrices in the fashion of SDD and doubly SDD. Here, we will, actually, present Brualdi’s

result extended by the work of Varga, who defined the notion of weak cycles and formulated

the corresponding nonsingularity result as it is now generally known.

Given a matrix A = [ai,j] ∈ Cn,n, n ≥ 1, let G(A) be its graph, as was described in

Subsection 1.1.1: n vertices {v1, v2, . . . , vn}, we connect with directed edges, in such a way

that each nonzero entry ai,j 6= 0 makes an edge −−→vivj, which, in the case when i = j, is

called a loop.

In the graph G(A), a strong cycle γ, of length p ≥ 2, is a p-tuple of integers γ :=

(i1, i2, . . . , ip), such that −−−−−→vij , vij+1
is an edge, for all j = 1, 2, . . . , p, where we take ip+1 := i1.

In other words, an ordered set γ := (i1, i2, . . . , ip) is called a strong cycle in G(A) if

the entries ai1,i2 , ai2,i3 , . . . , aip,i1 of the matrix A are nonzero. Obviously, the sequence of

indices is what defines a cycle in a graph, while it is not of importance which one is the

beginning and the end. The following example illustrates that.

Example 1.2.5. Let

A8 =




0 1 0 0 0 0
0 1 1 0 0 0
1 0 1 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 1




.

In Figure 1.2.1, which represents the graph G(A8) attributed to the given matrix, we can
observe that there are only two strong cycles, and they are made of the edges −−−→v1, v2,

−−−→v2, v3

and −−−→v3, v1, and of the edges −−−→v3, v4 and −−−→v4, v3. So, first of those two cycles we can write as
γ1 = (1, 2, 3), or γ1 = (2, 3, 1), or as γ1 = (3, 1, 2), while the other one can be written as
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Figure 1.2.1: Graph of a matrix A8 of the Example 1.2.5
(Graf matrice A8 iz Primera 1.2.5)

γ1 = (3, 4), or γ1 = (4, 3). We see that neither one of the two strong cycles of the matrix
A8 contains indices 5 and 6. In that case we will define the weak cycles γ3 = (5) and
γ4 = (6), as described below.

For an arbitrary index i ∈ N , such that there is no strong cycle which passes through

the vertex vi, we define, regardlessly of whether a loop of G(A) in the vertex vi exists or

not, a weak cycle γ = (i), i.e., we define a weak cycle, regardlessly of whether ai,i 6= 0

or ai,i = 0. In such a way, we have accomplished that, for each index i ∈ N , at least one

cycle, weak or strong, passes through the vertex vi. We denote by C(A) the set of all

cycles in the graph G(A), strong ones as well as the weak ones.

Now, if we get back to the notion of irreducibility that was introduced in Subsection

1.1.1 by Definition 1.1.5, we can observe that, for an arbitrary matrix A = [ai,j] ∈ Cn,n,

n ≥ 2, either A is irreducible, or it can be written as

P T AP =

[
A1,1 A1,2

O A2,2

]
,

where A1,1 and A2,2 are square matrices, and P is an n × n permutation matrix. If we

continue with the same reasoning, and apply it to the blocks A1,1 and A2,2, and further to

their progenies, by consecutive permutations, we ultimately obtain a permutation matrix

P̃ ∈ Rn,n, and a positive integer m, 2 ≤ m ≤ n, such that

P̃ T AP̃ =




R1,1 R1,2 · · · R1,m

O R2,2 · · · R2,m

...
...

. . .
...

O O · · · Rm,m




, (1.2.7)

where {
Ri,i ∈ Cpi,pi , is irreducible matrix with pi ≥ 2, or

Ri,i = [ak,k] ∈ C1,1, is 1× 1 matrix for some k ∈ N .
(1.2.8)
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for every 1 ≤ i ≤ m.

The permutation matrix P̃ is obtained as a product of individual permutation matrices

generated at each step of the process.

The form (1.2.7) is called the normal reduced form of the matrix A.

For a matrix A8 of the Example 1.2.5, the normal reduced form is given by

P̃ T A8P̃ =




0 0 0 1 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 1 0 0 0

0 0 0 1 1 1

0 0 0 0 1 0




, (1.2.9)

where P̃ is a permutation matrix that corresponds to permutation

π =

(
1 2 3 4 5 6

4 3 5 6 1 2

)
.

In addition, we can note that in this case, the matrices R1,1 and R2,2 are both 1×1, while

R3,3 is an irreducible matrix of the size 4× 4. During this transformation, we observe that

the structure of the graph G(A8) remained the same, while the vertices have interchanged

their names. In this new notation, according to the permutation π, the cycles are given

by γ1 = (3, 5, 4), γ2 = (5, 6), γ3 = (2) and γ4 = (1). Here, we can observe that the weak

cycles correspond to the 1× 1 blocks, while the strong cycles occur in irreducible diagonal

blocs of the size at least 2.This is not only the case in this particular example. It holds in

general, as a consequence of the definition of the normal reduced form, and the definition

of reducibility.

Before we give a nonsingularity result that corresponds to Brualdi’s theorem from 1982,

as Varga’s work suggests, we can point out that, according to the form given in (1.2.7),

an arbitrary matrix A = [ai,j] ∈ Cn,n is nonsingular if and only if all of the matrices Ri,i,

1 ≤ i ≤ m are nonsingular. So, instead of using row sums of the matrix A, one can take

only that part of the sum which lies in the corresponding diagonal block. Namely, we

define the reduced row sums

r̃i(A) := rj(Rk,k), (1.2.10)

where the i-th row of the matrix A corresponds, in fact, the j-th row of a matrix Rk,k in

the form (1.2.7). An easy consequence of such a definition is the fact that r̃i(A) = 0 if and

only if a weak cycle of the graph G(A) passes through the vertex vi.

Theorem 1.2.6. (Brualdi)7 Given an arbitrary matrix A = [ai,j] ∈ Cn,n, if
∏
i∈γ

|ai,i| >
∏
i∈γ

r̃i(A) (1.2.11)

7The theorem presented here is, in fact, Varga’s generalization of the original Brualdi’s theorem from
[7].
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holds for every, either strong or weak, cycle8 γ ∈ C(A), where r̃i(A) is given by (1.2.10),
then the matrix A is nonsingular.

Proof. As before, we start with the assumption that a matrix fulfilling the conditions of
the theorem is, on the contrary, singular. From normal reduced form (1.2.7), it follows
that there exists a diagonal block Rk,k that is singular.

Let us, first, consider the case when Rk,k = [aj,j] ∈ C1,1. Then, γ = (j) is a weak cycle,
and, according to (1.2.11), it follows that |aj,j| > 0, which contradicts the fact that Rk,k is
singular.

Thus, Rk,k = [ãi,j] ∈ Cpk,pk has to be an irreducible matrix of size at least 2× 2. Here,
with tilde we are denoting the entries of the original matrix A which have been permuted
to obtain the normal reduced form. To simplify the notation, and without any loss of
generality, we can now assume that Rk,k = A. Then, r̃i(A) = ri(A), for all i ∈ N , and,
since A is irreducible, through every index in N passes at least one strong cycle from C(A),
implying that, according to (1.2.11), every diagonal entry of the matrix A is nonzero.

Now, since A is singular, there exists a vector x = [x1, x2, . . . , xn]T ∈ Cn, x 6= 0, such
that Ax = 0, or, equivalently,

−ai,ixi =
∑

j∈N\{i}
ai,jxj, (i ∈ N). (1.2.12)

Letting `1 ∈ N be such that |x`1| := max {|xj| : j ∈ N}, we have, as a consequence of
x 6= 0, that |x`1| > 0, and, from (1.2.12) and triangle inequality, that

0 < |a`1,`1||x`1| ≤
∑

j∈N\{`1}
|a`1,j||xj|. (1.2.13)

Hence, there is an `2 ∈ N \ {`1}, such that |a`1,`2||x`2| > 0. Choosing an `2 so that

|x`2| = max {|xj| : |a`1,j| > 0, and j ∈ N \ {x`1}} ,

from (1.2.12), we have that

|a`2,`2||x`2| ≤
∑

j∈N\{`2}
|a`2,j||xj| ≤ |x`1|r`2(A). (1.2.14)

Again, from (1.2.14) we conclude that there is `3 ∈ N \ {`2}, such that

|x`3| = max {|xj| : |a`2,j| > 0, and j ∈ N \ {x`2}} ,

and we obtain
|a`3,`3||x`3| ≤

∑

j∈N\{`3}
|a`3,j||xj| ≤ |x`2|r`3(A). (1.2.15)

Repeating this procedure, we obtain a sequence of indices

`1, `2, . . . , `n, `n+1 (1.2.16)

such that, for every i = 1, 2, . . . , n, `i 6= `i+1, |a`i,`i+1
||x`i+1

| > 0 and

|a`i+1,`i+1
||x`i+1

| ≤
∑

j∈N\{`i+1}
|a`i+1,j||xj| ≤ |x`i

|r`i+1
(A). (1.2.17)

8In the notation i ∈ γ, the cycle γ is considered as the set of the corresponding indices.
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But, the set of indices of the matrix A is of cardinality n, so, in the sequence (1.2.16),
at least one index has to repeat. Having that every two consecutive indices are dis-
tinct, there must exist a subsequence `k, `k+1 . . . , `k+p, where p ≥ 1, and `k+p+1 = `k.
Multiplying inequalities (1.2.17) for i = k, k + 1, . . . , k + p and dividing the result by
|x`k

||x`k+1
| · · · |x`k+p

| > 0, we get

|a`k,`k
||a`k+1,`k+1

| · · · |a`k+p,`k+p
| ≤ r`k

(A)r`k+1
(A) · · · r`k+p

(A). (1.2.18)

But, from the construction of the sequence (1.2.16), it follows that |a`i,`i+1
| 6= 0, for all

i = k, k + 1, . . . , k + p. Thus, γ = (k, k + 1, . . . , k + p) ∈ C(A), and (1.2.18) contradicts
(1.2.11), leading to the conclusion that the matrix A is nonsingular.

Matrices from the previous theorem we will call Brualdi strictly diagonally domi-

nant, or just Brualdi SDD matrices.

Example 1.2.7. Observing the normal reduced form (1.2.9) of the matrix A8 of the Ex-
ample 1.2.5, we conclude that C(A8) = {γ1, γ2, γ3, γ4}, where γ1 = (3, 5, 4), γ2 = (5, 6),
γ3 = (2), and γ4 = (1). Thus, in this case we need to check four inequalities:

|a3,3||a5,5||a4,4| > r̃3(A)r̃5(A)r̃4(A), |a5,5||a6,6| > r̃5(A)r̃6(A), |a2,2| > 0 and |a1,1| > 0.

One can ask if the new class of matrices is bigger, smaller or neither, comparing it to

the class of doubly SDD matrices. While it is rather easy to conclude that every SDD

matrix is Brualdi SDD, to compare doubly SDD matrices to Brualdi SDD matrices is

not so obvious. Nevertheless, Brualdi SDD matrices include doubly SDD matrices, as the

following result of Varga states.

Theorem 1.2.8. Every doubly strictly diagonally dominant matrix is Brualdi strictly di-
agonally dominant.

For proof, see Theorem 2.9 in [51].

Converse of the Theorem 1.2.8 is not true, in general, as shown by the following exam-

ple.

Example 1.2.9. Given an irreducible matrix

A9 =




1 1 0 0
0 1 1 0
0 0 1 1

0.9 0 0 1


 ,

observe that γ = (1, 2, 3, 4),is the only cycle in G(A). Thus, since

|a1,1||a2,2||a3,3||a4,4| = 1 > 0.9 = r1(A9)r2(A9)r3(A9)r4(A9),

we conclude that A9 is a Brualdi SDD matrix. But, since there are more than one non
SDD rows, it’s obvious that it is not a doubly SDD matrix.
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As we have mentioned, to determine if a matrix is doubly SDD, it is necessary to check
n(n−1)

2
inequalities. Regarding Brualdi SDD matrices, since they depend on the associated

graph structure, their number can vary, from only one inequality, as in the case of matrix

A9 of Example 1.2.9, to a few of them, Example 1.2.7, or to a number that far exceeds

n − 1. The ultimate case is when a matrix A = [ai,j] ∈ Cn,n, of the size n ≥ 2, has all

nonzero off-diagonal entries. Then, each choice of two or more indices is a strong cycle,

so their number is
∑n

k=2
n!
k!

. It is interesting to note that in that case, for each cycle

γ = (i, j) of the length 2, inequality (1.2.11) becomes (1.2.1), implying that such Brualdi

SDD matrices are, in fact, doubly SDD. In other words, if we are considering only such

matrices, Brualdi SDD becomes the same as doubly SDD.

So, in case of matrices without any zero off-diagonal entry, most of the cycles of the

graph G(A) do not affect the condition of diagonal dominance. That, of course, raises the

question if the set of cycles in the graph C(A) can be reduced, while the condition that

defines Brualdi SDD matrices remains unchanged. The answer is yes, and the reduced set

of cycles is given in [51], Theorem 2.10.9

To conclude this subsection, we give an analog of the Taussky’s nonsingularity result

of Theorem 1.1.8, which also appears in [7].

Definition 1.2.10. An arbitrary matrix A = [ai,j] ∈ Cn,n is called a Brualdi diagonally
dominant matrix10 if

∏
i∈γ

|ai,i| ≥
∏
i∈γ

ri(A), (all γ ∈ C(A)), (1.2.19)

with strict inequality holding for at least one cycle γ ∈ C(A).

Theorem 1.2.11. (Brualdi) Every irreducible matrix A = [ai,j] ∈ Cn,n that is Brualdi
diagonally dominant is nonsingular.

Matrices defined by the Theorem 1.2.11 we will call Brualdi irreducibly diagonally

dominant (Brualdi iDD) matrices.

1.2.3 Extensions by partitions

In this subsection we start with a motivating result by Daschnic and Zusmanovich from

1970, [21], and we give its generalization by Cvetković, Kostić and Varga from 2004, which

is done by the use of partitioning of the set of indices. The original technique which was

used in both papers is in essence different from the ones presented up to now, and we will

study it, in detail, in the fourth Section of this Chapter. Here, we will give new proofs of

these results, using an approach similar to the ones that we were using throughout this

section. We should also mention that extensions by partitions of the set of indices were

9Actually, Theorem 2.10 covers the same question in an equivalent form of eigenvalue localization, a
topic covered in the next chapter.

10Or, briefly, Brualdi DD matrices.
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done also by Gao and Wang in [26], and Huang in [30]. While the result of Gao and Wang

is in fact a special case of the result of Cvetković, Kostić and Varga, Huang gave more

general result. But, the drawback of his result lies in the complexity of the conditions to

be checked, which limits the application of his theorem, especially in the fields that are

covered in the later chapters of this theses.

Theorem 1.2.12. (Dashnic-Zusmanovich) Let A = [ai,j] ∈ Cn,n, with n ≥ 2, be an
arbitrary matrix, and let ri(A) be given by (1.1.2). If there exists an index ` ∈ N , such
that for every j ∈ N \ {`}

|a`,`| · (|aj,j| − rj(A) + |aj,`|) > r`(A)|aj,`|, (1.2.20)

then A is nonsingular matrix.

Proof. Suppose, on the contrary, that A whose elements satisfy (1.2.20) is singular, i.e.,
there exists a vector x = [x1, x2, . . . , xn]T 6= 0 such that Ax = 0. Equivalently,

−ai,ixi =
∑

j∈N\{i}
ai,jxj, (i ∈ N). (1.2.21)

Similar to the proof of Ostrowski’s theorem on doubly SDD matrices, take k ∈ N , k 6= `,
so that |xk| = max {|xi| : i ∈ N \ {`}}. Then, (1.2.21) and the triangle inequality imply
that

|ak,k||xk| ≤
∑

j∈N\{k}
|ak,j||xj| ≤ |xk|(rk(A)− |ak,`|) + |ak,`||x`|, (1.2.22)

i.e.,
(|ak,k| − rk(A) + |ak,`|)|xk| ≤ |ak,`||x`|. (1.2.23)

Assuming that |x`| = 0, the right hand size of the last relation reduces to zero. But, since
x 6= 0, then |xk| > 0, implying that |ak,k| − rk(A) + |ak,`| < 0, which contradicts the fact
that (1.2.20) holds for each index j ∈ N \ {`}. Therefore, |x`| 6= 0.

Now, taking i = `, and applying again the triangle inequality to (1.2.21), we obtain

|a`,`||x`| ≤
∑

j∈N\{`}
|a`,j||xj| ≤ |xk|r`(A). (1.2.24)

Finally, after multiplying (1.2.23) and (1.2.24), and dividing by |xk||x`| > 0, we get

(|ak,k| − rk(A) + |ak,`|)|a`,`| ≤ |ak,`|r`(A)),

which contradicts (1.2.20). Hence, A is a nonsingular matrix.

Again, it is easy to see that the matrices that satisfy the previous theorem, which

we will call Dashnic-Zusmanovich-SDD matrics, or DZ-SDD matrices, include SDD

matrices. Namely, if each row of a matrix is SDD, then (1.2.20) directly follows.

The following theorem is a direct generalization of the previous one.
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Theorem 1.2.13. (Cvetković-Kostić-Varga) Let A = [ai,j] ∈ Cn,n, with n ≥ 2, be an
arbitrary matrix, and let S ⊆ N be a nonempty subset of indices. If, for every two indices
i ∈ S, and j ∈ S := N \ S, there holds

|ai,i| > rS
i (A), and (1.2.25)

(|ai,i| − rS
i (A)) · (|aj,j| − rS

j (A)) > rS
i (A)rS

j (A), (1.2.26)

where rS
i (A) :=

∑
j∈S\{i} |ai,j|, then A is nonsingular.

Remark 1.2.14. Before we give the proof, it is interesting to note that taking any i ∈ S
and applying (1.2.26) for all j ∈ S, we obtain that

|aj,j| > rS
j (A) (j ∈ S). (1.2.27)

Thus, the condition (1.2.27) is a necessary one, and it is implicitly stated within (1.2.25)
and (1.2.26). For the same reason, to check if the conditions for this theorem are valid, it
suffice to check if (1.2.25) holds for at least one index i ∈ S, instead for all of them.

Proof. First, observe that in the case when S = N , condition (1.2.26) vanishes leaving the
condition (1.2.25), which becomes the same as (1.1.3), implying that the matrix is SDD,
and hence, nonsingular. So, we assume, for the nonempty subset of indices S, that S ( N ,
i.e., that its complement S is nonempty, too.

As before, we start by assuming, on the contrary, A that satisfies (1.2.25) and (1.2.26),
and that A is singular. Then, we can take a vector x = [x1, x2, . . . , xn]T 6= 0 such that
Ax = 0, or equivalently,

−ai,ixi =
∑

j∈N\{i}
ai,jxj =

∑

j∈S\{i}
ai,jxj +

∑

j∈S\{i}
ai,jxj, (i ∈ N). (1.2.28)

Since S and S are nonempty, we can take k ∈ S, so that |xk| = max {|xi| : i ∈ S}, and
` ∈ S, so that |x`| = max

{|xj| : j ∈ S
}
. Calling i = k in (1.2.28), and taking absolute

values and applying the triangle inequality, we obtain

|ak,k||xk| ≤
∑

j∈N\{k}
|ak,j||xj| ≤ |xk|rS

k (A) + |x`|rS
k (A), (1.2.29)

i.e.,

(|ak,k| − rS
k (A))|xk| ≤ rS

k (A)|x`|. (1.2.30)

Similar, we get

(|a`,`| − rS
` (A))|x`| ≤ rS

` (A)|xk|. (1.2.31)

Now, since x 6= 0, at least one of the following is true: |xk| > 0 or |x`| > 0. Without
any loss of generality, we can assume that |xk| > 0. Then, according to (1.2.25), (1.2.30)
implies that |x`| > 0, too. Thus, after multiplying (1.2.30) and (1.2.31), and dividing by
|xk||x`| > 0, we get a direct contradiction to (1.2.26). Hence, A is a nonsingular matrix.

In the literature, matrices defined in the previous theorem are called S-strictly diag-

onally dominant matrices, or just S-SDD matrices, where S is the fixed set of indices

for which the conditions (1.2.25) and (1.2.26) hold.
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Clearly, as S is an arbitrary non-empty subset of indices, we can define a larger class

of matrices by letting S vary. The result is the class of matrices known in literature as

S-SDD, [10], or Σ-SDD, [6]. Here, for a uniform notation, we will call them Cvetković-

Kostić-Varga SDD matrices, or, briefly, CKV-SDD matrices. More precisely, the

matrix A = [ai,j] ∈ Cn,n is a CKV-SDD matrix if and only if there is a non-empty set of

indices S such that for every i ∈ S and every j ∈ S conditions (1.2.25) and (1.2.26) hold.

Taking S to be a singleton, (1.2.26) transforms into (1.2.20), and therefore, every

DZ-SDD matrix is a CKV-SDD matrix.

It is interesting to compare these classes of matrices to the previously defined ones. In

fact the following theorem holds.

Theorem 1.2.15. Every doubly strictly diagonally dominant matrix is a Dashnic-Zusmanovich
strictly diagonally dominant, and every Dashnic-Zusmanovich strictly diagonally dominant
matrix is Cvetković-Kostić-Varga strictly diagonally dominant one.

That CKV-SDD matrices and Brualdi SDD matrices stand in a general position, one

can find in detail in [10] and [51].

To conclude this subsection, we give Taussky’s analog of the Theorem 1.2.13, originally

obtained in [13]. Although they can be proved by following the same idea as in Theorem

1.1.8, the original proof in [13] was obtained by the scaling technique, which we will give

in the last section of this chapter.

Definition 1.2.16. Given a nonempty subset S ⊂ N , an arbitrary matrix A = [ai,j] ∈ Cn,n

is called an S-diagonally dominant 11 matrix, if

|ai,i| ≥ rS
i (A) (all i ∈ S), (1.2.32)

and

(|ai,i| − rS
i (A))(|aj,j| − rS

j (A)) ≥ rS
i (A)rS

j (A) (all i ∈ S, and all j ∈ S), (1.2.33)

with strict inequality holding for at least one pair of indices i ∈ S, and j ∈ S. If a matrix
is S-daigonally dominant for some nonempty subset S ⊂ N , then it is CKV-diagonally
dominant matrix 12.

Theorem 1.2.17. (Cvetković-Kostić) Every irreducible matrix A = [ai,j] ∈ Cn,n that
is S-diagonally dominant is nonsingular, and consequently, every irreducible matrix A =
[ai,j] ∈ Cn,n that is CKV-diagonally dominant, is nonsingular.

As before, matrices defined by the Theorem 1.2.17 we call S-irreducibly diagonally

dominant (S-iDD) matrices, and CKV-irreducibly diagonally dominant (CKV-

iDD) matrices.

11Or, briefly, S-DD.
12Or, briefly, CKV-DD.
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1.2.4 Extensions by column sums

It is well-known that an arbitrary matrix A = [ai,j] ∈ Cn,n is nonsingular if and only if its

transpose, i.e.,

AT := [ãi,j] ∈ Cn,n, where ãi,j := aj,i, for all i, j ∈ N,

is nonsingular. So, a direct corollary of the Lévy-Desplanques Theorem is the following

nonsingularity result.

Theorem 1.2.18. Let A = [ai,j] ∈ Cn,n be an arbitrary matrix. If

|ai,i| > ci(A) := ri(A
T ) =

∑

j∈N\{i}
|aj,i| for all i ∈ N, (1.2.34)

then A is nonsingular.

Such matrices are known in the literature as column strictly diagonally dominant

matrices, while SDD matrices are sometimes called by row strictly diagonally dominant

matrices.

After collecting this simple extension together with the original result on SDD matrices,

one can easily see that the following proposition is true.

Proposition 1.2.19. Let A = [ai,j] ∈ Cn,n be an arbitrary matrix. If

|ai,i| > ri(A), for all i ∈ N, or |ai,i| > ci(A), for all i ∈ N, (1.2.35)

then, the matrix A is nonsingular.

While trivial, this observation opens a very interesting question. Namely, (1.2.35) is,

definitely, more restrictive than the following property

|ai,i| > ri(A) or |ai,i| > ci(A), for all i ∈ N,

which can, also, be written as

|ai,i| > min {ri(A), ci(A)} , for all i ∈ N. (1.2.36)

In other words, with (1.2.36), we have obtained a class of matrices larger then both

column SDD and row SDD classes, so, the question about their nonsingularity arises.

Example 1.2.20. Given a matrix

A10 =

[
2 6
1 3

]
,

observe that r1(A10) = c2(A10) = 6, and r2(A10) = c1(A10) = 1.
Then, min {r1(A10), c1(A10)} = min {r2(A10), c2(A10)} = 1, and, hence, given matrix

fulfills (1.2.36). But, det(A10) = 0, so the matrix is singular.
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As the example suggests, (1.2.36) is ”too loose”, meaning that it is not a sufficient

condition for nonsingularity, while the stronger condition (1.2.35) is. So, a suitable mo-

tivation would be to find another condition, as nonrestrictive as it can be, which can be

added to (1.2.36) in order to insure nonsingularity, while being weaker than (1.2.35).

Before we give an answer to this problem, we will focus on two well-known extensions

of the SDD property, due to Ostrowski in 1951, [39], which make use of both row and

column sums, for each diagonal entry. Their proof can be found in [51].

Theorem 1.2.21. (Ostrowski) Let A = [ai,j] ∈ Cn,n, with n ≥ 2, be an arbitrary matrix,
and let ri(A) and ci(A) be defined by (1.1.2) and (1.2.34), respectively. If there exists a
parameter α ∈ [0, 1], such that

|ai,i| > αri(A) + (1− α)ci(A) for all i ∈ N, (1.2.37)

then A is nonsingular.

Theorem 1.2.22. (Ostrowski) Let A = [ai,j] ∈ Cn,n, with n ≥ 2, be an arbitrary matrix,
and let ri(A) and ci(A) be defined by (1.1.2) and (1.2.34), respectively. If there exists a
parameter α ∈ [0, 1], such that

|ai,i| > (ri(A))α(ci(A))1−α for all i ∈ N, (1.2.38)

then, A is nonsingular.

Matrices that fulfill the conditions of the previous two theorem are known in the litera-

ture as Ostrowski matrices. In particular, they are known, respectively, as α1-matrices

and α2-matrices, [10] and [11]. Here, we will call them α1-strictly diagonally domi-

nant matrices, or just α1-SDD matrices, and α2-strictly diagonally dominant ma-

trices, or, briefly, α2-SDD matrices.

For different values of the parameter α, in both cases, we obtain different nonsingularity

conditions. In particular, taking α = 1, conditions (1.2.37) and (1.2.38) become the same

as (1.1.3), while, taking α = 0, they transform in (1.2.34). Thus, α1- and α2-SDD matrices

include, both, row and column SDD matrices.

As we have seen, the parameter α gave us an opportunity to enlarge the classes of

nonsingular matrices, which is good. But, on the other hand, when we really want to

apply these results on a particular matrix, we encounter the problem of finding a suitable

parameter, for which the matrix fulfills nonsingularity conditions (1.2.37) and/or (1.2.38).

Since it is not, in general, a trivial thing to do, it seems to be an interesting open problem.

There are two closely related approaches, developed in [11] and [6], which address

this problem. Here we present them in the form of nonsingularity theorems, while their

equivalent forms will be used in later chapters that concern different applications.

Actually, the nonsingularity of α1-SDD matrices follows directly from nonsingularity

of α2-SDD matrices, by the generalized arithmetic-geometric mean inequality:

αa + (1− α)b ≥ aαb1−α, (1.2.39)
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where a, b ≥ 0 and 0 ≤ α ≤ 1.

Nevertheless, we will consider both of these classes, since they can play separate roles

in different applications. For more detail, see [11] and [12].

Given an arbitrary matrix A = [ai,j] ∈ Cn,n, with n ≥ 2, observe that, in the case when

ri(A) = ci(A), (1.2.37) and (1.2.38) become |ai,i| > ri(A) = ci(A), independently of the

value of α. In general, there are two more possibilities: ri(A) > ci(A) or ri(A) < ci(A).

Accordingly, we partition the set of indices N into three subsets:

R(A) := {i ∈ N : ri(A) > ci(A)},
C(A) := {i ∈ N : ci(A) > ri(A)},
E(A) := {i ∈ N : ri(A) = ci(A)},

(1.2.40)

and for each i ∈ N \ E(A), we define the quantity

φ
(1)
i (A) =

|ai,i| − ci(A)

ri(A)− ci(A)
∈ R, (1.2.41)

which we shall use to obtain the set of feasible values of a parameter α.

Calling

U (1)(A) = (−∞, min
i∈R(A)

φ
(1)
i (A))

⋂
( max

i∈C(A)
φ

(1)
i (A), +∞), (1.2.42)

where, by convention, we take

min
i∈R(A)

φ
(1)
i (A) = +∞ if R(A) := ∅, and max

i∈C(A)
φ

(1)
i (A) := −∞ if C(A) = ∅,

we can give the following characterization of the class of α1-SDD matrices.

Theorem 1.2.23. Given an arbitrary A = [ai,j] ∈ Cn,n, A is an α1-SDD matrix if and
only if the following two conditions hold:

(i) U (1)(A) ∩ [ 0, 1 ] 6= ∅,
(ii) |ai,i| > ri(A), for all i ∈ E(A).

Proof. First, let us assume that A is an α1-SDD matrix. Consider i ∈ R(A). From
equation (1.2.41) we have

|ai,i| = φ
(1)
i (A)(ri(A)− ci(A)) + ci(A), (1.2.43)

where ri(A)− ci(A) > 0. Since A is an α1-SDD matrix, there exists α ∈ [0, 1] such that

|ai,i| > α(ri(A)− ci(A)) + ci(A), for all i ∈ N. (1.2.44)

Therefore, from (1.2.43) and (1.2.44), we conclude that φ
(1)
i (A) > α for all i ∈ R(A), and

thus we have
min

i∈R(A)
φ

(1)
i (A) > α. (1.2.45)
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In an analogous way, it is easy to show that

α > max
i∈C(A)

φ
(1)
i (A). (1.2.46)

Note that (1.2.45) and (1.2.46) still hold if R(A) or C(A) are empty sets. Hence,

max
i∈R(A)

φ
(1)
i (A) < α < min

i∈C(A)
φ

(1)
i (A). (1.2.47)

By (1.2.42), we have

U1(A) = ( max
i∈C(A)

φ
(1)
i (A), min

i∈R(A)
φ

(1)
i (A)), (1.2.48)

and, therefore, we conclude that α ∈ U (1)(A) ∩ [ 0, 1 ].
If i ∈ E(A), then ri(A) = ci(A), and, since A is an α1-SDD matrix, the condition (ii)

follows.
Conversely, assume that the conditions (i) and (ii) hold. From expression (1.2.42), we

have U (1)(A) = ( max
i∈C(A)

φ
(1)
i (A), min

i∈R(A)
φ

(1)
i (A)).

Now, we show that A is an α1-SDD matrix. More precisely, let us prove that (1.2.37)
holds for each i ∈ N , and for some α ∈ U (1)(A) ∩ [ 0, 1 ], which is not empty by the first
condition (i). If i ∈ C(A), from equation (1.2.41), we have

|ai,i| = φ
(1)
i (A)(ri(A)− ci(A)) + ci(A).

Since α < min
i∈R(A)

φ
(1)
i (A), we obtain

|ai,i| > α(ri(A)− ci(A)) + ci(A). (1.2.49)

Therefore, the expression (1.2.49) holds for all α < min
i∈R(A)

φ
(1)
i (A). In the same way, if

i ∈ C(A), we have
|ai,i| > α(ri(A)− ci(A

T )) + ci(A
T ), (1.2.50)

for all α > φ
(1)
i (A), so, the expression (1.2.50) holds for all α > max

i∈C(A)
φ

(1)
i (A). If i ∈ C(A),

we have, by the condition (ii), that |ai,i| > ci(A). So, A is an α1-matrix for all α ∈
U (1)(A) ∩ [0, 1], which is nonempty by the condition (i).

Note that, in general, the set U (1)(A) and the interval [0, 1] need not intersect. The

following example shows that such a matrix, in general, may have a determinant equal to

zero, and, hence, is nonsingular.

Example 1.2.24. Given the matrix

A11 =




4 1 1 1
1 2 0 1
1 2 1 2
2 2 0 2


 .

calculate U (1)(A11) = [3, +∞) which has no mutual points with the interval [0, 1], while
det(A11) = 0.
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To characterize α2-SDD matrices, we can use a similar approach.

Given an arbitrary matrix A = [ai,j] ∈ Cn,n, for each i ∈ N \ E(A), we define the

quantity

φ
(2)
i (A) =

log |ai,i| − log ci(A)

log ri(A)− log ci(A)
∈ R, (1.2.51)

and the set

U (2)(A) = (−∞, min
i∈R(A)

φ
(2)
i (A))

⋂
( max

i∈C(A)
φ

(2)
i (A), +∞), (1.2.52)

where, by convention,

min
i∈R(A)

φ
(2)
i (A) = +∞ if R(A) = ∅ and max

i∈C(A)
φ

(2)
i (A) = −∞ if C(A) = ∅.

The proof of the following result is analogous to that of Theorem 1.2.23, the only

difference is that we are working with U (2)(A) and φ
(2)
i (A), instead of U (1)(A) and φ

(1)
i (A),

respectively.

Theorem 1.2.25. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, A is an α2-SDD matrix if
and only if the two following conditions hold:

(i) U (2)(A) ∩ [ 0, 1 ] 6= ∅,
(ii) |ai,i| > ri(A), for all i ∈ E(A).

As we have mentioned, the class of α1-SDD matrices is a subclass of α2-SDD matrices.

Thus, for any α1-SDD matrix A = [ai,j] ∈ Cn,n, clearly, U (1)(A) ∩ U (2)(A) = U (1)(A).

Apart from this characterization of α1-SDD matrices, that gave us the values for the pa-

rameter α for which nonsingularity is assured, we will prove another one, due to Cvetković,

Bru, Kostić and Pedroche in 2009, [11], that is more suitable for the applications in eigen-

value localization theory.

Theorem 1.2.26. A matrix A = [ai,j] ∈ Cn,n, with n ≥ 2, is an α1-SDD matrix if and
only if the following two conditions hold:

(i) |ai,i| > min{ri(A), ci(A)}, for all i ∈ N ,

(ii)
|ai,i| − ci(A)

ri(A)− ci(A)
>

cj(A)− |aj,j|
cj(A)− rj(A)

, for all i ∈ R, and all j ∈ C.

Proof. First, let us assume that A is an α1-matrix. Then, there exists α ∈ [0, 1] such that

|ai,i| > α(ri(A)− ci(A)) + ci(A), for all i ∈ N. (1.2.53)

Therefore, for every i ∈ R(A), we conclude that
|ai,i|−ci(A)

ri(A)−ci(A)
> α, and, for every j ∈ C(A),

cj(A)−|aj,j |
cj(A)−rj(A)

< α. Thus, (ii) obviously holds. Condition (i) follows directly from (1.2.53)

and the fact that α ∈ [0, 1].
Conversely, assume that the conditions (i) and (ii) hold. For every index i ∈ E(A),

condition (i) directly implies (1.2.53), so it remains to prove that (1.2.53) holds for indices
from the set R(A) ∪ C(A).
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First, observe that for every i ∈ R(A), we have ri(A) − ci(A) > 0, and, thus, by
condition (i), |ai,i| − ci(A) > 0. This, obviously, implies that

|ai,i| − ci(A)

ri(A)− ci(A)
> 0. (1.2.54)

Similar, for every j ∈ C(A), |aj,j| > rj(A), and thus, cj(A)− |aj,j| < cj(A)− rj(A). Since
cj(A)− rj(A) > 0, this implies that

cj(A)− |aj,j|
cj(A)− rj(A)

< 1. (1.2.55)

Now, gathering conditions (ii), (1.2.54) and (1.2.55), we have that there exists a parameter
α such that, for every i ∈ R(A) and every j ∈ C(A),

max{0, cj(A)− |aj,j|
cj(A)− rj(A)

} < α < min{ |ai,i| − ci(A)

ri(A)− ci(A)
, 1}.

Starting from the left inequality, we obtain that |aj,j| > α(rj(A)− cj(A))+ cj(A) for every
j ∈ C(A), while from the right one we get the same for indices i ∈ R(A). Thus, (1.2.53)
holds for the chosen parameter α ∈ [0, 1] and every index i ∈ R(A)∪C(A), which completes
the proof.

Calling

R∗(A) := R(A) \ {i : ci(A) = 0} , (1.2.56)

and

C∗(A) := C(A) \ {i : ri(A) = 0} , (1.2.57)

we prove the similar characterization for α2 matrices.

Theorem 1.2.27. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, A is an α2-SDD
matrix if and only if the following two conditions hold

(i) |ai,i| > min{ri(A), ci(A)}, for all i ∈ N ,

(ii) log ri(A)

ci(A)

|ai,i|
ci(A)

> log cj(A)

rj(A)

cj(A)

|aj,j | , for all i ∈ R∗(A), and all j ∈ C∗(A).

Proof. First, we assume that A is an α2-SDD matrix, i.e., that there exists α ∈ [0, 1] such
that, for each index i ∈ N ,

|ai,i| > (ri)
α(ci)

1−α. (1.2.58)

Now, since (ri(A))α(ci(A))1−α ≥ min{ri(A), ci(A)} is true, for all i ∈ N , and all 0 ≤ α ≤ 1,
we have that the condition (i) holds.

Consider an arbitrary i ∈ R∗(A). Then, the condition (1.2.58) can be written as

|ai,i|
ci(A)

>
(ri(A)

ci(A)

)α
.

Since ri(A) > ci(A), taking the logarithm of the above inequality for the base ri(A)
ci(A)

> 1,
and using the monotonicity, we obtain that

log ri
ci

|ai,i|
ci(A)

> α. (1.2.59)
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Similar, for an arbitrary index j ∈ C∗(A), we obtain that

log cj(A)

rj(A)

cj(A)

|aj,j| < α, (1.2.60)

which, together with (1.2.59), implies the condition (ii).
Conversely, let us assume that A satisfies (i) and (ii).

For an arbitrary index i ∈ E(A), (i) directly implies (1.2.58). For i ∈ R(A), for which
ci(A) = 0, and for j ∈ C(A), such that rj(A) = 0, (1.2.58) follows immediately. Thus, it
remains to show that (1.2.58) holds for indices from the set R∗(A) and the set C∗(A).

First, let us note that for every i ∈ R(A), we have ri(A) > ci(A). Thus, by condition
(i), |ai,i| > ci(A). Now, using the properties of the log function for the base greater than
one, we obtain

log ri(A)

ci(A)

|ai,i|
ci(A)

> 0.

Similar, for every j ∈ C(A), we obtain that log cj(A)

rj(A)

cj(A)

|aj,j | < 1, which, from the strict

inequality of (ii), insures that there exists a parameter α, such that for an arbitrary index
i ∈ R(A), and arbitrary j ∈ C(A),

max{0, log cj(A)

rj(A)

cj(A)

|aj,j| } < α < min{log ri(A)

ci(A)

|ai,i|
ci(A)

, 1}.

Starting from the right inequality, for every i ∈ R∗(A) we have that

|ai,i|
ci(A)

>
(ri(A)

ci(A)

)α
,

implying that (1.2.59) holds. In the same way, from the left inequality, we obtain that
(1.2.59) is true for every index from the set C∗(A). Since α ∈ [0, 1], this concludes the
proof.



33

1.3 Generalized Diagonally Dominant Matrices

The term generalized diagonal dominance dates back to early seventies, when the con-

vergence theory of iterative methods was a highly attractive set of research. In the work

of James and Riha from 1974, [31], this term was used in a sense that is present also

nowadays. They defined a matrix A = [ai,j] ∈ Cn,n to be generalized diagonal dominant if

there exists an entrywise positive vector x = [x1, x2, . . . , xn]T ∈ Rn, such that

|ai,i|xi >
∑

j∈N\{i}
|ai,j|xj (i ∈ N). (1.3.1)

This notion, of course, generalizes the notion of SDD matrices, which are a special case of

(1.3.1) for x = [1, 1, . . . , 1]T . But, this idea dates back much earlier than 1974. Actually,

it can be found implicitly even in the famous work of Geršgorin, published in 1931, on

localization of eigenvalues, [25], as we will see in the next chapter. The basic idea is

the following: starting with an SDD matrix, which by the Lev́y-Desplanques theorem is

nonsingular, and multiplying it, on the right hand side, by a nonsingular diagonal matrix,

its product remains nonsingular, while the SDD row inequalities can be rewritten as in

(1.3.1).

Although it may seem that this is a fairly easy and simple observation, it showed

up as a great tool in the field, nowadays known as M-matrix theory. The name M-

matrices originates form the work of Ostrowski in 1937, who, starting from the already

mentioned result of Minkowski on nonsingularity, referred to a class of matrices, that

have all principal minors positive, as Minkowski-matrices, or M-matrices. Since then,

more than seventy different equivalent definitions of M-matrix were discovered, and many

famous mathematicians have given their contributions in this direction. Thus, connections

with the Perron-Frobenius theory of nonnegative matrices, positive definiteness, positive

stability and diagonal dominance are just some of them. Here, we will use one of the basic

definitions of M-Matrices, condition (N38) of Theorem 6.2.3 in [3].

Definition 1.3.1. A real matrix A ∈ Rn,n is called nonsingular M-matrix if all of the
following conditions hold:

1. ai,i > 0, for all i ∈ N ,

2. ai,j ≤ 0, for all i, j ∈ N , i 6= j,

3. A is nonsingular, i.e., A−1 exists, and

4. A is inverse nonnegative, i.e., A−1 ≥ O.

Actually, this class of matrices came directly from economic models in the form of

the well-known Hawkins-Simon condition. So, from the early beginnings, up to now, this

theory has been doubly motivated and conducted. On one hand, mathematicians devel-

oped a wide range of applications in establishing bounds on the eigenvalues of nonnegative

matrices, establishing convergence criteria for iterative methods for solving large sparse



34

systems of linear equations, localizing eigenvalues, while on the other hand, economy re-

searchers have studied gross substitutability, stability of general equilibrium and Leontief’s

input/output analysis13 of economic systems. An excellent survey on this subject can be

found in the famous book of Berman and Plemons on nonnegative matrices, [3]. If one

goes thoroughly through contemporary research in mathematics, engineering, robotics,

ecology, pharmaceutical modeling, economics, and many others, one can find all sorts of

applications of the M-matrix theory.

Among many other aspects of M-matrix theory, diagonal dominance has always been

strongly present. Since a lot of progress has been made in this subject in recent years, a

need for a systematic approach in applying different types of diagonal dominance, especially

by the researchers who are not mainly mathematicians, is somewhat evident. Thus, the

main motivation of this dissertation is to give clear and useful insight to contemporary

facts on diagonal dominance and their different applications.

Until now, we have given some results, classical ones and some new ones, that generalize

the basic concept, given in first Section of this Chapter. In this Section we continue, and

give the unifying framework through the next definition and the theorems that will follow.

Definition 1.3.2. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, if there exists an (en-
trywise) positive vector x = [x1, x2, . . . , xn]T ∈ Rn, such that AX is strictly diagonally
dominant matrix, where X := diag(x1, x2, . . . , xn), then, the matrix A is generalized
diagonally dominant, or, briefly, a GDD matrix.

How this definition is related to the above mentioned theory of matrices, for the first

time was published in famous paper of Fiedler and Pták, from 1962, [23]. It was proved

that a matrix that fulfills conditions (1.) and (2.) of the Definition 1.3.1 is an M-matrix if

and only if it is generalized diagonally dominant. Thus, a natural extension to the complex

case case followed.

Definition 1.3.3. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, its comparison matrix
〈A〉 := [mi,j] ∈ Rn,n is defined by

mi,j :=

{ |ai,i|, i = j,
−|ai,j|, otherwise.

(1.3.2)

Definition 1.3.4. A matrix A = [ai,j] ∈ Cn,n is called a nonsingular H-matrix if its
comparison matrix is a nonsingular M-matrix, i.e. if 〈A〉 is nonsingular, and 〈A〉−1 ≥ O.

Thus, from the result of Fiedler and Pták in 1962, [23], we have one of the key theorems

in the theory of H-matrices.

Theorem 1.3.5. (Fiedler-Pták) An arbitrary matrix A = [ai,j] ∈ Cn,n is a nonsingular
H-matrix if and only if it is a generalized diagonally dominant matrix, i.e., there exists a
positive diagonal matrix X, such that AX is a strictly diagonally dominant matrix.

13Actually the origin of the Leontief’s input/output analysis dates back in 1936, and the term, the
Hawkins-Simon condition, became later widely used in the economy.
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Therefore, the classes of nonsingular H-matrices and GDD matrices are the same, and

we will denote them by H.

We will also use another characterization of nonsingular H-matrices that can be found,

in a slightly different form, in [3], as conditions (L32).

Theorem 1.3.6. (Beauwens-Neumann) An arbitrary matrix A = [ai,j] ∈ Cn,n is a
nonsingular H-matrix if and only if there exists a positive diagonal matrix X, such that
AX is a semistrictly diagonally dominant matrix, i.e., an irreducible diagonally dominant
matrix.

Here it is interesting to note that the letter H in H-matrices (that are generalizations

of M-matrices, where matrix entries can be complex numbers) comes from the name of

Jacques Hadamard, and that in his book [27], we have the nonsingularity for the complex

SDD matrices.

As we have seen, H includes SDD matrices, and the first obvious question is whether all

the other classes of nonsingular matrices, that we have presented up to now: iDD, doubly

SDD, doubly iDD, Brualdi SDD, Brualdi iDD, DZ-SDD, S-SDD, S-iDD and CKV-iDD,

are included in H. In order to answer this question, let us first find a unified frame for all

these classes of matrices.

Definition 1.3.7. Let K be a nonempty class of square matrices of an arbitrary size. If
K is such that:

• for any A ∈ K, diagonal entries of A are nonzero,

• for any A = [ai,j] ∈ Cn,n, A ∈ K if and only if |A| ∈ K, where |A| := [|ai,j|],
• for any A = [ai,j] ∈ Cn,n, A ∈ K implies that, for every B such that 〈B〉 ≥ 〈A〉,

B ∈ K,

then we say that K is a diagonally dominant-type, or briefly DD-type, class of ma-
trices.

It is not so difficult to see that all the classes of matrices mentioned above are DD-type

classes. An addition, a useful property that the DD-type classes possesses, is given in the

following proposition.

Proposition 1.3.8. If K is a diagonally dominant-type class of matrices, then, for any
A = [ai,j] ∈ Cn,n, A ∈ K implies that |A|+ D ∈ K, for every nonnegative diagonal matrix
D.

Proof. Given any A ∈ K and an arbitrary nonnegative diagonal matrix D, then |A| ∈ K,
and, obviously 〈|A|+ D〉 = 〈A〉+ D ≥ 〈A〉. Thus, by definition, |A|+ D ∈ K.

Now, we prove the main theorem of this section.

Theorem 1.3.9. If a diagonally dominant-type class of matrices K is a class of nonsin-
gular matrices, then it is a subclass of nonsingular H-matrices, i.e., K ⊆ H.
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Proof. Take an arbitrary A ∈ K. Since |〈A〉| = |A| ∈ K, we have that 〈A〉 ∈ K, hence,
〈A〉 is nonsingular. We need to prove that 〈A〉−1 is nonnegative. Take a splitting of
〈A〉 = DA − BA, where DA := diag(〈A〉) = diag(|a1,1|, |a2,2|, . . . , |an,n|). Obviously, DA is
a diagonal matrix with positive diagonal entries, so, we can write 〈A〉 = DA(In−D−1

A BA),
which implies that In −D−1

A BA is nonsingular, and 〈A〉−1 = (In −D−1
A BA)−1D−1

A .
Let us show that ρ(D−1

A BA) := max
{|λ| : λ ∈ σ(D−1

A BA)
}

< 1. Assume, on the
contrary, that there exists λ ∈ σ(D−1

A BA), such that |λ| ≥ 1. Then, λIn − D−1
A BA =

D−1
A (λDA−BA) is singular. But, since |λ| ≥ 1, we can write |λDA−BA| = |λ|DA + BA =

DA +BA +(|λ|−1)DA = |A|+D, where D := (|λ|−1)DA is nonnegative diagonal matrix.
Hence, λDA −BA ∈ K, and, therefore, nonsingular, which is an obvious contradiction.

Now, since, ρ(D−1
A BA) < 1, geometric series

∑∞
k=0(D

−1
A BA)k converges to (In−D−1

A BA)−1.
Having that D−1

A BA is nonnegative, the limit of the series is nonnegative, which completes
the proof.

Now, applying the previous criteria to the classes of nonsingular matrices from two

previous sections, we easily obtain the following result.

Theorem 1.3.10. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, if A is either

• irreducible diagonally dominant, given by Theorem 1.1.8, or

• doubly strictly diagonally dominant, given by Theorem 1.2.1, or

• doubly irreducibly diagonally dominant, given by Theorem 1.2.4, or

• Brualdi strictly diagonally dominant, given by Theorem 1.2.6, or

• Brualdi irreducibly diagonally dominant, given by Theorem 1.2.11, or

• α1-strictly diagonally dominant, given by Theorem 1.2.21, or

• α2-strictly diagonally dominant, given by Theorem 1.2.22, or

• Dashnic-Zusmanovich strictly diagonally dominant, given by Theorem 1.2.12, or

• S-strictly diagonally dominant, given by Theorem 1.2.13, or

• S-irreducibly diagonally dominant, given by Theorem 1.2.17, or

• Cvetković-Kostić-Varga strictly diagonally dominant, given by Theorem 1.2.13,

• Cvetković-Kostić-Varga irreducibly diagonally dominant, given by Theorem 1.2.17,

then A is a nonsingular H-matrix, or equivalently, a generalized diagonally dominant ma-
trix.
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1.4 Scaling Approach

As we have seen in the previous section, GDD matrices are, actually, obtained from SDD

matrices, by multiplication on the right hand side with an arbitrary positive diagonal

matrix. Since each entry of the diagonal matrix X multiplies the corresponding column

of the A in the product AX, we will name this operation scaling. Also, we will use the

terms scaled matrix and scaling matrix referring, respectively, to such a product, and

to the positive diagonal matrix being used.

In order to investigate this approach thoroughly, we introduce some additional notation.

First, by D, we denote the set of all positive diagonal matrices, i.e.,

D := {X = diag(x1, x2, . . . , xn) ∈ Rn,n : xi > 0, i ∈ N, and n ∈ N} . (1.4.1)

Then, for an arbitrary subclass of GDD matrices K ⊆ H, with XK we denote the family

of all diagonal matrices that scale matrices from K to SDD ones, i.e.,

XK := {X ∈ D : AX is SDD, for some A ∈ K} . (1.4.2)

On the other hand, we can start with an arbitrary nonempty family of positive diagonal

matrices X ∈ D, and define KX as the class of all matrices that are scaled by a matrix

from X into SDD one, i.e.,

KX := {A ∈ H : AX is SDD, for some X ∈ X} . (1.4.3)

It is an easy thing to see that X ⊆ XKX and K ⊆ KXK . That equality doesn’t hold in

general, is obvious, since KX{I}
= H, and {I} ( XK{I}

.

Now, having in mind the result of Theorem 1.3.10, one can be motivated to find suitable

scaling matrices for each of the mentioned classes. In the literature, results of Theorem

1.2.12 and Theorem 1.2.13 on DZ-SDD and S-SDD matrices were proved in [21] and [19],

respectively, using this scaling approach, their explicit form was constructed. Since this

technique will play a significant role in some of the applications in later chapters, in the

reminder of this section, we give the original proofs.

Proof of the Theorem 1.2.12:

First, we recall that a matrix A = [ai,j] ∈ Cn,n, that fulfills the condition (1.2.20) of

Theorem 1.2.12, has all diagonal entries nonzero. Therefore, for a suitable index ` ∈ N ,

and every j ∈ N \ {`}, we can write inequality (1.2.20) as

• r`(A)

|a`,`| <
|aj,j| − rj(A) + |aj,`|

|aj,`| , when aj,i 6= 0, and

• |aj,j| > rj(A), when aj,i = 0.
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Next, calling

α`(A) :=
r`(A)

|a`,`| , (1.4.4)

and

β`(A) := min

{ |aj,j| − rj(A) + |aj,`|
|aj,`| : j ∈ N \ {`} , aj,` 6= 0

}
, (1.4.5)

where, by the convention, β`(A) := +∞ in the case when for all j ∈ N \ {`} aj,` = 0,

we conclude that an arbitrary matrix is a DZ-SDD matrix if and only if there exist an

index ` ∈ N such that α`(A) < β`(A), or, in another words, the interval (α`(A), β`(A)) is

nonempty. Now, take γ ∈ (α`(A), β`(A)).

Then, from α`(A) < γ it follows that

γ|a`,`| > r`(A), (1.4.6)

and from γ < β`(A),

|aj,j| > rj(A)− |aj,`|+ γ|aj,`| =
∑

k∈N\{`,j}
|aj,k|+ γ|aj,`|, for all j ∈ N \ {`} . (1.4.7)

In another words, if, for a chosen parameter γ, we construct the diagonal matrix X =

diag(x1, x2, . . . , xn), so that x` = γ, and xj = 1, for all j ∈ N \ {`}, then (1.4.6) and

(1.4.7) imply that AX is an SDD matrix, and, hence, nonsingular. Using definition 1.3.2,

we obtain that it is a GDD matrix. 2

Proof of the Theorem 1.2.13:

Since the case S = N is obvious, we assume that S and S are nonempty sets of indices.

We construct a diagonal matrix X = diag(x1, x2, . . . , xn), with xi > 0, for all i ∈ N ,

that will scale A into an SDD matrix. For the entries of the matrix X, we choose:

xi =

{
γ > 0, for i ∈ S,

1, for i ∈ S,
(1.4.8)

where γ > 0 is arbitrary.

Then, entries of the matrix AX = [Ãi,j] ∈ Cn,n are given by

ai,j =

{
γai,j, for j ∈ S,

ai,j, for j ∈ S,
(1.4.9)

and, hence, its the row sums are r`(AX) = rS
` (AX) + rS

` (AX) = γrS
` (A) + rS

` (A), for all

` ∈ N . Therefore, AX is an SDD matrix if and only if
{

γ|ai,i| > γrS
i (A) + rS

i (A), for all i ∈ S, and

|aj,j| > γrS
j (A) + rS

j (A), for all j ∈ S,

or, equivalently, {
γ(|ai,i| − rS

i (A)) > rS
i (A), for all i ∈ S, and

|aj,j| − rS
j (A) > γrS

j (A), for all j ∈ S.
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But, having (1.2.25) and (1.2.27), this implies that AX is an SDD matrix if and only if

rS
i (A)

(|ai,i| − rS
i (A))

< γ, for all i ∈ S, (1.4.10)

γ <
|aj,j| − rS

j (A)

rS
j (A)

, for all j ∈ S, such that rS
j (A) 6= 0, (1.4.11)

and

|aj,j| > rS
j (A), for all j ∈ S, such that rS

j (A) = 0. (1.4.12)

Since (1.4.10) and (1.4.11) give, respectively, lower and upper bounds for the parameter

γ, we can take the greatest lower and smallest upper bound, which leads us to the interval

of feasible values for γ, that assure AX to be an SDD matrix:

0 ≤ αS(A) := min
i∈S

rS
i (A)

(|ai,i| − rS
i (A))

< γ < max
j∈S, rS

j (A)6=0

|aj,j| − rS
j (A)

rS
j (A)

=: βS(A). (1.4.13)

Here, we define βS(A) = +∞ in the case when rS
j (A) = 0, for all j ∈ S.

Having (1.2.25), condition (1.2.26) is equivalent to the fact that αS(A) < βS(A). Hence,

we can choose γ > 0 such that, according to (1.4.13), AX is SDD. Thus, having AX and

X nonsingular, A is nonsingular. 2

Now, using these ideas, we formulate two theorems on the characterization of DZ-SDD

matrices, S-SDD and CKV-SDD matrices. Their proofs include the original proofs of

Theorems 1.2.12 and 1.2.13, and additional results obtained in [20] and [14], respectively.

Theorem 1.4.1. Given

Xk := {X = diag(x1, x2, ..., xn) ∈ D : xj = 1, j ∈ N \ {k}} , (1.4.14)

where k ∈ N , and

XDZ :=
⋃

k∈N

Xk, (1.4.15)

the class KXDZ is the class of Dashnic-Zusmanovich strictly diagonally dominant matrices.
Moreover, XKXDZ = XDZ holds.

Proof. From the proof with the scaling technique of the Theorem 1.2.12, it obviously
holds that every DZ-SDD matrix belongs to the class KXDZ . We now prove the converse.
Assume that A ∈ KXDZ , i.e., there exists X ∈ XDZ such that AX is SDD. Set ` ∈ N so
that x` = γ > 0 and xj = 1, for all j ∈ N \ {`}. Then,

γ|a`,`| > r`(A), (1.4.16)

and, for all j ∈ N \ {`},

|aj,j| >
∑

k∈N\{`,j}
|aj,k|+ γ|aj,`| = rj(A)− |aj,`|+ γ|aj,`|. (1.4.17)
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Hence, from (1.4.4) and (1.4.5), it follows that α`(A) < γ < β`(A), which is, in the case
when β`(A) < +∞, equivalent to (1.2.20), i.e., to the fact that A is a DZ-SDD matrix. If
β`(A) = +∞, i.e., if aj,` = 0 for all j ∈ N \ {`}, then, for all j ∈ N \ {`}, from (1.4.17),
we have |aj,j| > rj(A) = rj(A) − |aj,`|, which, together with the fact that right hand side
of (1.2.20) is equal to zero, implies that A is DZ-SDD. Therefore, every matrix from KXDZ

is DZ-SDD, and thus, KXDZ is exactly the class of DZ-SDD matrices.
In general, we have that XDZ ⊆ XKXDZ . The opposite inclusion is not so obvious, and

it is the main result of the paper of [20].

Theorem 1.4.2. Given a nonempty set S ⊆ N , define

XS :=
{
X = diag(x1, x2, ..., xn) ∈ D : xi = xk, for all i, k ∈ S, and xj = 1, for all j ∈ S

}
,

(1.4.18)
and

XCKV :=
⋃

S⊆N

XS. (1.4.19)

Then, for an arbitrary nonempty S ⊆ N , KXS and KXCKV are the classes of S-strictly
diagonally dominant and Cvetković-Kostić-Varga strictly diagonally dominant matrices,
respectively. Moreover, XKXS = XS and XKXCKV = XCKV .

Proof. Similar to the proof of the previous theorem, it is easy to show that if A ∈ KXS ,
then A is an S-SDD matrix, and that if A ∈ KXCKV , then A is a CKV-SDD matrix, which
implies that KXS and KXCKV are exactly the classes of S-SDD and CKV-SDD matrices,
respectively. The proof that XKXS = XS and XKXCKV = XCKV is given in [14].

Note that using the same idea with Beauwens-Neumann’s theorem in the place of

Fiedler-Pták’s theorem, the proof of the Theorem 1.2.17 follows directly.



Chapter 2

Eigenvalue Localization

In this chapter we will present one of the most popular applications of diagonal dominance

- the theory of eigenvalue localization of Geršgorin type. First, we start with the well-

known result of Geršgorin from [25], accompanied with its very well-known generalization

by diagonal similarities, and the use of irreducibility in determining additional information

about eigenvalues on the boundary of the localization set. The second section will focus on

the equivalence between nonsingularity results and eigenvalue localization results. There,

the term localization of Geršgorin type, will be introduced, which will give a unifying

framework for all of the theorems that follow. A special focus will be on the scaling

technique, which reveals the relationships between certain subclasses of H-matrices and

the concept of minimal Geršgorin sets. Finally, the third section will be dealing with

minimal Geršgorin sets. Its theoretical properties, and recent contributions to its effective

computation, will be presented. Most of the material presented in this chapter could be

find, in more detail, in author’s master thesis Eigenvalue localization by Geršgorin type

theorems, (in serbian), [34].
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2.1 Geršgorin’s Theorem

Starting from the original Geršgorin result on the set in the complex plane which includes

the spectra of a given matrix, [25], we will present its first generalization, with a short

historical overview. To conclude this section, we will consider the conditions for an eigen-

value to be on the boundary of the Geršgorin set, the importance of irreducibility, and the

role played by Olga Taussky, [45] and [46].

Given an arbitrary square matrix A = [ai,j] ∈ Cn,n, the set of its eigenvalues is called

the spectrum, and is denoted by σ(A), i.e.,

σ(A) := {λ ∈ C : det(λIn − A) = 0} . (2.1.1)

Additionally, we define

{
Γi(A) := {z ∈ C : |z − ai,i| ≤ ri(A)} , (i ∈ N),

Γ(A) :=
⋃

i∈N Γi(A).
(2.1.2)

The following proposition is the famous Geršgorin’s theorem [25]. In order to be in the

agreement with contemporary notation, we give it in the form it was stated in Theorem

1.1 of [51].

Theorem 2.1.1. (Geršgorin’s first theorem) Given an arbitrary matrix A = [ai,j] ∈
Cn,n, let λ be an eigenvalue. Then, there exists an index k ∈ N , such that

|λ− ak,k| ≤ rk(A), (2.1.3)

implying that λ ∈ Γk(A), and, therefore λ ∈ Γ(A). Since λ ∈ σ(A) is arbitrary, conse-
quently, it follows that

σ(A) ⊆ Γ(A). (2.1.4)

Proof. Given λ ∈ σ(A), let x = [x1, x2, . . . , xn]T ∈ Cn be its associated nonzero eigenvec-
tor, i.e., Ax = λx. In other words, we have that

∑
j∈N

ai,jxj = λxi, (i ∈ N),

or, equivalently,

(λ− ai,i)xi =
∑

j∈N\{i}
ai,jxj, (i ∈ N). (2.1.5)

Since x 6= 0, there exists an index k ∈ N , so that 0 < |xk| = max {|xi| : i ∈ N}. Hence,
(2.1.5), together with the triangle inequality, implies that

|λ− ak,k||xk| ≤
∑

j∈N\{k}
|ak,j||xj| ≤ |xk|rk(A),

where rk(A) :=
∑

j∈N\{k} |ak,j|, as in (1.1.2). Finally, on dividing the last inequality by

|xk| > 0, we obtain (2.1.3). Thus, λ ∈ Γk(A), and, consequently, λ ∈ Γ(A).
Since λ is an arbitrary eigenvalue, (2.1.4) holds.
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Observe that the set Γi(A), which we will call the i-th Geršgorin disk of the matrix

A, is a closed disk in complex plane, centered in ai,i, and with radius ri(A). The set

Γ(A) is, therefore, the union of all Geršgorin disks, and, consequently, it is closed and

bounded, i.e., it is a compact subset of C, which includes the spectrum of the matrix. The

geometrical structure of Geršgorin set, as well as the way it captures eigenvalues, can vary,

as we shall see at the end of this subsection.

While going through the proof, one could notice that we had an almost identical rea-

soning before. Namely, calling λ = 0, we practically obtain the proof of Lévy-Desplanques

theorem.

In fact, the relationship between these two famous theorems is very close. More

precisely, there exists an equivalence between the Geršgorin’s theorem and the Lévy-

Deslanques’s theorem, which is high-lighted in the book of Varga [51].

In other words, starting from the fact that Geršgorin’s theorem holds, we can show that

every SDD matrix is nonsingular, i.e., the theorem of Lévy-Desplanques holds. And, vice

versa, assuming that every SDD matrix is nonsingular, we can deduce that all eigenvalues

of an arbitrary matrix are inside of the Geršgorin set.

The idea, in fact, is very simple: it consists of the fact that a square matrix is singular

if and only if at least one of its eigenvalues is equal to zero.

More precisely, while assuming that Geršgorin’s theorem is true, take an arbitrary

matrix A = [ai,j] ∈ Cn,n that is SDD, i.e., it fulfills (1.1.3), and, contrary to the theorem

of Lévy-Desplanques, assume that it is singular, i.e., that one of its eigenvalues is zero.

But, Geršgorin’s theorem implies that 0 ∈ Γ(A), i.e., there exists an index k ∈ N , so that

|0−ak,k| = |ak,k| ≤ rk(A), which directly contradicts (1.1.3). Therefore, A is a nonsingular

matrix.

In the opposite direction, assuming that the theorem of Lévy-Desplanques holds, i.e.,

that every SDD matrix is nonsingular, we take an arbitrary matrix A = [ai,j] ∈ Cn,n and

one of its eigenvalues λ. Since λIn − A is singular, under that assumption, it cannot be

that λIn − A is an SDD matrix, i.e., condition (1.1.3) cannot hold, which means that for

at least one k ∈ N , |λ − ai,i| = |(λIn − A)i,i| ≤ ri(λIn − A) = ri(A), and, hence, (2.1.3)

implies that λ ∈ Γk(A) ⊆ Γ(A).

As we have seen in the first chapter, there are many different extensions, or, gener-

alizations, of the Lévy-Desplanques theorem, so one would expect that our mentioned

equivalence would occur in these cases, too, producing new regions in complex plane that

contain eigenvalues of a given matrix.

It is interesting that, although it was implicitly used in many papers on eigenvalue

localization and on diagonal dominance, this equivalence was stated explicitly for the first

time in the book of Varga in 2004, [51], fairly late, considering that the topic emerged in

matrix theory at the beginning of the 20th century. For that reason we will call it Varga’s

Equivalence Principle, and give its exact mathematical formulation in Section 2 of this

chapter, where we will use it more extensively. But, before that, in the subsections that

follow, we will consider some of the first extensions of Geršgorin’s theorem, and some

interesting questions that arose from them.
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Figure 2.1.1: The Geršgorin set of the matrix A1 of the Example 2.1.2
(Geršgorinov skup matrice A1 iz Primera 2.1.2)

The beauty of Geršgorin’s theorem lies in its simplicity. Namely, given an arbitrary

matrix A = [ai,j] ∈ Cn,n, by simple arithmetic, we obtain the row sums {ri(A)}i∈N , that

are the radii of n disks whose union contains n eigenvalues of the matrix A. Nevertheless,

from the following example, we can see that this information about eigenvalues, obtained

in such a way, is not necessarily of great practical value. As Figure 2.1.1 indicates, the

Geršgorin set may not give a good estimate of the spectrum, while Figure 2.1.3 illustrates

the opposite case.

Example 2.1.2. For matrices A1, A2 and A3, given below, their spectra are calculated
and their Geršgorin sets are plotted in Figures 2.1.1 - 2.1.3. The exact eigenvalues for
these matrices are marked by ”×”.

A1 =

[
1 −1
1 −1

]
, σ(A1) = {0; 0} .

A2 =




2 2i 0
1 8 1
2 0 14


 , σ(A2) = {1.99− 0.28i; 8.01 + 022i; 14.00 + 0.06i} .

A3 =




i 1 0 1 0 1
1 −i 0 0 1 1
0 0 0 1 2 1
0 0 0 2 i i
0 0 0 1 0 1
0 0 0 i i −2




, σ(A3) = {0; 0; 0; 1.61 + 0.77i; 0.43− 0.33i;−2.03− 0.44i} .

Next, given A = [ai,j] ∈ Cn,n, we observe that the same Geršgorin set Γ(A) can be

used to localize eigenvalues of the matrix B = [bi,j] ∈ Cn,n, such that, for every i ∈ N ,

bi,i = ai,i and ri(B) = ri(A) can significantly differ from the eigenvalues of the matrix A.

This situation is illustrated by the following example.
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Figure 2.1.2: The Geršgorin set of the matrix A2 of the Example 2.1.2
(Geršgorinov skup matrice A2 iz Primera 2.1.2)

Figure 2.1.3: The Geršgorin set of the matrix A3 of the Example 2.1.2
(Geršgorinov skup matrice A3 iz Primera 2.1.2)
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Example 2.1.3. Let

A4 =




2 1 1
2 8 0
2 0 14


 .

The Geršgorin set of the matrix A4 is the same as Geršgorin set of the matrix A2 from
Example 2.1.2, and it is given in Figure 2.1.2. However, σ(A4) = {1.53; 8.30; 14.17},
while σ(A2) = {1.99− 0.28i; 8.01 + 022i, 14.00 + 0.06i}.

Observing Figure 2.1.2 for the matrix A2 of the Example 2.1.2, we notice that this

Geršgorin set consists of three disks, each containing one eigenvalue. That it is not the

general case, as the other two figures of the same example show. So, the question arises,

when is it possible to claim that each disk contains exactly one eigenvalue. This is the

second result of Geršgorin in the same paper from 1931, [25], which gives us the possibility

to isolate an eigenvalue if we succeed to make one Geršgorin disk disjoint from the others.

An extreme case is when all the disks are disjoint, implying that each one of them contains

exactly one eigenvalue.

Given n ≥ 2 and S ⊆ N , by |S|, we denote the cardinality of the set S, i.e., the

number of its elements, and by S := N \S, as before, its complement. Furthermore, given

a matrix A = [ai,j] ∈ Cn,n, then ΓS(A) :=
⋃

i∈S Γi(A) denote the part of Geršgorin set

that ”corresponds” to the indices from the set S. Then, the following theorem holds.

Theorem 2.1.4. (Geršgorin’s second theorem) Given an arbitrary matrix A = [ai,j] ∈
Cn,n, n ≥ 2, and set of indices S ( N , if

ΓS(A)
⋂

ΓS(A) = ∅, (2.1.6)

then ΓS(A) contains exactly |S| eigenvalues of the matrix A, and, consequently, ΓS(A)
contains the reminder of the spectrum of A.

Instead of giving the proof, which can be found in [34], Theorem 1.1.3, following the

same idea, in Section 2 of this chapter, we will prove a more general result.

2.1.1 Geršgorin’s theorem and diagonal similarities

The first generalization of Geršgorin’s theorem was considered in his original paper in

1931.

For a given x = [x1, x2, . . . , xn]T ∈ Rn, such that xi > 0, for every i ∈ N , we write

x > 0, and define a corresponding diagonal matrix X := diag(x1, x2, . . . , xn), which is

obviously nonsingular, i.e., X−1 exists. The set of all such positive diagonal matrices we

denote by D.

Take an arbitrary A = [ai,j] ∈ Cn,n, n ≥ 2, and consider the matrix X−1AX = [
ai,jxj

xj
].

According to the similarity of matrices, their spectra are the same, i.e., σ(A) = σ(X−1AX).

So, in order to localize eigenvalues of the matrix A, we can apply Geršgorin’s theorem to

the matrix X−1AX, where we have n positive parameters which we can arbitrarily choose,

and, hence, influence the shape and the size of the localization set.
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In an analogous way to the notation given in (1.1.2) and (2.1.2), by

rx
i (A) := ri(X

−1AX) =
∑

j∈N\{i}

|ai,j|xj

xi

(i ∈ N, x > 0), (2.1.7)

we denote i-th weighted row sum of the matrix A, and by

{
ΓX

i (A) := {z ∈ C : |z − ai,i| ≤ ri(X
−1AX) = rx

i (A)} , (i ∈ N),

ΓX(A) :=
⋃

i∈N ΓX
i (A).

(2.1.8)

respectively, the i-th scaled Geršgorin disk of the matrix A, and the scaled Geršgorin

set of the matrix A.

A direct corollary of Theorem 2.1.1 is:

Corollary 2.1.5. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n 6= 2, and positive diagonal
matrix X ∈ D,

σ(A) ⊆ ΓX(A), (2.1.9)

holds, and, consequently,

σ(A) ⊆
⋂

X∈D
ΓX(A). (2.1.10)

The localization set given in (2.1.10) is obviously the best possible one that can be

achieved through diagonal similarities. In the literature, the set in (2.1.10) is denoted by

ΓR(A) :=
⋂

x>0 ΓX(A) and it is called the minimal Geršgorin set of the matrix A. It

was, for the first time, considered in the paper of Varga in 1965, [47], while a detailed

review of its different theoretical properties was given in the book of Varga in 2004, [51].

Here, following the unified notation of this dissertation, we will denote the minimal

Geršgorin set of the matrix A by ΓD(A) :=
⋂

X∈D ΓX(A). This set will be the topic of

the last section of this chapter, where we will summarize its many theoretical properties,

mainly investigated in [47], and reviewed in [51], and present new results on its effective

calculation, published very recently in [52].

Of course, in order to make a similarity transformation, the only limitation on the

matrix X is that it is nonsingular. So, instead of taking only nonsingular diagonal matrices,

one could use any nonsingular matrix. In that way we get the best possible result, but as

we can see in the following corollary, it is of purely theoretical value, since its calculation

would use Jordan canonical forms. The detailed proof of this corollary could be found in

[34], Corollary 1.2.2.

Corollary 2.1.6. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, and a nonsingular
matrix X ∈ Cn,n, then σ(A) ⊆ Γ(X−1AX) holds. Moreover,

σ(A) =
⋂

det(X) 6=0

Γ(X−1AX). (2.1.11)
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Figure 2.1.4: The Geršgorin set of the matrix A4 of the Example 2.1.3
(Geršgorinov skup matrice A4 iz Primera 2.1.3)

2.1.2 Geršgorin’s theorem and matrix transpose

As we have seen in the previous chapter, the concept of SDD matrices can be applied to

both rows and columns. Equivalently, we can apply the Geršgorin set either to the matrix

A, or to AT , and obtain the localization of their spectra σ(A) = σ(AT ).

So, a very simple extension of the Geršgorin’s theorem is the following:

Theorem 2.1.7. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 1,

σ(A) ⊆ Γ(A) ∩ Γ(AT ) (2.1.12)

holds.

Example 2.1.8. To illustrate the localization result (2.1.12), consider the matrix A2 of
the Example 2.1.2, and the matrix

A5 =




1 1 2
i 1 0
0 1 i


 .

In Figure 2.1.4, the thicker lines show the Geršgorin circles for matrix A4, and the thinner
lines Geršgorin circles for AT

4 . The intersection Γ(A4) ∩ Γ(AT
4 ) is shaded, and the eigen-

values are, as before, denoted by ”×”. In the same way, Figure 2.1.5 shows the localization
given in (2.1.12) for the matrix A5.

Looking at Figure 2.1.4, we see that, using information about the column sums of

a matrix, and taking an intersection with the initial Geršgorin set, we can improve the

localization set. The intersection in (2.1.12) in this case corresponds to the union of the

”smaller” disks. Namely,

Γ(A4) ∩ Γ(AT
4 ) =

3⋃
i=1

[Γi(A4) ∩ Γi(A
T
4 )].

That this equality doesn’t hold in general, is clearly shown in Figure 2.1.5.
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Figure 2.1.5: The Geršgorin set of the matrix A5 of the Example 2.1.8
(Geršgorinov skup matrice A5 iz Primera 2.1.3)

Inspired by this remark, for a given matrix A = [ai,j] ∈ Cn,n, define:

{
Γm

i (A) := Γi(A) ∩ Γi(A
T ) = {z ∈ C : |z − ai,i| ≤ min {ri(A), ci(A)}} , (i ∈ N),

Γm(A) :=
⋃

i∈N Γm
i (A).

(2.1.13)

In general, Γm(A) ⊆ Γ(A) ∩ Γ(AT ), so, the question arises, whether inclusion σ(A) ⊆
Γm(A) is true or not. The answer is no, in general, as the following example illustrates.

Example 2.1.9. Let

A6 =

[
5 4
1 5

]
.

For a given matrix, Figure 2.1.6 illustrates the set Γ(A6) ∩ Γ(AT
6 ), marked with thicker

lines, while the set Γm(A6) is shaded. Eigenvalues are, as before, denoted by ”×”.

Therefore, it remains an open question at what point in between (2.1.13), and (2.1.12)

the set captures spectrum of a matrix.

The answer of this question will be given in the next section, using Varga’s Equiva-

lence Principle, and results of Cvetković, Bru, Kostić and Pedroche [11], presented in the

previous chapter on diagonal dominance.
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Figure 2.1.6: The Geršgorin set of the matrix A6 of the Example 2.1.9
(Geršgorinov skup matrice A6 iz Primera 2.1.9)

2.1.3 Geršgorin’s theorem and irreducibility

As we have seen in the first chapter, the difference between singularity/nonsingularity

of SDD matrices and DD matrices lies in the matrix being reducibile/irreducibile. More

precisely, we have presented the result of Olga Taussky, partly from 1948 [45], and partly

from 1949 [46], on diagonal dominance of an irreducible matrix. Now, we give an eigenvalue

localization analogue, also published in the same papers.

To that end, denote C∞ := C ∪ {∞} to be the extended complex plane, and, for a

given set T ∈ C, let cl(T ) be the closure of the set T in C∞, ∂T := cl(T )∩ cl(C∞ \ T ) the

boundary, and int(T ) := T \ ∂T the interior of the set T .

Theorem 2.1.10. (Taussky’s theorem) Given an irreducible matrix A = [ai,j] ∈ Cn,n,
if λ ∈ σ(A) is such that, for every i ∈ N , λ 6∈ int(Γi(A)), i.e., |λ− ai,i| ≥ ri(A), then

|λ− ai,i| = ri(A), for all i ∈ N.

In another words, all Geršgorin circles1 pass through λ. Therefore, if λ is an eigenvalue
of the matrix A which lies on the boundary of Geršgorin set Γ(A), then it lies in the
intersection of all Geršgorin circles.

1Where, by the Geršgorin circle, we consider the boundary of Geršgorin disk, i.e.,
{z ∈ C : |z − ai,i| = ri(A)}.
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Figure 2.1.7: The Geršgorin disks of the matrix A7(θ) given in (2.1.14)
(Geršgorinovi diskovi za matricu A7(θ) datu u (2.1.14))

As an illustration of this theorem, observe the matrix

A7(θ) =




1 eiθ 0 0

0 i eiθ 0

0 0 −1 eiθ

eiθ 0 0 −i




, (2.1.14)

where θ ∈ [0, 2π) is a free parameter. In Figure 2.1.7, the Geršgorin disks Γi(A7(θ)),

1 ≤ i ≤ 4, don’t depend of the value of the parameter θ.

Matrix A7(π/4) is irreducible and singular, with σ(A7(π/4)) = {0, 0, 0, 0}. As for any

i = 1, 2, 3, 4, zero is not in the interior of the circle Γi(A7(π/4)), according to Theorem

2.1.10, all Geršgorin circles pass through it. This is illustrated in Figure 2.1.7, where zero

is marked by ”×”.

Note, on the other hand, that zero is an eigenvalue of the irreducible matrix A7(π/4)

that is not on the boundary of Geršgorin set, although all Geršgorin circles pass through

it. Therefore, the second part of the theorem 2.1.10 gives us only a necessary condition

for an eigenvalue of irreducible matrix to be found on the boundary of Geršgorin set, and

not a sufficient one.

More details about the matrix A7(θ) can be found in [51], Exercise 6, p. 18.
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Necessary and sufficient conditions are given in [33], Theorem 3.2, where the problems

of singularity/nonsingularity and eigenvalue localization are considered for block matrices.

As Theorem 2.1.10 gives conditions which insure that an eigenvalue of an irreducible

matrix is in the intersection of all Geršgorin circles, one can ask the following: given an

irreducible matrix, is the point through which all Geršgorin circles pass (if such a point

exists) an eigenvalue? That, in general, is not valid, and can be illustrated by matrix

A7(0), whose eigenvalues are marked with ¥ in Figure 2.1.7.
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2.2 Geršgorin-type Theorems

Following the concepts and open questions presented in the first section of this chapter,

we focus now on the theorems of Geršgorin type that provide many answers. Unlike

the original Geršgorin set, which consists of n disks in the complex plane, theorems that

follow introduce localizations that consist of ”more complicated” sets, so we review the

possibilities of their implementation and necessary costs of their calculation, too, as well

the justification for each one of them.

We start with by defining what precisely is a Geršgorin-type theorem. We will use, in

previous section already announced, Varga’s Equivalence Principle, and, thus, provide a

clear framework for this chapter. Subsections that will follow after that, focus on specific

results derived from the Section 1.2, and their generalizations. Thus, Subsection 2.2.1

starts from the result of Ostrowski given in Theorem 1.2.1, introduces the Brauer localiza-

tion, [5], and deals with issues of its applicability and accuracy. In Subsection 2.2.2 we use,

as in Subsection 1.2.2, graph theory to obtain Brualdi’s results [7, 8], and Varga’s, [49, 51],

generalizations of Brualdi’s results. Subsection 2.2.3 refers to the application of a scaling

technique, introduced in Section 1.4, in order to improve localization sets, [19, 14]. Finally,

Subsection 2.2.4 discusses the Ostrowski localization sets, based on the nonsingularity of

α1 and α2-matriccs, and their characterizations.

As it was the case with Geršgorin’s theorem, generally, there is a clear connection

(more precisely, equivalence) between the propositions on the localization of eigenvalues

and propositions about the matrix nonsingularity.

To investigate this in detail, we continue by stating this equivalence in form of Theorem

2.1.1 from [34], which we will later apply to all of the previously mentioned classes of

nonsingular matrices, in order to produce eigenvalue localization sets.

It is interesting to note that this equivalence, although published for Geršgorin’s the-

orem in the independent work of Rohrbach in 1931, too, [42], was relatively recently fully

recognized. In the book of R.S. Varga, ”Geršgorin and His Circles” [51], it is one of the

recurring themes, as we have mentioned before. To emphasize the importance of this re-

curring theme, we will formulate it, for the first time, explicetely as the following Theorem.

Theorem 2.2.1. (Varga’s Equivalence Principle) Given a class of square complex
matrices of an arbitrary size, denoted by K, for an arbitrary square matrix A, define the
set of complex numbers

ΘK(A) := {z ∈ C : zI − A 6∈ K} . (2.2.1)

Then, the following two conditions are equivalent:

• All matrices from K are nonsingular, and

• Given an arbitrary square matrix A, the set ΘK(A) contains all its eigenvalues, i.e.,
σ(A) ⊆ ΘK(A).

Proof. Assuming that all matrices in K are nonsingular, taking an arbitrary matrix A =
[ai,j] ∈ Cn,n and λ ∈ σ(A), the matrix λIn − A is singular, and, hence, λIn − A 6∈ K.
Therefore, λ ∈ ΘK(A), and, consequently, σ(A) ⊆ ΘK(A).
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For proving the opposite implication, assume that for every A = [ai,j] ∈ Cn,n, σ(A) ⊆
ΘK(A). Now, assume that A ∈ K is singular. Then, 0 ∈ σ(A), and, consequently,
0 ∈ ΘK(A). But, this is equivalent to the fact that 0In −A = A 6∈ K, which is an obvious
contradiction. Thus, every A ∈ K is nonsingular.

In the extreme case when K is taken to be the class of all nonsingular matrices, then

for every A, ΘK(A) = σ(A) holds. Narrowing the class K, we are obtaining the set ΘK(A)

which becomes, in general, ”wider”, and, thus, we are obtaining an ”approximation” of

the spectrum, i.e., we get a certain localization set for the spectrum. More precisely, given

that K1 ⊆ K2, then by definition follows that ΘK2(A) ⊆ ΘK1(A).

But, the question is how ”interesting” is the obtained localization? In other words, are

we able to construct it in the complex plane, and, whether the cost of this is significantly

less then calculating the actual eigenvalues themselves?

In the case of Geršgorin’s theorem, where ΘK(A) = Γ(A), we have seen that the class

K is the class of all SDD matrices. In a similar way, we define the term Geršgorin-type

theorem.

First, we say that set ΘK(A) = {z ∈ C : zI − A 6∈ K} is a Geršgorin-type set, if

K is a diagonally dominant-type class of nonsingular matrices. In another words, due to

Theorem 1.3.9, it is a subclass of nonsingular H-matrices.

Hence, a Geršgorin-type theorem is a statement that claims that a certain Geršgorin-

type set contains the spectra of a given matrix. So, we refer to such sets also as Geršgorin-

type localization sets, or Geršgorin-type eigenvalue inclusion sets.

Now, we extend the concept of diagonal scaling, originally present in Geršgorin’s paper

[25], to other Geršgorin-type eigenvalue inclusion sets. As in Subsection 2.1.1, we consider

the scaled Geršgorin sets, given in (2.1.8), and for a family of positive diagonal matrices

X ⊆ D, we define the corresponding set in complex plane:

ΓX(A) :=
⋂

X∈X
ΓX(A), (2.2.2)

which we all call it the minimal Geršgorin set attributed to the family X.

Obviously, when X = D, we have the minimal Geršgorin set, as it was defined by

Varga in [47]. In that case, according to the Fiedler-Pták’s theorem, KD = H, so, for

an arbitrary matrix A, ΓD(A) = ΘH(A). Therefore, the minimal Geršgorin set is the

best possible Geršgorin-type eigenvalue inclusion set. But, as we will see in detail in the

last section of this chapter, to obtain this set, for a given matrix, it is not an easy task.

Therefore, one could be motivated to determine the cases when the minimal Geršgorin set,

attributed to a specific family X, can be explicitly expressed, of course with the tendency

for X to be as much ”closer” to H as possible. Here, explicitly means without any use of

the scaling parameters, entries of the scaling matrices.

Before we continue with giving particular results of Geršgorin-type, we will generalize

another important property of Geršgorin sets. Namely, Geršgorin’s second theorem is a

key ingredient if one wants to find an accurate approximation to one, or a few eigenvalues,
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by giving the possibility to be certain of the number of eigenvalues that are contained

in the disjointed parts of the localization set. Therefore, we generalize this concept to

”practically all” Geršgorin-type theorems.

Definition 2.2.2. A given class of matrices K is said to be positively homogenous, if
A ∈ K implies αA ∈ K, for arbitrary α > 0.

Theorem 2.2.3. (Isolation Principle) Given a Geršgorin-type set

ΘK(A) = {z ∈ C : zI − A 6∈ K} , (2.2.3)

where K ⊂ H is a positively homogenous diagonally dominant-type subclass of H-matrices,
for any matrix A = [ai,j] ∈ Cn,n, n ≥ 2, if there exist sets U, V ⊆ C, such that U ∩ V = ∅,
and

ΘK(A) = U ∪ V, (2.2.4)

then, the set U contains exactly | {i ∈ N : ai,i ∈ U} | eigenvalues of the matrix A.

Proof. Let DA := diag(a1,1, a2,2, . . . , an,n). Take the splitting of the matrix A = DA − FA,
and consider the family of matrices A(t) := DA − tBA, for 0 ≤ t ≤ 1.

First, let t ∈ (0, 1], and take z ∈ ΘK(A(t)), i.e., zI − A(t) 6∈ K. Assume, on the
contrary that z 6∈ ΘK(A), i.e., that zI − A ∈ K. Since,

t|zI − A| = t(|zI −DA|+ |FA|)± |zI −DA| = |zI − A(t)| − (1− t)|zI −DA|,
then,

|zI − A(t)| = t|zI − A|+ (1− t)|zI −DA|.
According to the assumption that K is positively homogenous and a DD-type class of
matrices, from the previous equality we conclude that |zI − A(t)| ∈ K. Therefore, zI −
A(t) ∈ K, which is an obvious contradiction. Thus, z 6∈ ΘK(A), and, consequently,
ΘK(A(t)) ⊆ ΘK(A), for all t ∈ (0, 1].

Let us consider the case when t = 0. Then, A(0) = DA, and z ∈ ΘK(A(0)) if and
only if zI − DA 6∈ K. Obviously, if z = ai,i, for some i ∈ N , then zI − DA has a zero
on diagonal. Thus it can not be in K which is the DD-type class of matrices. Therefore,
ai,i ∈ ΘK(A(0)), for all i ∈ N . For the same reasons, ai,i ∈ ΘK(A), i ∈ N . On the other
hand, when z 6= ai,i, for all i ∈ N , zI − DA is a nonsingular diagonal matrix, implying
that zI − DA ∈ K, i.e., z 6∈ ΘK(A(0)). So, ΘK(A(0)) = {a1,1, a2,2, . . . , an,n} ⊆ ΘK(A).
In another words, we have obtained that ΘK(A(0)) = σ(A(0)) = {a1,1, a2,2, . . . , an,n}, and
that ΘK(A(t)) ⊆ ΘK(A), for all t ∈ [0, 1].

Now, since the sets U, V ⊆ C are disjoint, and {a1,1, a2,2, . . . , an,n} ⊆ ΘK(A) = U ∪ V ,
if the number of diagonal entries that lie in the set U is denoted by m, then, of course,
n−m diagonal entries of the matrix A(0) lie in the set V .

Let us with λ(t) denote the eigenvalue of the matrix A(t) that, for t = 0, becomes a
diagonal entry that lies in the set U ⊆ C. Since the eigenvalues are continuous functions
of matrix entries, [40], we can consider {λ(t) : t ∈ [0, 1]}, as a continuous curve in the
complex plane, such that {λ(t) : t ∈ [0, 1]} ⊆ ΘK(A) = U ∪ V . Again, since U and V
are disjoint, the whole curve must be contained in exactly one of them. Therefore, since
λ(0) ∈ U , λ(1) ∈ U . Consequently, the number of eigenvalues of A(1) = A that are in the
set U is m.

Since many of the corollaries of this theorem are knowen, we could say that this result

is essentially known, but until know it hasn’t been stated in such a general way.
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2.2.1 Brauer’s ovals of Cassini

In this subsection, we start from Theorem 1.2.1, which claims the nonsingularity of doubly

SDD matrices. Observing the condition (1.2.1), which defines them, it is clear that the

class of doubly SDD matrices, denoted here by KdSDD, is a positively homogenous class

and a DD-type class of matrices.

Namely, given A = [ai,j] ∈ Cn,n, α > 0 and any matrix B such that 〈B〉 ≥ 〈A〉, we

have that, for all i ∈ N ,

(〈B〉)i,i = |bi,i| ≥ |ai,i|, and ri(〈B〉) = ri(B) ≤ ri(A), (2.2.5)

and

|(αA)i,i| = α|ai,i|, and ri(αA) = αri(A). (2.2.6)

Clearly, if A ∈ KdSDD, then 〈B〉 ∈ KdSDD too, and, since α > 0,

|(αA)i,i||(αA)j,j| > ri(αA)rj(αA)

is equivalent to (1.2.1), for all i, j ∈ N , i 6= j. Thus, KdSDD is, by definition, a positively

homogenous DD-type class of matrices.

Therefore, ΘKdSDD(A) is a Geršgorin-type set, to which we can apply our Isolation

Principle. So, it remains to consider the possibilities and the costs of constructing this set

in complex plane for a given matrix A. First, we give an explicit form of this set and its

corresponding Isolation Principle.

Theorem 2.2.4. (Brauer) Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, for every
λ ∈ σ(A), there exists a pair of indices i, j ∈ N , i 6= j, so that

λ ∈ Ki,j(A) := {z ∈ C : |z − ai,i||z − aj,j| ≤ ri(A)rj(A)} , (2.2.7)

and, consequently,

σ(A) ⊆ K(A) :=
⋃
i∈N

i−1⋃
j=1

Ki,j(A). (2.2.8)

Proof. Consider the class of doubly SDD matrices KdSDD. According to Theorem 1.2.1,
it is a class of nonsingular matrices. Thus, Varga’s Equivalence Principle implies that
σ(A) ⊆ ΘKdSDD(A), for any A = [ai,j] ∈ Cn,n. We prove that ΘKdSDD(A) = K(A). Start
with any z ∈ ΘKdSDD(A). This means that zIn − A 6∈ KdSDD, or, equivalently, that there
exist indices i, j ∈ N , i 6= j, such that

|(zIn − A)i,i||(zIn − A)j,j| ≤ ri(zIn − A)rj(zIn − A). (2.2.9)

But, since for all i ∈ N , |(zIn − A)i,i| = |z − ai,i|, and ri(zIn − A) = ri(A), according
to (2.2.7), the condition (2.2.9) is equivalent to the fact that z ∈ Ki,j(A) = Kj,i(A).
Therefore, z ∈ ΘKdSDD(A) is equivalent to z ∈ K(A), implying that ΘKdSDD(A) = K(A).
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Figure 2.2.1: Ovals of Cassini with foci −1 and 1, and radius η = 0.6, 0.8, 1, 1.2, 1.4, 2, 3
(Kazinijevi ovali sa žǐzama u −1 i 1, i poluprečnika η = 0.6, 0.8, 1, 1.2, 1.4, 2, 3)

Theorem 2.2.5. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, if there exist sets
U, V ⊆ C, such that U ∩ V = ∅, and K(A) = U ∪ V , then, the set U contains exactly
| {i ∈ N : ai,i ∈ U} | eigenvalues of the matrix A.

First of all, note that, Brauer set K(A), given in (2.2.8), unlike Geršgorin set, is made

of n(n−1)
2

compact sets in the complex plane. They depend on diagonal entries and row

sums, generally they are not disks. Namely, the boundary of Ki,j(A) can be described

with the following equation:

|z − ξ1||z − ξ2| = η, (2.2.10)

with ξ1 and ξ2 being complex numbers, and η ≥ 0. Numbers ξ1 and ξ2 are called foci of

the curve (2.2.10) whose radius is η.

The shape of the curve depends of these values. Namely, for 0 < η < (ξ1−ξ2)2

4
, the curve

(2.2.10), consists of two disjoint parts that asymptotically tend to circles, centered in ξ1

and ξ2, and of radius η
|ξ1−ξ2| , when η → 0.

For η = (ξ1−ξ2)2

4
, (2.2.10) is second-order lemniscate, with foci ξ1 and ξ2, while, for the

values η > (ξ1−ξ2)2

4
, (2.2.10) becomes smooth curve without self-intersections, which tends

to circle centered in ξ1+ξ2
2

and radius η
|ξ1−ξ2| , when η →∞.

Figure 2.2.1 illustrates these cases for the values ξ1 = −1, ξ2 = 1, and η ∈ {0.6, 0.8, 1, 1.2,

1.4, 2, 3}.
Generally, this curve is called the Cassini2 oval, although its shape is oval only in the

case when η ≥
√
|ξ1 − ξ2|. For that reason, we will call the set Ki,j(A) (i, j)-th Brauer

oval of Cassini of the matrix A.

2The name comes from Italian astronomer Giovanni Domenico Cassini (1625-1712), who spend all his
professional life in Paris.
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Figure 2.2.2: From left to right, Brauer set (thick boundary) and Geršgorin set (shaded)
for matrices A1, A2 and A3 of the Example 2.2.7

(Sa leva na desno, Brauerov skup (debljom linijom) i Geršgorinov skup (osenčen) za
matrice A1, A2 i A3 iz Primera 2.2.7)

Since, in order to determine Brauer set, we need to make significantly more computation

(compared to the Geršgorin set), and, moreover, curves that define Brauer set are already

more complicated than the simple Geršgorin disks, a natural question is if it is appropriate

to use the Brauer eigenvalue localization. Namely, this localization is justified only if it

gives significantly better results that the original Geršgorin one. Luckily, for the Brauer

ovals of Cassini, the following statement is true, Theorem 2.3 of [51], and [53].

Theorem 2.2.6. For any A = [ai,j] ∈ Cn,n, n ≥ 2, and for any two indices i, j ∈ N ,
i 6= j,

Ki,j(A) ⊆ Γi(A) ∩ Γj(A), (2.2.11)

where equality holds if and only if ri(A) = rj(A) = 0, or if ri(A) = rj(A) > 0 in the case
when ai,i = aj,j. Therefore, consequently,

K(A) ⊆ Γ(A). (2.2.12)

How significant this improvement can be, the following example shows.

Example 2.2.7. Consider the following matrices

A1 =

[
5 4
1 5

]
, A2 =

[
1 1
1 −1

]
, and A3 =




1 1 0 1
0 −1 0 0
0 0 i 1
1 0 0 −i


 .

Figure 2.2.2 illustrates, respectively, from the left to the right, Brauer sets K(A1), K(A2)
and K(A3), shaded, while the thick lines represent boundaries of the corresponding Geršgorin
sets Γ(A1), Γ(A2) and Γ(A3).

As mentioned before, both the Brauer set and the Geršgorin set of a given matrix

depend of the same collection of 2n data, while the Brauer set gives a localization set that

is not greater then the Geršgorin one. The question is, how sharp is it.

Results of Varga and Krautstengl obtained 1999, in [53], show that Brauer localization

sets are, indeed, sharp. Basically, their result states that the Brauer set for a given
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matrix A = [ai,j] ∈ Cn,n gives the best possible estimate of eigenvalues, based on the data

collections {ai,i}ı∈N and {ri(A)}ı∈N .

To explain that, for a given matrix A = [ai,j] ∈ Cn,n, n ≥ 2, we define the equiradial

set of A as

ω(A) := {B = [bi,j] ∈ C : bi,i = ai,i and ri(B) = ri(A), i ∈ N} , (2.2.13)

and we also define

ω̂(A) := {B = [bi,j] ∈ C : bi,i = ai,i and ri(B) ≤ ri(A), i ∈ N} (2.2.14)

as the extended equiradial set for A.

Obviously, ω(A) ⊆ ω̂(A), and, according to the definition of the Brauer ovals of Cassini,

given in (2.2.7), it is clear that for each matrix from ω(A) the Brauer set remains the same

as it is for the matrix A, while for each matrix from ω̂(A), it gets smaller and lies in K(A).

Therefore, the collection of all eigenvalues of all matrices from these two sets of matrices

is contained in the Brauer set of the matrix A, i.e.,

σ(ω(A)) ⊆ σ(ω̂(A)) ⊆ K(A), (2.2.15)

where

σ(K) :=
⋃

A∈K

σ(A), (2.2.16)

for an arbitrary family of matrices K.

Furthermore, according to Theorem 2.4 in [51], the equalities between these three sets

of complex numbers are given in the next result.

Theorem 2.2.8. (Varga-Krautstengl) Given any A = [ai,j] ∈ Cn,n, n ≥ 2, then

σ(ω(A)) =

{
∂K(A) = ∂K1,2(A) if n = 2, and,

K(A) if n ≥ 3,
(2.2.17)

and, in general, for any n ≥ 2,
σ(ω̂(A)) = K(A). (2.2.18)

So, for any matrix A = [ai,j] ∈ Cn,n of size n ≥ 3, the Brauer set K(A) perfectly

estimates the spectrum of all matrices that are equiradial with the matrix A, and all

matrices that are from the extended set ω̂(A). This is not the case with the Geršgorin set,

as it is shown in Figure 2.2.2.

2.2.2 Brualdi sets

Moving forward to the product over the three and more rows in order to obtain nonsin-

gularity results, as we have seen in Subsection 1.2.2, has led us to the concept of cycles

in a graph of a matrix. Here, we review the original Brualdi result on the localization
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of eigenvalues, together with the theorem of Varga on the sharpness of Brualdi lemiscate

sets.

Again, we start with the positively homogenous DD-type class of matrices, the class

of Brualdi-SDD matrices, and construct the corresponding Geršgorin type set. Then, we

deduce its explicit form given in the following theorem. We omit the proof, since it is

completely analogous to the one in the previous subsection.

Theorem 2.2.9. (Brualdi)3 Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, for
every λ ∈ σ(A), there exists a cycle γ ∈ C(A), either strong or weak, so that

λ ∈ Bγ(A) :=

{
z ∈ C :

∏
i∈γ

|z − ai,i| ≤
∏
i∈γ

r̃i(A)

}
, (2.2.19)

if the cycle γ ∈ C(A) is strong, or,

λ ∈ Bγ(A) := {z ∈ C : |z − ai,i| ≤ r̃i(A) = 0} = {ai,i} , (2.2.20)

if the cycle γ = {i} ∈ C(A) is weak. Consequently,

σ(A) ⊆ B(A) :=
⋃

γ∈C(A)

Bγ(A). (2.2.21)

Theorem 2.2.10. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, if there exist
sets U, V ⊆ C, such that U ∩ V = ∅, and B(A) = U ∪ V , then, set U contains exactly
| {i ∈ N : ai,i ∈ U} | eigenvalues of the matrix A.

This result on the disjoint subsets of the Brualdi’s set, is a new one, and was not stated

anywhere before.

The set of complex numbers B, defined in (2.2.21), we call the Brualdi set of a matrix

A, while the set Bγ, from (2.2.19)-(2.2.20), we call the Brualdi lemniscate.

To illustrate this set, let us consider matrix A8 of the Example 1.2.5 in its normal

reduced form (1.2.9). There, we have seen that C(A8) = {γ1, γ2, γ3, γ4}, where γ1 =

(3, 5, 4), γ2 = (5, 6), γ3 = (2), and γ4 = (1), so that the corresponding Brualdi lemniscates

are:

Bγ1(A8) =
{
z ∈ C : |z||z − 1|2 ≤ 2

}
,

Bγ2(A8) = {z ∈ C : |z||z − 1| ≤ 2} ,

Bγ3(A8) = {1} , and Bγ4(A8) = {0} ,

and we have that {0, 1, 2} = σ(A8) ⊆ B(A8), which is illustrated in the Figure 2.2.3.

Using Varga’s Equivalence Principle, the fact that every doubly SDD matrix is a Brualdi

SDD matrix, stated in Theorem 1.2.8, gives us the relationship between Brauer sets and

Brualdi sets. The original proof of this theorem is given in [51], Theorem 2.9.

3This theorem, like the one in Subsection 1.2.2, is also Varga’s generalization of the original Brualdi’s
theorem from [7].
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Figure 2.2.3: The Brualdi set for the matrix A8 of the Example 1.2.5
(Brualdijev skup za matricu A8 iz Primera 1.2.5)

Figure 2.2.4: The Brualdi set for the matrix A7 given in (2.1.14)
(Brualdijev skup za matricu A7 datu sa (2.1.14))
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Theorem 2.2.11. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, then

B(A) ⊆ K(A), (2.2.22)

with K(A) and B(A) given in (2.2.8) and (2.2.21), respectively.

As we have discussed in the previous chapter, for a given matrix A = [ai,j] ∈ Cn,n, the

Brauer set consists of n(n−1)
2

Cassini ovals, while the number of Brualdi lemniscates depends

on the associated graph structure, and can vary quite a lot, from only one lemniscate, as

in the case of matrix A9 of the Example 1.2.9, to a few of them, Example 1.2.7, or up

to the the number that far exceeds n(n−1)
2

. The ultimate case is, again, when a matrix A

has all nonzero off-diagonal entries, when each choice of two or more indices is a strong

cycle, and their number is
∑n

k=2
n!
k!

. In that case, for each cycle γ = (i, j) of the length 2,

(i, j)-Brauer’s oval of Cassini becomes the same as Brauldi lemniscate associated with the

cycle γ, i.e., Ki,j(A) = Bγ(A), implying that, in this case K(A) = B(A).

So, in case of matrices without any zero off-diagonal entry, most of the cycles of the

graph G(A) do not affect the Brualdi set, so, it opens a search for reducing the number of

cycles that construct Brualdi localization set. Again, the reduced set of cycles is given in

Theorem 2.10 from [51].

It is interesting to remark (Varga, private note) that, for a matrix A ∈ Cn,n, with

all nonzero off diagonal entries, the number of all Brualdi lemniscates, that are to be

calculated, can be reduced to 2n − (n + 1), where n ≥ 2. For example, for n = 10, the

above number is 1, 013, while the number of all lemniscates is 1, 012, 073.

As for the Brauer set, there is a corresponding theorem on the sharpness of the Brualdi

sets. More details of this can be found in [51].

2.2.3 Cvetković-Kostić-Varga Sets

Here we start with the results on nonsingularity given in Theorems 1.2.12 and 1.2.13 and

their characterizations given in Theorems 1.4.1 and 1.4.2, respectively.

As a consequence of Varga’s Equivalence Principle, we have the following eigenvalue

localization theorems.

Theorem 2.2.12. (Dashnic-Zusmanovich) Let A = [ai,j] ∈ Cn,n, with n ≥ 2, be an
arbitrary matrix, and λ ∈ σ(A) be its arbitrary eigenvalue. Then, for every index i ∈ N ,
there exists an index j ∈ N \ {i}, such that

λ ∈ Di,j(A) := {z ∈ C : |z − ai,i| · (|aj,j| − rj(A) + |aj,i|) ≤ ri(A)|aj,i|} . (2.2.23)

Consequently,

σ(A) ⊆ D(A) :=
⋂
i∈N

Di(A), (2.2.24)

where
Di(A) :=

⋃

j∈N\{i}
Di,j(A). (2.2.25)
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Figure 2.2.5: The Dashnic-Zusmanovich’s set for the matrix A4 of the Example 2.2.13
(Dašnjic-Zusmanovič skup za matricu A4 iz Primera 2.2.13)

The following example illustrates this localization set. As it is illustrated, we can con-

sider this Dashnic-Zusmanovich’s set, given in (2.2.24), to be made up of the perturbed

Brauer’s Ovals of Cassini.

Example 2.2.13. Let

A4 =




2 1 0
1 −2 1
1 0 i


 , and A5 =




1 1 0 0
0 −1 1 0
0 0 i 1
1 0 0 −i


 .

In Figure 2.2.5, the sets Di,j(A4), where i, j ∈ {1, 2, 3}, i 6= j, are shown by thin lines, while
Dashnic-Zusmanovich’s set D(A4) is shaded. Figure 2.2.6 illustrates the same localization
set for the matrix A5. The set D(A5) is again shaded, while the boundary of the set
D1(A5) is given with a thick line. Finally, Figure 2.2.7 illustrates the relationship between
Dashnic-Zusmanovich’s set D(A5) (shaded) and Brauer’s set K(A5) (with a thick boudary).

As before, using Varga’s Equivalence Principle we can state the result of Theorem

1.4.1, in terms of eigenvalue inclusion sets. This leads us to the concept of the minimal

Geršgorin set, attributed to the family of positive diagonal matrices, in this case XDZ .

Theorem 2.2.14. (Dashnic-Zusmanovich) Given an arbitrary matrix A = [ai,j] ∈
Cn,n, then the minimal Geršgorin set attributed to the family XDZ, given by (1.4.15), is
equal to the Dashnic-Zusmanovich’s set D(A), i.e.,

D(A) =
⋂

X∈XDZ

ΓX(A) = ΓXDZ (A). (2.2.26)

So, for the class of DZ-SDD matrices, it is possible to explicitly express the minimal

Geršgorin set attributed to this class, given in (2.2.26). In other words, although the

minimal Geršgorin set attributed to the family XDZ is, by definition, an intersection of
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Figure 2.2.6: Sets D(A5) and D1(A5) for the matrix A5 of the Example 2.2.13
(Skupovi D(A5) i D1(A5) za matricu A5 iz Primera 2.2.13)

Figure 2.2.7: The sets D(A5) and K(A5) for the matrix A5 of the Example 2.2.13
(Skupovi D(A5) and K(A5) za matricu A5 iz primera 2.2.13)
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continuum many compact sets, it can be expressed as a finite intersection of some compact

sets in the complex plane. These sets depend solely of the matrix entries. More details

concerning the geometrical interpretation of this result could be found in [20].

The eigenvalue localization result based on the class of S-SDD matrices, i.e., CKV-SDD

matrices, was given in the Cvetković, Kostić and Varga [19]gave in the same paper [19],

together with a nonsingularity result.

Theorem 2.2.15. (Cvetković-Kostić-Varga) Let A = [ai,j] ∈ Cn,n, with n ≥ 2, be an
arbitrary matrix, and λ ∈ σ(A) be its arbitrary eigenvalue. Then, for every nonempty
subset of indices S ⊆ N , there exist indices i ∈ S, and j ∈ S := N \ S, such that

λ ∈ ΓS
i (A) :=

{
z ∈ C : |z − ai,i| ≤ rS

i (A)
}

, (2.2.27)

or

λ ∈ V S
i,j(A) :=

{
z ∈ C : (|z − ai,i| − rS

i (A)) · (|z − aj,j| − rS
j (A)) > rS

i (A)rS
j (A)

}
.

(2.2.28)
Therefore, for every nonempty subset of indices S ⊆ N ,

σ(A) ⊆ CS(A) :=
[ ⋃

i∈S

⋃

j∈S

V S
i,j(A)

] ⋃ [ ⋃
i∈S

ΓS
i (A)

]
, (2.2.29)

and consequently

σ(A) ⊆ C(A) :=
⋂

∅6=S⊆N

CS(A). (2.2.30)

Having that the class of S-SDD matrices is a positively homogenous DD-type class, we

can, as before, apply the Isolation Principle.

Theorem 2.2.16. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, if there exist sets
U, V ⊆ C, such that U ∩ V = ∅, and CS(A) = U ∪ V , for some nonempty S ⊆ N , then the
set U contains exactly | {i ∈ N : ai,i ∈ U} | eigenvalues of the matrix A.

Again, we have the equivalent form of Theorem 1.4.2 in terms of eigenvalue localization,

which leads us to the concept of the minimal Geršgorin set. Originally, the following result

was proved in [14].

Theorem 2.2.17. (Cvetković-Kostić) Given an arbitrary matrix A = [ai,j] ∈ Cn,n and
an arbitrary nonempty subset of indices S ⊆ N , then the minimal Geršgorin set attributed
to the family XS, given by (1.4.18), is equal to the set CS(A), i.e.,

CS(A) =
⋂

X∈XS

ΓX(A) = ΓXS(A), (2.2.31)

and, consequently, the minimal Geršgorin set, attributed to the family XCKV , given by
(1.4.19), is equal to the set C(A), i.e.,

C(A) =
⋂

X∈XCKV

ΓX(A) = ΓXCKV (A). (2.2.32)
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Figure 2.2.8: Dashnic-Zusmanovich’s set for the matrix A6 of the Example 2.2.18
(Dašnjic-Zusmanovič skup za matricu A6 iz Primera 2.2.18)

The following example illustrates this localization set.

Example 2.2.18. Let

A6 =




1 1 0 1
0 i 1 0
0 1 1 0
1 0 1 i


 .

In Figure 2.2.8, the set C(A6) is shaded, the set CS(A6), for S = {1, 3}, has the thick
boundary, while the sets V S

i,j(A6), for i ∈ {1, 3} and j ∈ {2, 4}, and ΓS
1 (A6) have thin

boundaries. Eigenvalues of the matrix A6 are marked by ”×”. Figure 2.2.9 illustrates the
relationship between CKV set, given in (2.2.30) with other localizations. There, the set
C(A6) is shaded, while the Dashnic-Zusmanovich set, the Brauer set and the Geršgorin set
have, respectively, thicker and thicker boundaries. Again, eigenvalues are marked by ”×”.

First, observe that the form of the set V S
i,j(A) may be asymmetric, contrary to Brauer’s

Ovals of Cassini which are invariant to the interchange of the foci. Thus, it is expected

that this freedom leads to an improvement of the localization set. Apart from this, in order

to construct the set C(A), we use more information than in the case of the set K(A). The

following theorem establishes the general relationship between mentioned localizations; for

more details, see [19] and [51], Chapter 3.3.
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Figure 2.2.9: Dashnic-Zusmanovich’s sets D(A5) and D1(A5) for the matrix A5 of the
Example 2.2.13

(Dašnjic-Zusmanovič skupovi D(A5) i D1(A5) za matricu A5 iz Primera 2.2.18)
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Theorem 2.2.19. Let A = [ai,j] ∈ Cn,n, n ≥ 2, be an arbitrary matrix, and let the set
Γ(A) be given by (2.1.2), set K(A) by (2.2.8), the set Di(A) by (2.2.25), the set D(A) by
(2.2.24), the set CS(A) by (2.2.29), and the set C(A) by (2.2.30). Then,

• C{i}(A) = Di(A) ⊆ Γ(A), (i ∈ N),

• CS(A) ⊆ Γ(A), (S ⊆ N), and, consequently,

• C(A) ⊆ D(A) ⊆ K(A) ⊆ Γ(A).

Moreover, there exist matrices P, Q, R ∈ Cn,n, so that

• C(P ) 6⊆ B(P ), and B(P ) 6⊆ C(P ),

• Di(Q) 6⊆ K(Q), and K(Q) 6⊆ Di(Q), for some i ∈ N ,

• CS(R) 6⊆ K(R), and K(R) 6⊆ CS(R), for some S ⊆ N.

2.2.4 Ostrowski sets

Here we start with nonsingularity results given in Subsection 1.2.4. As a consequence

of Varga’s Equivalence Principle, we have two rather well-known eigenvalue localization

theorems.

To conclude this section on Geršgorin-type theorems, we consider eigenvalue local-

ization sets that are derived by Varga’s Equivalence Principle from the corresponding

nonsingularity results from Subsection 1.2.4: Theorems 1.2.21 and 1.2.22, and their char-

acterizations given in Theorems 1.2.26 and 1.2.27, respectively.

Theorem 2.2.20. Given an arbitrary A = [ai,j] ∈ Cn,n, with n ≥ 2, let λ be one of its
eigenvalues. Then, for an arbitrary α ∈ [0, 1], there exists an index i ∈ N such that
|λ− ai,i| ≤ αri(A) + (1− α)ci(A). In other words, for an arbitrary α ∈ [0, 1],

σ(A) ⊆ A1
α(A) :=

⋃
i∈N

A1
α,i(A), (2.2.33)

where A1
α,i(A) := {z ∈ C : |z − ai,i| ≤ αri(A) + (1− α)ci(A)}. Consequently,

σ(A) ⊆ A1(A) :=
⋂

α∈[0 , 1]

A1
α(A). (2.2.34)

Theorem 2.2.21. Given an arbitrary A = [ai,j] ∈ Cn,n, with n ≥ 2, let λ be one of its
eigenvalues. Then, for an arbitrary α ∈ [0, 1], there exists an index i ∈ N such that
|λ− ai,i| ≤ (ri(A))α(ci(A))1−α. In other words, for an arbitrary α ∈ [0, 1],

σ(A) ⊆ A2
α(A) :=

⋃
i∈N

A2
α,i(A), (2.2.35)

where A2
α,i(A) := {z ∈ C : |z − ai,i| ≤ (ri(A))α(ci(A))1−α}. Consequently,

σ(A) ⊆ A2(A) :=
⋂

α∈[0 , 1]

A2
α(A). (2.2.36)
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We will refer to the localization sets introduced in the previous two theorems as α1-sets

and α2-sets, respectively. To be more precise, these terms will refer to localization sets

given in (2.2.33) and (2.2.35), while the sets in (2.2.34) and (2.2.36) we call α1-minimal

set and α2-minimal set, respectively.

As before, since the classes of α1-SDD and α2-SDD matrices are both positively ho-

mogenous, the Isolation Principle holds in both cases.

Theorem 2.2.22. Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, and k ∈ {1, 2},
if there exist sets U, V ⊆ C, such that U ∩ V = ∅, and Ak(A) = U ∪ V , then, the set U
contains exactly | {i ∈ N : ai,i ∈ U} | eigenvalues of the matrix A.

As we have seen, (1.2.39) implies that every α1-SDD matrix is also an α2-SDD matrix.

In the same way, it is clear that for an arbitrary matrix A = [ai,j] ∈ Cn,n, A2(A) ⊆ A1(A).

Thus, if we want to obtain a better localization set for the same ”price”, the proper choice

is always A2(A)!

Example 2.2.23. For the given matrix

A7 =




1 2 0
0 0 1
2 2 −1


 ,

Figure 2.2.10 shows, from upper left to lower right corner, α2-localization set A2
α(A7) for

the following values of the parameter α = 1, 0.8, 0.6, 0.4, 0.2, 0, respectively. In fact, this
represents a ”step-by-step” transformation from Γ(A7) to Γ(AT

7 ). Eigenvalues of the matrix
A7 are everywhere marked by ”×”.

Naturally, for different values of parameter α, we obtain different localization sets, and,

as this example shows, α2-sets for different values of the parameter α stand in the general

position, i.e., neither one of them is a subset of the other one. Taking the intersection

(2.2.36) over all possible values of the parameter, we obtain, of course, the best possible

localization set in this direction.

While the α2-set, for a fixed value of the parameter, is essentially as easy to draw as

the Geršgorin set, this is not the case for α2-minimal set. Given in the form of intersection

of a continuum of many sets, it obviously raises a question how can we compute it, in

general. But, starting from Theorem 1.2.27, on the characterization of α2-matrices, and

using Varga’s Equivalence Principle, we obtain a different form of this set, which is much

more useful.

Theorem 2.2.24. Let A = [ai,j] ∈ Cn,n, with n ≥ 2, and let λ be one of its eigenvalues.
Then, there exists an index i ∈ N such that |λ− ai,i| ≤ min{ri(A), ci(A)}, or, there exist
i ∈ R∗(A) and j ∈ C∗(A), where the sets R∗(A) and C∗(A) are given in (1.2.56) and
(1.2.57), respectively, such that

|λ− ai,i|
ci(A)

( |λ− aj,j|
cj(A)

)log cj(A)

rj(A)

ri(A)

ci(A)

≤ 1. (2.2.37)
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Figure 2.2.10: α2-localization set A2
α(A7) for the matrix A7 of the Example 2.2.23 for the

following values of the parameter α = 1, 0.8, 0.6, 0.4, 0.2, 0, from upper left to lower right
corner, respectively

(α2-skupovi za lokalizaciju A2
α(A7) matrice A7 iz Primera 2.2.23 za sledeće vrednosti

parametra α = 1, 0.8, 0.6, 0.4, 0.2, 0, od gornjeg levog ugla do donjeg desnog ugla, redom)

Thus, we have that

σ(A) ⊂ A2(A) := Γm(A)
⋃

Λ2(A), (2.2.38)

where Γm(A) is given by (2.1.13),

Λ2(A) :=
⋃

i∈R∗(A)

j ∈C∗(A)

Λ2
i,j(A), and (2.2.39)

Λ2
i,j(A) := {z ∈ C :

|z − ai,i|
ci(A)

( |z − aj,j|
cj(A)

)log cj(A)

rj(A)

ri(A)

ci(A)

≤ 1}, (2.2.40)

for i ∈ R∗, and j ∈ C∗.
As we can see, Theorem 1.2.27 allows us to represent the α2-minimal set of an arbitrary

matrix as the finite union of compact sets of the complex plane, and, therefore, it is possible

to compute it, in general.

How useful this localization can be is illustrated in the following example.

Example 2.2.25. Let

A8 =

[
5 4
1 5

]
, A9 =




1 0 0.3 0.4
0 0 0 0.6

0.5 0 −1 0.4
0 0.5 0 −i


 , and A10 =




1 0 0.3 0.65
0 i 0.5 0.3

0.5 0 −1 0
0 0.5 0 −i


 .
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Figure 2.2.11: The α2-minimal set for the matrix A8 of the Example 2.2.25
(α2-minimalni skup za matricu A8 iz Primera 2.2.25)

Figures 2.2.11, 2.2.12 and 2.2.13, show the sets Γ(Ai) ∩ Γ(AT
i ) by the thick line, sets

Λ2(Ai) with a thin line, and the sets Γm(Ai) shaded, for i = 8, 9, 10, respectively. Again,
the eigenvalues are marked by ”×”.

As noted in Subsection 2.1.2, the matrix A8, of the previous example, shows that, in

general, given a matrix A, the set Γm(A) does not have to contain some, or even all of the

spectra of A. Thus, the role of the set Λ2(A) is essential. Actually, this set answers the

question proposed at the end of Subsection 2.1.2.

Figures 2.2.12 and 2.2.13 illustrate that, sometimes, the improvement obtained by the

use of the α2-minimal set, can be really significant.

Besides the α2-minimal set, we can also use α1-minimal set to answer the question of

Subsection 2.1.2. Namely, a consequence of the Theorem 1.2.26 is the following one.

Theorem 2.2.26. Let A = [ai,j] ∈ Cn,n, with n ≥ 2, and let λ be one of its eigenvalues.
Then, there exists an index i ∈ N such that |λ− ai,i| ≤ min{ri(A), ci(A)}, or, there exist
i ∈ R(A) and j ∈ C(A), so that

|λ− ai,i| (cj(A)− rj(A)) + |λ− aj,j| (ri(A)− ci(A)) ≤ cj(A)ri(A)− ci(A)rj(A). (2.2.41)

Thus, we have that

σ(A) ⊂ A1(A) := Γm(A)
⋃

Λ1(A), (2.2.42)

where Γm(A) is given by (2.1.13),

Λ1(A) :=
⋃

i∈R(A)

j ∈C(A)

Λ1
i,j(A), and (2.2.43)
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Figure 2.2.12: The α2-minimal set for the matrix A9 of the Example 2.2.25
(α2-minimalni skup za matricu A9 iz Primera 2.2.25)

Figure 2.2.13: The α2-minimal set for the matrix A10 of the Example 2.2.25
(α2-minimalni skup za matricu A10 iz Primera 2.2.25)
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Λ1
i,j(A) := {z ∈ C : |z − ai,i| (cj(A)− rj(A)) + (2.2.44)

|z − aj,j| (ri(A)− ci(A)) ≤ cj(A)ri(A)− ci(A)rj(A)},
for i ∈ R, and j ∈ C.

Of course, we have seen that, in general, the set (2.2.43) contains the set of (2.2.39),

so, it gives worse estimates of spectra then the previous one.

For both of these localization sets, it remains to analyze the ”cost” one has pay to

obtain them. Obviously, given a matrix A = [ai,j] ∈ Cn,n, in both cases we start with n

disks. The number of the other sets that have to be plotted depends of the structure of

the matrix. Namely, if the matrix is real symmetric, this number is zero, but then, both

of these sets collapse to the original Geršgorin set. On the other hand, if the symmetry is

ruined in only one place, this number is one. Depending of the number of indices where

row sums dominate over column sums, and vice versa, this number can be at most 0.25n2,

if n is even, or 0.25(n2−1), if n is odd. Thus, it could be wise to use this set when matrices

have ”unbalanced” dominance of row sums over column sums, or vice versa.

For the matrices A9 and A10, the additional number of the sets that has to be deter-

mined is 3 and 4, respectively.

As before, it is interesting to compare these eigenvalue localizations to the ones defined

in the previous sections. The first part of the following proposition can be easily obtained

from the fact that, taking α = 1, the set in (2.2.35) becomes the Geršgorin set of the

corresponding matrix, and, taking α = 0, it becomes the Geršgorin set of the transpose of

the corresponding matrix. The second part follows directly by simple examples.

Theorem 2.2.27. Let A = [ai,j] ∈ Cn,n, n ≥ 2, be an arbitrary matrix, and let the set
Γ(A) be given by (2.1.2), the set B(A) by (2.2.21), the set CS(A) by (2.2.29), the set C(A)
by (2.2.30), the set A1(A) by (2.2.34), and the set A2(A) by (2.2.36). Then,

A2(A) ⊆ A1(A) ⊆ Γ(A) ∩ Γ(AT ). (2.2.45)

Moreover, there exist matrices P, Q ∈ Cn,n, so that

• A2(P ) 6⊆ B(P ), and B(P ) 6⊆ A1(P ), and

• A2(Q) 6⊆ C(Q), and C(Q) 6⊆ A1(Q).

Therefore, α1 and α2-(minimal) sets stand each in a general position, with the observed

extensions of the Geršgorin set.
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2.3 Minimal Geršgorin Sets

In the last section of the second chapter, we will discus, in more detail, the minimal

Geršgorin set, which was introduced at the beginning of this chapter. The name minimal

Geršgorin set was first used by Varga in 1965, [47], where he proved many of its properties.

Here, briefly, we will present some of them, together with the results from [53] and [50],

and in the form in which they appear in [51]. We will conclude the chapter with the

recent results on the computation of the minimal Geršgorin set, which are due to Varga,

Cvetković and Kostić, [52].

The minimal Geršgorin set for the matrix A = [ai,j] ∈ Cn,n is a compact set in the

complex plane given by:

ΓD(A) :=
⋂

X∈D
ΓX(A), (2.3.1)

where {
ΓX

i (A) := {z ∈ C : |z − ai,i| ≤ rx
i (A)} , (i ∈ N),

ΓX(A) :=
⋃

i∈N ΓX
i (A),

(2.3.2)

and

rx
i (A) := ri(X

−1AX) =
∑

j∈N\{i}

|ai,j|xj

xi

(i ∈ N, x > 0). (2.3.3)

As Corollary 2.1.5 states, the minimal Geršgorin set is an eigenvalue inclusion set, i.e.,

for an arbitrary matrix A, σ(A) ⊆ ΓD(A).

As we have seen in the introduction of Section 2.2, having a subclass K of nonsingular

H-matrices, i.e., GDD matrices, and using the Varga’s Equivalence Principle, for a given

matrix A, we derive an eigenvalue localization set ΘK(A), given in 2.2.1. Moreover, we

have seen that this set is the minimal Geršgorin set, attributed to the family XK, given in

(1.4.2), i.e., ΘK(A) = ΓX
K
(A) :=

⋂
X∈XK ΓX(A).

On the other hand, we have also seen that the family of positive diagonal matrices

X ⊆ D generates the subclass of H-matrices KX, and then, again, we have that, for a given

A, the corresponding localization set ΘK
X
(A) is the minimal Geršgorin set attributed to

the family X, i.e., ΘK
X
(A) = ΓX(A).

Since, KD = H is the class of all nonsingular H-matrices, we have that ΘK
D
(A) =

ΓD(A). Thus, the proposition that all GDD matrices are nonsingular is equivalent to

the proposition that the minimal Geršgorin set is the eigenvalue inclusion set. Moreover,

this property implies that the minimal Geršgorin set is the best possible Geršgorin-type

localization set, as it was defined in Section 2.2. In other words, for every K ⊆ H,

ΓD(A) ⊆ ΘK(A), where A is an arbitrary matrix. In fact, this conclusion unifies, in a simple

way, some known results, like the one in Theorem 2.14 in [51], about the relationship of

the minimal Geršgorin set and other known eigenvalue inclusion sets.

In fact, apart from this property, as we will see, there is also another reason to call the

set from (2.3.1) minimal.
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2.3.1 Sharpness and geometry of the minimal Geršgorin set

Given an arbitrary matrix A = [ai,j] ∈ Cn,n, n ≥ 2, we define

Ω(A) := {B = [bi,j] ∈ Cn,n : bi,i = ai,i and |bi,j| = |ai,j| for i 6= j (i, j ∈ N)} , (2.3.4)

and call it the equimodular family of matrices attributed to the matrix A. In a similar

way, we define

Ω̂(A) := {B = [bi,j] ∈ Cn,n : bi,i = ai,i and |bi,j| ≤ |ai,j| for i 6= j (i, j ∈ N)} , (2.3.5)

and call it the extended equimodular family of matrices attributed to the matrix A.

Then, obviously,

σ(Ω(A)) ⊆ σ(Ω̂(A)) ⊆ ΓD(A), (2.3.6)

where A is an arbitrary matrix, and σ(Ω(A)) and σ(Ω̂(A)) are defined in (2.2.16).

That inclusions in (2.3.6) are in fact, equalities, it was proved by Varga in [47].

Theorem 2.3.1. (Varga) For any A = [ai,j] ∈ Cn,n, then

∂ΓD(A) ⊆ σ(Ω(A)) ⊆ σ(Ω̂(A)) = ΓD(A). (2.3.7)

This sharpness can be also expressed in the following way: Given a matrix A, every

point on the boundary of the minimal Geršgorin set ΓD(A) is an eigenvalue of a matrix

from the family Ω(A), and every point of the minimal Geršgorin set ΓD(A) is an eigenvalue

of the matrix from the family Ω̂(A). In other words, the eigenvalues of the matrices from

Ω(A) fill up the boundary of the minimal Geršgorin set, while the the eigenvalues of the

matrices from Ω̂(A) fill up the entire minimal Geršgorin set.

In order to prove the previous theorem, Varga introduced some useful concepts for

exploring the properties of the minimal Geršgorin set. Namely, given an arbitrary matrix

A = [ai,j] ∈ Cn,n, and a complex number z ∈ C, we define the associated matrix Q(z) =

[qi,j(z)] ∈ Rn,n by

qi,i(z) := −|z − ai,i|, and qi,j(z) := |ai,j|, for i 6= j (i, j ∈ N). (2.3.8)

Taking

µ(z) := max
i∈N

|z − ai,i|, (2.3.9)

we obtain that the matrix B(z) := [bi,j(z)] ∈ Rn,n, defined by

bi,i(z) := µ(z)− |z − ai,i|, and bi,j(z) := |ai,j|, i 6= j (i, j ∈ N), (2.3.10)

satisfies

B(z) = Q(z) + µ(z)In. (2.3.11)

Here, B(z) is a nonnegative matrix in Rn,n. Therefore, by the Perron-Frobenius theory

of nonnegative matrices, (c.f. Theorem C.2 from [51]), the spectral radius of the matrix
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B(z), ρ
(
B(z)

)
is its nonnegative eigenvalue, and there exists a nonnegative eigenvector

y ≥ 0, such that By = ρ(B)y. Even more, ρ
(
B(z)

)
can be characterized as

ρ
(
B(z)

)
= inf

x>0

{
max
i∈N

{(
B(z)x

)
i
/xi

}}
. (2.3.12)

Thus, if we set

νA(z) := ρ(B(z))− µ(z) (all z ∈ C), (2.3.13)

then νA(z) is a real-valued function, defined for all z ∈ C. Moreover, it can be expressed

as

νA(z) = inf
x>0

{
max
i∈N

{(
Q(z)x

)
i
/xi

}}
= inf

x>0

{
max
i∈N

{rx
i (A)− |z − ai,i|}

}
. (2.3.14)

Now, using the equality (2.3.14), the following connection of the function νA(z) to the

minimal Geršgorin set, ΓD(A), from the work of Varga, [47] and [51], can be easily proved.

Theorem 2.3.2. For any A = [ai,j] ∈ Cn,n, n ≥ 2, then

z ∈ ΓD(A) if and only if νA(z) ≥ 0. (2.3.15)

Furthermore, if z ∈ ∂ΓD(A), then νA(z) = 0, and, conversely, if νA(z) = 0, and there
exists a sequence of complex numbers {zk}k∈N, with limk→∞ zk = z, for which νA(zk) < 0,
for all k ∈ N, then z ∈ ∂ΓD(A).

Another interesting consequence of the equality (2.3.14) is that the real-valued function

νA of the complex argument z is uniformly continuous on C, i.e., we can prove that,

for any z and z′ in C, |νA(z)− νA(z′)| ≤ |z − z′|. (2.3.16)

Therefore, the minimal Geršgorin set of the given matrix A can be expressed in terms

of the uniformly continuous real-valued function νA. This property turned out to be very

useful in many ways, as we shall present in the reminder of this section.

Before we continue, we will discuss the case when a given matrix A is irreducible. As it

is widely known, the Perron-Frobenious theory for irreducible nonnegative matrices gives

us stronger results. Concerning our discussion, the following properties of the matrices

B(z) and Q(z) can be obtained from Theorem C.1 of [51].

Assuming that A = [ai,j] ∈ Cn,n, n ≥ 2, is irreducible, nonnegative matrix B(z) is

irreducible, too. Thus it possesses a positive real eigenvalue, ρ(B(z)), called the Perron

root of B(z), which is characterized as follows:

For any x > 0 in Rn,n, either

min
i∈N

{(B(z)x
)

i
/xi} < ρ(B(z)) < max

i∈N
{(B(z)x

)
i
/xi}, (2.3.17)

or

B(z)x = ρ(B(z))x. (2.3.18)

Moreover, from (2.3.17) and (2.3.18), for any x > 0 in Rn and any z ∈ C, either
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min
i∈N

{(Q(z)x
)

i
/xi} < νA(z) < max

i∈N
{(Q(z)x

)
i
/xi}, (2.3.19)

or

Q(z)x = νA(z)x, (2.3.20)

where the last equation gives us that νA(z) is an eigenvalue of Q(z).

To conclude this subsection, we give another interesting result of Varga, obtained in

[51], that clarifies the geometrical structure of the minimal Geršgorin set.

Theorem 2.3.3. (Varga) Given an irreducible matrix A = [ai,j] ∈ Cn,n, with n ≥ 2,
then, for every k ∈ N , and every θ with 0 ≤ θ ≤ 2π, there exists an %̂k(θ) ≥ 0 such that

the entire complex interval [ak,k + teiθ]
%̂k(θ)
t=0 is contained in ΓD(A), and, consequently,

2π⋃

θ=0

[ak,k + teiθ]
%̂k(θ)
t=0 ⊆ ΓD(A). (2.3.21)

Namely, from the assumption that A is irreducible, it can be deduced that

νA(ai,i) > 0, for all i ∈ N, (2.3.22)

and, further, that, given any real number θ, with 0 ≤ θ < 2π, there exists the largest

number %̂i(θ) > 0, such that

νA(ai,i + %̂i(θ)e
iθ) = 0, and νA(ai,i + teiθ) ≥ 0, for all 0 ≤ t < %̂i(θ), (2.3.23)

so that the entire complex interval [ai,i + teiθ]
%̂i(θ)
t=0 lies in ΓD(A).

This implies that the set
2π⋃

θ=0

[ai,i + teiθ]
%̂i(θ)
t=0 (2.3.24)

is a star-shaped subset of ΓD(A), for each i ∈ N , with

νA(ai,i + %̂i(θ)e
iθ) ∈ ∂ΓD(A). (2.3.25)

The set given in 2.3.21 we call the star-shaped subset of ΓD(A), with respect to the

point ak,k. So, as expected, the minimal Geršgorin set is in a way ”centered” in diagonal

entries of the given matrix. How this concept can be used, is illustrated in the following

subsection, where we discus the computation of the minimal Geršgorin set.

2.3.2 Computation of the minimal Geršgorin set

Unlike the Geršgorin set Γ(A) of (2.1.2), or ΓX(A) of (2.3.2), the minimal Geršgorin set

ΓD(A) of (2.3.1) is not, in general, easy to determine numerically. The aim of this subsec-

tion is to find a reasonable approximation of ΓD(A), with a finite number of calculations,
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which contains ΓD(A), and for which a limited number of boundary points of this approx-

imation are actual boundary points of ΓD(A). The determination of these latter boundary

points are then related to a famous sharpening, by Olga Taussky, Theorem 2.1.10, of the

Geršgorin set of (2.1.2).

First, we can observe that if νA(z) = 0, then det Q(z) = 0, which follows directly from

(2.3.20), since νA(z) is an eigenvalue of Q(z). But, from Theorem 2.3.2, we can see that

in order to determine the boundary points of the minimal Geršgorin set of the matrix A,

we need to compute the complex values z, in which the determinant Q(z) vanishes. Of

course, computing the determinant is not, in general, an easy task, so, we will explore a

different way to obtain the values on the boundary of the minimal Geršgorin set.

With the given irreducible matrix A = [ai,j] in Cn,n, choose any j in N , and set z = aj,j.

Next, we assume that the nonnegative irreducible matrix B(aj,j), which has at least one

zero diagonal entry from (2.3.10), is a primitive matrix, as it is defined in Section 2.2. of

[48].

This is, certainly, the case if some diagonal entry of B(aj,j) is positive. More generally,

if B(aj,j) is not primitive, i.e., B(aj,j) is cyclic of some index p ≥ 2, then any simple shift

of B(aj,j), into B(aj,j) + εIn, is primitive for each ε > 0.

With B(aj,j) primitive, then, starting with an x(0) > 0 in Rn, the power method gives

convergent upper and lower estimates for ρ(B(aj,j)), i.e., if x(m) := Bm(aj,j)x
(0) for all

m ≥ 1, then with x(m) := [x
(m)
1 , x

(m)
2 , ..., x

(m)
n ]T , we have

λm := min
i∈N

{x
(m+1)
i

x
(m)
i

} ≤ ρ(B(aj,j)) ≤ max
i∈N

{x
(m+1)
i

x
(m)
i

} =: λm (2.3.26)

for all m ≥ 1, with

lim
m→∞

λm = ρ(B(aj,j)) = lim
m→∞

λm. (2.3.27)

In this way, using (2.3.11), (2.3.13) and (2.3.19), convergent upper and lower estimates

of νA(aj,j) can be numerically obtained.

These estimations of νA(aj,j) do not need great accuracy for graphing purposes.

Next, assume, for convenience, that νA(aj,j) > 0 is accurately known, and select any

real θ, with 0 ≤ θ < 2π. The numerical goal now is to estimate the largest %̂j(θ), with

sufficient accuracy, where, from (2.3.13),

νA(aj,j + %̂j(θ)e
iθ) = 0, with νA(aj,j + (%̂j(θ) + ε)eiθ) < 0 (2.3.28)

for all sufficiently small ε > 0. By definition, we then have that

aj,j + %̂j(θ)e
iθ is a boundary point of ΓD(A). (2.3.29)

This means, from the min-max conditions (2.3.19)-(2.3.20), that there is an x > 0, in Rn,

such that

Q(aj,j + %̂j(θ)e
iθ)x = 0, where x = [x1, x2, ..., xn]T > 0. (2.3.30)
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Equivalently, on calling aj,j + %̂j(θ)e
iθ =: zj(θ), we can express (2.3.30), using the definition

of (2.3.8), as

|zj(θ)− ai,i| =
∑

k∈N\{i}
|ai,k|xk/xi, (all i ∈ N), (2.3.31)

which can be interpreted, from Theorem 2.1.10, as Olga Taussky’s boundary result. What

is, perhaps, more interesting, is that it is geometrically unnecessary to determine the

components of the vector x > 0 in Rn, for which (2.3.31) is valid. This follows from the

fact that knowing the boundary point zj(θ) of ΓD(A), and knowing each of the centers,

{ai,i}i∈N , of the associated n Geršgorin disks, then all the circles of (2.3.31) can be directly

drawn, without knowing the components of the vector x.

We return to the numerical estimation of %̂j(θ), which satisfies (2.3.28) - (2.3.30).

Setting z := aj,j and z′ := aj,j + %̂j(θ)e
iθ, we know, from (2.3.16), that

%̂j(θ) ≥ νA(aj,j) > 0. (2.3.32)

Consider, now, the number νA(aj,j + νA(aj,j)e
iθ). If this number is positive, then

increase the number νA(aj,j) to νA(aj,j) + ∆, ∆ > 0, until νA(aj,j + (νA(aj,j) + ∆)eiθ) is

negative, and apply a bisection search to the interval [νA(aj,j), νA(aj,j) + ∆] to determine

%̂j(θ), satisfying (2.3.28). (Again, as in the estimation of νA(aj,j), estimates of %̂j(θ) do not

need great accuracy for graphing purposes.) We remark that a similar bisection search,

on z, can be directly applied to

det Q
(
νA(aj,j + %̂j(θ)e

iθ)
)

= 0, (2.3.33)

but this requires, however, the evaluation of an n× n determinant.

Another alternative to compute the values %̂j(θ), i.e., the values zj(θ), is to use the fact

that νA is uniformly continuous, and to construct a sequence
{
ξθ
k

}
k∈N that will converge

to the value zj(θ).

Namely, given an index j ∈ N , we define the first element of a sequence to be the

center of j-th star-shaped subset, i.e., ξ1 := aj,j. Then, for a fixed direction 0 ≤ θ < 2π,

we define the recursion

ξθ
k+1 := ξθ

k + νA(ξθ
k)e

iθ, (2.3.34)

where k ∈ N.

Since νA(ξθ
k) > 0, for k = 1, by induction we can prove, using the continuity of νA,

that νA(ξθ
k) ≥ 0, for all k ∈ N, and hence, obtain that (2.3.34) is the monotone sequence

on the direction θ. On the other hand, for k ∈ N νA(ξθ
k) ≥ 0 implies, by Theorem

2.3.2, that ξθ
k ∈ ΓD(A), which is bounded set in C. Therefore, we have obtained the

convergent sequence
{
ξθ
k

}
k∈N. It remains to assure that the limit will be the point zθ

j .

With limk→∞ ξθ
k =: ξθ, letting k → ∞ in (2.3.34), we directly obtain that νA(ξθ) = 0.

Thus, we only need to check if νA(ξθ + εeiθ) < 0, for a reasonably small ε > 0. If this is

true, than zθ
j = ξθ. If not, we restart the sequence (2.3.34) by taking ξθ

1 := ξθ.

To summarize, given an irreducible matrix A = [ai,j] in Cn,n, our procedure for approx-

imating its minimal Geršgorin set, ΓD(A), is to first determine, with reasonable accuracy,
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the positive numbers {νA(aj,j)}j∈N , and then, again with reasonable accuracy, to determine

a few boundary points {ωk}m
k=1 of ΓD(A). For each such boundary point ωk of ΓD(A), there

is an associated Geršgorin set, consisting of the union of the n Geršgorin disks, namely,

Γωk(A) :=
⋃
i∈N

{z ∈ C : |z − ai,i| ≤ |ωk − ai,i|}, (2.3.35)

and their intersection,
m⋂

k=1

Γωk(A), (2.3.36)

gives an approximation to ΓD(A), for which ΓD(A) is a subset, and for which m points, of

the boundary of
⋂m

k=1 Γωk(A), are boundary points of ΓD(A).

Consider the irreducible 3× 3 matrix

A =




2 0 1

0 1 1

1 1 2


 , (2.3.37)

whose minimal Geršgorin set, ΓD(C), is shown with the most inner boundary in Figure

2.3.1. For the vector x0 = [1, 1, 1]T ∈ R3, the associated Geršgorin set ΓX0
(A), turns out

to be simply

ΓX0

(A) = {z ∈ C : |z − 2| ≤ 2}. (2.3.38)

The boundary of this set is the most outer circle in Figure 2.3.1.

Next, starting with the diagonal entry, z = 2, of the matrix C, we estimate νA(2),

which is positive, from (2.3.22). As µ(2) = 1, from (2.3.9), the associated nonnegative

irreducible matrix B(2), from (2.3.10), is

B(2) =




1 0 1

0 0 1

1 1 1


 ,

and a few power method iterations (see (2.3.26) - (2.3.27)), starting with x0 = [2, 1, 2]T ,

gives that ρ(B(2))
.
= 2.2. More precisely4, ρ(B(2)) = 2.24697, so that from (2.3.13), we

have ν(2) = 1.24697.

Now, we search on the ray 2+t, with t ≥ 0, for the largest value t̂, for which νA(2+ t̂) =

0, and ν(2 + t) ≥ 0 for all 0 ≤ t ≤ t̂. Using the inequality of (2.3.16), it follows that

t̂ ≥ νA(2) = 1.24697, but in this particular case, it happens that t̂ = 1.24697, so that

z1 = 3.24697 is such that νA(z1) = 0, with z1 ∈ ∂ΓD(A). Similar, on considering the

diagonal entry 1 = a2,2, we approximate νA(1), which turns out to be νA(1) = 0.80194,

and, then, searching on the ray 1−t, t ≥ 0, we Similar obtain νA(z2) = 0 with z2 = 0.19806,

4All such numbers are truncated after five decimal digits.
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Figure 2.3.1: Approximations of the minimal Geršgorin set of the matrix A given in (2.3.37)
(Aproksimacija minimalnog Geršgorinovog skupa za matricu A datu sa (2.3.37))

and with z2 ∈ ∂ΓD(A). Calling ΓX1(A), and ΓX2(A) the associated Geršgorin sets, then

the intersection of the three sets,
⋂2

j=0 ΓXj(A), is shown in Figure 2.3.1 with the boundary

that is the closest to the boundary of Geršgorin set of the matrix A.

We see, from Figure 2.3.1, that this set contains ΓD(A), and that it has two real

boundary points, shown as the black squares z1 and z2, in common with ΓD(A).

We continue, and knowing νA(a1,1 = a3,3 = 2) = 1.24697 and ν(a2,2 = 1) = 0.80194, we

look for four additional points of ∂ΓD(A), which are found on the four rays: 2± it, t ≥ 0,

and 1± it, t ≥ 0. This gives us the following four points {zj}6
j=3 of ΓD(A):

z3 = 1 + i(1.150963), z4 = z3, z5 = 2 + i(1.34236), z6 = z5.

The intersection of the above associated six Geršgorin sets is shown in Figure 2.3.1 with

the boundary that is closest to the ΓD(A) and has six boundary points in common with

∂ΓD(A), shown as solid black squares. The region between the obtained approximation,

and the boundary of ΓD(A) is shaded, and can be seen as the set of small ”roofs”, composed

of segments of circular arcs.

The amount of numerical calculations to obtain good approximation to ΓD(A) is mod-

erate, and it is evident that better approximations to ΓD(A), having more points in common

with ∂ΓD(A), can be Similar constructed.

How Brauer ovals of Cassini, and other Geršgorin-type localizations sets, can be used

in order to improve the obtained approximations of the minimal Geršgorin set, it was also

discussed in [52].



Chapter 3

Localization of Generalized
Eigenvalues

In this chapter we give the very recent contribution to the theory of localization of gen-

eralized eigenvalues. The material is divided into three sections. The first one gives the

introduction and defines the problem. The second introduces the Geršgorin set for gen-

eralized eigenvalues in the form it was obtained by Kostić, Cvetković and Varga in [35].

In the same section, we derive a new approximation of the obtained generalized Geršgorin

set, which is more suitable for practical use then the original set, and gives better results

then the one known from the pioneering work of Stewart and Sun, [44, Corollary VI.2.5].

The third section introduces completely new results on the localization of Generalized

Eigenvalues, which are obtained by using the concepts previously developed in this the-

ses. The general principles will be defined, and then used as a unifying framework for

the several consecutive results that concern specific generalized Geršgorin-type theorems.

Fourth section generalizes the approximated sets through the use of complex parameter,

and suggests the direction for further research. The last section is the treatment of the

generalized minimal Geršgorin set as it was done in [35].
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3.1 Generalized Eigenvalues

Given two arbitrary matrices A,B ∈ Cn,n, with n ≥ 1, the family of matrices A − zB,

parameterized by the complex number z, is called a matrix pencil. So, a matrix pencil

A− zB can also be considered as a matrix pair (A,B). By Cn,n ×Cn,n, we denote the set

of all matrix pairs of square complex matrices of the size n.

Definition 3.1.1. Given arbitrary matrices A, B ∈ Cn,n, with n ≥ 1, then a matrix pair
(A,B) is called singular if det(A− zB) = 0, for all z ∈ C. Otherwise, the pair (A, B) is
regular.

The case when singularity of matrix pairs occurs can be expressed in the terms of

eigenvectors of the matrices A and B. Namely, if A and B have an overlapping null

spaces, meaning that there exists a vector x that is in the null space of A, and in the null

space of B, then, for an arbitrary z ∈ C, we can write (A − zB)x = 0. This, of course,

implies that det(A− zB) = 0, for all z ∈ C.

So, we proceed with regular matrix pairs, and we define the concept of an eigenvalue

of a matrix pair.

Definition 3.1.2. Given a regular matrix pair (A, B), if there exists a nonzero vector
v ∈ Cn, and a scalar λ ∈ C, such that Av = λBv, v is called an eigenvector of the pair
(A,B), and λ is called a finite eigenvalue of the pair (A,B). Furthermore, if there exists
a nonzero vector v ∈ Cn, such that Bv = 0, then Av 6= 0, and we define λ := ∞, and
write, by convention, Av = λBv. In this case, λ is called an infinite eigenvalue of a
matrix pair (A, B), and v is, again, the corresponding eigenvector. The term eigenvalue
is used for both finite and infinite eigenvalues of the given matrix pair.

Having a regular matrix pair (A,B), λ is a finite eigenvalue of the pair (A,B), if and

only if A− λB is singular matrix, i.e., if det(A− λB) = 0. So, the previous definition can

be expressed in terms of determinants.

Given a regular matrix pair (A, B), then

det(A− zB) =: p(z), (3.1.1)

where p(z) is a polynomial in z, with a degree at most n. From [44], it is known that the

degree of the polynomial p(z) is n if and only if B is nonsingular. This implies that if B

is singular, then p(z) is of degree r with r < n, so the number of the finite eigenvalues of

the matrix pair (A,B) is r, and, again, by convention, the remaining n− r eigenvalues are

set equal to ∞.

Having a regular matrix pair (A,B), and taking B = In, we have that polynomial p(z)

in (3.1.1) is p(z) = det(A− zIn), so all of its n zeros are the eigenvalues of the matrix A.

Therefore, in the literature, the eigenvalues of matrix pairs are often called generalized

eigenvalues, and the corresponding eigenvectors are called generalized eigenvectors.

Since Generalized Eigenvalues may be infinite, in order to cover them, we will have to

work in the extended complex plane C∞ := C∪{∞}. Namely, for every subset U ∈ C
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such that there exists a sequence of complex numbers {zk}k∈N, such that |zk| → ∞, when

k →∞, and zk ∈ U , for all k ∈ N, we define the set Ũ as Ũ := U ∪ {∞}. While working

in the extended complex plane, we will always identify the set Ũ ⊆ C∞ with the set U .

So, it is easy to see that, with the convention ∞−1 = 0, for every set U ∈ C∞, ∞ ∈ U if

and only if 0 ∈ U−1, where the set U−1 is defined as U−1 := {z ∈ C∞ : z−1 ∈ U}.

Definition 3.1.3. Given a regular matrix pair (A,B), the collection of all eigenvalues of
the pair (A,B) is called the spectrum of the pair (A,B), and it is denoted by

σ(A,B) :=

{ {z ∈ C : det(zB − A) = 0} , B is nonsingular,
{z ∈ C : det(zB − A) = 0} ∪ {∞} , B is singular.

(3.1.2)

The set σF (A,B) := {z ∈ C : det(zB − A) = 0} is called the finite spectrum of the pair
(A,B).

Clearly, if B = In ∈ Cn,n, then the spectrum of the matrix pair (A,B) reduces to

the standard spectrum of A, i.e., σ(A, In) = σ(A). So, again, the word generalized

spectrum is used to refer to the spectrum of a matrix pair.

An interesting property of the spectrum of a matrix pair is that for an arbitrary regular

(A,B) ∈ Cn,n × Cn,n, σ(A,B)−1 = σ(B, A). Namely, if λ 6= 0, then λ ∈ σF (A,B) is

equivalent to 0 = det(λB − A) = λ−n det(B − λ−1A), i.e., λ−1 ∈ σF (B, A). Next, if

λ = 0, then λB − A = −A, and λ ∈ σF (A, B) is equivalent to the fact that A is singular.

Since λ−1 = ∞, again we have that λ−1 ∈ σ(B, A). The last case is λ = ∞; then if

λ ∈ σ(A,B) the matrix B is singular, and det(B − λ−1A) = det(B) = 0, so, again,

λ−1 ∈ σ(B, A). Since in the each of the three cases we had the equivalences, we conclude

that σ(A,B)−1 = σ(B,A).

If B is a nonsingular matrix, it is easy to see that 0 = det(A − zB) = det(B−1A −
zIn), so that in this case, the spectrum of the matrix pair (A,B) is equal to its finite

spectrum, and it reduces to the ordinary spectrum of the matrix B−1A. This concept

of conversion of the generalized spectrum into the ordinary spectrum is used as a base

for many numerical methods. But, as a consequence of rounding errors when B is ill-

conditioned, these methods fail. Thus, the treatment of the generalized spectra directly

is an important topic. As the localization of eigenvalues of Geršgorin type, covered in

the previous chapter, has found its value as a tool for determining information about the

spectra of a matrix before it is calculated, one can be motivated to perform the similar

thing with the generalized spectrum. But, this topic wasn’t considered actively until

very recently. Actually, an extension of the Geršgorin’s theorem to the concept of matrix

pairs was done by Stewart in 1975 in [43], but since then, there wasn’t much done to

examine the behavior of the obtained sets, or to improve localization results. A study of

generalized eigenvalue localization sets in terms of perturbations, through spectral value

sets, was done by Karow in [32]. But, the simplicity and elegance one can find in the

original Geršgorin set, was somehow lost in the generalized eigenvalue case. The very

recent paper by Kostić, Cvetković and Varga, [35], examines thoroughly the Geršgorin set

for generalized eigenvalues, and introduces the minimal Geršgorin set, together with an
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important treatment of its calculation. Since the main idea lies in generalized diagonal

dominance, this topic is an excellent example of how the concepts of the first and second

chapter can be applied. Giving the review of the results obtained in [35], and using

the results of the previous chapters, we will obtain several new eigenvalue inclusion sets

for generalized eigenvalues that are suitable for computation, and we will discuss their

relationships.





91

3.2 Geršgorin’s Theorem for the

Generalized Eigenvalues

As the Geršgorin set could be derived from the class of SDD matrices using Varga’s Equiv-

alence Principle, we derive the generalized Geršgorin set.

Definition 3.2.1. Given a regular matrix pair (A,B) ∈ Cn,n × Cn,n, the set Γ(A,B)
defined as:

Γ(A,B) := {z ∈ C : A− zB is not an SDD matrix} , (3.2.1)

is called the generalized Geršgorin set of the pair (A,B).

Theorem 3.2.2. Given a regular matrix pair (A,B) ∈ Cn,n × Cn,n, the spectrum of the
pair (A,B) belongs to the generalized Geršgorin set of the matrix pair (A,B), i.e., the
following inclusion holds:

σ(A,B) ⊆ Γ(A,B). (3.2.2)

The proof of this theorem follows in the same way as the corresponding part of the

proof of Varga’s Equivalence Principle.

We continue with the characterization of this set, in terms of entries of the two corre-

sponding matrices. It is easy to see, from (3.2.1), that Γ(A,B) =
⋃

i∈N Γi(A,B), where

Γi(A,B) := {z ∈ C : |bi,iz − ai,i| ≤
∑

j∈N\{i}
|bi,jz − ai,j|}, (all i ∈ N). (3.2.3)

Moreover, if we denote, by rS
i (A) :=

∑
j∈S\{i} |ai,j|, the part of a row sum that corresponds

to the columns given by the set of indices S ⊆ N , and if we denote the particular sets of

indices βi := {j ∈ N : bi,j 6= 0} and βi := {j ∈ N : bi,j = 0}, for all i ∈ N , then we can

write

Γi(A,B) = {z ∈ C : |z − ai,i

bi,i

||bi,i| −
∑

j∈βi\{i}
|z − ai,j

bi,j

||bi,j| ≤ r
βi
i (A)}, (3.2.4)

whenever i ∈ βi,

Γi(A,B) = {z ∈ C : |ai,i| − r
βi
i (A) ≤

∑

j∈βi

|z − ai,j

bi,j

||bi,j|}, (3.2.5)

whenever i ∈ βi.

We remark that a set Γi(A, B), as defined in (3.2.3), can be an empty set, which can

occur when βi = ∅, i.e., when all entries of the i-th row of the matrix B are zero. Then,

the i-th generalized Geršgorin set has the following form

Γi(A,B) = {z ∈ C : |ai,i| ≤ r
βi
i (A) = ri(A)}; (3.2.6)

thus,

Γi(A,B) =

{
∅, if |ai,i| > ri(A),

C, if |ai,i| ≤ ri(A).
(3.2.7)
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Of course, when the second case of (3.2.7) occurs, the matrix B is singular, and p(z) =

det(A − zB) has degree less then n. Since we are considering regular matrix pairs, the

degree of the polynomial p(z) has to be at least one; thus, at least one of the sets Γi(A,B)

has to be nonempty, implying that the generalized Geršgorin set of a regular matrix pencil

is always nonempty.

On inspecting the form of the generalized Geršgorin ”disks” of (3.2.4) and (3.2.5), the

following properties were established in [35].

Theorem 3.2.3. Let A,B ∈ Cn,n, with n ≥ 2. Then, the following statements hold:

1. Let i ∈ N be such that for at least one j ∈ N , bi,j 6= 0. Then, the i-th generalized
Geršgorin set, Γi(A,B), as defined in (3.2.4) and (3.2.5), is a bounded set in the
complex plane C if and only if |bi,i| > ri(B).

2. The generalized Geršgorin set Γ(A,B) is a compact set in C if and only if B is an
SDD matrix.

3. The i-th generalized Geršgorin set Γi(A,B), given in (3.2.3), contains zero if and
only if |ai,i| ≤ ri(A).

4. The generalized Geršgorin set Γ(A, B) contains zero if and only if A is not an SDD
matrix.

5. If there exists an i ∈ N such that both bi,i = 0 and |ai,i| ≤ r
βi
i (A), then Γi(A,B), and

consequently Γ(A,B), are the entire complex plane.

Proof. First, it is evident that 2. and 4. follow directly from 1. and 3., respectively.
Second, 3. is easy to obtain, by putting z = 0 in the inequalities of (3.2.3), and 5. follows
directly from (3.2.5). Then, it remains to prove 1.

If i ∈ βi, then |bi,i| = 0 ≤ ri(B) and Γi(A,B) is unbounded from (3.2.3). Thus,
let i ∈ βi. If we suppose that Γi(A,B) is unbounded, then, there is a sequence {zk}k∈N
of complex numbers, such that |zk| → ∞, as k → ∞, and zk ∈ Γi(A,B). But, for a
sufficiently large k ∈ N, from (3.2.4), we have

|zk|(|bi,i| − ri(B)) ≤ r
βi
i (A). (3.2.8)

Now, if |bi,i| > ri(B), then taking the limit as k →∞ in (3.2.8), we obtain a contradiction.
Conversely, let |bi,i| ≤ ri(B), and let {zk}k∈N be a a sequence of complex numbers such
that |zk| → ∞, when k →∞. Then, it is easy to see that, for a sufficiently large k ∈ N,

|zk − ai,i

bi,i

||bi,i| −
∑

j∈βi\{i}
|zk − ai,j

bi,j

||bi,j| ≤ 0,

and thus, zk ∈ Γi(A,B) from (3.2.5).

The following example illustrates the generalized Geršgorin set.
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Example 3.2.4.

A1 =




1 0.1 0.1 0.1
0 −1 0.1 0.1
0 0 i 0.1

0.1 0 0 −i


 , B1 =




0.5 0.1 0.1 0.1
0 −1 0.1 0.1
0 0 i 0.1

0.1 0 0 −0.5i


 ,

A2 =




1 1 0 0
0 −1 1 0
0 0 i 1

0.8 0 0 −i


 , and B2 =




1 0.1 0 0
0.1 1 0.1 0
0 0.1 1 0.1
0 0 0.1 1


 .

By inspection, B1 and B2 are SDD matrices, and, according to the item (2) of Theorem
3.2.3, sets Γ(A1, B1) and Γ(A2, B2) are compact in the complex plane. Similar, from

Theorem 3.2.6, sets Γ̂(A1, B1) and Γ̂(A2, B2) are compact, too.
This is shown in Figures 3.2.1 and 3.2.2, where the original generalized Geršgorin set

is shaded, while the boundary of the approximation is given by the thick black line. The
actual generalized eigenvalues are marked with ”×”.

We also remark that, since the matrix A1 is SDD, zero is not contained in the sets
Γ(A1, B1) and Γ̂(A1, B1), while, on the other hand, matrix A2 is not SDD, and 0 ∈
Γ(A2, B2) ⊆ Γ̂(A2, B2).

Figure 3.2.3 shows the generalized Geršgorin sets Γ(A1, A2), and its approximation

Γ̂(A1, A2), which are unbounded, as a consequence of the fact that A2 is not an SDD
matrix.

Observing the structure of matrices A1 and B1, we can see that Γ2(A1, B1) = Γ3(A1, B1) =
{1}, a single and isolated point, out of the reminder of the generalized Geršgorin set of the
matrix pair (A1, B1). As a consequence of the isolation property, we see that 1 is a general-
ized eigenvalue of multiplicity 2 of the pair (A1, B1). On the other hand, the approximated
generalized Geršgorin set doesn’t reflect this situation.

One of the major drawbacks of this set is that it is not as elegant as the original

Geršgorin set. Namely, as we have seen, the sets Γi(A,B), in general, are not circles,

and moreover, they are sufficiently hard to calculate, in order to obtain useful plots. So,

one can be motivated to approximate the generalized Geršgorin set in order to obtain,

although larger, more practical localization sets for generalized eigenvalues. First attempt

was done by Stewart in [43], where for the first time set (3.2.3) was defined. Here, we will

use a different approach, and obtain approximations of the generalized Geršgorin sets that

are, in the worst case as good as the ones in [43].

We start with the observation that having a regular matrix pair (A,B) ∈ Cn,n ×Cn,n,

and an arbitrary point z ∈ C, for every i ∈ N ,

ri(zB − A) =
∑

j∈N\{i}
|zbi,j − ai,j|. (3.2.9)

Then, we proceed by approximating the right hand side by the triangle inequality, and

obtain

ri(zB − A) ≤ |z|ri(B) + ri(A). (3.2.10)
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Figure 3.2.1: Generalized Geršgorin set of the matrix pair (A1, B1) of the Example 3.2.4
(Generalizovani Geršgorinov skup za matrični par (A1, B1) iz Primera 3.2.4)
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Figure 3.2.2: Generalized Geršgorin set of the matrix pair (A2, B2) of the Example 3.2.4
(Generalizovani Geršgorinov skup za matrični par (A2, B2) iz Primera 3.2.4)
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Figure 3.2.3: Generalized Geršgorin set of the matrix pair (A1, A2) of the Example 3.2.4
(Generalizovani Geršgorinov skup za matrični par (A1, A2) iz Primera 3.2.4)

Thus, for a given regular matrix pair (A,B) ∈ Cn,n × Cn,n, we define the sets
{

Γ̂i(A,B) := {z ∈ C : |zbi,i − ai,i| ≤ |z|ri(B) + ri(A)} , (i ∈ N),

Γ̂(A,B) :=
⋃

i∈N Γ̂i(A,B),
(3.2.11)

which we call the i-th approximated generalized Geršgorin set and the approxi-

mated generalized Geršgorin set.

It is interesting to note that, taking B = I, our approximation Γ̂(A,B) reduces to

ordinary Geršgorin set Γ(A), which is not the case for the approximation of Stewart,

obtained in [43].

Assuming that bi,i 6= 0 and ai,i 6= 0, the i-th approximated generalized Geršgorin set is

an area in the complex plane whose boundary is the curve which can be represented as

|z − ξ| = β|z|+ α, (3.2.12)

where α, β ≥ 0 and ξ ∈ C. After some analysis, the following classification can be obtained:

• If α = 0 and β = 0, then the curve is actually a single point ξ;

• If α = 0 and β = 1, then the curve is a bisection line of the line segment [0, ξ];

• If α = 0 and 0 < β 6= 1, then the curve is a circle of Apollonius1 with foci in 0

and ξ with the ratio β;

1Apollonius of Perga (262 BC190 BC), a Greek geometer and astronomer noted for his writings on
conic sections.
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• If α > 0 and β = 0, then the curve is a circle centered in ξ with radius α;

• If α > 0, and β ≥ 0, then the curve is a Cartesian Oval2 with foci in 0 and ξ ∈ C,

and linear factors −βα−1 and α−1;

To illustrate this, Figure 3.2.4 shows the curves (3.2.12) plotted for ξ = 1 and α ∈
{0, 0.2, 0.4, . . . , 1.8, 2}, going from black to light gray, respectively. The parameter β is

fixed for each plot and it takes values β = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, from upper

left to lower right corner, respectively.

As a consequence of (3.2.10) and Theorem 3.2.2, the following theorem obviously holds.

Theorem 3.2.5. Given a regular matrix pair (A,B) ∈ Cn,n ×Cn,n, the finite spectrum of
the pair (A,B) belongs to the approximated generalized Geršgorin set of the matrix pair
(A,B). Moreover, the following inclusions hold:

σ(A,B) ⊆ Γ(A,B) ⊆ Γ̂(A,B), (3.2.13)

where Γ̂(A,B) is given in 3.2.11.

Considering the form of the i-th approximated generalized Geršgorin set, given in 3.2.3,

as in Theorem 3.2.3, we obtain a somewhat expected result.

Theorem 3.2.6. Let A,B ∈ Cn,n, with n ≥ 2. Then, the following statements hold:

1. Let i ∈ N be such that for at least one j ∈ N , bi,j 6= 0. Then, the i-th approximated

generalized Geršgorin set, Γ̂i(A,B), as defined in (3.2.11), is a bounded set in the
complex plane C if and only if |bi,i| > ri(B).

2. The approximated generalized Geršgorin set Γ̂(A,B) is a compact set in C if and
only if B is an SDD matrix.

3. The i-th approximated generalized Geršgorin set Γ̂i(A, B), given in (3.2.3), contains
zero if and only if |ai,i| ≤ ri(A).

4. The approximated generalized Geršgorin set Γ̂(A,B) contains zero if and only if A
is not an SDD matrix.

5. If there exists an i ∈ N such that both bi,i = 0 and |ai,i| ≤ ri(A), then Γ̂i(A,B), and

consequently, Γ̂(A,B), are the entire complex plane.

That this approximation can be sufficiently good, is shown in the Figures 3.2.6 and

and 3.2.7, where the original generalized Geršgorin set is shaded, while the boundary of

the approximated one is given by the thick black line. On the other hand, due to the

application of the triangle inequality on the absolute value of the difference of two close

values, significant deviations can occur, which can easily be seen in the Figure 3.2.5.

2Cartesian Oval is a curve defined as a collection of points for which the distances to two foci are
related linearly. Some special cases of cartesian oval, which can occur here, are limaçon of Pascal (for
α = 1) and hyperbola (for β = 1)
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Figure 3.2.4: The curves (3.2.12) plotted for ξ = 1 and α ∈ {0, 0.2, 0.4, . . . , 1.8, 2}, setting
β = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, for each plot, from upper left to lower right corner,
respectively

(Kriva data sa (3.2.12) je nacrtana za ξ = 1 i α ∈ {0, 0.2, 0.4, . . . , 1.8, 2}, fiksirajući
β = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, za svaki crtež, redom, od gornjeg levog do donjeg

desnog ugla)
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Figure 3.2.5: Approximated generalized Geršgorin set of the matrix pair (A1, B1) of the
Example 3.2.4

(Aproksimirani generalizovani Geršgorinov skup za matrični par (A1, B1) iz Primera
3.2.4)
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Figure 3.2.6: Approximated generalized Geršgorin set of the matrix pair (A2, B2) of the
Example 3.2.4

(Aproksimirani generalizovani Geršgorinov skup za matrični par (A2, B2) iz Primera
3.2.4)
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Figure 3.2.7: Approximated generalized Geršgorin set of the matrix pair (A1, A2) of the
Example 3.2.4

(Aproksimirani generalizovani Geršgorinov skup za matrični par (A1, A2) iz Primera
3.2.4)
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3.3 Geršgorin-type Localizations for

Generalized Eigenvalues

Here, our object is to estimate the spectra of regular matrix pairs, as the union of the

Geršgorin disks of a given matrix A = [ai,j] ∈ Cn,n estimates the eigenvalues of A. As in the

second chapter, we use Varga’s Equivalence Principle adapted to generalized eigenvalues.

Theorem 3.3.1. (Varga’s Equivalence Principle) Given a class of square matrices
of an arbitrary size, denoted by K, for any regular matrix pair (A,B), define the set of
complex numbers ΘK(A,B) := {z ∈ C : zB − A 6∈ K}. Then, the following two conditions
are equivalent:

• All matrices from K are nonsingular,

• Given any regular matrix pair (A,B), the set ΘK(A,B) contains all its eigenvalues,
i.e., σ(A,B) ⊆ ΘK(A,B).

Proof. The proof of the theorem is similar to the corresponding one of the Section 2.2.
The only difference lies in the case when λ = ∞ ∈ σ(A,B). To prove that in this case
λ ∈ ΘK(A,B), too, observe that the generalized Geršgorin-type set has the same property
as the spectrum when the matrices in the corresponding pair exchange their roles. More
precisely, given any regular pair (A,B) ∈ Cn,n×Cn,n, (ΘK(A,B))−1 = ΘK(B, A), for every
class of nonsingular matrices K. This follows in the same way as the property was proved
for the spectrum of the matrix pair.

As before, for Geršgorin-type sets, we define the term generalized Geršgorin-type set.

We say that set ΘK(A,B) = {z ∈ C : zB − A 6∈ K} is a generalized Geršgorin-type

set, if K is a diagonally dominant-type class3 of nonsingular matrices. Since Theorem 3.3.1

holds, we refer to such sets also as generalized Geršgorin-type localization sets, or

generalized Geršgorin-type inclusion sets.

While the sets obtained in this way in the previous chapter were practical enough for

the localization of the spectrum of the given matrix, now, even generalized Geršgorin set

can be sufficiently difficult to manage. Therefore, we need to obtain approximates in order

to be able to apply these results in practice. So, we continue with an extension of the

concept of the approximated set (3.2.11).

Given arbitrary matrices A,B ∈ Cn,n, define the operation 〈A,B〉 =: M = [mi,j], so

that

mi,j :=

{
|ai,i − bi,i|, i = j,

−|ai,j| − |bi,j|, otherwise,
(3.3.1)

for all i, j ∈ N . Then, obviously, the following inequality hold:

〈A−B〉 ≥ 〈A,B〉. (3.3.2)

3Given in Definition 1.3.7.
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Theorem 3.3.2. (Approximation Principle) Given a diagonally dominant-type class
of matrices, denoted by K, for any regular matrix pair (A,B), define the set of complex

numbers Θ̂K(A,B) := {z ∈ C : 〈zB,A〉 6∈ K}. Then,

ΘK(A,B) ⊆ Θ̂K(A,B).

Proof. Given a DD-type class K, take an arbitrary regular pair (A, B) ∈ Cn,n ×Cn,n, and
assume z ∈ ΘK(A,B). Then, zB−A 6∈ K, so there exists at least one matrix M such that
〈M〉 ≥ 〈zB − A〉 and M 6∈ K. But, since 〈zB − A〉 ≥ 〈zB, A〉, then 〈M〉 ≥ 〈zB, A〉, and

〈zB, A〉 6∈ K. In other words, z ∈ Θ̂K(A, B), which completes the proof.

Given a regular matrix pair (A,B), we will call the set Θ̂K(A,B) the approximated

generalized Geršgorin-type set attributed to the class K. Together with Theorem

3.3.1, this gives the following corollary.

Corollary 3.3.3. Given a diagonally dominant-type class of nonsingular matrices, denoted
by K, for any regular matrix pair (A,B),

σ(A,B) ⊆ ΘK(A,B) ⊆ Θ̂K(A,B).

An obvious example of this set is (3.2.11).

A useful property in the second chapter was also Isolation Principle, so, we extend this

concept to generalized eigenvalues, too.

Theorem 3.3.4. (Isolation Principle) Given a generalized Geršgorin-type set

ΘK(A,B) = {z ∈ C : zB − A 6∈ K} , (3.3.3)

where K ⊂ H is a positively homogenous 4 diagonally dominant-type subclass of H-matrices,
for any regular matrix pair (A,B) ∈ Cn,n ×Cn,n, n ≥ 2, if there exist sets U, V ⊆ C, such
that

U ∩ V = ∅ and ΘK(A,B) = U ∪ V, (3.3.4)

then, the set U contains exactly |{i ∈ N : bi,i 6= 0 and ai,ib
−1
i,i ∈ U

} | finite eigenvalues of
the pair (A,B), and, if U is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues.
Consequently, the set U contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair
(A,B), where, by convention, z · ∞ := ∞.

Proof. Let DA := diag(a1,1, a2,2, . . . , an,n) and DB := diag(b1,1, b2,2, . . . , bn,n). Take the
splittings of the matrices A = DA − FA and B = DB − FB, and consider the families of
matrices A(t) := DA − tFA and B(t) := DB − tFB, for 0 ≤ t ≤ 1.

As in the proof of Theorem 2.2.3, for all t ∈ (0, 1], we obtain ΘK(A(t), B(t)) ⊆
ΘK(A,B).

So, considering the case when t = 0, we have that A(0) = DA, and z ∈ ΘK(A(0), B(0))
if and only if zDB − DA 6∈ K. Obviously, if, for some i ∈ N , z = ai,ib

−1
i,i , when bi,i 6= 0,

then zDB − DA has a zero on its diagonal. Thus, it can not be in K, which is a DD-
type class of matrices. Therefore, ai,ib

−1
i,i ∈ ΘK(A(0), B(0)), for all i ∈ N , such that

bi,i 6= 0. For the same reason, for every i ∈ N , such that bi,i 6= 0, ai,ib
−1
i,i ∈ ΘK(A,B).

4Given in Definition 2.2.2.
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On the other hand, when z 6= ai,ib
−1
i,i , for all i ∈ N where bi,i 6= 0, zDB − DA is a

nonsingular diagonal matrix, implying that zDB −DA ∈ K, i.e., z 6∈ ΘK(A(0), B(0)). So,
ΘK(A(0), B(0)) =

{
ai,ib

−1
i,i : bi,i 6= 0, i ∈ N

} ⊆ ΘK(A, B).

In another words, we have obtained that

ΘK(A(0), B(0)) = σF (A(0), B(0)) =
{
ai,ib

−1
i,i : bi,i 6= 0, i ∈ N

}
,

and that ΘK(A(t), B(t)) ⊆ ΘK(A,B), for all t ∈ [0, 1].

Now, since the finite eigenvalues are continuous functions of the entries of both matrices,
[44], as in the proof of Theorem 2.2.3, we obtain the desired result.

To prove the second part of the theorem, let ∞ ∈ U , and let r = | {i ∈ N : bi,i = 0} |.
Since det(zDB −DA) =

∏
i∈N |zbi,i − ai,i| is the polynomial of the degree n − r, the pair

(A(0), B(0)) has exactly r infinite eigenvalues. As we have proved, the number of the finite
eigenvalues in U remains unchanged for all t ∈ [0, 1]. Hence, since ∞ 6∈ V , we have that
all of the r infinite eigenvalues of the pair (A, B) belong to the set U .

As the obvious corollary, we state the Isolation Principle applied to the generalized

Geršgorin set. Moreover, it is not hard to see that Isolation Principle is hereditable to the

approximations of the localization sets. Therefore, the corresponding theorem is true for

the approximated generalized Geršgorin set.

Theorem 3.3.5. Given any regular matrix pair (A,B) ∈ Cn,n×Cn,n, n ≥ 2, if there exist
sets U, V ⊆ C, such that

U ∩ V = ∅ and Γ(A,B) = U ∪ V,

then, the set U contains exactly |{i ∈ N : bi,i 6= 0 and ai,ib
−1
i,i ∈ U

} | finite eigenvalues of
the pair (A,B) and, if U is unbounded it has exactly | {i ∈ N : bi,i = 0} | infinite eigenval-
ues. Consequently, the set U contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the
pair (A, B).

Theorem 3.3.6. Given any regular matrix pair (A,B) ∈ Cn,n×Cn,n, n ≥ 2, if there exist
sets U, V ⊆ C, such that

U ∩ V = ∅ and Γ̂(A,B) = U ∪ V,

then the set U contains exactly |{i ∈ N : bi,i 6= 0 and ai,ib
−1
i,i ∈ U

} | finite eigenvalues of
the pair (A,B), and, if U is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues.
Consequently, the set U contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair
(A,B).

Inspired by Theorem 3.2.3, published in [35], which states that the generalized Geršgorin

set is working ”well” when one of the two corresponding matrices is an SDD matrix, we will

now prove its generalization. Thus, the idea is to show what happens with the localization

set ΘK(A,B) when A ∈ K, or B ∈ K. We first give some definitions.

Definition 3.3.7. A given class of matricesK is said to be open if, for every matrix A ∈ K,
there exists an arbitrary small ε > 0, so that for every matrix B ∈ Cn,n, |(A− B)i,j| < ε,
for all i, j ∈ N , implies B ∈ K.
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Definition 3.3.8. An opened diagonally dominant-type class of matrices is called strictly
diagonally dominant-type class, or briefly, SDD-type class.

It is interesting to note that, while SDD, Brauer SDD, Brualdi SDD, S-SDD and CKV-

SDD matrices are SDD-type matrices, this is not the case with iDD, Brauer iDD, Brualdi

iDD, S-iDD, matrices, which are only DD-type classes.

Theorem 3.3.9. (Boundedness Principle) Given a positively homogenous SDD-type
class of matrices K, for any regular matrix pair (A,B) ∈ Cn,n × Cn,n, the following two
conditions hold:

• 0 6∈ ΘK(A, B) if and only if A ∈ K, and

• ∞ 6∈ ΘK(A, B) if and only if B ∈ K.

Proof. Given any regular matrix pair (A,B) ∈ Cn,n × Cn,n, let z = 0. Then zB − A ∈ K
becomes −A ∈ K, and, since K is a DD-type class, A ∈ K. Thus, equivalently, 0 6∈
ΘK(A,B) if and only if A ∈ K.

For the second item, start by assuming that z = ∞ 6∈ ΘK(A,B). Then, for every sequence
{zk}k∈N ⊆ C, such that |zk| → ∞, when k →∞, then zkB−A ∈ K, for a sufficiently large
k ∈ N. For such k ∈ N consider the matrix Mk := B − (zk)

−1A. Since K is a positively
homogeneous DD-type class, for a sufficiently large k ∈ N, |zk||Mk| = |zkB −A| ∈ K, and
hence, Mk ∈ K. But, for a sufficiently large k ∈ N, we can make |B − Mk| = |zk|−1|A|
arbitrarily small. Thus, since K is an opened class of matrices, Mk ∈ K implies B ∈ K.

To prove the converse, assume that B ∈ K, and again, for an arbitrary sequence
{zk}k∈N ⊆ C, such that |zk| → ∞, when k →∞, consider the matrix Mk := B − (zk)

−1A.
As before, from the fact that K is an opened positively homogenous DD-type class of
matrices, we obtain that, for sufficiently large k ∈ N, zkMk = zkB − A ∈ K, and, hence
zk 6∈ ΘK(A,B). Since the sequence was arbitrary, this implies that z = ∞ 6∈ ΘK(A,B).

An interesting corollary is the following: given a regular pair (A,B), such that one of

the matrices is from the positively homogenous SDD-type class K, using the corresponding

generalized Geršgorin-type localization, we can always obtain a bounded localization set

to estimate Generalized eigenvalues. Namely, if in the regular pair (A,B), B ∈ K, and

ΘK(A,B) is bounded set in C. On the other hand, if A ∈ K, then ΘK(B, A) is bounded

set. But, since, (σF (A, B))−1 = σF (B,A) ⊆ ΘK(B, A), we have obtained the bounded

localization of the reciprocal values of the finite eigenvalues.

As we have seen, instead of working with actual generalized Geršgorin type sets, it is

much more suitable to work with their approximations. Therefore, it is an interesting ques-

tion whether they also satisfy Boundedness Principle. The following theorem positively

answers this question.

Theorem 3.3.10. Given a positively homogenous SDD-type class of matrices K, for any
regular matrix pair (A,B) ∈ Cn,n × Cn,n, the following two conditions hold:

• 0 6∈ Θ̂K(A, B) if and only if A ∈ K, and

• ∞ 6∈ Θ̂K(A, B) if and only if B ∈ K.
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Proof. First, given any regular matrix pair (A,B) ∈ Cn,n×Cn,n, let z = 0. Then 〈zB,A〉 ∈
K means 〈A〉 ∈ K, and since K is a DD-type class, A ∈ K. Thus, equivalently, 0 6∈
Θ̂K(A,B) if and only if A ∈ K.

For the second item, start by assuming that z = ∞ 6∈ Θ̂K(A,B), then, for every sequence
{zk}k∈N ⊆ C, such that |zk| → ∞, when k → ∞, and 〈zkB,A〉 ∈ K, for a sufficiently
large k ∈ N. Now, for such k ∈ N, consider the matrix Mk := 〈B, (zk)

−1A〉. Then, for a
sufficiently large k ∈ N, |zk|Mk = 〈zkB, A〉 ∈ K, and, since K is a positively homogeneous,
Mk ∈ K. But, for a sufficiently large k ∈ N, we can make |Mk−〈B〉| ≤ |zk|−1|A| arbitrarily
small. Thus, since K is an SDD-type class of matrices, Mk ∈ K implies 〈B〉 ∈ K, and
hence, 〈B〉 ∈ K.

To prove the converse, assume that B ∈ K, and again, for an arbitrary sequence
{zk}k∈N ⊆ C, such that |zk| → ∞, when k →∞, consider the matrix Mk := 〈B, (zk)

−1A〉.
As before, from the fact that K is an opened positively homogenous DD-type class of
matrices, we obtain that, for sufficiently large k ∈ N, |zk|Mk = 〈zkB, A〉 ∈ K, and, hence

zk 6∈ Θ̂K(A,B). Since the sequence was arbitrary, this implies that z = ∞ 6∈ Θ̂K(A,B).

Therefore, having a generalized eigenvalue problem Ax = λBx, x ∈ Cn, if one of

the matrices is an H-matrix, more precisely, if it is from one of the positively homoge-

nous SDD-type subclasses of H-matrices, we can localize the solutions using the (suitable)

bounded sets in the complex plane. So, in the following sections we proceed by giving the

generalized Geršgorin sets that correspond to the SDD-type classes, covered in the first

chapter. Furthermore, we have developed an approximation technique which gives more

practical localization areas, while the important properties of the original localizations are

not lost.

In what follows, we give the generalized Brauer set, generalized Brualdi set, generalized

CKV-set, and generalized alpha-sets, together with their approximations. We will, in

particular, establish their relationships, and present illustrative examples, as it was done

for the corresponding localizations in the second chapter.

3.3.1 Brauer set for Generalized Eigenvalues

As we have seen, the class of doubly SDD matrices is a class of nonsingular matrices that

is positively homogenous and a DD-type. This suffices, by Theorem 3.3.1, to conclude

that the corresponding generalized Geršgorin type set is a localization area for generalized

eigenvalues. Moreover, by Theorem 3.3.4, we can use the Isolation Principle, too. But,

in order to apply Boundedness Principle, it remains to prove that this class of matrices

is opened, as it was suggested in the previous section. Now, since this class is defined

exclusively by the strict inequalities, it is easy to see that, for a given doubly SDD matrix

A = [ai,j] ∈ Cn,n, one can always choose a sufficiently small ε > 0, so that perturbations

of the matrix entries, which are by absolute value smaller then ε, produce the matrix B

that is also doubly SDD. Therefore, the following three theorems are direct corollaries of

the mentioned three principles for generalized eigenvalues.
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Theorem 3.3.11. (Brauer) Given an arbitrary regular pair A,B ∈ Cn,n × Cn,n, n ≥ 2,
for every λ ∈ σ(A,B), there exists a pair of indices i, j ∈ N , i 6= j, so that

λ ∈ Ki,j(A,B) := {z ∈ C : |zbi,i − ai,i||zbi,i − aj,j| ≤ ri(zB − A)rj(zB − A)} , (3.3.5)

where ri(zB − A), for all i ∈ N is given in (3.2.9). Consequently,

σ(A,B) ⊆ K(A,B) :=
⋃
i∈N

i−1⋃
j=1

Ki,j(A,B). (3.3.6)

Theorem 3.3.12. Given an arbitrary pair (A,B) ∈ Cn,n × Cn,n, n ≥ 2, if there exist
sets U, V ⊆ C, such that U ∩ V = ∅, and K(A) = U ∪ V , then the set U contains
exactly |{i ∈ N : bi,i 6= 0 and ai,ib

−1
i,i ∈ U

} | finite eigenvalues of the pair (A,B) and, if U
is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues. Consequently, the set U
contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair (A,B).

Theorem 3.3.13. For any regular matrix pair (A, B) ∈ Cn,n × Cn,n, the following two
conditions hold:

• 0 6∈ K(A,B) if and only if A is doubly SDD, and

• ∞ 6∈ K(A,B) if and only if B is doubly SDD.

First, we illustrate the generalized Brauer set using the matrices of the Example

3.2.4. In Figures 3.3.1, 3.3.2 and 3.3.3, generalized Brauer sets K(A1, B1), K(A2, B2) and

K(A1, A2) are shaded, respectively, while the boundary of the corresponding generalized

Geršgorin sets Γ(A1, B1), Γ(A2, B2) and Γ(A1, A2) are given by the thick black line.

To see that, sometimes, the improvement obtained by using the generalized Brauer

sets instead of the generalized Geršgorin sets, can be truly significant, we consider the

following example.

Example 3.3.14.

A3 =




1 0.1 0.1 0.1
0 −1 0.1 0.1
0 0 i 0.1
0 0 0 −i


 , B3 =




1 0.8 0 0
0 −1 0.8 0
0 0 i 0.8
1 0 0 −i


 .

By inspection, B3 is not an SDD matrix, but it is doubly SDD. Therefore, its generalized
Geršgorin set Γ(A3, B3) is unbounded; actually, in this case it is a part of right half-plane
with the boundary on the line x = 0.5, while the generalized Brauer set is a compact one.
This is shown in the Figure 3.3.4. Again, Generalized Eigenvalues are marked with ”×”.

As it was the case with generalized Geršgorin set, this localization is sufficiently hard

to calculate, too. So, we use the approximation obtained by Theorem 3.3.2:




K̂i,j(A,B) := {z ∈ C : |zbi,i − ai,i| · |zbj,j − aj,j| ≤
(|z|ri(B) + ri(A)) · (|z|rj(B) + rj(A))}, (i, j ∈ N), ( j 6= i),

K̂(A,B) :=
⋃

i∈N

⋃i−1
j=1 K̂i,j(A,B),

(3.3.7)

and the next three theorems follow immediately.
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Figure 3.3.1: Generalized Brauer set (shaded), and the generalized Geršgorin set (thick
black line) of the matrix pair (A1, B1) of the Example 3.2.4

(Generalizovani Brauerov skup (osenčen) i generalizovani Geršgorinov skup (debljom
linijom) za matrični par (A1, B1) iz Primera 3.2.4)
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Figure 3.3.2: Generalized Brauer set (shaded), and the generalized Geršgorin set (thick
black line) of the matrix pair (A2, B2) of the Example 3.2.4

(Generalizovani Brauerov skup (osenčen) i generalizovani Geršgorinov skup (debljom
linijom) za matrični par (A2, B2) iz Primera 3.2.4)
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Figure 3.3.3: Generalized Brauer set (shaded), and the generalized Geršgorin set (thick
black line) of the matrix pair (A1, A2) of the Example 3.2.4

(Generalizovani Brauerov skup (osenčen) i generalizovani Geršgorinov skup (deblja
linija) za matrični par (A1, A2) iz Primera 3.2.4)
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Figure 3.3.4: Generalized Brauer set (shaded) and the generalized Geršgorin set (thick
black line) of the matrix pair (A3, B3) of the Example 3.3.14

(Generalizovani Brauerov skup (osenčen) i generalizovani Geršgorinov skup (debljom
linijom) za matrični par (A3, B3) iz Primera 3.3.14)
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Theorem 3.3.15. Given a regular matrix pair (A,B) ∈ Cn,n × Cn,n, the spectrum of the
pair (A,B) belongs to the approximated generalized Brauer set (3.3.7) of the matrix
pair (A, B). Moreover, the following inclusion holds:

σ(A,B) ⊆ K(A,B) ⊆ K̂(A,B). (3.3.8)

Theorem 3.3.16. Given an arbitrary pair (A,B) ∈ Cn,n × Cn,n, n ≥ 2, if there exist

sets U, V ⊆ C, such that U ∩ V = ∅, and K̂(A) = U ∪ V , then the set U contains
exactly |{i ∈ N : bi,i 6= 0 and ai,ib

−1
i,i ∈ U

} | finite eigenvalues of the pair (A,B) and, if U
is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues. Consequently, the set U
contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair (A,B).

Theorem 3.3.17. For any regular matrix pair (A, B) ∈ Cn,n × Cn,n, the following two
conditions hold:

• 0 6∈ K̂(A,B) if and only if A is doubly SDD, and

• ∞ 6∈ K̂(A,B) if and only if B is doubly SDD.

Obviously, the complexity of the generalized Brauer sets is greater then the complexity

of generalized Geršgorin sets. So, the question is when is necessary to use this localization.

The first hint can give us the Boundedness Principle. Namely, as we have seen in the first

chapter, the class of doubly SDD matrices is wider then the class of SDD matrices. Thus,

there are many cases when for a given regular pair (A,B), one of the matrices, let’s say B,

will not be an SDD matrix, while it may be in the class of doubly SDD matrices. Then,

by the Boundedness Principle, generalized Geršgorin set for this pair will be unbounded,

meaning that it will contain ∞. On the other hand, Theorem 1.2.1 implies that matrix

B is nonsingular, and therefore ∞ 6∈ σ(A,B). So, the generalized Geršgorin set for this

pair is ”unbounded without a reason”, meaning that there is no infinite eigenvalue to be

localized. At the same time, Boundedness Principle implies that generalized Brauer set

is bounded. Thus, in this particular situation, extra work that is needed to construct a

Brauer set is worthwhile. The same reasoning can be applied for the approximated sets,

too, as Theorem 3.3.10 implies.

We illustrate the approximated generalized Brauer sets, using the matrices of the Ex-

amples 3.2.4 and 3.3.14. In the Figures 3.3.5, 3.3.6, 3.3.7 and 3.3.8, generalized Brauer

sets K(A1, B1), K(A2, B2), K(A1, A2) and K(A3, B3) are shaded, respectively, while the

boundary of the corresponding approximated generalized Brauer set, K̂(A1, B1), K̂(A2, B2),

K̂(A1, A2) and K̂(A3, B3), is given by the thick black line.

The relationship of the ordinary Geršgorin set, and Brauer set that is given in Theo-

rem 2.2.6, can be easily extended to the (approximated) generalized Brauer set and the

(approximated) generalized Geršgorin set.
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Figure 3.3.5: Generalized Brauer set (shaded), and the approximated generalized Brauer
set (thick black line) of the matrix pair (A1, B1) of the Example 3.2.4
(Generalizovani Brauerov skup (osenčen) i aproksimirani generalizovani Brauerov skup

(debljom linijom) za matrični par (A1, B1) iz Primera 3.2.4)
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Figure 3.3.6: Generalized Brauer set (shaded), and the approximated generalized Brauer
set (thick black line) of the matrix pair (A2, B2) of the Example 3.2.4
(Generalizovani Brauerov skup (osenčen) i aproksimirani generalizovani Brauerov skup

(debljom linijom) za matrični par (A2, B2) iz Primera 3.2.4)
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Figure 3.3.7: Generalized Brauer set (shaded), and the approximated generalized Brauer
set (thick black line) of the matrix pair (A1, A2) of the Example 3.2.4
(Generalizovani Brauerov skup (osenčen) i aproksimirani generalizovani Brauerov skup

(debljom linijom) za matrični par (A1, A2) iz Primera 3.2.4)
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Figure 3.3.8: Generalized Brauer set (shaded), and the approximated generalized Brauer
set (thick black line) of the matrix pair (A3, B3) of the Example 3.3.14
(Generalizovani Brauerov skup (osenčen) i aproksimirani generalizovani Brauerov skup

(debljom linijom) za matrični par (A3, B3) iz Primera 3.3.14)
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Theorem 3.3.18. For any regular pair (A,B) ∈ Cn,n ×Cn,n, n ≥ 2, and any two indices
i, j ∈ N , i 6= j,

Ki,j(A,B) ⊆ Γi(A,B) ∩ Γj(A,B), and

K̂i,j(A,B) ⊆ Γ̂i(A,B) ∩ Γ̂j(A,B).

Therefore, consequently,

K(A,B) ⊆ Γ(A,B), and

K̂(A,B) ⊆ Γ̂(A, B).

The proof is almost identical as in the case of standard eigenvalue localizations, and

can be found in [51].

3.3.2 Brualdi set for Generalized Eigenvalues

In order to construct Brualdi sets for generalized eigenvalues, we must take the graph

structure of a ”suitable” matrix into account. In the ordinary case, since the complex

number z was influencing only on the diagonal of a given matrix A, the graph structure

of zI −A and A were the same, i.e., independent of z. Of course, this is not the case with

generalized eigenvalues. Therefore, first, given a regular pair (A,B) ∈ Cn,n × Cn,n, we

extract the points in the complex plane where the graph structure of zB − A is changing

due to value of z. We denote

ζ(A, B) :=

{
ai,j

bi,j

∈ C : bi,j 6= 0, i, j ∈ N, i 6= j

}
. (3.3.9)

Then, obviously, for every z ∈ C \ ζ(A,B), G(zB − A) is independent of z, and, hence,

we can define a graph attributed to the matrix pair G(A,B) := G(zB − A), where

z ∈ C \ ζ(A,B).

As before, C(A,B) will denote the set of all cycles, weak or strong, in the graph

G(A,B).

Example 3.3.19. Let

A4 =




0 0.5 0 0 0 0
0 1 0.5 0 0 0
0 0 1 0.5 0 0
0 0 1 0 0 0

0.5 0 0 0 0 0
0.5 0 0 0 0 1




, and B4 =




1 0 0 0 0 0
0 1 1 0 0 0

0.5 0 −1 1 0 0
0 0 1 i 0 0

0.5 0 0 0 −i 0
0 0 0 0 0 1




.

In the Figure 3.3.9, which represents the graph G(A4, B4), attributed to the given matrix
pair, we can observe that ζ(A4, B4) = {0.5, 1}, and that the strong cycles are γ1 = (1, 2, 3)
and γ2 = (3, 4), while the weak cycles are γ3 = (5) and γ4 = (6).

An important concept used in Varga’s generalization of the original Brualdi result was

the concept of the normal reduced form and irreducibility. So, we continue by extending

them to the matrix pairs. An elegant way to do it is through the graph theoretic approach.
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Figure 3.3.9: Graph of a matrix pair (A4, B4) of the Example 3.3.19

Definition 3.3.20. An arbitrary (A, B) ∈ Cn,n×Cn,n is said to be an irreducible matrix
pair if the attributed graph G(A,B) is strongly connected.

Inspired by the case of a single matrix, we define a normal reduced form of the matrix

pair. Given a matrix pair (A,B) ∈ Cn,n×Cn,n, we observe the graph G(A,B). If the graph

is strongly connected, then the matrix pair is irreducible. Otherwise, we can distinguish

the partition of the set of vertices into V1 and V2, such that for every directed edge −−→vi, vj,

if vi ∈ V2, then vj 6∈ V1, i.e., there is no path from the vertices of V2 to the vertices of V1.

But, this implies that there exists a permutation matrix P , such that

P T AP =

[
A1,1 A1,2

O A2,2

]
, and P T BP =

[
B1,1 B1,2

O B2,2

]
, (3.3.10)

where A1,1, A2,2, B1,1 and B2,2 are square matrices.

Now, if we continue with this reasoning, and apply it to the sets of vertices V1 and

V2, and further to their progenies, by consecutive permutations, we ultimately obtain a

permutation matrix P̃ ∈ Rn,n, and a positive integer m, 2 ≤ m ≤ n, such that

P̃ T AP̃ =




Ã1,1 Ã1,2 · · · Ã1,m

O Ã2,2 · · · Ã2,m

...
...

. . .
...

O O · · · Ãm,m




, and P̃ T BP̃ =




B̃1,1 B̃1,2 · · · B̃1,m

O B̃2,2 · · · B̃2,m

...
...

. . .
...

O O · · · B̃m,m




,

(3.3.11)

where
Ãi,i, B̃i,i ∈ Cpi,pi , are irreducible matrices for pi ≥ 2, or

Ãi,i = [ak,k], B̃i,i = [bk,k] ∈ C1,1, for some k ∈ N .
(3.3.12)

for every 1 ≤ i ≤ m.

The permutation matrix P̃ is obtained as a product of individual permutation matrices,

which corresponds, at each step, to a splitting of diagonal blocks into the form (3.3.10).
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Similar to the single matrix case, the form (3.3.11) we call the normal reduced form

of the matrix pair (A,B).

For the matrix pair (A4, B4) of the Example 3.3.19, the normal reduced form is given

by

P̃ T A4P̃ =




0 0 0 0.5 0 0

0 1 0 0.5 0 0

0 0 1 0 0.5 0

0 0 0.5 0 0 0

0 0 0 0 1 0.5

0 0 0 0 1 0




, and P̃ T B4P̃ =




−i 0 0 0.5 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0.5 −1 1

0 0 0 0 1 i




,

(3.3.13)

where P̃ is a permutation matrix that corresponds to the permutation:

π =

(
1 2 3 4 5 6

4 3 5 6 1 2

)
.

As in single matrix case, we can observe that, for any z ∈ C, matrix zB−A is singular

if and only if, for some 1 ≤ i ≤ m, matrix zB̃i,i − Ãi,i is singular. Therefore, we can

use the reduced row sums, as defined in (1.2.10). Having this, by restricting from the

whole complex plane to the set C \ ζ(A,B), since the class of Brualdi SDD matrices is a

positively homogenous SDD-type class, we can apply Theorems 3.3.1-3.3.4, Theorem 3.3.9

and Theorem 3.3.10.

Theorem 3.3.21. Given any regular matrix pair (A,B) ∈ Cn,n × Cn,n, n ≥ 2, for every
λ ∈ σ(A,B) \ ζ(A,B), there exists a cycle γ ∈ C(A,B), either strong or weak, so that

λ ∈ Bγ(A,B) :=

{
z ∈ C :

∏
i∈γ

|zbi,i − ai,i| ≤
∏
i∈γ

r̃i(zB − A)

}
, (3.3.14)

if the cycle γ ∈ C(A,B) is strong, or,

λ ∈ Bγ(A,B) := {z ∈ C : |zbi,i − ai,i| ≤ r̃i(zB − A) = 0} =
{
ai,ib

−1
i,i

}
, (3.3.15)

with the convention that 0−1 = ∞, if the cycle γ = {i} ∈ C(A,B) is weak.
Consequently,

σ(A,B) ⊆ B(A,B) :=
⋃

γ∈C(A,B)

Bγ(A, B)
⋃

ζ(A,B). (3.3.16)

Theorem 3.3.22. Given any regular matrix pair (A,B) ∈ Cn,n × Cn,n, n ≥ 2, for every
λ ∈ σ(A,B) \ ζ(A,B), there exists a cycle γ ∈ C(A,B), either strong or weak, so that

λ ∈ B̂γ(A,B) :=

{
z ∈ C :

∏
i∈γ

|zbi,i − ai,i| ≤
∏
i∈γ

(|z|r̃i(B) + r̃i(A))

}
, (3.3.17)
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if the cycle γ ∈ C(A,B) is strong, or,

λ ∈ B̂γ(A, B) := {z ∈ C : |zbi,i − ai,i| ≤ |z|r̃i(B) + r̃i(A) = 0} =
{
ai,ib

−1
i,i

}
, (3.3.18)

with the convention that 0−1 = ∞, if the cycle γ = {i} ∈ C(A,B) is weak.
Consequently,

σ(A,B) ⊆ B(A,B) ⊆ B̂(A,B) :=
⋃

γ∈C(A,B)

B̂γ(A,B)
⋃

ζ(A,B). (3.3.19)

As before, the Isolation and Boundedness Principles hold for both localization areas.

Theorem 3.3.23. Given an arbitrary pair (A,B) ∈ Cn,n × Cn,n, n ≥ 2, if there exist
sets U, V ⊆ C, such that U ∩ V = ∅, and B(A,B) = U ∪ V , then the set U contains
exactly |{i ∈ N : bi,i 6= 0 and ai,ib

−1
i,i ∈ U

} | finite eigenvalues of the pair (A,B) and, if U
is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues. Consequently, the set U
contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair (A,B).

Theorem 3.3.24. For any regular matrix pair (A, B) ∈ Cn,n × Cn,n, the following two
conditions hold:

• 0 6∈ B(A,B) if and only if A is Brualdi SDD, and

• ∞ 6∈ B(A,B) if and only if B is Brualdi SDD.

Theorem 3.3.25. Given an arbitrary pair (A,B) ∈ Cn,n × Cn,n, n ≥ 2, if there exist

sets U, V ⊆ C, such that U ∩ V = ∅, and B̂(A) = U ∪ V , then the set U contains
exactly |{i ∈ N : bi,i 6= 0 and ai,ib

−1
i,i ∈ U

} | finite eigenvalues of the pair (A,B) and, if U
is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues. Consequently, the set U
contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair (A,B).

Theorem 3.3.26. For any regular matrix pair (A, B) ∈ Cn,n × Cn,n, the following two
conditions hold:

• 0 6∈ B̂(A,B) if and only if A is Brualdi SDD, and

• ∞ 6∈ B̂(A,B) if and only if B is Brualdi SDD.

To illustrate the generalized Brualdi set and its approximation, consider the matrix

pair (A4, B4) of the Example 3.3.19 in its normal reduced form (3.3.13). The set of cycles

in the graph G(A4, B4) is C(A4, B4) = {γ1, γ2, γ3, γ4}, where γ1 = (3, 5, 4), γ2 = (5, 6),

γ3 = (2), and γ4 = (1). Thus, we have that the generalized Brualdi set is given by

B(A4, B4) =
⋃4

i=1 Bγi
(A4, B4), where:

Bγ1(A4, B4) =
{
z ∈ C : |z||z2 − 1| ≤ 0.125|2z − 1|(|z|+ 1)

}

Bγ2(A4, B4) = {z ∈ C : 2|z||z + 1| ≤ |z − 1|(|z|+ 1)}
Bγ3(A4, B4) = {1} , and Bγ4(A4, B4) = {0} .
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Figure 3.3.10: Generalized Brualdi set B(A4, B4) of the matrix pair (A4, B4) of the Example

3.3.19 (shaded), and the approximated generalized Brualdi set B̂(A4, B4) (thick black line)
(Generalizovani Brualdijev skup B(A4, B4) (osenčen) i aproksimirani generalizovani

Brualdijev skup B̂(A4, B4) (debljom linijom) za matrični par (A4, B4) iz Primera 3.3.19)

Similar to that, the approximated generalized Brualdi set is B̂(A4, B4) =
⋃4

i=1 B̂γi
(A4, B4),

where:

B̂γ1(A4, B4) =
{
z ∈ C : |z||z2 − 1| ≤ 0.125(2|z|+ 1)(|z|+ 1)

}
,

B̂γ2(A4, B4) =
{
z ∈ C : 2|z||z + 1| ≤ (|z|+ 1)2

}
,

B̂γ3(A4, B4) = {1} , and B̂γ4(A4, B4) = {0} .

By inspection, B4 is a Brualdi SDD matrix and, according to Theorem 3.3.24, the

set B(A4, B4) is compact in the complex plane. The same holds for the approximated

generalized Brualdi set B̂(A4, B4), from the Theorem 3.3.26. These sets are shown in

Figure 3.3.10, where the generalized Brualdi set is shaded, its approximation has thick

black boundary, and Generalized Eigenvalues are marked with ”×”.

3.3.3 Cvetković-Kostić-Varga set for Generalized Eigenvalues

Here we introduce the generalized CKV-set and its approximation. As in Section 2.2.3,

for the case of the ”ordinary” eigenvalues, we show their connection with the generalized
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minimal Geršgorin set, which will be considered in detail in the concluding section of this

chapter.

We start with the observation that the class of S-SDD matrices, and consequently,

the class of CKV-SDD matrices, is a positively homogenous SDD-type class. Therefore,

Theorems 3.3.1, 3.3.4, and 3.3.9 imply the following localization areas for Generalized

Eigenvalues.

Theorem 3.3.27. Let (A,B) ∈ Cn,n × Cn,n, with n ≥ 2, be any regular matrix pair,
and let λ ∈ σ(A,B) be an arbitrary, either finite or infinite, eigenvalue. Then, for every
nonempty subset of indices S ⊆ N , there exist indices i ∈ S, and j ∈ S := N \ S, such
that

λ ∈ ΓS
i (A,B) :=

{
z ∈ C : |zbi,i − ai,i| ≤ rS

i (zB − A)
}

, (3.3.20)

or
λ ∈ V S

i,j(A,B) := {z ∈ C :

(|zbi,i − ai,i| − rS
i (zB − A)) · (|zbj,j − aj,j| − rS

j (zB − A))

≤ rS
i (zB − A)rS

j (zB − A)}.
(3.3.21)

Therefore, for every nonempty subset of indices S ⊆ N ,

σ(A,B) ⊆ CS(A,B) :=
[ ⋃

i∈S

⋃

j∈S

V S
i,j(A, B)

] ⋃ [ ⋃
i∈S

ΓS
i (A,B)

]
, (3.3.22)

and consequently

σ(A,B) ⊆ C(A, B) :=
⋂

∅6=S⊆N

CS(A,B). (3.3.23)

Theorem 3.3.28. Given any regular matrix pair (A,B) ∈ Cn,n×Cn,n, n ≥ 2, an arbitrary
nonempty set of indices S ⊆ N , and sets U, V ⊆ C, such that U∩V = ∅, if CS(A,B) = U∪
V , or if C(A,B) = U∪V , then the set U contains exactly |{i ∈ N : bi,i 6= 0 and ai,ib

−1
i,i ∈ U

} |
finite eigenvalues of the pair (A,B) and, if U is unbounded, exactly | {i ∈ N : bi,i = 0} |
infinite eigenvalues. Consequently, the set U contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} |
eigenvalues of the pair (A, B).

Theorem 3.3.29. For any regular matrix pair (A,B) ∈ Cn,n ×Cn,n, the following condi-
tions hold:

• 0 6∈ CS(A,B) if and only if A is an S-SDD matrix, where ∅ 6= S ⊆ N ,

• ∞ 6∈ CS(A,B) if and only if B is an S-SDD matrix, again ∅ 6= S ⊆ N ,

• 0 6∈ C(A,B) if and only if A is a CKV-SDD matrix, and

• ∞ 6∈ C(A,B) if and only if B is a CKV-SDD matrix.

As before, we illustrate the generalized CKV-sets using the matrices of the Examples

3.2.4 and 3.3.14. In the Figures 3.3.11, 3.3.12, 3.3.13 and 3.3.14, generalized CKV-sets

C{1,4}(A1, B1), C{1}(A2, B2), C{1,4}(A1, A2), and C{1}(A3, B3) are shaded, respectively, while

the boundaries of the corresponding approximated generalized Geršgorin sets, Γ(A1, B1),

Γ(A2, B2), Γ(A1, A2) and Γ(A3, B3), are given by the thick black line.
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Figure 3.3.11: Generalized CKV-set for fixed S = {1, 4} (shaded), and the generalized
Geršgorin set (thick black line) of the matrix pair (A1, B1) of the Example 3.2.4

(Generalizovani CKV-skup za fiksiran skup S = {1, 4} (osenčen), i generalizovani
Geršgorinov skup (debljom linijom) za matrični par (A1, B1) iz Primera 3.2.4)
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Figure 3.3.12: Generalized CKV-set for fixed S = {1} (shaded), and the generalized
Geršgorin set (thick black line) of the matrix pair (A2, B2) of the Example 3.2.4

(Generalizovani CKV-skup za fiksiran skup S = {2} (osenčen), i generalizovani
Geršgorinov skup (debljom linijom) za matrični par (A2, B2) iz Primera 3.2.4)
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Figure 3.3.13: Generalized CKV-set for fixed S = {1, 4} (shaded), and the generalized
Geršgorin set (thick black line) of the matrix pair (A1, A2) of the Example 3.2.4

(Generalizovani CKV-skup za fiksiran skup S = {1, 4} (osenčen), i generalizovani
Geršgorinov skup (debljom linijom) za matrični par (A1, A2) iz Primera 3.2.4)
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Figure 3.3.14: Generalized CKV-set for fixed S = {1} (shaded), and the generalized
Geršgorin set (thick black line) of the matrix pair (A3, B3) of the Example 3.3.14

(Generalizovani CKV-skup za fiksiran skup S = {1} (osenčen), i generalizovani
Geršgorinov skup (debljom linijom) za matrični par (A3, B3) iz Primera 3.3.14)
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Using Theorem 3.3.10 we introduce the approximation of the CKV-set that is suitable

for practical application. In addition, we state its properties which follow from Theorems

3.3.4 and 3.3.10, and, finally, we compare the set and its approximation through illustrative

examples.

Theorem 3.3.30. Let (A,B) ∈ Cn,n × Cn,n, with n ≥ 2, be any regular matrix pair,
and let λ ∈ σ(A,B) be an arbitrary, either finite or infinite, eigenvalue. Then, for every
nonempty subset of indices S ⊆ N , there exist indices i ∈ S, and j ∈ S := N \ S, such
that

λ ∈ Γ̂S
i (A,B) :=

{
z ∈ C : |zbi,i − ai,i| ≤ |z|rS

i (B) + rS
i (A)

}
, (3.3.24)

or

λ ∈ V̂ S
i,j(A, B) := {z ∈ C :

(|zbi,i − ai,i| − |z|rS
i (B)− rS

i (A)) · (|zbj,j − aj,j| − |z|rS
j (B)− rS

j (A))

≤ (|z|rS
i (B) + rS

i (A)) · (|z|rS
j (B) + rS

j (A))}.
(3.3.25)

Therefore, for every nonempty subset of indices S ⊆ N ,

σ(A,B) ⊆ ĈS(A,B) :=
[ ⋃

i∈S

⋃

j∈S

V̂ S
i,j(A, B)

] ⋃ [ ⋃
i∈S

Γ̂S
i (A,B)

]
, (3.3.26)

and consequently

σ(A,B) ⊆ Ĉ(A, B) :=
⋂

∅6=S⊆N

ĈS(A,B). (3.3.27)

Theorem 3.3.31. Given any regular matrix pair (A,B) ∈ Cn,n×Cn,n, n ≥ 2, an arbitrary

nonempty set of indices S ⊆ N , and sets U, V ⊆ C. such that U∩V = ∅, if ĈS(A,B) = U∪
V , or if Ĉ(A,B) = U∪V , then the set U contains exactly |{i ∈ N : bi,i 6= 0 and ai,ib

−1
i,i ∈ U

} |
finite eigenvalues of the pair (A,B) and, if U is unbounded, exactly | {i ∈ N : bi,i = 0} |
infinite eigenvalues. Consequently, the set U contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} |
eigenvalues of the pair (A, B).

Theorem 3.3.32. For any regular matrix pair (A,B) ∈ Cn,n ×Cn,n, the following condi-
tions hold:

• 0 6∈ ĈS(A,B) if and only if A is S-SDD matrix, where ∅ 6= S ⊆ N ,

• ∞ 6∈ ĈS(A,B) if and only if B is S-SDD matrix, again ∅ 6= S ⊆ N ,

• 0 6∈ Ĉ(A,B) if and only if A is CKV-SDD matrix, and

• ∞ 6∈ Ĉ(A,B) if and only if B is CKV-SDD matrix.

How the approximated generalized CKV-sets compare with the original generalized

CKV-sets is shown in the Figures 3.3.15, 3.3.16, 3.3.17 and 3.3.18, where the generalized

CKV-sets C{1,4}(A1, B1), C{1}(A2, B2), C{1,4}(A1, A2) and C{1}(A3, B3) are shaded, respec-

tively, while the boundaries of the corresponding approximated generalized CKV-sets,

Ĉ{1,4}(A1, B1), Ĉ{1}(A2, B2), Ĉ{1,4}(A1, A2) and Ĉ{1}(A3, B3), are given by the thick black
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Figure 3.3.15: Generalized CKV-set for fixed S = {1, 4} (shaded), and its approximation
(thick black line) of the matrix pair (A1, B1) of Example 3.2.4
(Generalizovani CKV-skup za fiksiran skup S = {1, 4} (osenčen) i njegova aproksimacija

(debljom linijom) za matrični par (A1, B1) iz Primera 3.2.4)
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Figure 3.3.16: Generalized CKV-set for fixed S = {1} (shaded), and its approximation
(thick black line) of the matrix pair (A2, B2) of Example 3.2.4
(Generalizovani CKV-skup za fiksiran skup S = {1} (osenčen) i njegova aproksimacija

(debljom linijom) za matrični par (A2, B2) iz Primera 3.2.4)
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Figure 3.3.17: Generalized CKV-set for fixed S = {1, 4} (shaded), and its approximation
(thick black line) of the matrix pair (A1, A2) of Example 3.2.4
(Generalizovani CKV-skup za fiksiran skup S = {1, 4} (osenčen) i njegova aproksimacija

(debljom linijom) za matrični par (A1, A2) iz Primera 3.2.4)
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Figure 3.3.18: Generalized CKV-set for fixed S = {1} (shaded), and its approximation
(thick black line) of the matrix pair (A3, B3) of Example 3.3.14
(Generalizovani CKV-skup za fiksiran skup S = {1} (osenčen) i njegova aproksimacija

(debljom linijom) za matrični par (A3, B3) iz Primera 3.3.14)
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line. The matrices A1-A3 and B1-B3 are the same as in Examples 3.2.4 and 3.3.14, respec-

tively.

Similar to the Example 3.3.14, if matrix B in the regular matrix pair (A,B), is S-

SDD, for some fixed set of indices S, while it is not doubly SDD, then the (approximated)

generalized CKV-set, for such S, will be bounded in the complex plane, while the (approxi-

mated) generalized Brauer set will be unbounded. The similar thing stands for generalized

Brualdi sets.

Observing that, for an arbitrary nonempty S ⊆ N , KXS and KXCKV are the classes of

S-SDD and CKV-SDD matrices, respectively. Using the fact that these classes are also of

SDD-type, Theorem 3.3.1 produces different equivalent form of Theorem 1.4.2 in terms of

the localization sets of generalized eigenvalues. Moreover, we give the general idea of the

generalized minimal Geršgorin set attributed to the family X ⊆ D. Namely, given a family

of positive diagonal matrices X ⊆ D, we define:

ΓX(A,B) :=
⋂

X∈X
Γ(X−1AX,X−1BX), (3.3.28)

and call it the generalized minimal Geršgorin set attributed to the family X.

Theorem 3.3.33. Given any regular matrix pair (A,B) ∈ Cn,n × Cn,n, and an arbitrary
nonempty subset of indices S ⊆ N , then

CS(A,B) = ΓXS(A,B), (3.3.29)

and consequently,
C(A,B) = ΓXCKV (A,B), (3.3.30)

where XS and XCKV are given in (1.4.18) and (1.4.19), respectively.

In other words, the theorem states that the generalized minimal Geršgorin set at-

tributed to the family XS is equal to the set CS(A), and that the generalized minimal

Geršgorin set attributed to the family XCKV is equal to the set C(A).

Now, since X−1〈A, B〉X = 〈X−1AX, X−1BX〉, for any X ∈ D, we have that the same

thing follows for the approximated sets. More precisely, given a family of positive diagonal

matrices X ⊆ D, we define:

Γ̂X(A,B) :=
⋂

X∈X
Γ̂(X−1AX,X−1BX), (3.3.31)

and call it the approximated generalized minimal Geršgorin set attributed to the

family X. Then, the following holds.

Theorem 3.3.34. Given any regular matrix pair (A,B) ∈ Cn,n × Cn,n, and an arbitrary
nonempty subset of indices S ⊆ N , then

ĈS(A,B) = Γ̂XS(A,B), (3.3.32)

and consequently,
Ĉ(A,B) = Γ̂XCKV (A,B), (3.3.33)

where XS and XCKV are given in (1.4.18) and (1.4.19), respectively.
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To complete this section we establish the relationship of these generalized eigenvalue

localization sets, which is, in fact, the consequence of the relationship between the sub-

classes of H-matrices which have generated them. Therefore, as for Theorem 2.2.19, we

have the following.

Theorem 3.3.35. Let (A,B) ∈ Cn,n×Cn,n, n ≥ 2, be any regular matrix pair, and let the
set Γ(A,B) be given by (3.2.1), the set K(A,B) by (3.3.6), the set B(A,B) by (3.3.16),the
set CS(A,B) by (3.3.22), and the set C(A,B) by (3.3.23). Then,

• C{i}(A, B) ⊆ Γ(A,B), (i ∈ N),

• CS(A,B) ⊆ Γ(A,B), (S ⊆ N), and, consequently,

• C(A,B) ⊆ K(A, B) ⊆ Γ(A,B).

Moreover, there exist regular matrix pairs (P1, P2), (Q1, Q2), (R1, R2) ∈ Cn,n×Cn,n, so that

• C(P1, P2) 6⊆ B(P1, P2), and B(P1, P2) 6⊆ C(P1, P2),

• C{i}(Q1, Q2) 6⊆ K(Q1, Q2), and K(Q1, Q2) 6⊆ C{i}(Q1, Q2), for some i ∈ N ,

• CS(R1, R2) 6⊆ K(R1, R2), and K(R1, R2) 6⊆ CS(R1, R2), for some S ⊆ N.

But, as we are interested in calculation of the localization areas, it is preferable to use

the approximated sets. Therefore, we are, in fact, more interested in the relationship be-

tween the approximated generalized Geršgorin-type sets. Fortunately, from the definition

of the the approximated sets (c.f. Theorem 3.3.2) the same relationship holds for them,

too.

Theorem 3.3.36. Let (A,B) ∈ Cn,n×Cn,n, n ≥ 2, be any regular matrix pair, and let the

set Γ̂(A,B) be given by (3.2.11), the set K̂(A,B) by (3.3.7), the set B̂(A,B) by (3.3.19),

the set ĈS(A,B) by (3.3.26), and the set Ĉ(A,B) by (3.3.27). Then,

• Ĉ{i}(A, B) ⊆ Γ̂(A,B), (i ∈ N),

• ĈS(A,B) ⊆ Γ̂(A,B), (S ⊆ N), and, consequently,

• Ĉ(A,B) ⊆ K̂(A, B) ⊆ Γ̂(A,B).

Moreover, there exist regular matrix pairs (P1, P2), (Q1, Q2), (R1, R2) ∈ Cn,n×Cn,n, so that

• Ĉ(P1, P2) 6⊆ B̂(P1, P2), and B̂(P1, P2) 6⊆ Ĉ(P1, P2),

• Ĉ{i}(Q1, Q2) 6⊆ K̂(Q1, Q2), and K̂(Q1, Q2) 6⊆ Ĉ{i}(Q1, Q2), for some i ∈ N ,

• ĈS(R1, R2) 6⊆ K̂(R1, R2), and K̂(R1, R2) 6⊆ ĈS(R1, R2), for some S ⊆ N.
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3.3.4 Ostrowski sets for Generalized Eigenvalues

Since we can, without any obstacle, apply the above principles to the class of α1 and

α2-matrices, we will just briefly introduce the generalized α2-localization set, and its ap-

proximation, with some illustrative examples. Although we have given the characterization

of the minimal α2-set in Theorem 2.2.24, to extend it to the generalized case is not an

easy task. The reason lies in the fact that sets of indices used to define the localization

sets, vary, dependently of the values z..

Theorem 3.3.37. Given any regular pair (A,B) ∈ Cn,n × Cn,n, with n ≥ 2, let λ ∈
σ(A,B). Then, for an arbitrary α ∈ [0, 1], there exists an index i ∈ N such that |λbi,i −
ai,i| ≤ (ri(λB − A))α(ci(λB − A))1−α. In other words, for an arbitrary α ∈ [0, 1],

σ(A,B) ⊆ A2
α(A,B) :=

⋃
i∈N

A2
α,i(A,B), (3.3.34)

where A2
α,i(A,B) := {z ∈ C : |zbi,i − ai,i| ≤ (ri(zB − A))α(ci(zB − A))1−α} ,

and, consequently,

σ(A) ⊆ A2(A,B) :=
⋂

α∈[0 , 1]

A2
α(A,B). (3.3.35)

Theorem 3.3.38. Given any regular pair (A, B) ∈ Cn,n × Cn,n, n ≥ 2, if there exist
sets U, V ⊆ C, such that U ∩ V = ∅, and A2(A, B) = U ∪ V , then the set U contains
exactly |{i ∈ N : bi,i 6= 0 and ai,ib

−1
i,i ∈ U

} | finite eigenvalues of the pair (A,B) and, if U
is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues. Consequently, the set U
contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair (A,B).

Theorem 3.3.39. For any regular matrix pair (A, B) ∈ Cn,n × Cn,n, the following two
conditions hold:

• 0 6∈ A2(A,B) if and only if A is an α2-matrix, and

• ∞ 6∈ A2(A,B) if and only if B is an α2-matrix.

Theorem 3.3.40. Given any regular pair (A,B) ∈ Cn,n × Cn,n, with n ≥ 2, let λ ∈
σ(A,B). Then, for an arbitrary α ∈ [0, 1], there exists an index i ∈ N such that |λbi,i −
ai,i| ≤ (|λ|ri(B)+ ri(A))α(|λ|ci(B)+ ci(A))1−α. In other words, for an arbitrary α ∈ [0, 1],

σ(A,B) ⊆ Â2
α(A,B) :=

⋃
i∈N

Â2
α,i(A,B), (3.3.36)

where

Â2
α,i(A,B) :=

{
z ∈ C : |zbi,i + ai,i| ≤ (|z|ri(B) + ri(A))α(|z|ci(B) + ci(A))1−α

}
,

and, consequently,

σ(A) ⊆ Â2(A,B) :=
⋂

α∈[0 , 1]

Â2
α(A,B). (3.3.37)
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Theorem 3.3.41. Given any regular pair (A, B) ∈ Cn,n × Cn,n, n ≥ 2, if there exist

sets U, V ⊆ C, such that U ∩ V = ∅, and Â2(A) = U ∪ V , then the set U contains
exactly |{i ∈ N : bi,i 6= 0 and ai,ib

−1
i,i ∈ U

} | finite eigenvalues of the pair (A,B) and, if U
is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues. Consequently, the set U
contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair (A,B).

Theorem 3.3.42. For any regular matrix pair (A, B) ∈ Cn,n × Cn,n, the following two
conditions hold:

• 0 6∈ Â2(A,B) if and only if A is an an α2-matrix, and

• ∞ 6∈ Â2(A,B) if and only if B is an α2-matrix.

The following example illustrates the generalized α2-set and its approximation.

Example 3.3.43.

A5 =




1 1 0 0.2
0 −1 0.4 0
0 0 i 1

0.2 0 0 −i


 and B5 =




0.5 0.1 0.1 0.1
0 −1 0.1 0.1
0 0 i 0.1

0.1 0 0 −0.5i


 .

Figure 3.3.19 shows the generalized α2-set for fixed α = 0.5, shaded, and its approximation
with the thick black line. Generalized Eigenvalues are marked, as always, with ”×”.

To conclude the section, following the same reasoning as before, we establish the rela-

tionship of this generalized localization set with the previous ones.

Theorem 3.3.44. Let (A,B) ∈ Cn,n×Cn,n, n ≥ 2, be any regular matrix pair, and let the
set Γ(A,B) be given by (3.2.1), the set B(A,B) by (3.3.16), the set CS(A,B) by (3.3.22),
the set C(A,B) by (3.3.23), and the set A2(A,B) by (3.3.35). Then,

A2(A,B) ⊆ Γ(A,B) ∩ Γ(AT , BT ). (3.3.38)

Moreover, there exist matrix pairs (P1, P2), (Q1, Q2) ∈ Cn,n × Cn,n, so that

• A2(P1, P2) 6⊆ B(P1, P2), and B(P1, P2) 6⊆ A2(P1, P2), and

• A2(Q1, Q2) 6⊆ C(Q1, Q2), and C(Q1, Q2) 6⊆ A2(Q1, Q2).

Theorem 3.3.45. Let (A,B) ∈ Cn,n × Cn,n, n ≥ 2, be any regular matrix pair, and let

the set set Γ̂(A,B) be given by (3.2.11), the set B̂(A,B) by (3.3.19), the set ĈS(A,B) by

(3.3.26), the set Ĉ(A,B) by (3.3.27) and the set A2(A,B) by (3.3.37). Then,

Â2(A,B) ⊆ Γ̂(A,B) ∩ Γ̂(AT , BT ). (3.3.39)

Moreover, there exist matrix pairs (P1, P2), (Q1, Q2) ∈ Cn,n × Cn,n, so that

• Â2(P1, P2) 6⊆ B̂(P1, P2), and B̂(P1, P2) 6⊆ Â2(P1, P2), and

• Â2(Q1, Q2) 6⊆ Ĉ(Q1, Q2), and Ĉ(Q1, Q2) 6⊆ Â2(Q1, Q2).
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Figure 3.3.19: Generalized α2-set (shaded) and its approximation (thick boundary) of the
matrix pair (A5, B5) of the Example 3.3.43
(Generalizovani α2-skup (osenčen) i njegova aproksimacija (debljom linijom) za matrični

par (A5, B5) iz Primera 3.3.43)
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3.4 Improved Approximations of the

Generalized Geršgorin-type Sets

The goal of this section is to introduce a technique through which we can obtain better

approximations of the generalized Geršgorin-type sets. In the previous section for the

DD-type class of matrices K, we have obtained a set Θ̂K(A, B) in complex plane, which

contains the eigenvalues of the matrix pair (A, B), and we called this set the approximated

generalized Geršgorin-type set. Although these approximations have had some mutual

properties with the original generalized Geršgorin-type sets ΘK(A,B), in many examples

throughout the previous section, we could see that sometimes they are not sufficiently

close to the their originals. Therefore, it is an interesting problem to develop an improved

technique which will allow us to approach closer to the original generalized Geršgorin-type

sets, of course with a sufficiently less computation.

Given an arbitrary matrices A,B ∈ Cn,n, take an arbitrary complex number ξ ∈ C and

define the matrix T ξ
z (A,B) =: M = [mi,j], so that

mi,j :=

{
|zbi,i − ai,i|, i = j,

−|z − ξ||bi,j| − |ξbi,j − ai,j|, otherwise,
(3.4.1)

for all i, j ∈ N .

Now, for an arbitrary ξ ∈ C, and for every distinct indices i, j ∈ N ,

|zbi,j − ai,j| = |zbi,j − ξbi,j + ξbi,j − ai,j| ≤ |z − ξ||bi,j|+ |ξbi,j − ai,j|,
and, hence, 〈zB − A〉 ≥ T ξ

z (A,B).

Therefore, given an arbitrary complex number ξ ∈ C, and any diagonally dominant-

type class of matrices, denoted by K, for every regular matrix pair (A,B), we can define

the set of complex numbers Θ̂Kξ (A,B) :=
{
z ∈ C : T ξ

z (A, B) 6∈ K}
. Then, as in Theorem

3.3.2, ΘK(A,B) ⊆ Θ̂Kξ (A,B). So, we have obtained the approximation of the generalized

Geršgorin-type set that depends on the free complex parameter ξ ∈ C. Moreover, the

following theorem holds.

Theorem 3.4.1. Given a diagonally dominant-type class of nonsingular matrices, denoted
by K, for any regular matrix pair (A,B),

σ(A,B) ⊆ ΘK(A,B) ⊆ Θ̂Kξ (A,B), (ξ ∈ C).

Moreover,

ΘK(A,B) =
⋂

ξ∈C
Θ̂Kξ (A,B). (3.4.2)

Proof. The first part is obvious, so we need to prove the equality in (3.4.2), more precisely,

we need to prove that for each z ∈ ΘK(A,B), there exists ξ ∈ C, such that z ∈ Θ̂Kξ (A,B).

So, assuming that z ∈ ΘK(A,B), zB − A 6∈ K. But, taking ξ := z, T z
z (A,B) = 〈zB − A〉.

So, from the fact that K is a DD-type class, T z
z (A,B) 6∈ K, and, hence, z ∈ Θ̂Kz (A,B) ⊆⋂

ξ∈C Θ̂Kξ (A,B).



130

Of course, this principle we can now apply to every DD-type class of nonsingular

matrices, the ones we have covered in this theses, and many other which could be found

in the literature. Before we illustrate this approach on the generalized Geršgorin set, we

will give the useful concepts of the Isolation Principle and Boundedness Principle for these

approximated sets. Their proofs are obvious. First one follows form the fact that the

isolation is the property that approximations inherit, while the second one can be proved

the same way as Theorem 3.3.10, only by taking Mk to be Mk := |zk|−1T ξ
zk

(A,B).

Theorem 3.4.2. (Isolation Principle) Given a positively homogenous DD-type class of
nonsingular matrices K, and an arbitrary complex number ξ ∈ C, for any regular matrix
pair (A, B) ∈ Cn,n × Cn,n, n ≥ 2, if there exist sets U, V ⊆ C, such that U ∩ V = ∅, and

Θ̂Kξ (A,B) = U ∪ V, (3.4.3)

then, the set U contains exactly |{i ∈ N : bi,i 6= 0 and ai,ib
−1
i,i ∈ U

} | finite eigenvalues of
the pair (A,B), and, if U is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues.
Consequently, the set U contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair
(A,B).

Theorem 3.4.3. (Boundedness Principle) Given a positively homogenous SDD-type
class of matrices K, and an arbitrary complex number ξ ∈ C, for any regular matrix pair
(A,B) ∈ Cn,n × Cn,n, the following two conditions hold:

• 0 6∈ Θ̂Kξ (A, B) if and only if A ∈ K, and

• ∞ 6∈ Θ̂Kξ (A, B) if and only if B ∈ K.

Clearly, taking ξ := 0, Θ̂Kξ (A,B) = Θ̂K(A,B), so, it seems to be an interesting topic

to explore how the changes in ξ influence the form of the approximation set. Since ξ can

be any complex number, we can experiment and vary only the absolute value, and, on the

other hand, we can vary only the argument, i.e., the complex sign. In the following we

present some examples, while the general question, how to chose the parameter ξ, remains

an open problem.

For a given regular matrix pair (A,B) ∈ Cn,n × Cn,n, we define the sets

{
Γ̂ξ

i (A,B) := {z ∈ C : |zbi,i − ai,i| ≤ |z − ξ|ri(B) + ri(ξB − A)} , (i ∈ N),

Γ̂ξ(A,B) :=
⋃

i∈N Γ̂ξ
i (A,B).

(3.4.4)

Now, let, as in the previous section,

A1 =




1 0.1 0.1 0.1

0 −1 0.1 0.1

0 0 i 0.1

0.1 0 0 −i




, and B1 =




0.5 0.1 0.1 0.1

0 −1 0.1 0.1

0 0 i 0.1

0.1 0 0 −0.5i




. (3.4.5)

In Figure 3.4.1, set Γ̂ξ
i (A1, B1) is shown, for the values ξ = −2,−1.75,−0.5, . . . , 1, from

the upper left corner to the bottom right corner, respectively.
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Figure 3.4.1: The set Γ̂ξ
i (A1, B1), for the values ξ = −2,−0.75,−0.5, . . . , 1, from the upper

left corner to the bottom right corner, respectively, for the matrix pair (A1, B1) from (3.4.5)

(Skup Γ̂ξ
i (A1, B1), za vrednosti ξ = −2,−0.75,−0.5, . . . , 1, redom, od gornjeg levog ka

donjem desnom uglu, za matrični par (A1, B1) dat sa (3.4.5))
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Figure 3.4.2: The set Γ̂ξ
i (A1, B1), for the values ξ = ei 2kπ

12 , where k = 0, 1, . . . , 12, from
the upper left corner to the bottom right corner, respectively, for the matrix pair (A1, B1)
from (3.4.5)

(Skup Γ̂ξ
i (A1, B1), za vrednosti ξ = ei 2kπ

12 , gde je k = 0, 1, . . . , 12, redom, od gornjeg levog
ka donjem desnom uglu, za matrični par (A1, B1) dat sa (3.4.5))
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Figure 3.4.3: The set Θ̂Kξ (A1, B1), for the value ξ = −1, and the matrix pair (A1, B1) from
Example 3.2.4, where K is the class of doubly SDD matrices
(Skup Θ̂Kξ (A1, B1), za vrednost ξ = −1 i za matrični par (A1, B1) iz Primera 3.2.4, gde je

K klasa dvostruko SDD matrica)

In Figure 3.4.2, set Γ̂ξ
i (A1, B1) is shown, for the values ξ = ei 2kπ

12 , for k = 0, 1, . . . , 12,

from the upper left corner to the bottom right corner, respectively.

Of course, this technique can be used in all of the mentioned generalized Geršgorin-type

localizations. While omitting the details concerning their explicit form, in Figures 3.4.3 -

3.4.5 we show the possible improvements for the various localization sets for the matrices

of Examples 3.2.4, 3.3.19, and 3.3.43.
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Figure 3.4.4: The set Θ̂Kξ (A5, B5), for the value ξ = −0.5i, and the matrix pair (A5, B5)
from the Example 3.3.43, where K is S-SDD class of matrices for S = {4}
(Skup Θ̂Kξ (A5, B5), za vrednost ξ = −0.5 i za matrični par (A5, B5) iz Primera 3.3.43, gde

je K klasa S-SDD matrica za skup S = {4})



135

−1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

Figure 3.4.5: The set Θ̂Kξ (A5, B5), for the value ξ = −2, and the matrix pair (A5, B5) from
the Example 3.3.43, where K is the class of α2-SDD matrices
(Skup Θ̂Kξ (A5, B5), za vrednost ξ = −2 i za matrični par (A5, B5) iz Primera 3.3.43, gde

je K klasa α2-SDD matrica)
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3.5 Minimal Geršgorin Set for the

Generalized Eigenvalues

In the last section of this chapter we consider the generalized minimal Geršgorin set, as it

was introduced by Kostić, Cvetković and Varga in [35]. While many new concepts have

been developed in this theses for the the application of the generalized Geršgorin set, the

material that is given in [35] on the topic of minimal Geršgorin set is, more or less, self

contained, and up to date with the current knowledge. Therefore, here we give a review

of this result.

We begin, as in the previous section, with

Definition 3.5.1. The set ΓD(A,B), defined as

ΓD(A,B) := {z ∈ C : A− zB is not a nonsingular H-matrix},

is called the generalized minimal Geršgorin set of the matrix pair (A,B).

This time we have weakened the singularity property of a matrix pencil, in the point

z, to be the property that A − zB is not a nonsingular H-matrix, in order to ”enlarge”

spectrum up to the generalized minimal Geršgorin set. Since the class of nonsingular H-

matrices fulfils all the conditions to be positively homogenous SDD-type of matrices, we

can apply Theorems 3.3.1, 2.2.3 and 3.3.9.

Theorem 3.5.2. Given any regular matrix pair (A,B) ∈ Cn,n ×Cn,n, n ≥ 2, the general-
ized spectrum of the matrix pair (A,B) belongs to the generalized minimal Geršgorin set
of the matrix pair (A,B), i.e., the following inclusion holds:

σ(A,B) ⊆ ΓD(A,B). (3.5.1)

Theorem 3.5.3. Given any regular matrix pair (A,B) ∈ Cn,n×Cn,n, n ≥ 2, if there exist
sets U, V ⊆ C, such that U ∩ V = ∅, and

ΓD(A,B) = U ∪ V,

then, the set U contains exactly |{i ∈ N : bi,i 6= 0 and ai,ib
−1
i,i ∈ U

} | finite eigenvalues of
the pair (A,B) and, if U is unbounded, exactly | {i ∈ N : bi,i = 0} | infinite eigenvalues.
Consequently, the set U contains exactly |{i ∈ N : ai,ib

−1
i,i ∈ U

} | eigenvalues of the pair
(A,B).

Theorem 3.5.4. For any regular matrix pair (A,B) ∈ Cn,n × Cn,n, the following two
conditions hold:

• 0 6∈ ΓD(A,B) if and only if A is a nonsingular H-matrix, and

• ∞ 6∈ ΓD(A,B) if and only if B is a nonsingular H-matrix.
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Moreover, given a regular matrix pair (A,B) ∈ Cn,n ×Cn,n, with n ≥ 2, if there exists

i ∈ N such that bi,i = 0, then ai,i = 0 if and only if ΓD(A,B) = C∞.

In the following, we address the problem of computing and plotting the generalized

minimal Gešgorin set for a given matrix pair. First, we remark that, in the case of the

original minimal Geršgorin set, the progress has recently been made in computing its tight

approximation with an iterative approach in [52], as we have presented it in Section 2.3.

Here, we will develop an analogue of this, in the sense of our generalized minimal Geršgorin

set. Thus, we will need the necessary tools, derived from the Perron-Frobenius theory of

nonnegative matrices.

For a given matrix pencil zB − A ∈ Cn,n and a given z ∈ C, we define the matrix

Qz := −〈zB−A〉, where the comparison matrix operator 〈·〉 is defined in (1.3.2). Defining

δ(z) := max{|ai,i − zbi,i| : i ∈ N}, and putting

Pz := Qz + δ(z)I, (3.5.2)

we obtain the nonnegative matrix Pz which, by the Perron-Frobenius theory of nonnegative

matrices [3], possesses a real, nonnegative eigenvalue ρ(Pz), called the Perron root of Pz.

Now, by setting ν(A,B)(z) := ρ(Pz)− δ(z), we have, from Theorem C.2 in [51], that

ν(A,B)(z) = inf
x>0
{max

i∈N
[(Qzx)i/xi]}, (3.5.3)

or equivalently,

ν(A,B)(z) = inf
x>0
{max

i∈N
[x−1

i ·
∑

j∈N\{i}
|zbi,j − ai,j|xj − |zbi,i − ai,i|]}. (3.5.4)

Thus, the following characterization of the generalized minimal Geršgorin set holds.

Theorem 3.5.5. Given any two matrices A,B ∈ Cn,n, with n ≥ 2, then

z ∈ ΓD(A, B) if and only if ν(A,B)(z) ≥ 0. (3.5.5)

The proof of this theorem follows in the same way as in the proof of Proposition 4.3 of

[51], which characterizes the minimal Geršgorin set. In addition, following the same idea

as in (2.3.16), the real-valued complex function ν(A,B) is continuous, and the generalized

minimal Geršgorin set is a closed set in the extended complex plain C∞, so, we obtain that

z ∈ ∂ΓD(A,B) if and only if





i) ν(A,B)(z) = 0, and

ii) there exists a sequence of complex

numbers {zj}∞j=1 such that limj→∞ zj = z,

and ν(A,B)(zj) < 0 for all j ≥ 1.

(3.5.6)

This brings us, as before, to the notion of a star-shaped set, needed in the next result.

The set U ⊆ C∞ is said to be a star-shaped with a respect to a given point z0, if for

every z in U , the entire line segment between z0 and z lies in U , i.e., {αz0 + (1 − α)z :

0 ≤ α ≤ 1} ⊆ U .
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Theorem 3.5.6. For any two matrices A,B ∈ Cn,n, with n ≥ 2, such that B is a nonsin-
gular H-matrix, then

ν(A,B)(
ak,k

bk,k

) ≥ 0

for each k ∈ N . Moreover, for each k ∈ N and for each θ with 0 ≤ θ ≤ 2π, there exists an
%̂k(θ) ≥ 0 such that the entire complex interval [

ak,k

bk,k
+ teiθ]

%̂k(θ)
t=0 is contained in ΓD(A,B),

and, consequently, the set
2π⋃

θ=0

[
ak,k

bk,k

+ teiθ]
%̂k(θ)
t=0 (3.5.7)

is star-shaped subset of ΓD(A,B) with respect to the point
ak,k

bk,k
.

Proof. Since B is a nonsingular H-matrix, then, for every k ∈ N , bk,k 6= 0, and on taking
z =

ak,k

bk,k
in (3.5.4), we obtain

ν(A,B)(
ak,k

bk,k

) ≥ inf
x>0
{x−1

k ·
∑

j∈N\{k}
|ak,kbk,j

bk,k

− ak,j|xj} ≥ 0.

Thus,
ak,k

bk,k
lies in the set ΓD(A,B). Now, for a fixed θ in 0 ≤ θ ≤ 2π, consider the

ray [
ak,k

bk,k
+ teiθ], t ≥ 0. Its starting point lies in ΓD(A,B), which is, according to the

Theorem 3.5.4, a compact set in C. Thus, there exists a point
ak,k

bk,k
+ %̂k(θ)e

iθ which lies

on the boundary of the ΓD(A,B). Taking the smallest %̂k(θ) of such points we obtain a
star-shaped subset 3.5.7.

Now, for a fixed θ, with 0 ≤ θ ≤ 2π, it is interesting to note that if ν(A,B)(
ak,k

bk,k
) = 0 and

if %̂k(θ) = 0, then
ak,k

bk,k
actually lies on the boundary of ΓD(A,B). In addition, if %̂k(θ) = 0

for each θ with 0 ≤ θ ≤ 2π, then
ak,k

bk,k
is a generalized eigenvalue of the pair (A,B). This

brings us to

Theorem 3.5.7. Given two matrices A,B ∈ Cn,n, with n ≥ 2, for which there exists a
k ∈ N such that bk,k = 0, then for every sequence of complex numbers {zk}∞k=1 such that
|zk| → ∞, as k → ∞, there exists an α ≥ 0 such that ν(A,B)(zk) → α, which we, by
convention, write as ν(A,B)(∞) > 0. Moreover, if A is a nonsingular H-matrix, then, for
each θ with 0 ≤ θ ≤ 2π, there exists a %̂k(θ) > 0 such that the whole complex interval
[%̂k(θ)e

iθ + t]∞t=0 is contained in ΓD(A,B), and, consequently, the set

2π⋃

θ=0

[%̂k(θ)e
iθ + t]∞t=0 (3.5.8)

is a star-shaped subset of ΓD(A,B) with respect to ∞.

Proof. The idea of this proof is the following. For any z 6= 0 in σ(A,B), from (3.1.2) we
have that det(A− zB) = 0, from which it follows that det(B − 1

z
A) = 0. This necessarily

implies that 1
z
∈ σ(B, A). So, for a k ∈ N such that bk,k = 0 and ak,k 6= 0, we have that

the star-shaped subset of (3.5.7) for the matrix pair (B, A), corresponding to the center
bk,k

ak,k
= 0, transforms to the set (3.5.8).
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Since the generalized minimal Geršgorin set is obtained as a intersection of all ”weighted”

generalized Geršgorin sets, it is, in a sense, the minimal set that contains the general-

ized spectrum. On the other hand, we see from (3.2.4) and (3.2.5) that the generalized

Geršgorin set is defined uniquely from the following data: |ai,j|, |bi,j| and
ai,j

bi,j
, when bi,j 6= 0,

where i, j ∈ N , and thus, for every matrix pair which leaves this data set unchanged, its

generalized spectrum will be included in the same generalized Geršgorin set, and, conse-

quently, in the generalized minimal Geršgorin set.

What we are going to show here is that the generalized minimal Geršgorin set is, in

a way, the best possible localization set for such matrix pairs. We start by introducing

the equimodular set of matrix pairs Ω(A,B) and the extended equimodular set Ω̂(A,B),

Similar as in [51], Chapter 4.

Ω(A, B) := {(Ã, B̃) : |ãi,j| = |ai,j|, |b̃i,j| = |bi,j|, and if bi,j 6= 0,
ãi,j

b̃i,j

=
ai,j

bi,j

i, j ∈ N},
(3.5.9)

Ω̂(A,B) := {(Ã, B̃) : |ãi,j| ≤ |ai,j|, |b̃i,j| ≤ |bi,j|, and if bi,j 6= 0,
ãi,j

b̃i,j

=
ai,j

bi,j

i, j ∈ N}.
(3.5.10)

Now, as is natural, we take the spectrum of these sets to be the union of all the spectra

of their elements:

σ(Ω(A,B)) :=
⋃

(Ã,B̃)∈Ω(A,B)

σ(Ã, B̃), and σ(Ω̂(A,B)) :=
⋃

(Ã,B̃)∈Ω̂(A,B)

σ(Ã, B̃). (3.5.11)

It is evident from their definitions that

σ(Ω(A,B)) ⊆ σ(Ω̂(A,B)) ⊆ ΓD(A,B). (3.5.12)

How tight these inclusions are, is described by the next two theorems.

Theorem 3.5.8. For any pair of matrices (A, B) from Cn,n, and given an arbitrary z ∈ C,
such that ν(A,B)(z), of (3.5.3), satisfies ν(A,B)(z) = 0, there exists a matrix pair (Ã, B̃) ∈
Ω(A,B) such that z is a generalized eigenvalue of the matrix pair (Ã, B̃). Thus, the
following inclusions hold:

∂ΓD(A,B) ⊆ σ(Ω(A,B)) ⊆ σ(Ω̂(A,B)) ⊆ ΓD(A,B). (3.5.13)

Proof. Let z ∈ C be such that ν(A,B)(z) = 0. Then, from the facts leading to (3.5.4), we
have that there exists a nonzero y = [y1, y2, . . . , yn]T , with y ≥ 0, such that Qzy = 0,
or, equivalently,

∑

j∈N\{k}
|bk,jz − ak,j|yj = |bk,kz − ak,k|yk, for all k ∈ N,
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which, according to (3.2.4) and (3.2.5), for every k ∈ N can be written as

∑

j∈β(k)\{k}
|z − ak,j

bk,j

||bk,j|yj +
∑

j∈β(k)\{k}
|ak,j|yj = |z − ak,k

bk,k

||bk,k|yk, when k ∈ β(k) (3.5.14)

or ∑

j∈β(k)

|z − ak,j

bk,j

||bk,j|yj +
∑

j∈β(k)\{k}
|ak,j|yj = |ak,k|yk, otherwise. (3.5.15)

Now, let the real numbers {φk,j}n
k,j=1 satisfy

|z − ak,j

bk,j

| = (z − ak,j

bk,j

)eiφk,j , (3.5.16)

for each k ∈ N and each j ∈ β(k). Having these numbers, we define the matrices Ã = [ãk,j]
and B̃ = [b̃k,j], both in Cn,n, by means of

ãk,j :=

{
ak,jb

−1
k,j|bk,j|eiφk,j , j ∈ β(k),

|ak,j|, j ∈ β(k),
(3.5.17)

and

b̃k,j :=

{ |bk,j|eiφk,j , j ∈ β(k),

0, j ∈ β(k),
(3.5.18)

where j, k ∈ N . After a closer look, we can see that (Ã, B̃) ∈ Ω(A,B), so that from
(3.5.14) and (3.5.15) respectively, it follows that

∑

j∈β(k)\{k}
(z − ãk,j

b̃k,j

)b̃k,jyj +
∑

j∈β(k)\{k}
ãk,jyj = (z − ãk,k

b̃k,k

)b̃k,kyk, when k ∈ β(k),

and ∑

j∈β(k)

(z − ãk,j

b̃k,j

)b̃k,jyj +
∑

j∈β(k)\{k}
ãk,jyj = ãk,kyk, otherwise.

This leads us to the conclusion that (A − zB)y = 0, i.e., Ay = zBy. Thus, z is a
(generalized) eigenvalue of a matrix pair (Ã, B̃), and consequently, from (3.5.11), z ∈
σ(Ω(A, B)).

As the first inequalities in (3.5.12) and (3.5.13) turn out to be equalities for the usual

minimal Geršgorin sets (see Theorem 4.5 of [51]), the same is true here.

Theorem 3.5.9. For any pair of matrices (A,B) from Cn,n,

σ(Ω̂(A, B)) = ΓD(A,B). (3.5.19)

Proof. Let z be any point of ΓD(A,B). Then, ν(A,B)(z) ≥ 0, and, from (3.5.3), there exists
a nonzero vector y ∈ Rn, with y ≥ 0, such that Qzy = ν(A,B)(z)y. Writing the last
expression by components, we have

∑

j∈N\{k}
|bk,jz − ak,j|yj = (|bk,kz − ak,k|+ ν(A,B)(z))yk, for all k ∈ N. (3.5.20)
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Now, we define real numbers {δk}n
k=1 as

δk :=

{ ∑
j∈N\{k} |bk,jz−ak,j |yj−ν(A,B)(z)yk∑

j∈N\{k} |bk,jz−ak,j |yj
, if

∑
j∈N\{k} |bk,jz − ak,j|yj > 0,

1, if
∑

j∈N\{k} |bk,jz − ak,j|yj = 0.
(3.5.21)

Obviously, from (3.5.20), (3.5.21), and the fact that ν(A,B)(z)yk ≥ 0 for each k ∈ N , it

follows that 0 ≤ δk ≤ 1, and we can construct matrices Ã = [ãjk] and B̃ = [b̃jk] such that

(Ã, B̃) ∈ Ω̂(A,B), in the following way: for all k ∈ N , ãk,k = ak,k and b̃k,k = bk,k, while for
every j ∈ N \ {k}, ãk,j = δkak,j and b̃k,j = δkbk,j.

Now, it is readily verified that

|b̃k,kz − ãk,k|yk = |bk,kz − ak,k|yk =
∑

j∈N\{k}
|bk,jz − ak,j|yj − ν(A,B)(z)yk =

δk

∑

j∈N\{k}
|bk,jz − ak,j|yj =

∑

j∈N\{k}
|b̃k,jz − ãk,j|yj, for all k ∈ N,

which is the same as the starting point of the proof of Theorem 3.5.8. As before, we can
proceed and obtain the pair of matrices (Â, B̂) ∈ Ω(Ã, B̃), such that z ∈ σ(Â, B̂). Similar,

it follows that z ∈ Ω̂(A,B), which completes the proof.

Finally, we approach the problem of graphing the generalized minimal Geršgorin set.

Having the properties given above, this problem becomes the problem of graphing the

subset of C∞, for which the function ν(A,B)(z) is nonnegative. In order to resolve this

problem, we need to find a way to compute the value of the function ν(A,B)(z), for different

values of z. Using the concept of irreducibility, we have the following result.

Theorem 3.5.10. Given matrices A,B ∈ Cn,n with n ≥ 2, let the matrix pencil A− zB,
at the point z ∈ C, be irreducible. Then, for each x > 0 in Rn, either

min
i∈N

{(Qzx
)

i
/xi} < ν(A,B)(z) < max

i∈N
{(Qzx

)
i
/xi}, (3.5.22)

or
Qzx = ν(A,B)(z)x. (3.5.23)

As (3.5.22) and (3.5.23) suggest, we can use the power method as a tool to compute

the eigenvalue ν(A,B)(z). We start with the nonnegative matrix Pz, given in (3.5.2), which

we assume to be irreducible. Then, either Pz is primitive or it can be shifted to a primitive

matrix Pz + εI, ε > 0, (see Section 2.2 of [48]). Thus, either way, we can apply power

iterations to compute ρ(Pz).

Starting with an x(0) > 0 in Rn, the power iteration gives convergent upper and

lower estimates for ρ(Pz), i.e., if x(m) := Pm
z x(0) for all m ≥ 1, then with x(m) :=

[x
(m)
1 , x

(m)
2 , ..., x

(m)
n ]T , we have that

λm := min
i∈N

{x
(m+1)
i

x
(m)
i

} ≤ ρ(Pz) ≤ max
i∈N

{x
(m+1)
i

x
(m)
i

} =: λm (3.5.24)

for all m ≥ 1, and
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lim
m→∞

λm = ρ(Pz) = lim
m→∞

λm. (3.5.25)

Thus,

λm − δ(z) ≤ ν(A,B)(z) ≤ λm − δ(z).

It is important to say that, from (3.5.24), we do not need to find the value of ν(A,B)(z)

with great accuracy, and it is sufficient to iterate, until either one of the next two conditions

is fulfilled:

1. λm > δ(z), implying that ν(A,B)(z) > 0 and, thus, z ∈ ΓD(A, B), or

2. λm < δ(z), implying that ν(A,B)(z) < 0 and, thus, z ∈ C∞ \ ΓD(A,B).

If neither one is fulfilled until we achieve a certain accuracy ε > 0, i.e., λm − λm < ε,

we conclude that z lies in the ε-neighborhood of a boundary point of ΓD(A,B).

So, the simplest way to plot an approximation of the generalized minimal Geršgorin set

ΓD(A,B) is to introduce the coarse grid, say nx × ny, of the [−L,L]2 ⊂ C, for sufficiently

large L > 0. For this grid, we will have nxny complex nodes, and we determine for each

node either to ”color” it or not. Namely, each of them will be either ”colored” to be in the

ΓD(A,B), if either λm > δ(z) (case 1.) or λm − λm < ε, where ε represents the coarseness

of the grid. If λm < δ(z) (case 2.) occurs, the point is left ”uncolored”, as it is in the

exterior of the ΓD(A,B).

Example 3.5.11. Let

A6 =




1 1 0 0.5
0 −1 0.5 0
0 0 i 1
1 0 0 −i


 , B6 =




1 1 0 0
0 1 1 0
0 0 1 1

0.5 0 0 1




A7 =




0.5 0 0 0.3
0 0.5 0.1 0
0 0 0.7 0.1

1.2 0 0 0.7


 , and B7 =




1 1 0 1
0 −1 1 0
0 0 i 1
2 0 0 −2i


 .

Generalized minimal Geršgorin sets of the matrix pairs (A1, B1), (A2, B2) and (A1, A2),
of the Example 3.2.4, are shown in Figures 3.5.1 - 3.5.3, and the generalized minimal
Geršgorin sets of the matrix pairs (A3, B3), of the Example 3.3.14, (A4, B4), of the Example
3.3.19, (A5, B5), of the Example 3.3.43, (A6, B6) and (A7, B7), of the Example 3.5.11, are
shown in Figures 3.5.4-3.5.8, respectively. The eigenvalues are, as always marked by ”×”.
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Figure 3.5.1: Generalized minimal Geršgorin set ΓD(A1, B1) of the matrix pair (A1, B1) of
Example 3.2.4

(Generalizovani minimalni Geršgorinov skup ΓD(A1, B1) za matrični par (A1, B1) iz
Primera 3.2.4)



145

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.5.2: Generalized minimal Geršgorin set ΓD(A2, B2) of the matrix pair (A2, B2) of
Example 3.2.4

(Generalizovani minimalni Geršgorinov skup ΓD(A2, B2) za matrični par (A2, B2) iz
Primera 3.2.4)
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Figure 3.5.3: Generalized minimal Geršgorin set ΓD(A1, A2) of the matrix pair (A1, A2) of
Example 3.2.4

(Generalizovani minimalni Geršgorinov skup ΓD(A1, A2) za matrični par (A1, A2) iz
Primera 3.2.4)
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Figure 3.5.4: Generalized minimal Geršgorin set ΓD(A3, B3) of the matrix pair (A3, B3) of
Example 3.3.14

(Generalizovani minimalni Geršgorinov skup ΓD(A3, B3) za matrični par (A3, B3) iz
Primera 3.3.14)
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Figure 3.5.5: Generalized minimal Geršgorin set ΓD(A4, B4) of the matrix pair (A4, B4) of
Example 3.3.19

(Generalizovani minimalni Geršgorinov skup ΓD(A4, B4) za matrični par (A4, B4) iz
Primera 3.3.19)
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Figure 3.5.6: Generalized minimal Geršgorin set ΓD(A5, B5) of the matrix pair (A5, B5) of
Example 3.3.43

(Generalizovani minimalni Geršgorinov skup ΓD(A5, B5) za matrični par (A5, B5) iz
Primera 3.3.43)
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Figure 3.5.7: Generalized minimal Geršgorin set ΓD(A6, B6) of the matrix pair (A6, B6) of
Example 3.5.11

(Generalizovani minimalni Geršgorinov skup ΓD(A6, B6) za matrični par (A6, B6) iz
Primera 3.5.11)
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Figure 3.5.8: Generalized minimal Geršgorin set ΓD(A7, B7) of the matrix pair (A7, B7) of
Example 3.5.11

(Generalizovani minimalni Geršgorinov skup ΓD(A7, B7) za matrični par (A7, B7) iz
Primera 3.5.11)
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Another way to plot the generalized minimal Geršgorin set is to compute its approxi-

mation. A way to do it is a modification of the approach presented in the Subsection 2.3.2.

This approach could be useful here if H-matrices are involved, since the result of Theorem

3.5.6 gives the main motivation.

Namely, we are interested in determining the approximations of the star-shaped subsets

(3.5.7) and (3.5.8) of the generalized minimal Geršgorin set. Thus, assuming that B is a

nonsingular H-matrix, and that A− zB is an irreducible matrix for each z ∈ C, we start

by fixing an index k ∈ N , and the corresponding center
ak,k

bk,k
of the star-shaped subset of

(3.5.7). For each θ ∈ [0, 2π], since ν(A,B)(
ak,k

bk,k
) > 0, we can, with a few trial steps, find ∆,

∆ > 0, such that ν(A,B)(
ak,k

bk,k
+ ∆) < 0. Then, we can apply the bisection search to the

interval [
ak,k

bk,k
,

ak,k

bk,k
+ ∆] to determine %̂k(θ). As a result, we have approximated boundary

point
ak,k

bk,k
+ %̂k(θ)e

iθ of the generalized minimal Geršgorin set.

Finally, moving the angles θ ∈ [0, 2π], we obtain the approximation of the set of (3.5.7).



Chapter 4

Application of Generalized Diagonal
Dominance in Wireless Sensor
Network Optimization Problems

In this chapter we present the recent application of diagonal dominance in the development

of the optimization algorithms in the wireless sensor networks design, done by J. Yuan and

W. Yu in [55], extended in [54], and surveyed in [37]. In their work, authors address the

cross-layer optimization problem, that can be decomposed into two subproblems, each

corresponding to a separate layer of the overall system (the physical, and the application

layer). In order to solve the nonconvex and nonlinear source coding subproblem at the

application layer, and the power-allocation subproblem at the physical layer, both in a

distributed manner, theory of noncooperative games was used. In that setting, under cer-

tain conditions, solutions to both subproblems were obtained as unique and stabile Nash

equilibria. The physical-layer power-allocation subproblem is modeled as a power control

game, and an iterative algorithm is designed that converges to the desirable solution un-

der the assumption that the certain matrix is strictly diagonally dominant. Here, we will

first use generalized diagonal dominance, to improve obtained result on the existence and

uniqueness of the Nash equilibrium, and briefly discuss the applicability of such improve-

ment. Then, using the theory of iterative methods for solving systems of linear equations,

we will introduce new techniques for the power control algorithm, and prove that they

globally converge to asymptotically stable unique Nash equilibrium of the observed power

control game.

Wireless sensor networks have a wide range of applications, such as military security,

traffic control, and environmental monitoring. A sensor network consists of a large number

of sensors, deployed in a field. Each sensor makes a local observation of some underlying

physical phenomenon, quantizes its observation, and transfers the data back to a cen-

tral estimation office (i.e., CEO). Due to the limited transmission power, sensors that are

far away from the CEO, deliver their quantization data through a multi-hop network, as

shown in Figure 4.0.1. The goal of the sensor network design is to measure and estimate

the underlying physical phenomenon, as accurately as possible, under the network resource

limitation. Therefore, the sensor network problem is an optimization problem, in which

153
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Figure 4.0.1: Wireless sensor network with one CEO
(Bežična senzor mreža sa jednim CEO)

the objective is to the minimize the overall distortion, i.e., the difference between the true

underlying field and its estimation at the CEO. But, due to the partial observation at

each sensor, the overall estimation error at CEO is a coupled and nonseparable function

of all sensors’s data rates. In addition, due to the shared nature of the wireless medium,

geographically close transmissions often interfere with each other. Thus, in order to man-

age the above issues, one should consider the fundamental performance limits of sensor

networks.

In [55], the authors adopted a separate source-channel coding model and used infor-

mation theoretical concepts, such as rate-distortion region and capacity region, to explore

the fundamental tradeoffs in wireless sensor network design.

They used the set of dual variables to coordinate the interaction between the layers,

and they decomposed the overall network optimization problem in the dual domain into

two disjoint subproblems: a power control subproblem at the physical layer, and a source

coding subproblem at the application layer. Both subproblems are, inherently, nonlinear

and nonconvex, and, hence, difficult to solve. And, additionally, since the realistic sensor

network deployment often encounters significant variations in source statistics and physical

layer channel characteristics, real-time and distributed solving algorithms are needed.

Although in [55] a game-theoretic approach was used to solve two subproblems, we will

focus only to the physical layer, and the algorithm used for the solution of the correspond-

ing optimization subproblem.

We start with some preliminaries. Since wireless ad hoc network is characterized by a

distributed, dynamic, self-organizing architecture, each node in the network is capable of

independently adapting its operation based on the current environment, and according to

predetermined algorithms and protocols. Therefore, due to the distributed and dynamic

nature of ad hoc networks, the analytical models to evaluate their performance have been

infrequent.

Game theory offers a suite of tools that may be used effectively in modeling the

interaction among independent nodes in an ad-hoc network, [37]. It is a field of applied

mathematics that describes and analyzes interactive decision situations. It provides ana-

lytical tools to predict the outcome of complex interactions among rational entities. The
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entities are rational in a way that they have a strict strategy, based on perceived or mea-

sured results. The main areas of the application of game theory are economics, political

science, biology and sociology. From the early 1990s, engineering and computer science

have been added to this list.

A game has three components: a set of players, a set of possible actions for each

player, and a set of strategies. A player’s strategy is a complete plan of actions to be

taken, when the game is actually played. In a game, players can act selfishly to maximize

their gains, and, hence, a distributed strategy for players can provide an optimized solution

to the game. In any game, utility represents the motivation of players. A utility function

describes the players preferences for a given action. It assigns a number for every possible

outcome of the game, and it has the property that a higher number implies the outcome

that is more preferred. The payoff function is the utility function minus the penalty

price, also called a tax, that a player has to pay for each action. A Nash equilibrium

is a set of actions of the players, such that any other action, chosen by a single player,

results in less favorable utility for every player in a game.

The game formulation that we will use here is non-cooperative game, a game where

players act selfishly, to maximize their individual payoffs in a distributed decision-making

environment. This is in contrast to a cooperative game where players agree on pre-

mediated strategies to maximize their payoffs.

In a wireless sensor network, the design goal is to minimize the total distortion, by

jointly optimizing source coding and power allocation, which can be formulated as follows:

minimize αT d

subject to s ∈ R(d), c ∈ C(p), Ac ≥ s
(4.0.1)

where α is a vector, representing the relative emphasis on different elements of the distor-

tion vector d; s is a set of source rates at each node; c is a set of link capacities; and p

is the power consumption vector. R(d) is a fundamental concept in source coding, called

the rate-distortion region. The constraint s ∈ R(d) models the inter-dependence of the

distortion on the source rates. C(p) is a fundamental concept in channel coding, called the

capacity region. The constraint c ∈ C(p) models the inter-dependence of the link capacity

vector on the power consumption. The last inequality Ac ≥ s reflects the fact that the

source rate at each node must be less than the link capacity support. Here, A is an m×n

node-incident matrix with m nodes and n links, which, using the multi-commodity flow

routing model, [4], can be characterized with:

ai,j =





1, if i is a starting node for the link j,

−1, if i is an end node for the link j,

0, otherwise.

(4.0.2)

Applying the dual decomposition technique, [55], the joint optimization problem (4.0.1)

can be, further, decoupled into two distinct subproblems. A power control subproblem at
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the physical layer:

maximize µT c

subject to c ∈ C(p),
(4.0.3)

and a source coding subproblem at the application layer:

minimize αT d + λT s

subject to s ∈ R(d),
(4.0.4)

where µ is related to the dual variable λ by the link price consistency equations µT = λT A.

The Lagrange multipliers λ and µ have the interpretation of being the shadow prices

coordinating the application layer demand and the physical layer supply.

Now, using the game theory setup, we address the physical layer subproblem that con-

cerns the transmission interference among nearby sensors. Interference management is one

of the main challenges in the physical layer design of wireless networks. A key concept at

the physical layer is the achievable capacity region, which characterizes a tradeoff between

achievable capacities at different links. We consider a network, where, for every link i ∈ N ,

gi,i, pi, and ξi are the link gain, the power action, and the noise of the link, respec-

tively. By gi,j we denote the gain of the interference from link j to link i. The values of

the gain matrix G = [gi,j] ∈ Rn,n and the noise vector ξ are generally obtained through

some estimation techniques, and they characterize the channel1 statistics. Further, we

assume that each node has a certain power budget, such that the power action of the link

i is limited by pmax
i , i.e., p ≤ pmax := [pmax

1 , pmax
2 , . . . , pmax

n ]T . Thus, the power control

subproblem (4.0.3) with a physical-layer interference model may be formulated as:

find 0 ≤ p ≤ pmax that maximizes
∑

i∈N µici,

where ci := log(1 + SINRi),

SINRi =
gi,ipi∑

j∈N\{i} gi,jpj + ξi

,

(4.0.5)

where ci is the capacity of the link i ∈ N , and SINRi is its signal to interference

and noise ratio. Because of the interference, the power control subproblem (4.0.5) is a

nonconvex optimization problem that is inherently difficult to solve. We use game theory

to approach this problem iteratively, and to solve it. In a power control game that is

defined in the sequel, each link is modeled as a player with an aim of maximizing its payoff

function. In the conventional game theoretic approaches, each link uses its own achievable

rate as the payoff function. Competitive equilibria in such a game may not correspond to

desirable operating points, especially when the interference level is high. Thus, the payoff

function proposed in [55] is such that each player’s (i.e. link’s) payoff includes not only

its achievable rate, but also the interference effect to other links. So, a tax mechanism

was introduced into the game, so that the players will have an incentive to intelligently

1For simplicity, we consider the case when each link has one channel. The realistic case can be modeled
in the same way.
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avoid interference, by keeping the signal to interference and noise ratio as high as possible,

while at the same time tending to minimize the overall power usage. Mathematically,

such a power control game consists from the i-th player strategy to maximize its payoff

function Qi, while paying the tax rate ti, and performing the action pi. It can be can be

expressed as follows:

maximize Qi := µi log
(
1 +

gi,ipi∑
j∈N\{i} gi,jpj + ξi

)− tipi,

by changing 0 ≤ pi ≤ pmax
i ,

(4.0.6)

where the tax rate for the link i ∈ N , that was proposed in [55], is the rate at which other

users’ achievable data rates decrease, with an additional amount of power of the link i,

i.e.,

ti := |∂
∑

j∈N\{i} µjcj

∂pi

∣∣ =
∑

k∈N\{i}

µkgk,igk,kpk

(gk,kpk +
∑

j∈N\{k} gk,jpj + ξk)(
∑

j∈N\{k} gk,jpj + ξk)
.

(4.0.7)

Here, the more power link i uses, the more interference it will produce to others, and,

therefore, more tax (i.e., tipi) it has to pay.

The power vector p that solves the optimization problem (4.0.5) is, exactly, the Nash

equilibrium of the power control game (4.0.6). Since, in general, not every game has a

Nash equilibrium, and neither is the equilibrium necessarily stable, at first, the goal is to

prove the existence, uniqueness and stability of the Nash equilibrium for the power control

game. Then, the aim is to design a distributed iterative algorithm that will converge to

that equilibrium. In [55], a power control game algorithm is proposed. It consists of two

phases: the power update, and the tax update. The power update is based upon the fact

that, at each step, every player i ∈ N tries to maximize its own payoff Qi, while assuming

that the power levels of all other players and the taxes are fixed. The expression for such

an optimal p∗i is, then, obtained by setting the derivative Qi with respect to pi to zero, i.e.,
∂Qi

∂pi
= 0, and it is called the best response function of the player i, denoted by Bi(p).

In such a way we have obtained a locally optimal power vector p∗, with the property that

for every i ∈ N , p∗i strikes a balance between maximizing its own rate and minimizing

its interference to other links (which is taken into account via ti). For example, a large

value of tax rate ti indicates that the link i is producing severe interference to other links.

This is reflected in the power update, as the larger ti leads to a lower pi. Although each

player appears to be selfish in maximizing only its own payoff, since the payoff function

incorporates social welfare, the Nash equilibrium of this game is, in fact, a cooperative

social optimum.

Therefore, calculating the locally optimal power vector p∗ consists in solving the sys-

tem of equations ∂Qi

∂pi
= 0, for i ∈ N , which can be expressed in an equivalent form as

p = B(p) := [B1(p), B2(p), . . . , Bn(p)]T . Thus, p∗ can be seen as a fixed point of the best

response vector function. This approach was used in [55] to obtain the existence, unique-

ness and the dynamical stability of the power control game. Here, we will write the system
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∂Qi

∂pi
= 0, for i ∈ N , in a matrix form:

Gp = DGD−1
t µ− ξ, (4.0.8)

where G = [gi,j] ∈ Rn,n is the gain matrix of the links in the wireless network, DG :=

diag(g1,1, g2,2, . . . , gn,n) its diagonal part, Dt := diag(t1, t2, . . . , tn) diagonal matrix of the

tax rates, ξ ∈ Rn the noise vector, and µ ∈ Rn is the vector of dual variables. This

formulation of the problem will alow us to generalize the work of Yuan and Yu, as it will

be shortly presented.

Once locally optimal power vector is obtained, the algorithm proceeds with the tax rate

update, using the formula (4.0.7). As it was given in [55], tax rate can be expressed through

the signal to noise ratios in the form that is convenient for the distributed implementation.

Here distributed implementation signifies that the tax rate update is directly calculated

from the information that is received through each individual link. Namely,

ti =
∑

j∈N\{i}
gi,jbj, (i ∈ N) (4.0.9)

where

bi = µi
SINRi

gi,ipi

SINRi

1 + SINRi

, (4.0.10)

is the broadcast message of the link i ∈ N .

Although it is clear that the tax rate vector t is calculated from the actual power vector

p, in each power update step this vector is fixed, and therefore the system (4.0.8) is the

system of linear equations with the system matrix G.

Now we give the general framework for the power control game algorithm:

Power Control Game Algorithm

1. Initialize p(0) and t(0), and set l = 0.

2. Iteratively determine p∗, such that

Gp = DGD−1
t(l)

µ− ξ,

where Dt(l) := diag(t
(l)
1 , t

(l)
2 , . . . , t

(l)
n ), and set p(l+1) := p∗.

3. For each link i ∈ N , calculate signal to noise ratio

SINR
(l+1)
i =

gi,ip
(l+1)
i∑

j∈N\{i} gi,jp
(l+1)
j + ξi

,

and the broadcast message

b
(l+1)
i = µi

SINR
(l+1)
i

gi,ip
(l+1)
i

SINR
(l+1)
i

1 + SINR
(l+1)
i

.
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4. For each link i ∈ N , update the tax rate

t
(l+1)
i =

∑

j∈N\{i}
gi,jb

(l+1)
j

5. Set l := l + 1, and return to step 2. until convergence.

In [55], one of the main results is that, under the condition that the gain matrix G is

an SDD matrix, the power control game is asymptotically stable, and it (more precisely,

its power control game algorithm) always converges to the unique Nash equilibrium. But,

through the simulations, the authors have noticed that, even if this condition is not sat-

isfied, the power control game could converge nicely. Namely, although it may seem as a

natural condition, SDD property of the overall gain matrix G could be ruined, due to the

stronger interferences inherent to the link topology, or to the state of the medium, through

which the carrier wave is propagated. But, sometimes, while the augmented interference

rates, that come from the specific links, are such that, for some link i ∈ N , the link gain gi,i

is dominated by the interferences from other links
∑

j∈N\{i} gi,j, these interferences will not

cross the point at which the power control algorithm fails. Therefore, a natural question

is whether we can improve our theoretical results, in order to guarantee the convergence

and the stability of the power control game, and its iterative procedure, in wider range of

real situations.

As we have seen in the previous chapters, the ”core” properties that have strictly

diagonally dominant matrices can be obtained by the use of the generalized diagonally

dominant matrices, where the problem of determining if the given matrix has desired

property could be solved through the use of the numerous subclasses of H-matrices. So,

here we formulate the generalization of the Yuan-You’s theorem on the stability and the

convergence of the power control game.

Theorem 4.0.12. Given a wireless sensor network with certain link topology, let G =
[gi,j] ∈ Rn,n, G ≥ O, be the overall gain matrix, and ξ ∈ Rn, ξ ≥ 0, the overall link noise
vector. If G is a generalized diagonally dominant matrix, then the power control game,
given by (4.0.6), where the tax rate vector t is defined by (4.0.7), has a unique stable Nash
equilibrium p∗. Moreover, the game is asymptotically stable, and the power control game
algorithm converges to p∗, for each starting nonnegative vectors p(0), t(0) ∈ Rn.

Proof. First, for every i ∈ N , the payoff function Qi, given in (4.0.6), of the link (player)
i is continuous in p, and strictly concave in pi (which can be verified by computing its
Hessian). Hence, since the i-th link action profile [0, pmax

i ] is a compact convex set, by
Theorem 4.3 in [1], it follows that the power control game has at least one pure Nash
equilibrium, which can be found as an intersection point of the reaction curves of all the
players. Namely, if by p∗ we denote Nash equilibrium of the game (4.0.6), p∗ satisfies
the system of linear equations (4.0.8), i.e., Gp∗ = DGD−1

t µ− ξ. But, since G is the GDD
matrix, it is nonsingular, and, thus, p∗ = G−1(DGD−1

t µ−ξ) is the unique Nash equilibrium
of the power control game (4.0.6).
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In order to prove that this (local) Nash equilibrium is stable, as in [55], we prove the
asymptotic stability of the game (4.0.6). We will use the concept of the best response

function B(p), and the dynamic stability matrix ∆ := [∆i,j], where ∆i,j := ∂Bi(p)
∂pj

, for

i, j ∈ N . According to [24], the game is asymptotically stable if all the eigenvalues of the
dynamic stability matrix lie in the unit circle, i.e., if ρ(∆) < 1.

In our case, for i ∈ N , the best response of the link i is:

Bi(p) =
µi

ti
− 1

gi,i

( ∑

j∈N\{i}
gi,jpj + ξi

)
,

and, thus,

∆i, j =
∂Bi(p)

∂pj

= −gi,j

gi,i

,

for j ∈ N \ {i}, while ∆i,i = 0.
Now, since G ≥ O is a GDD matrix, there exists a matrix X = diag(x1, x2, . . . , xn) ∈ D,

such that GX is an SDD matrix, i.e.,

gi,ixi >
∑

j∈N\{i}
gi,jxj, (i ∈ N),

or, equivalently,

rx
i (∆) =

∑

j∈N\{i}

gi,jxj

gi,ixi

< 1, (i ∈ N),

where rx
i (∆) is defined in 2.1.7.

On the other hand, by the Corollary 2.1.5,

σ(∆) ⊆ ΓX(∆) := Γ(X−1∆X) =
⋃
i∈N

Γi(X
−1∆X).

So, for every eigenvalue λ ∈ σ(∆), there exists i ∈ N , such that

|λ−∆i,i| ≤ rx
i (∆),

and consequently |λ| < 1. To complete the proof, we observe that the sequence of tax
rates is convergent, and therefore, the power control algorithm converges for every starting
vectors p(0), t(0) ∈ Rn.

A simple corollary of the previous theorem is the following one.

Corollary 4.0.13. Given any nonsingular DD-type class of matrices K, and the wireless
sensor network with the prescribed link topology, let G = [gi,j] ∈ Rn,n, G ≥ O, be the
overall gain matrix, and ξ ∈ Rn, ξ ≥ 0, be the overall link noise vector. If G ∈ K, then
the power control game, given by (4.0.6), where the tax rate vector t is defined by (4.0.7),
has a unique stable Nash equilibrium p∗. Moreover, the game is asymptotically stable, and
the power control game algorithm converges to p∗, for each starting nonnegative vectors
p(0), t(0) ∈ Rn.
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As we have seen throughout the first chapter of this thesis, there are quite a few

subclasses of H-matrices that are significantly wider that the SDD class of matrices. Thus,

the improvement we have made by the Theorem 4.0.12 opens a new possibilities of different

network setups, for which we can guarantee that the solution of the power control game,

and, thus, of the optimization problem, is approximated by the iterative algorithm. To

check whether the obtained sufficient conditions are fulfilled, according to the Corollary

4.0.13, we can use Theorems 1.2.1, 1.2.6, 1.2.13, 1.2.21 or 1.2.22, of this thesis, as well as

as many different results on subclasses of H-matrices that could be found in the literature,

[13, 28, 29, 30, 33, 51].

It is interesting to note that the topology of the wireless network can lead to a specific

structure of the matrix G. Namely, knowing that the interferences between the links

occur if the links are ”close” to each other, for certain network topologies we can have

specific patterns of matrix entries. Therefore, matrix properties, like block forms and

reducibility, could be used, in order to obtain different improvements in modeling wireless

sensor networks.

Another interesting application of the generalized diagonal dominance lies in the usage

of S-SDD matrices, of Theorem 1.2.13, and the underlying scaling technique. Namely, if

the overall gain matrix G is an SDD matrix, it is an S-SDD matrix, too, for an arbitrary set

of links S ⊆ N . Therefore, we can use the information contained in the adequate scaling

matrix X ∈ XS, in order to introduce more freedom in the management of the power

resources. Namely, given the multi-hop wireless sensor network with the SDD overall gain

matrix G, assume that several nodes work with the severe power constraints, but due to

the their location in the network topology, they have to be deployed for measuring and/or

transmitting. In this case, we would like to prolong the life time of such relays, and the

overall optimization of such network should additionally minimize the power action of such

links, while achieving the Nash equilibrium of the power control game, which maximizes

the overall network capacity. To address this issue, we will use the scaling technique

developed in the Section 1.4 of this thesis.

First, let M0 be the set of nodes that are having restrictive power consumption. Having

the node-link incidence matrix A = [ai,j], given by (4.0.2), we define the set of power

restricted links L := {j ∈ N : ai,j 6= 1, i ∈ M0}. Since the gain matrix G is an SDD

matrix, then it is also an S-SDD, where S = L, i.e., meaning that for each i ∈ L, and

every j ∈ L := N \ L,

(gi,i − rL
i (G))(gj,j − rL

j (G)) > rL
i (G)rL

j (G), and

gi,i > rL
i (G),

where rL
i (A) :=

∑
j∈L\{i} gi,j. But, using the quantities αL(G) and βL(G), as defined in

(1.4.13), we can see that

0 ≤ αL(G) := min
i∈L

rL
i (G)

(gi,i − rL
i (G))

< 1 < max
j∈L, rL

j (G)6=0

gj,j − rL
j (G)

rL
j (G)

=: βL(G),
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and that for each γ ∈ (αL(G), βL(G)), the matrix G̃ := GX is SDD, where X =

diag(x1, x2, . . . , xn), with

xj =

{
γ, if j ∈ L

1, otherwise.

Thus, by setting p̃i := pi

xi
, for i ∈ N , the power control game (4.0.6) becomes

maximize Qi := µi log
(
1 +

g̃i,ip̃i∑
j∈N\{i} g̃i,j p̃j+ξi

)− t̃ip̃i,

by changing 0 ≤ p̃i ≤ pmax
i ,

(4.0.11)

where the tax rate t̃i := tixi, for each link i ∈ N , satisfies

t̃i :=
∑

k∈N\{i}

µkg̃k,ig̃k,kp̃k

(g̃k,kp̃k +
∑

j∈N\{k} g̃k,j p̃j + ξk)(
∑

j∈N\{k} g̃k,j p̃j + ξk)
. (4.0.12)

Now, having that the matrix G̃ is SDD, using the Theorem 4.0.12, we have that the

game (4.0.11) is asymptotically stable, and we obtain the unique Nash equilibrium p̃∗ that

satisfies the equality p̃∗ = X−1p∗. Thus,

p̃∗i =

{
γ−1p∗i , if i ∈ L

p∗i , otherwise.

The obtained relation shows the connection between the originally obtained vector of

the link power action that is Nash equilibrium of the power control game, and the the new

one. Since the links i ∈ L are such that it is desirable to have as small as possible power

action, we wish to adjust the parameter γ to be bigger than 1, and as big as possible. But,

since we have that 1 < βL(G), by choosing 1 < γ < βL(G) to be sufficiently close to the

value of βL(G), for each i ∈ L, we have that p̃∗i < p∗i , while, for i ∈ L, p̃∗i = p∗i . Therefore,

we have obtained the unique Nash equilibrium that better suites the power constraints of

the given wireless sensor network.

In the sequel, we focus on the power control algorithm (briefly PCA), and we are inter-

ested to improve its convergence speed. Since one part of the overall energy consumption in

wireless sensor network is spent in calculation, used to implement the PCA, the complexity

of calculation, and the speed of convergence are issues that should be treated. We start

with the observation that PCA consists of the inner iteration and outer iteration. The

inner iteration is the power allocation vector update (step 2.), performed at each step l.

The outer iteration consists of the tax rate update through broadcast message vector. The

original algorithm that was given in [55], in step 2. of PCA performed, at each link, a fixed

point iteration, using the best response function of the concerned link. Namely, the given

inner iterative procedure is given by p(k+1) := B(p(k)) = [B1(p
(k)), B2(p

(k)), . . . , Bn(p(k))]T ,

for any p(0), and all l ∈ N. Equivalently, this can be written as:

p
(k+1)
i := µi

t
(l)
i

− 1
gi,i

( ∑
j∈N\{i} gi,jp

(k)
j + ξi

)
, (i ∈ N) (k ∈ N), (4.0.13)
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where p(0) is arbitrary. When, at some step k0, the iterative approximation is satisfactory,

the link power allocation at that step is, then, forwarded to the outer iteration, i.e., to the

tax rate update. The convergence of this procedure was obtained through the argument

that the best response function of the link i is a contraction. The described procedure

can be seen as distributed one, meaning that the power update for link i is obtained by

the calculation that can be implemented using exclusively the information that link i is

capable to measure. Therefore, each link is capable to make its own power update, using

the actual power consumption vector of the overall network. The similar argument stands

for the tax rate update, too. Finally, under the assumption that the gain matrix is SDD,

the authors proved the asymptotic convergence of the game, and, thus, the convergence of

PCA.

Here we will address only the inner iteration. We propose new iterative procedures,

discuss their implementation and convergence. The main idea is based upon the fact that

the locally optimal equilibrium p∗ can be obtained as the solution of the linear system

(4.0.8). Under the assumption that the overall gain matrix is an H-matrix, in the previous

considerations, we have proven the asymptotic stability of the game (4.0.6), and, hence,

obtained the convergence of the PCA. Therefore, if we obtain, under the same condition,

the convergence of the new procedures for the inner iteration, the modified PCA will also

converge to the Nash equilibrium of the power control game (4.0.6).

Given wireless network with the certain topology of n links and the overall gain matrix

G = [gi,j] ∈ Rn,n, by DG := diag(g1,1, g2,2, . . . , gn,n) denote the diagonal part of G, and

write BG := G − DG. For the fixed tax rates t = [t1, t2, . . . , tn]T of the power control

game (4.0.6), define Dt := diag(t1, t2, . . . , tn). Let ξ ∈ Rn be the noise vector, and µ ∈ Rn

the vector of dual variables in the power control subproblem (4.0.3) of the cross-layer

optimization problem (4.0.1). If G is an H-matrix, then, the locally optimal vector of the

link power allocation p∗ is the unique solution of the system of linear equations

Gp = DGD−1
t µ− ξ. (4.0.14)

If we use the splitting of the matrix G = DG − BG, then we can write (4.0.14) in the

fixed point form p = D−1
G (BGp − ξ) + D−1

t µ, and define the iteration procedure p(k+1) =

D−1
G (BGp(k) − ξ) + D−1

t µ. Since we took the Jacobi splitting of the system matrix G, the

iterative method is the famous Jacobi iteration. On the other hand, it is easy to see

that this procedure is exactly (4.0.13), the one proposed by Yuan and Yu.

The other fundamental procedure in the theory of iterative methods is, of course,

the Gauss-Seidel iteration scheme. Given a matrix G = [gi,j], consider the standard

splitting G = DG − LG − UG, where DG is a diagonal matrix, while LG and UG are,

respectively, strictly lower and strictly upper triangular matrices. More precisely, let D =

diag(g1,1, g2,2, . . . , gn,n), L = [li,j], where

li,j =

{
−gi,j, j < i,

0, otherwise,
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and U = [ui,j], where

ui,j =

{
−gi,j, j > i,

0, otherwise.

Then, Gauss-Seidel iterative method for the system (4.0.14) can be written as:

DGp(k+1) = LGp(k+1) + UGp(k) − ξ + DGD−1
t µ, (k ∈ N).

In the form of the power update procedure for each link i ∈ N , we obtain

p
(k+1)
i := µi

t
(l)
i

− 1
gi,i

( ∑i−1
j=1 gi,jp

(k+1)
j +

∑n
j=i+1 gi,jp

(k)
j + ξi

)
, (i ∈ N) (k ∈ N). (4.0.15)

Here, we assume that the link 1 is first to update its power, then link 2, link 3, and,

finally, the link n. Then, using the Jacobi iteration, at the time we compute the i-th link

power, the updated powers from all of the previous links are already available. Thus, the

natural thing to do is to use them. In this way we, naturally, obtain the Gauss-Seidel

iteration (4.0.15). Since the system matrix is an H-matrix, it is well known that Gauss-

Seidel iterative method is globally convergent. But, although there are many examples

where the Gauss-Seidel iteration is preferable than the Jacobi iteration, we cannot state

that in general iterative procedure (4.0.15) works faster than (4.0.13).

While often performing faster then Jacobi iteration, Gauss-Seidel iteration has, in this

case, a significant drawback. Namely, due to the sequentiality, the link that has to update

its power has often to wait its turn. But this is not necessary, since each link is updating its

power with the data it has already collected. Therefore, the Gauss-Seidel procedure, while

in theory good, behaves rather poorly in the wireless sensor networks due to the link’s

computational stand-by time in the iterative procedure in the step 2. of PCA. The answer

to this drawback of Gauss-Seidel is the chaotic asynchronous relaxation, developed

by Chazan and Miranker in [9]. Without going into detail notation, we remark that this

algorithm uses the same rule as (4.0.13) while the power levels on the right hand side

are not necessarily from the same iteration step. Namely, each link uses the most recent

powers of other links to update its own. The main value of this algorithm is that, in a

wireless sensor network, it behaves very good, in a way that it avoids the link stand-by

time due to asynchronous computations in power update iterations, while it allows the

distributed implementation. The only issue that needs to be addressed is the convergence.

But, the fundamental theorem on the chaotic asynchronous relaxation states that this

iterative method converges if all the eigenvalues of the modulus of the Jacobi iteration

matrix lie inside the open unit disk, in our case, if ρ(|D−1
G BG|) < 1. But, if the overall

gain matrix G is an H-matrix, this is true. To prove it, assume that λ ∈ σ(|D−1
G BG|).

Since G is an H-matrix, then there exists X = diag(x1, x2, . . . , xn) ∈ D, such that GX

is an SDD. But, from (2.1.9), there exists i ∈ N , such that λ ∈ ΓX
i (|D−1

G BG|), and,

hence, |λ| ≤ ∑
j∈N\{i}

gi,jxj

gi,ixi
< 1. So, implementing the chaotic asynchronous relaxation

procedure in the step 2. of PCA, the algorithm will converge to the unique and stable

Nash equilibrium of the power control game.
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[6] R. Bru, Lj. Cvetković, V. Kostić and F. Pedroche, Sums of σ-strictly diagonally

dominant matrices, Linear and Multilinear Algebra 58 (2009), no. 1, 75–78.

[7] R. Brualdi, Matrices, eigenvalues and directed graphs, Liner and Multilinear Algebra

11 (1982), 143–165.

[8] , The symbiotic relationship of combinatorics and matrix theory, Linear Alge-

bra Appl. 162/164 (1992), 65–105.

[9] D. Chazan and W. L. Miranker, Chaotic relaxation, Linear Algebra Appl. 2 (1969),

199–222.
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[11] Lj. Cvetković, R. Bru, V. Kostić and F. Pedroche, A simple generalization of
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[27] J. Hadamard, Leçones sur la propagations des ondes, Hermann et fils, Paris, 1903,

reprinted in 1949 by Chelsea, New York.

[28] A. J. Hoffman, Gersgorin variations I: on a theme of Pupkov and Solovev, Linear

Algebra Appl. 304 (2000), 173–177.

[29] , Gersgorin variations II: On themes of Fan and Gudkov, Advances in Com-

putational Mathematics 25 (2006), 1–6.

[30] T. Z. Huang, A note on generalized diagonally dominant matrices, Linear Algebra

Appl. 225 (1995), 237–242.

[31] K. James and W. Riha, Convergence criteria for successive overrelaxation.

[32] M. Karow, Geometry of Spectral Value Sets, Ph.D. thesis, University of Bremen,

Bremen, Germany, 2003.

[33] L. Yu. Kolotilina, Generalizations of Ostrowski-Brauer theorem, Linear Algebra Appl.

364 (2003), 65–80.
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fessor Ljiljana Cvetković in Numerical Linear Algebra at

the Department of Mathematics and Informatics, Math-

ematics and Statistics and Software packages for data

processing at the Department of Biology and Ecology.

For his scientific and academic achievements, he re-

ceived 1st Young Scientists Award for a talk given on

MAT-TRIAD 2007 Conference, Bedlewo, Poland, The

Best Student of the University of Novi Sad Award in
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Activity Group on Applied and Numerical Linear Algebra.

Novi Sad, Srbija Vladimir Kostić
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Predmetna odrednica/Ključne reči: Primenjena linearna algebra, dijagonalna dominacija,

H-matrice, regularnost, karakteristični koreni matrica, Geršgorinova teorema, generalizo-

vani karakteristični koreni
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Izvod: Ova teza je posvećena izučavanju generalizovane dijagonalne dominacije i njenih

brojnih prednosti. Osnovu čini poznati rezultat o regularnosti strogo dijagonalnih matrica,

čija su uopštenja formirana u brojnim pravcima. U tezi, nakon kratkog pregleda dobro

poznatih rezultata, posebna pažnja je posvećena savremenim doprinosima, gde je dat i pre-

gled već objavljenih autorovih rezultata, kao i detaljan tretman novih dobijenih rezultata.

Posebno je razvijena teorija lokalizacije Geršgorinovog tipa generalizovanih karakterističnih

korena i pokazana je primena rezultata u problemima optimizacije bežičnih senzor mreža.

IZ

Datum prihvatanja teme od strane NN Veća:
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Univerzitet u Novom Sadu
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