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2.5 Periodični slučaj . . . . . . . . . . . . . . . . . . . . . 108
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Abstract

We focus on two complexity measures of words that are invariant under the
operation of reversal of a word: the palindromic defect and the MP-ratio.

The palindromic defect of a given word w is defined by |w|+ 1−|Pal(w)|,
where |Pal(w)| denotes the number of palindromic factors of w. We study
infinite words, to which this definition can be naturally extended. There are
many results in the literature about the so-called rich words (words of defect
0), while words of finite positive defect have been studied significantly less;
for some time (until recently) it was not known whether there even exist such
words that additionally are aperiodic and have their set of factors closed un-
der reversal. Among the first examples that appeared were the so-called highly
potential words. In this thesis we present a much more general construction,
which gives a wider class of words, named generalized highly potential words,
and analyze their significance within the frames of combinatorics on words.

The MP-ratio of a given n-ary word w is defined as the quotient |rws||w| ,
where r and s are words such that the word rws is minimal-palindromic and
that the length |r| + |s| is minimal possible; here, an n-ary word is called
minimal-palindromic if it does not contain palindromic subwords of length
greater than

⌈ |w|
n

⌉
. In the binary case, it was proved that the MP-ratio is well-

defined and that it is bounded from above by 4, which is the best possible
upper bound. The question of well-definedness of the MP-ratio for larger
alphabets was left open. In this thesis we solve that question in the ternary
case: we show that the MP-ratio is indeed well-defined in the ternary case,
that it is bounded from above by the constant 6 and that this is the best
possible upper bound.
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Izvod (in Serbian)

Izučavamo dve mere složenosti reči koje su invarijantne u odnosu na operaciju
preokretanja reči: palindromski defekt i MP-razmeru date reči.

Palindromski defekt reči w definǐse se kao |w|+ 1−|Pal(w)|, gde |Pal(w)|
predstavlja broj palindromskih faktora reči w. Mi izučavamo beskonačne reči,
na koje se ova definicija može prirodno proširiti. Postoje mnogobrojni rezul-
tati u vezi sa tzv. bogatim rečima (reči čije je defekt 0), dok se o rečima
sa konačnim pozitivnim defektom relativno malo zna; tokom jednog perio-
da (donedavno) nije bilo poznato ni da li uopšte postoje takve reči koje su,
dodatno, aperiodične i imaju skup faktora zatvoren za preokretanje. Med̄u
prvim primerima koji su se pojavili u literaturi su bile tzv. visokopotenci-
jalne reči. U disertaciji ćemo predstaviti znatno opštiju konstrukciju, kojom
se dobija značajno šira klasa reči, nazvanih uopštene visokopotencijalne reči,
i analiziraćemo njihov značaj u okvirima kombinatorike na rečima.

MP-razmera date n-arne reči w definǐse se kao količnik |rws|
|w| , gde su r

i s takve da je reč rws minimalno-palindromična, i dužina |r| + |s| je naj-
manja moguća; ovde, za n-arnu reč kažemo da je minimalno-palindromična
ako ne sadrži palindromsku podreč dužine veće od

⌈ |w|
n

⌉
. U binarnom slučaju

dokazano je da je MP-razmera dobro definisana i da je ograničena odozgo kon-
stantom 4, što je i najbolja moguća granica. Dobra definisanost MP-razmere
za veće alfabete je ostavljena kao otvoren problem. U ovoj tezi rešavamo taj
problem u ternarnom slučaju: pokazaćemo da MP-razmera jeste dobro defi-
nisana u ternarnom slučaju, da je ograničena odozgo sa 6, i da se ta granica
ne može pobolǰsati.
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Preface

In the literature on combinatorics on words, many functions are introduced
and studied that can be thought of as measures of various kinds of complexity
of given words. In this thesis we focus on certain such measures that are
invariant under the operation of reversal of a word. As will be seen (and
as is expected), there is a strong connection between such functions and the
notion of palindromes. We choose two actual research directions on this topic
and answer many questions about them.

One research direction is based on the result of Droubay, Justin and Pir-
illo [30], who noted that a word of length n can have at most n+ 1 different
palindromic factors. The difference between this upper bound and the actual
number of palindromic factors of a given word is called the palindromic defect
(or only defect) of a given word [19] (by definition, the defect is always non-
negative). Though the definition of defect fundamentally relies on finiteness of
a given word, it turns out that it can be naturally extended to infinite words
(the defect of an infinite word is defined as the supremum of defects of all of
its finite factors). Words of defect 0 are called full [19] or rich [34], and there
are many results about them in the literature [47, 21, 50, 59, 36, 60, 53, 51].

However, infinite words of finite positive defect have been studied signifi-
cantly less. One of the reasons for that is the fact that explicit constructions
of such words (maybe with some additional constraints, such as aperiodicity,
since periodic words are more-or-less straightforward to analyze) are some-
what deficient in the literature. For example, aperiodic words of finite positive
defect, having the set of factors closed under reversal, had been deemed in-
teresting from the point of view of some (then open) conjectures [17, 20], but
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PREFACE

examples of such words were missing. In the article [15], an infinite family of
infinite words is constructed, called highly potential words, which are all ape-
riodic, have the set of factors closed under reversal, and are of finite positive
defect (in fact, the presented construction shows a method to obtain such a
word from any finite nonpalindromic word). As one can see in that article,
those words seem to be a useful supply of examples and counterexamples for
various problems of words (which explains their name). We should also say
that chronologically the first example of an aperiodic infinite word of finite
positive defect, whose set of factors is closed under reversal, had been given
somewhat earlier: see [9, Example 3.4], where such a word has been con-
structed, one that is uniformly recurrent. In the article [14] an example that
is not uniformly recurrent has been constructed, which was used to demon-
strate a flaw in a proof from the article [10]; this word, although it has much
in common with the family of highly potential words, does not belong to that
family.

In this thesis we construct a new family of infinite words whose defect is
finite, and in many cases positive (with fully characterized cases when the
defect is 0). The constructed family contains, as two special cases, both the
family of highly potential words (because of this, we dub them generalized
highly potential words), as well as the mentioned word from [14]. Further, in
[34, Proposition 2.10] the authors show the existence of rich infinite words
that are recurrent but not uniformly recurrent, by providing three examples;
it turns out that all these three words also belong to the class of generalized
highly potential words. We believe that all this suggests that our construction
extends the class of highly potential words in a fairly noteworthy way. All
the words from our family have the set of factors closed under reversal, and
each of them is either periodic (which is a less interesting case, and explic-
itly characterized), or recurrent but not uniformly recurrent. The fact that
they are not uniformly recurrent (unless they are periodic) is of a particular
significance since: first, there are some results and examples here and there
featuring uniformly recurrent words of finite defect (see, e.g., [34, Proposi-
tion 4.8], or the article [9], or the counterexample to the so-called Zero defect
conjecture from [23], which is defined as a fixed point of a primitive mor-
phism, and it is known [6, Theorem 10.9.5] that fixed points of primitive
morphisms are always uniformly recurrent), while next to nothing is known
about aperiodic words that are not uniformly recurrent; second, it is shown
in [49, Theorem 2] that any uniformly recurrent word of finite defect is a
morphic image of some word of zero defect (while the result that the authors

14



obtain without assuming uniform recurrence is weaker, and in the last sec-
tion they discuss the significance of uniform recurrence and leave as an open
question whether the stronger result is valid without it), everything of which
suggests that uniformly recurrent words are somewhat easier to work with,
and that those that are not uniformly recurrent are less explored territory
that deserves a closer look.

Holub and Saari [39] introduced yet another way to measure how “rich”
in palindromes a given word is, the so-called MP-ratio. MP-ratio is a ratio-
nal number greater than or equal to 1 such that, the greater MP-ratio is,
the given word is “richer” in palindromes (the authors of [39] say that such
words are “highly palindromic”); those words whose MP-ratio equals 1 are
called minimal-palindromic. It turns out that some properties of MP-ratio
are not so easy to grasp, since, as shown in [13], it can behave in a quite un-
predictable way. The concept of MP-ratio is based on palindromic subwords
(and not factors) of a given word, which have been noticeably less considered
in the literature. They, however, have some interesting properties. As shown
in [39], a binary word can be reconstructed, up to reversal, from the set of its
palindromic subwords. Also in [39], a property of a word being abelian bor-
dered is defined, and it is shown that each binary minimal-palindromic word
is abelian unbordered (which is a strong form of unborderedness); abelian
(un)borderedness of words has attracted a growing attention in recent times
[28, 35, 26, 7, 16]. However, the main drawback of the notion of MP-ratio is
the fact that it is defined only for binary alphabet. Though there is a natural
analogous way to extend the definition of MP-ratio to a larger alphabet, it
is not clear whether in that case the notion is well-defined at all. For that
reason, the authors of [39] left the question of well-definedness of MP-ratio
for larger alphabets as an open problem. In this thesis we solve that ques-
tion for ternary alphabet. We show that the MP-ratio is well-defined in the
ternary case, that it is bounded from above by the constant 6, and that this
bound is the best possible.

The thesis is organized as follows.

In Chapter 1 we give the necessary background. In Section 1.1 we recall
the basic notions and theorems about words in general. In Sections 1.2 and 1.3
we present relevant results about the defect and the MP-ratio, respectively.
Everything in this chapter is already known in the literature and given with
a reference.

Chapters 2 and 3 contain fully original work, mostly included in the ar-
ticles [4], respectively [2] and [3].

15
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Chapter 2 is devoted to generalized highly potential words. Their defini-
tion and some technical preliminary results are given in Sections 2.1 and 2.2.
In Section 2.3 we give a necessary and sufficient condition for periodicity of
generalized highly potential words, we show that their set of factors is closed
under reversal (which implies that they are recurrent), and we further show
that the ones that are not periodic are not uniformly recurrent. In Section
2.4 we prove that their defect is always finite, and give a necessary and suffi-
cient condition for the defect to be positive. Separately, in Section 2.5 at the
end, we analyze periodic generalized highly potential words (which is a less
interesting case).

Chapter 3 deals with the MP-ratio. In Section 3.1 we show that there
always exists an MP-extension (r, s) of any ternary word w; in fact, since for
our construction holds |rws| = 6|w|, we get that the MP-ratio is bounded
from above by 6. During the course of the proof, two technical results are
needed, and they are given as appendices in Sections 3.3 and 3.4 (where
Section 3.3 is self-contained, and Section 3.4 relies only on Section 3.3; thus
we believe that this will not cause confusion to the reader); further, those
two results are essentially results on binary words (and there might be a slim
chance that they could be also useful somewhere else), which again makes it
natural to give them separated from the proof from Section 3.1. In Section
3.2 we show that the MP-ratio can be arbitrarily close to the constant 6,
which gives that 6 is the best possible upper bound on the MP-ratio in the
ternary case.
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1
Introduction

1.1 On words

In this section we recall basic definitions and properties that will be needed
through the thesis. All these notions are mainly standard and can be found,
for example, in [6].

A word (respectively infinite word) is a finite (respectively infinite) se-
quence of symbols taken from a nonempty finite set Σ, which is called the
alphabet, and its elements are called letters. (We shall sometimes abuse the
terminology and say only “word” when it is clear from the context that it
must be infinite, or additionally emphasize “finite word” when we feel that
this is appropriate.) Let Σ∗ denote the set of all finite words and by Σ∞

the set of all finite or infinite words. In the case |Σ| = 2 we speak about
binary words, in the case |Σ| = 3 we speak about ternary words and, gener-
ally, in the case |Σ| = n we speak about n-ary words. If w = a1a2...an with
a1, a2, . . . , an ∈ Σ, we say that the length of w is n, and write |w| = n. The
unique word of length 0, called the empty word, is denoted by ε.

The concatenation (or product) of words u and v, u = a1a2 . . . an and
v = b1b2 . . . bm, is the word a1a2 . . . anb1b2 . . . bm, denoted by uv. The product
uv for u ∈ Σ∗ and v ∈ Σ∞\Σ∗ can be similarly defined. For a word w and a
positive integer k we write wk for the word ww . . . w︸ ︷︷ ︸

k

and w∞ for the infinite

word wwww . . . ; it is also convenient to define w0 = ε for any word w. A
word w ∈ Σ∗ is primitive if and only if it is not of the form zk for z ∈ Σ∗\{ε}
and an integer k, k > 2.

17



1. INTRODUCTION

For A ⊆ Σ, we write A∗ for the set

{a1a2 . . . ak : k > 0 and ai ∈ A for each i},

and we write A+ = A∗\{ε}. If the set A has only one element, say A = {a},
we write a∗ and a+ instead of {a}∗ and {a}+. If A and B are two sets of
words, we write AB = {uv : u ∈ A, v ∈ B}. Since concatenation of words is
an associative operation, the product of more than two sets of words is also
well-defined.

A word u ∈ Σ∗ is called a factor (respectively prefix, suffix ) of a word
w ∈ Σ∞ if and only if there exist words x ∈ Σ∗ and y ∈ Σ∞ such that w = xuy
(respectively w = uy, w = xu). A word u ∈ Σ∗ is a subword of w ∈ Σ∗ if
and only if there exist words x1, x2, . . . , xn, xn+1 ∈ Σ∗ and y1, y2, . . . , yn ∈ Σ∗

such that u = y1y2 . . . yn and w = x1y1x2y2 . . . xnynxn+1 (or, equivalently, u
is a subword of w if u is its subsequence). The set of all factors (respectively
prefixes, suffixes, subwords) of a word w is denoted by Fact(w) (respectively
Pref(w), Suff(w), Subw(w)).

We write w[i] for the ith letter of the word w, and for any pair (i, j) of
integers such that 1 6 i 6 j 6 |w| we write w[i, j] for the factor w[i]w[i +
1] . . . w[j] (obviously, w[i, i] = w[i]). In the case i > j, as well as i > |w| or
j < 1, we define w[i, j] = ε. By convention, this operation has precedence
over concatenation; in other words, uv[i] (and similarly uv[i, j]) will always
denote u(v[i]), not (uv)[i].

If i and j are positive integers and i 6 j, [i, j]N denotes the set {i, i +
1, i + 2, . . . , j}. (Note that N denotes the set of positive integers, while N0

denotes the set of nonnegative integers.)
For words u and v, let |u|v denote the number of distinct occurrences of

v in u, that is:

|u|v = |{i : 1 6 i 6 |u| − |v|+ 1, u[i, i+ |v| − 1] = v}|.

We say that a letter c is prevalent in a word w if and only if |w|c = max{|w|a :
a ∈ Σ}. (Note that a prevalent letter is not necessarily unique.) We say that
a factor v of a word w ∈ Σ∞ is unioccurrent in w if and only if |w|v = 1.

The reversal of w = a1a2 . . . an, where a1, a2, . . . , an ∈ Σ, is defined by
w̃ = anan−1 . . . a1. We say that the set of factors of w is closed under reversal
if and only if for any v ∈ Fact(w) holds ṽ ∈ Fact(w). A word w is a palindrome
(or palindromic) if and only if w = w̃. (The empty word is also a palindrome.)
A palindromic subword of a given word will be called a subpalindrome. Let
Pal(w) = {u ∈ Fact(w) : u = ũ}.

18



1.1. On words

A function ϕ : Σ∗ → Σ∗ is called a morphism if and only if, for all
u, v ∈ Σ∗, we have ϕ(uv) = ϕ(u)ϕ(v).

Before the next theorem [45, Proposition 1.3.2], we need the following
notion: a word w′ is a conjugate of a word w if and only if there exist words
x and y such that w = xy and w′ = yx.

Theorem 1.1. Let x, y ∈ Σ∗\{ε}. Then xy = yx if and only if there exist
t ∈ Σ∗ and positive integers p, q such that x = tp, y = tq. In other words, if
a word is equal to one of its conjugates (different from itself), then it must
be a power of exponent at least 2.

Proof. (⇐): If such a word t exists, then clearly holds xy = yx = tp+q.
(⇒): We proceed by induction on |x| + |y|. The base for |x| = |y| = 1 is

obvious. Let |x| + |y| > 2, and assume, without loss of generality, |x| > |y|.
We distinguish two cases.

• |x| = |y|:
Since xy = yx implies x = y, we can take t = x = y and p = q = 1.

• |x| > |y|:
In this case y is a prefix of x; therefore, we can write x = yy1. Now,
xy = yx implies

yy1y = yyy1,

that is,
y1y = yy1.

As |y|+ |y1| < |x|+ |y|, by the inductive assumption there exist a word
t ∈ Σ∗ and positive integers p and q such that y = tp, y1 = tq, which
gives x = tp+q and y = tp.

The proof is completed. �

An infinite word w is periodic if and only if it is of the form w = u∞ for
some u ∈ Σ∗, it is eventually periodic if and only if it is of the form vu∞ for
some u, v ∈ Σ∗, and it is aperiodic if and only if it is not eventually periodic.
A positive integer p is a period of w if and only if w[i] = w[i + p] for each
i > 1. (A period is not unique.) An infinite word w is recurrent if and only
if each of its factors occurs infinitely many times in w, and it is uniformly
recurrent if and only if for every finite factor u of w there exists an integer n
such that u ∈ Fact(v) for every v ∈ Fact(w) such that |v| = n.

19



1. INTRODUCTION

The following three theorems are well-known and can be found in [6],
Exercise 10.50a), Example 10.9.1 and Exercise 10.37, respectively.

Theorem 1.2. For an infinite word w, if Fact(w) is closed under reversal,
then w is recurrent.

Proof. Let u ∈ Fact(w). It is enough to prove that for any occurrence of the
factor u in w there exists one more occurrence of it, which is to the right of
the originally considered occurrence. Write u = w[i, i+ |u|− 1] for an integer
i. Let v be a prefix of w such that |v| = 2i+ |u| − 1. Since Fact(w) is closed
under reversal, ṽ ∈ Fact(w) and ũ ∈ Fact(ṽ). By the choice of v, we have
an occurrence of ũ in w that begins at least at the (i+ 1)st letter of w, that
is, this occurrence of ũ is to the right of the initially considered occurrence

of u. Now in a similar manner we find an occurrence of ˜̃u(= u) which is to
the right of the considered occurrence of ũ, and therefore to the right of the
initially considered occurrence of u. This completes the proof. �

Theorem 1.3. Every periodic word is uniformly recurrent.

Proof. Let w be a periodic word with a period k, and let u ∈ Fact(w), |u| = n.
Note that u ∈ Fact(v) for each v ∈ Fact(w) such that |v| = k + n − 1; by
definition, w is uniformly recurrent. �

Theorem 1.4. Every recurrent, eventually periodic word is periodic.

Proof. Let w = uv∞ be an eventually periodic word for some u, v ∈ Σ∗. We
may assume that |v| is the smallest period of v∞. Note that this assumption
implies that v is not a power. If u = ε, there is nothing to prove, so we assume
u 6= ε. Since w is recurrent, its factor uv occurs infinitely many times in w,
and thus it must occur in v∞. We can write uv = v2v

kv1, where v2 ∈ Suff(v)
and v1 ∈ Pref(v), |v1| < |v|. If v1 6= ε, we would have that v is equal to one of
its conjugates different from itself, and thus, by Theorem 1.1, it would be a
power, contradicting the assumption. Therefore, uv = v2v

k. Write v = v′v2.
We then have

w = uv∞ = uvv∞ = v2(v
′v2)

k(v′v2)
∞ = (v2v

′)∞,

which shows that w is periodic. �
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1.2. Palindromic defect

1.2 Palindromic defect

The following inequality was noted by Droubay, Justin and Pirillo [30, Propo-
sition 2].

Theorem 1.5. Let w be a finite word. Then:

|Pal(w)| 6 |w|+ 1.

Proof. First, it is not hard to see that, if u ∈ Σ∗ and a ∈ Σ, then

|Pal(ua)| =


|Pal(u)|+ 1, if the longest palindromic suffix of ua

is unioccurrent in ua;
|Pal(u)|, otherwise.

(1.1)

Similarly,

|Pal(au)| =


|Pal(u)|+ 1, if the longest palindromic prefix of au

is unioccurrent in au;
|Pal(u)|, otherwise.

(1.2)

Indeed, the only possible palindromic factor of ua that is not a palin-
dromic factor of u is the longest palindromic suffix of ua. Namely, if x is a
palindromic suffix of ua that is not the longest one, then x is also a prefix of
the longest palindromic suffix of ua, and thus x is a factor of u. Now, clearly
the longest palindromic suffix of ua is a palindromic factor of ua that is not
a palindromic factor of u if and only if it is unioccurrent in ua. This gives
(1.1). The explanation of (1.2) is analogous.

Let w = a1a2 . . . an. Then, in view of (1.1), we have

|Pal(w)| = |Pal(a1a2 . . . an)| 6 |Pal(a1a2 . . . an−1)|+ 1

6 · · · 6 |Pal(a1)|+ n− 1 6 |Pal(ε)|+ n

= n+ 1,

which was to be proved. �

Inspired by this inequality, Brlek et al. [19] introduced the notion of palin-
dromic defect (or only defect) of a word w, denoted by D(w), and defined
as:

D(w) = |w|+ 1− |Pal(w)|.
They noticed that the defect of a word w is no smaller than the defect of

any of its factors; in other words:
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Theorem 1.6. Let w be a finite word and v ∈ Fact(w). Then

D(v) 6 D(w).

Proof. For u ∈ Σ∗ and a ∈ Σ, by the definition of defect, and by (1.1) and
(1.2), we have the following equalities:

D(ua) =


D(u), if the longest palindromic suffix of ua

is unioccurrent in ua;
D(u) + 1, otherwise

(1.3)

and

D(au) =


D(u), if the longest palindromic prefix of au

is unioccurrent in au;
D(u) + 1, otherwise.

(1.4)

Now, let w = a1 . . . anvb1 . . . bk. Then by (1.3) and (1.4) we have

D(v) 6 D(vb1) 6 · · · 6 D(vb1 . . . bk)

6 D(anvb1 . . . bk) 6 · · · 6 D(a1 . . . anvb1 . . . bk)

= D(w),

which was to be proved. �

This motivates the following extension of the definition of defect to infinite
words: for w ∈ Σ∞\Σ∗, we define

D(w) = sup
v∈Fact(w)

D(v).

(Of course, this equality also holds for finite words.) Note that the defect of
any finite or infinite word is always nonnegative or infinite.

1.2.1 Defect of some periodic words

In this subsection we shall see a special case of periodic words when the
defect is always finite, and easily calculable. Theorems 1.7 (see [19, Lemma
5] and [45, Proposition 1.3.4]) and 1.8 (see [19, Theorem 6]) are somewhat
technical results, aimed toward the main point of this section, Theorem 1.9
(from [19, Corollary 8]).
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1.2. Palindromic defect

Theorem 1.7. Let w = xy = yz. If w is a palindrome, then there exist
palindromes u and v such that x = uv, z = vu and y = (uv)i−1u for a
positive integer i. Furthermore, then xyz also is a palindrome.

Proof. If xy = yz, then for each positive integer i we have

xiy = yzi. (1.5)

We choose i such that i|x| > |y| > (i − 1)|x|. Then (1.5) implies y = xi−1u,
x = uv and zi = vy for some words u and v. We then have zi = vy = vxi−1u =
v(uv)i−1u = (vu)i, which implies z = vu. Finally, since w = xy = (uv)iu and
w is a palindrome, we have that u and v also are palindromes, and then,
since xyz = (uv)i+1u, it follows that xyz also is a palindrome. The proof is
now completed. �

Theorem 1.8. Let p be a primitive word that is a product of two palindromes
u and v, with |u| > |v|. Then

D(p∞) = D

(
p∞
[
1, |uv|+

⌊
|u| − |v|

3

⌋])
.

Proof. By the proof of Theorem 1.6, we see that the defect of an arbitrary
(possibly infinite) word equals the number of its prefixes whose longest palin-
dromic suffix is not unioccurrent. Therefore, we need to show that, for each
prefix f (of p∞) longer than |uv| +

⌊ |u|−|v|
3

⌋
, we have that the longest palin-

dromic suffix of f is unioccurent in f . We distinguish three cases depending
on the length of f .

• |f | > |uvuv|: In this case, there exists k, k > 1, such that we have
either

f = u(vu)kvy, where y ∈ Pref(u) \ {ε},
or

f = uv(uv)kuy, where y ∈ Pref(v) \ {ε}.
Let g be the longest palindromic suffix of f . Then, depending on the
form of f , one palindromic suffix of f is ỹ(vu)kvy, respectively ỹ(uv)kuy,
and thus g is at least that long. Therefore, we may write f = xg, where
|x| < |uv| 6 |g|. If we suppose that g has another occurrence in f , then
the two occurrences must overlap, and then, in view of Theorem 1.7
(where we take g for w, and the overlapping part of the two occurrences
of g for y), we get a palindromic suffix of f longer than g; a contradiction
with the choice of g.
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• |uvuv| > |f | > |uvu|: We write f = uvuy, where y ∈ Pref(v) \ {ε}.
Let g again be the longest palindromic suffix of f and suppose that it
has another (earlier) occurrence in f . Then the two occurrences cannot
overlap (since otherwise we would get the same contradiction as in the
previous case). Since ỹuy is a palindromic suffix of f , we can write
g = suy, where s ∈ Suff(uv) \ {ε}. Since there is an occurrence of g in
f that does not overlap with the rightmost one, we have g ∈ Fact(uv),
and since |u| > |v|, it follows that there are two overlapping occurrences
of u in uv, where the nonoverlapping part has length at least |s|. Then,
by Theorem 1.7, the overlapping part is of the form (tr)i−1t for some
palindromes t and r, and u = (tr)it (where |tr| > |s|). This implies that
v begins with rt (since the overlapping part in uv ends where v begins),
and there is y after rt (since there is y in g after u, and the observed
rt is the ending of u that is within g); in other words, rty ∈ Pref(v)
(indeed, it cannot extend beyond v, since rty is contained in g that is a
part of uv). This implies ỹtr ∈ Suff(v), but then ỹtruy is a suffix of vuy
and thus also a suffix of f , and |ỹtruy| > |suy| = |g|; a contradiction
with the choice of g again.

• |uvu| > |f | > |uv| +
⌊ |u|−|v|

3

⌋
: In this case we write f = uvy, where y

is a prefix of u longer than
⌊ |u|−|v|

3

⌋
. Let g be the longest palindromic

suffix of f . Then
|g| > |ỹvy| = |v|+ 2|y|.

We again suppose that g has another occurrence in f , and we may as-
sume (as in the previous cases) that the two occurrences do not overlap.
This gives

2|g| 6 |f | = |u|+ |v|+ |y|.

The previous two inequalities give 2|v| + 4|y| 6 |u| + |v| + |y|, from

which we get |y| 6 |u|−|v|
3

, and thus also |y| 6
⌊ |u|−|v|

3

⌋
, a contradiction.

This completes the proof. �

Theorem 1.9. If p is a primitive word that is a product of two palindromes
(one of which can be empty), then there exists a conjugate q of p such that

D(p∞) = D(q).

Proof. Let p = uv, where u and v are palindromes. We claim that there exists
a conjugate q of p such that q = u′v′ where u′ and v′ are palindromes and

24



1.2. Palindromic defect

|u′| − |v′| ∈ {0, 1, 2}. If |u| > |v|, let

u′′ = u

[
1 +

⌊
|u| − |v|

4

⌋
, |u| −

⌊
|u| − |v|

4

⌋]
and

v′′ = u

[
|u| −

⌊
|u| − |v|

4

⌋
+ 1, |u|

]
vu

[
1,

⌊
|u| − |v|

4

⌋]
,

while if |u| < |v|, let

u′′ = v

[
|v| −

⌈
|v| − |u|

4

⌉
+ 1, |v|

]
uv

[
1,

⌈
|v| − |u|

4

⌉]
and

v′′ = v

[
1 +

⌈
|v| − |u|

4

⌉
, |v| −

⌈
|v| − |u|

4

⌉]
(clearly, u′′v′′ is a conjugate of p). In the first case we have |u′′|−|v′′| = (|u|−
2b |u|−|v|

4
c)− (|v|+2b |u|−|v|

4
c) = |u|−|v|−4b |u|−|v|

4
c = (|u|−|v|) mod 4, and we

get the same equality in the second case. Since (|u|−|v|) mod 4 ∈ {0, 1, 2, 3},
it follows that we can take u′ = u′′ and v′ = v′′, unless |u| − |v| ≡ 3 (mod 4).
However, if the latter case happens, we can do the same procedure on the
word vu instead of p; since vu is a conjugate of p, any conjugate of vu is
also a conjugate of p, and since |v| − |u| ≡ 1 (mod 4), the conjugate that we
obtain that way satisfies the requirements.

Now, by the previous theorem we have

D(q∞) = D((u′v′)∞) = D

(
(u′v′)∞

[
1, |u′v′|+

⌊
|u′| − |v′|

3

⌋])
= D((u′v′)∞[1, |u′v′|]) = D(q).

(1.6)

Further, since Fact(p∞) = Fact(q∞), we have

D(p∞) = D(q∞). (1.7)

Now (1.6) and (1.7) give D(p∞) = D(q), which was to be proved. �

Note. In particular, given the definition of defect for infinite words, for q
from the previous theorem we may (and have to) choose that one conjugate
for which D(q) is maximal (or any such, if there are more of them).
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1.2.2 Highly potential words

A class of infinite words called highly potential words has been introduced in
[15]. Given a word w that is not a palindrome, let c denote any letter that
does not appear in w, and let:

w0 = w;

wi = wi−1c
iw̃i−1, i ∈ N;

hpw(w) = lim
i→∞

wi.

The infinite word hpw(w) is called highly potential word generated by w. (The
limit is well-defined since each wi is a prefix of wi+1.)

The main properties of highly potential words are given in the following
two theorems.

Theorem 1.10. Let hpw(w) be a highly potential word. Then:

• hpw(w) is aperiodic;

• Fact(hpw(w)) is closed under reversal;

• hpw(w) is recurrent;

• hpw(w) is not uniformly recurrent.

Proof. In view of Remark 2.2 (see page 37), the proof follows from the respec-
tive properties of generalized highly potential words (that will be introduced
and thoroughly analyzed in Chapter 2), in particular from Section 2.3. �

Theorem 1.11. Let hpw(w) be a highly potential word. Then:

D(hpw(w)) = D(w) + 1.

Proof. We first prove D(w1) = D(w). Since |w1| − |w| = |w| + 1, in order
to show D(w1) = D(w) we need to find |w| + 1 new palindromes in w1 (by
“new palindromes” we mean those palindromes that appear in w1 but do not
appear in w). It is not hard to see that the set of new palindromes is exactly
the set {x̃cx : x ∈ Pref(w̃)}, whose cardinality is |w|+ 1. Therefore,

D(w1) = D(w). (1.8)
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1.2. Palindromic defect

Let us calculate D(w2). Again, it can be easily checked that that the set
of new palindromes is the set {x̃ccx : x ∈ Pref(w1)}, whose cardinality is
|w1|+ 1. Since |w2| − |w1| = |w1|+ 2, we conclude that

D(w2) = D(w1) + 1. (1.9)

We show now that, for i > 2,

D(wi+1) = D(wi). (1.10)

In order to prove this, since |wi+1|−|wi| = |wi|+i+1, we need to find |wi|+i+1
new palindromes in wi+1. We distinguish two classes of palindromes.

• We first enumerate new palindromes that have the factor ci+1 in the
center; they can be obtained by “expanding” (to the left and the right
side) the boxed part below:

wi c
i+1wi.

All of the words {x̃ci+1x : x ∈ Pref(wi)} are palindromes that appear
for the first time in that step, because none of the factors of wi contains
the factor ci+1. Therefore, we have |wi|+1 new palindromes of this type.

• We now enumerate new palindromes that have the factor wi−1 in the
center; they can be obtained by “expanding” the boxed part below:

wic
i+1wi−1 c

iwi−1.

Again, all of the words {ckwi−1ck : 1 6 k 6 i} are palindromes that
appear for the first time in that step. Indeed, wi−1 appears as a factor
of wi only two times, at the beginning and at the end, and thus the
observed polynomials are not factors of wi. Therefore, we have i new
palindromes of this type.

It can be easily checked that the list above contains all the new palin-
dromes, and that the types are disjoint. Therefore, we have found in total

|wi|+ 1 + i

new palindromes, which proves (1.10).
Equalities (1.8), (1.9) and (1.10) now give

sup
i∈N0

D(wi) = D(w) + 1.
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By the definition of hpw(w) and by Theorem 1.6 we have

sup
z∈Fact(hpw(w))

D(z) = sup
i∈N0

D(wi),

and thus finally

D(hpw(w)) = D(w) + 1.

�

1.2.3 A few more aperiodic words of finite defect

The following word was defined in [14].

Theorem 1.12. Let f be the morphism defined by f(1) = 1213, f(2) = ε
and f(3) = 23. Let f∞(1) = limi→∞ f

i(1). The infinite word f∞(1) has the
following properties:

• f∞(1) is aperiodic;

• Fact(f∞(1)) is closed under reversal;

• f∞(1) is recurrent but not uniformly recurrent;

• D(f∞(1)) is finite and positive.

Proof. In view of Remark 2.2 (see page 37), the proof follows from the respec-
tive properties of generalized highly potential words, in particular, Section
2.3, as well as Theorem 2.13 and Corollary 2.14 �

This was the first example in the literature of an infinite word whose set of
factors is closed under reversal, which is not uniformly recurrent and which
has finite and positive defect. Previously, the following examples of words
that are not uniformly recurrent and whose defect is 0 had been seen in [34]:
1) ϕ∞1 (a) where ϕ1 : a 7→ aba, b 7→ bb (an example taken from [25], where
it was considered for another purpose); 2) the Cantor word (also known as
the Sierpiński word), that is, ϕ∞2 (a) where ϕ2 : a 7→ aba, b 7→ bbb (a well-
known word; see, for example, [52], which the authors cite); 3) ϕ∞3 (a) where
ϕ3 : a 7→ abab, b 7→ b (the authors’ own example); the proof that they have
the mentioned properties will also be a special case of some results from this
thesis.
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1.3. MP-ratio

1.3 MP-ratio

Clearly, each binary word w contains a subpalindrome of length at least⌈ |w|
2

⌉
(e.g., a subpalindrome consisting only of a prevalent letter of w). We

say that a binary word w is minimal-palindromic if and only if it does not
contain a subpalindrome longer than

⌈ |w|
2

⌉
. For w ∈ {0, 1}∗, a pair (r, s),

where r, s ∈ {0, 1}∗, such that rws is minimal-palindromic, is called an MP-
extension of w, and if the length |r|+ |s| is the least possible, then the pair
(r, s) is called a shortest MP-extension, or SMP-extension of w. The rational

number |rws||w| , where (r, s) is an SMP-extension of w, is called the MP-ratio

of w. As shown in [39], each binary word possesses an MP-extension (and
thus also an SMP-extension, that is, the MP-ratio is well-defined); further,
the MP-ratio of any binary word is bounded from above by 4, and this is the
best possible upper bound. We first prove the upper bound.

Theorem 1.13. The MP-ratio of any binary word is at most 4.

Proof. Let w ∈ {0, 1}∗. We shall prove that (r, s) = (02|w|−|w|0 , 12|w|−|w|1)
represents an MP-extension of w, that is, the word

02|w|−|w|0 w 12|w|−|w|1

is always minimal-palindromic. Because of |rws| = 4|w|, we need to prove
that rws does not contain a subpalindrome whose length exceeds 2|w|. Let
us consider a subpalindome of the form 0p0. If 0p0 ∈ 0∗, then clearly

|0p0| 6 |rws|0 = 2|w|.

If |0p0|1 6= 0, we can write 0p0 = 0p′1q′0, where the highlighted 1 is the
first appearance of the letter 1 in the word 0p′1q′0. Then clearly |0p′| 6 |q′0|.
Also, 1q′0 ∈ Subw(w), which implies |1q′0| 6 |w|. Therefore, we have

|0p0| = |0p′1q′0| = |0p′|+ |1q′0| 6 |q′0|+ |1q′0|
6 |w| − 1 + |w| = 2|w| − 1 < 2|w|,

which was to be proved. For subpalindromes of the form 1p1 the proof is
analogous. �

We shall now prove that 4 is the best possible upper bound on the MP-
ratio in binary case. Before proceeding to the main theorem, we need to
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introduce the concept of k-economic and economic words and prove some
auxiliary lemmas.

We say that a word w ∈ {0, 1}∗ is k-economic (with respect to the letter
1) if and only if w is a palindrome and the word w1k contains a subpalindrome
of length at least |w|1 + k + 2. Each such subpalindrome can be written in
the form 1mq1m where 0 6 m 6 k and 1mq ∈ Subw(w); the pair (q,m) is
then called a k-witness of w. We say that w is economic if and only if it is
k-economic for every k, k = 0, 1, . . . , |w|1.

Lemma 1.14. Let w ∈ {0, 1}∗ and let (r, s) be an MP-extension of w. If w
is economic, then |rs|1 > |w|1.

Proof. Suppose the contrary, that the required inequality does not hold, that
is, |rs|1 6 |w|1. Let |r|1 = i and |s|1 = j and suppose that i 6 j (in the case
j 6 i the proof is analogous because w is a palindrome). Since w is economic
and j − i 6 |s|1 6 |rs|1 6 |w|1, we conclude that w is (j − i)-economic.
Therefore, w1j−i contains a subpalindrome of length at least |w|1 + j− i+ 2,
and that subpalindrome can be written in the form 1mq1m for m 6 j− i and
1mq ∈ Subw(w). This implies that 1m+iw1m+i is a subpalindrome of rws and
for its length we have:

|1m+iq1m+i| = 2i+ |1mq1m| > 2i+ |w|1 + j − i+ 2 = |w|1 + i+ j + 2

= |rws|1 + 2 > |rws|1 + 1 >

⌈
|rws|

2

⌉
.

Contradiction, since the word rws is minimal-palindromic. Thus, the proof
is completed. �

Lemma 1.15. Let w ∈ {0, 1}∗ and let (r, s) be an MP-extension of w. If w
is economic, then |rws| > 4|w|1.

Proof. First, it is easy to see that in a minimal-palindromic word the number
of letters 0 and 1 differ by at most 1. Since rws is a minimal-palindromic
word, we have:

|rws| = |rws|0 + |rws|1 > 2|rws|1 − 1 = 2|w|1 + 2|rs|1 − 1

> 2|w|1 + 2(|w|1 + 1)− 1 > 4|w|1,

where we used the previous lemma in the penultimate step. �
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Lemma 1.16. Let w0 be an economic word. We define the sequence (wi)i>0
recursively by

wi+1 = wi1
tiwi, (1.11)

where (ti)i>0 is a given sequence of positive integers. If for each nonnegative
integer i we have ti < |wi|0, then all the words wi are economic.

Proof. We prove the lemma by induction on i. For i = 0 there is noth-
ing to prove. Let us assume that wi is economic and prove that then wi+1

also must be. We do it by proving that wi+1 is k-economic for each k,
k = 0, 1, . . . , |wi+1|1. We distinguish three cases depending on the value of k,
and in each case find a subpalindrome p in wi+11

k whose length is at least
|wi+1|1 + k + 2.

Assume first 0 6 k 6 |wi|1. Then wi is k-economic by the inductive
assumption. Let (q,m) be a k-witness of wi. Consider the word

p = 1mq1ti+mq1m.

We have 1mq ∈ Subw(wi), since (q,m) is a k-witness of wi. Also, since m 6 k,
we have 1m ∈ Subw(1k). Altogether, p ∈ Subw(wi1

tiwi1
k) = Subw(wi+11

k),
and we have

|p| = 3m+ 2|q|+ ti = 2(2m+ |q|)−m+ ti > 2(|wi|1 + k + 2)− k + ti

= |wi+1|1 + k + 4 > |wi+1|1 + k + 2

(where |2m| + q = |1mq1m| > |wi|1 + k + 2 follows from the fact that wi is
k-economic). Therefore, wi+1 is also k-economic.

Assume now that |wi|1 < k 6 |wi|1 + ti. For the word

p = 1kwi1
k

we have p ∈ Subw(wi+11
k), because of 1k ∈ Subw(wi1

ti). Furthermore, since
ti + 1 6 |wi|0 and |wi|1 + 1 6 k, we have

|p| = 2k + |wi|1 + |wi|0 > k + 2|wi|1 + 1 + ti + 1 = |wi+1|1 + k + 2,

which means that wi+1 is k-economic.
Finally, suppose that |wi|1 + ti < k 6 |wi+1|1. Let j = |wi|1 + ti and

l = k − j. Since l < |wi|1, the word wi is l-economic. Let (q,m) be an
l-witness of wi. Consider the word

p = 1m+jq1m+j.
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By its construction, p is a subword of wi+11
k (indeed, 1j ∈ Subw(wi1

ti),
1mq ∈ Subw(wi) and 1m+j ∈ Subw(1k)), and

|p| = 2j + |1mq1m| > 2j + |wi|1 + l + 2 = |wi+1|1 + k + 2.

Therefore, wi+1 is economic also in this case, which completes the proof. �

In the following lemma we show that there exist arbitrarily long economic
words.

Lemma 1.17. For a sequence (ti)i>0, let w(t0, t1, . . . , tj−1) denote the word
wj defined by (1.11) with the initial term w0 = 0000. For each k, k > 448,
there exists an economic word vk of length k such that vk = w(t0, t1, . . . , tn−1)
for some n, n > 6, and some integers t0, t1, . . . , tn−1 satisfying 2i 6 ti < 2i+2

for each i, i = 0, 1, . . . , n− 1.

Proof. First of all, it is easily checked that w0 is an economic word. Further,

|wj|0 = |w(t0, t1, . . . , tj−1)|0 = 2j+2

independently of the sequence (ti)i>0.

Now, if 2i 6 ti < 2i+2 for all i, 0 6 i 6 j − 1, we then have ti < |wi|0 for
each such i, so by Lemma 1.16 the word w(t0, t1 . . . , tj−1) is economic. We
calculate its length:

|w(t0, t1 . . . , tj−1)| = |w(t0, t1 . . . , tj−1)|0 + |w(t0, t1 . . . , tj−1)|1
= 2j+2 + tj−1 + 2tj−2 + 22tj−3 + · · ·+ 2j−1t0

= 2j+2 +

j−1∑
i=0

2j−1−iti.

Let (αi)i>0 be the sequence defined by αi = 2i and (βi)i>0 the sequence
defined by βi = 2i+2 − 1. Then

|w(α0, α1 . . . , αj−1)| = 2j+2 +

j−1∑
i=0

2j−1−i2i = 2j+2 +

j−1∑
i=0

2j−1

= 2j+2 + j2j−1 = 2j−1(8 + j),
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while

|w(β0, β1 . . . , βj−1)| = 2j+2 +

j−1∑
i=0

2j−1−i(2i+2 − 1)

= 2j+2 +

j−1∑
i=0

2j+1 −
j−1∑
i=0

2j−1−i

= 2j+2 + j2j+1 − (2j − 1)

= 2j(3 + 2j) + 1.

Note that the inequality

|w(α0, α1, . . . , αj)| < |w(β0, β1 . . . , βj−1)| (1.12)

is equivalent to

2j(9 + j) < 2j(3 + 2j) + 1,

which is true for j > 6. Also, notice that

{[|w(α0, α1, . . . , αj−1)|, |w(α0, α1, . . . , αj)| − 1]N : j ∈ N}

represents a partition of the set of integers greater than 8, which means that
for each k large enough there exists an integer j such that

|w(α0, α1, . . . , αj−1)| 6 k < |w(α0, α1, . . . , αj)|. (1.13)

Now (1.12) and (1.13) imply that for each k, k > 448 (where k > 448
comes from 448 = |w(α0, α1, . . . , α5)|), there exists an integer n, n > 6, such
that

|w(α0, α1, . . . , αn−1)| 6 k < |w(β0, β1 . . . , βn−1)|.

We shall show now that for each integer k from the interval

[|w(α0, α1, . . . , αn−1)|, |w(β0, β1 . . . , βn−1)| − 1]N

there exists a word vk = w(t0, t1, . . . , tn−1), |vk| = k, where the elements of
the sequence (ti)

n−1
i=0 satisfy αi 6 ti 6 βi. We prove it by induction. Assume

that the assertion holds for a given k. Let

k = |w(t0, t1 . . . , ts, βs+1, . . . , βn−1)|,
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where s denotes the largest index such that ts < βs. We claim that then

k + 1 = |w(t0, t1 . . . , ts−1, ts + 1, βs+1 − 1, . . . , βn−1 − 1)|.

Indeed,

|w(t0,t1 . . . , ts−1, ts + 1, βs+1 − 1, . . . , βn−1 − 1)|

= 2n+2 +
s−1∑
i=0

2n−1−iti + 2n−1−s(ts + 1) +
n−1∑
i=s+1

2n−1−i(βi − 1)

= 2n+2 +
s∑
i=0

2n−1−iti + 2n−1−s +
n−1∑
i=s+1

2n−1−iβi −
n−1∑
i=s+1

2n−1−i

= 2n+2 +
s∑
i=0

2n−1−iti +
n−1∑
i=s+1

2n−1−iβi + 2n−1−s − (2n−1−s − 1)

= 2n+2 +
s∑
i=0

2n−1−iti +
n−1∑
i=s+1

2n−1−jβi + 1

= |w(t0, t1 . . . , ts, βs+1, . . . , βn−1)|+ 1 = k + 1.

The proof is now completed. �

We are now ready to prove that the obtained upper bound is optimal [39,
Theorem 5].

Theorem 1.18. Let R2(n) denote the maximal MP-ratio over all the words
w ∈ {0, 1}∗, |w| = n. We have

lim
n→∞

R2(n) = 4.

Proof. We shall use the notation from the previous lemmas. Notice that for
each j > 1 we have

|w(t0, t1, . . . , tj−1)|1 > |w(α0, α1, . . . , αj−1)|1,

while
|w(t0, t1, . . . , tj−1)|0 = |w(α0, α1, . . . , αj−1)|0,

from which we can get

1 >
|w(t0, t1, . . . , tj−1)|1
|w(t0, t1, . . . , tj−1)|

>
|w(α0, α1, . . . , αj−1)|1
|w(α0, α1, . . . , αj−1)|

.
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For the right-hand side, we know that

|w(α0, α1, . . . , αj−1)|1
|w(α0, α1, . . . , αj−1)|

=
2j−1j

2j−1(j + 8)
=

j

j + 8
.

This is enough to conclude that the words vk satisfy

lim
k→∞

|vk|1
|vk|

= 1. (1.14)

In order to prove the theorem, it is enough to show that for any positive
real number η there exists a positive integer k0 such that, for each k > k0,
MP-ratio of the word vk is greater than 4 − η. Let η be given. Choose an
integer k0 such that, for each k > k0, we have

|vk|1
|vk|

> 1− η

4

(such k0 exists because of (1.14)). Let a pair (r, s) be an MP-extension of vk,
k > k0. By Lemma 1.15, due to the fact that the word vk is economic, we
have

|rvks|
|vk|

>
4|vk|1
|vk|

> 4− η;

therefore, the MP-ratio of vk is greater than 4− η. This completes the proof.
�
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2
Generalized highly potential words

2.1 Construction

Definition 2.1. Let w, u, v ∈ Σ∗, where wuv 6= ε and u and v are palin-
dromes, and let A = (ai)i∈N be a strictly increasing sequence of positive
integers. We recursively define:

w0 = w;

wi = wi−1(uv)aiuw̃i−1, i ∈ N;

and then:

ghpw(w, u, v, A) = lim
i→∞

wi. (2.1)

(The limit is well-defined since each wi is a prefix of wi+1.) The infinite word
ghpw(w, u, v, A) is called generalized highly potential word generated by w, u,
v and A.

Remark 2.2. We first note that generalized highly potential words are in-
deed a generalization of highly potential words: if w is a nonpalindromic
word, c a letter that does not appear in w, and I the sequence (i)i∈N, then
we clearly have

hpw(w) = ghpw(w, ε, c, I).

For the word mentioned in Theorem 1.12 in Subsection 1.2.3 holds

f∞(1) = ghpw(1213121, 3, 2, I).
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2. GENERALIZED HIGHLY POTENTIAL WORDS

Also, it is easy to see that the other three words in the same subsection can
be represented respectively as

ϕ∞1 (a) = ghpw(a, ε, b, (2i−1)i∈N),

ϕ∞2 (a) = ghpw(a, ε, b, (3i−1)i∈N),

ϕ∞3 (a) = ghpw(a, ε, b, I).

2.2 Standard form

Different quadruples of parameters (w, u, v, A) can lead to the same gener-
alized highly potential word. In the following lemma we shall prove that for
each generalized highly potential word there can be chosen a quadruple with
some particular properties that will be very useful.

Lemma 2.3. Let ghpw(w, u, v, A) be a generalized highly potential word.
Then there are words wS, uS, vS and a sequence AS such that wS is a palin-
drome, uSvS is primitive, and

ghpw(w, u, v, A) = ghpw(wS, uS, vS, AS).

Proof. We first show that a quadruple can be chosen such that w is a palin-
drome. Suppose that w 6= w̃. Since w1 = w(uv)a1uw̃, we see that w1 is always
a palindrome. It is not hard to see that

ghpw(w, u, v, A) = ghpw(w1, u, v, B),

where B = (bi)i∈N, bi = ai+1.
Suppose now that uv is not primitive, that is, uv = tn for a word t and

an integer n, n > 2. We can assume that t is primitive. Note that we can
write t = u′v′ where u′ ∈ Suff(u) and v′ ∈ Pref(v) (one of u′ and v′ can be
ε). Then we have:

u = (u′v′)ku′,

v = v′(u′v′)l

for some integers k and l that satisfy k + l = n − 1. Also, since u′ is both
the prefix and the suffix of the palindrome u, we conclude that u′ is also a
palindrome; in a similar manner, v′ is a palindrome, too. We prove that

ghpw(w, u, v, A) = ghpw(w, u′, v′, C),
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where C is an increasing sequence defined by C = (ci)i∈N,

ci = nai + k.

This follows by induction, noting that

wi+1 = wi(uv)ai+1uwi = wi((u
′v′)n)ai+1(u′v′)ku′wi

= wi(u
′v′)nai+1+ku′wi = wi(u

′v′)ci+1u′wi.

The proof is completed. �

If a quadruple (w, u, v, A) is such that w is a palindrome and uv is prim-
itive, we shall say that ghpw(w, u, v, A) is in standard form. The previous
lemma shows that each generalized highly potential word can be presented
in standard form.

Remark 2.4. The assumption that uv is primitive will be used very much,
most of the times in the form of the following consequence: in that case,
by Theorem 1.1, uv appears as a factor of uvuvuv . . . only at the “obvious
positions” (in other words, |uvuv|uv = 2; to be more precise, by this term we
shall onward refer to the appearances of uv within uvuvuv . . . that begin at
a position i where i ≡ 1 (mod |uv|)); furthermore, the same also holds for
each conjugate of uv (each conjugate of a primitive word is again primitive,
which is also easily seen by Theorem 1.1).

Another (technical) consequence of the assumption that uv is primitive
(that will also be useful) is given in the following lemma.

Lemma 2.5. Assume that u and v are palindromes, uv 6= ε, such that the
word uv is primitive. Let x be a palindrome such that |x| > 2|uv| − 1 and

x
[
1,
⌊ |x|

2

⌋
+ |uv|

]
= (vu)∞

[
1,
⌊ |x|

2

⌋
+ |uv|

]
. Then there exists a positive integer

m such that x = (vu)mv.

Proof. Let y = x
[⌊ |x|

2

⌋
+ 1,

⌊ |x|
2

⌋
+ |uv|

]
. By the lemma’s assumption, y is a

conjugate of vu, and thus we may write y = (vuvu)[i, j] for some i and j,
where 1 6 i, j 6 |vuvu| and j − i+ 1 = |uv|. Since x matches (vu)∞ for the

first
⌊ |x|

2

⌋
+ |uv| letters, Remark 2.4 leads to⌊

|x|
2

⌋
+ 1 ≡ i (mod |uv|).
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2. GENERALIZED HIGHLY POTENTIAL WORDS

We also have ỹ = (ṽuvu)[2|uv| − j + 1, 2|uv| − i + 1] = (uvuv)[2|uv| − j +

1, 2|uv|− i+ 1] and (since x is palindromic) ỹ = x
[⌈ |x|

2

⌉
−|uv|+ 1,

⌈ |x|
2

⌉]
; this

implies (by again appealing to Remark 2.4 in a similar manner)⌈
|x|
2

⌉
≡ |v|+ (2|uv| − i+ 1) ≡ |v|+ 1− i (mod |uv|).

Adding the two congruences together gives⌊
|x|
2

⌋
+ 1 +

⌈
|x|
2

⌉
≡ |v|+ 1 (mod |uv|),

that is,

|x| ≡ |v| (mod |uv|).

Together with the lemma’s assumption and the fact that x is palindromic,
this gives the required conclusion. �

2.3 Basic properties

We first present a necessary and sufficient condition for a generalized highly
potential word to be periodic.

Theorem 2.6. Let the word ghpw(w, u, v, A) be given in standard form.
Then ghpw(w, u, v, A) is periodic if and only if either w = (vu)mv for a
nonnegative integer m, or exactly one of the words w, u and v is nonempty.

Proof. We first assume w = (vu)mv. Then

ghpw((vu)mv, u, v, A) = (vu)mv(uv)a1u(vu)mv(uv)a2u . . . = (vu)∞.

Also, if exactly one of w, u, v is nonempty, we have

ghpw(w, ε, ε, A) = w∞;

ghpw(ε, u, ε, A) = u∞;

ghpw(ε, ε, v, A) = v∞.

We conclude that in all these cases the constructed word is periodic, which
completes the (⇐) part.
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To prove the converse, we assume that ghpw(w, u, v, A) is periodic. Then
we can write

ghpw(w, u, v, A) = w(uv)a1−1uvuwuv(uv)a2−1uw(uv)a1uw · · · = s∞,

where s can be chosen (long enough) such that vuwuv ∈ Fact(s). Assume that
at least one of u and v is nonempty (there is nothing to prove if u = v = ε).
Then we can choose i large enough such that s ∈ Fact((uv)ai), which implies
vuwuv ∈ Fact((uv)ai). Recall (by Remark 2.4) that vu and uv appear in
(uv)ai only at the obvious positions. If u 6= ε, then the above gives

w = (vu)mv for a nonnegative integer m, (2.2)

which was to be proved (note that w = v = ε is a special case of this); if
u = ε, then we conclude w = vl for a nonnegative integer l, that is, w is
again of the form (2.2), or w = u = ε. This completes the proof. �

We shall now prove that each generalized highly potential word is either
periodic, or recurrent but not uniformly recurrent. We first need the following
assertion.

Proposition 2.7. Fact(ghpw(w, u, v, A)) is closed under reversal.

Proof. Let x ∈ Fact(ghpw(w, u, v, A)). Choose a large enough integer i such
that x ∈ Fact(wi). Since

wi+1 = wi(uv)ai+1uw̃i,

we have

x̃ ∈ Fact(w̃i) ⊆ Fact(wi+1) ⊆ Fact(ghpw(w, u, v, A)),

which was to be proved. �

Now, in view of Theorem 1.2, we have the following corollary.

Corollary 2.8. Each generalized highly potential word is recurrent.

Concerning uniform recurrence, we have:

Proposition 2.9. A generalized highly potential word is uniformly recurrent
if and only if it is periodic.
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Proof. The part (⇐) is clear by Theorem 1.3. Let us prove the other di-
rection. Suppose the contrary: ghpw(w, u, v, A) is uniformly recurrent but
not periodic. Since vuwuv is a factor of ghpw(w, u, v, A), there exists a pos-
itive integer n such that vuwuv is a factor of any factor of ghpw(w, u, v, A)
of length n. Choose x such that |x| = n and x ∈ Fact((uv)ai) for some i.
Now in the same manner as in the proof of Theorem 2.6 we get that either
w = (vu)mv for a nonnegative integer m, or that exactly one of the words w,
u and v is nonempty; in other words, ghpw(w, u, v, A) is periodic, which is a
contradiction. �

Finally, we have the following proposition.

Proposition 2.10. If a generalized highly potential word is not periodic, then
it is aperiodic.

Proof. Suppose the contrary: ghpw(w, u, v, A) is eventually periodic but not
periodic. By Corollary 2.8, it is recurrent, but then Theorem 1.4 implies that
it must be periodic; contradiction. �

2.4 Defect of generalized highly potential

words

In this section we prove that the defect of each generalized highly potential
word is always finite. Before proceeding to the main theorem, we need two
technical lemmas.

Lemma 2.11. Let a nonperiodic ghpw(w, u, v, A) be given in standard form,
where vu /∈ Pref(wuv). Assume that there exists an integer i such that i > 3
and

|wi|(uv)aiu = 1. (2.3)

Then
|wi+1|wi

= 2 (2.4)

and
|wi+1|(uv)ai+1−1u = 2 + 2|wi|(uv)ai+1−1u.

Proof. Let us first prove (2.4). Write

wi+1 = wi(uv)ai+1uwi.
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2.4. Defect of generalized highly potential words

Clearly, |wi+1|wi
> 2. Suppose that there is a third copy of wi in wi+1.

Note that (uv)aiu occurs in the center of the considered copy of wi, and
we now conclude that this copy of (uv)aiu must (partly) overlap the central
copy of (uv)ai+1u in wi+1 (otherwise we would have |wi|(uv)aiu > 2, which is
impossible). Suppose that the length of the overlapping part is greater than
or equal to |uv|. Then the overlapping part contains the factor vu or uv, and
by Remark 2.4 this factor is positioned within the central copy of (uv)ai+1u at
one of the obvious positions. But this means that the central copy of (uv)aiu
in wi must be preceded by uv or followed by vu, and since it is preceded
by vuw and followed by wuv, we have a contradiction with vu /∈ Pref(wuv)
(or, which is the same, uv /∈ Suff(vuw)). Therefore, the overlapping part
is shorter than |uv|. We may assume, without loss of generality, that the
overlapping part and the considered copy of (uv)aiu have a common endpoint
(the other possibility: that they have a common starting point, is analogous).
The part of the considered copy of (uv)aiu that does not overlap presents
a suffix of wi. Suppose that its length is greater than or equal to |vuw|.
Since vuw ∈ Suff(wi), we have that vuw is a suffix of the considered part
of (uv)aiu. But then Remark 2.4 gives that the beginning of that suffix vuw
must coincide with an obvious position of vu within the considered copy of
(uv)aiu (the one that is not in the center of wi); since that suffix vuw is
followed by uv, altogether we obtain that wuv begins with vu, which is in
contradiction with the lemma’s assumption. Finally, we need to check the
case when the length of the non-overlapping part of the considered copy of
(uv)aiu is less than |vuw|. But then we have (uv)aiu ∈ Fact(vuwuv), and since
vuwuv ∈ Fact(wi−1) (recall that i > 3), we conclude (uv)aiu ∈ Fact(wi−1),
which contradicts (2.3). This proves (2.4).

Let us now prove

|wi+1|(uv)ai+1−1u = 2 + 2|wi|(uv)ai+1−1u.

The inequality (>) is clear (there are two copies of (uv)ai+1−1u in the center
of wi+1, plus the copies in the starting and the ending wi). We are left to show
only that there are no copies of (uv)ai+1−1u in wi+1 that overlap the central
copy of (uv)ai+1u but are not encompassed within it. Suppose the contrary,
that there exists such a copy. Suppose first that the overlapping part is of
length |uv| or more. Then the overlapping part contains the factor vu or uv,
and Remark 2.4 gives that this factor is positioned within the central copies
of (uv)ai+1u at one of the obvious positions. But this means that the central
copy of (uv)ai+1u in wi+1 must be preceded by uv or followed by vu, and
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since it is preceded by vuw and followed by wuv, we have a contradiction
with vu /∈ Pref(wuv) (or uv /∈ Suff(vuw)). That leaves only the case when
the overlapping part is of length less than |uv|, but this case also leads to a
contradiction in completely the same manner as in the previous paragraph.
This completes the proof of the lemma. �

Lemma 2.12. Let a nonperiodic ghpw(w, u, v, A) be given in standard form,
where vu /∈ Pref(wuv). Then there exists a positive integer i such that:

1) |wi|(uv)aiu = 1 (where that one copy of (uv)aiu is in the center of wi);

2) |wi+1|wi
= 2 (where those two copies of wi are at the beginning and at

the end of wi+1);

3) |wi+1|(uv)ai+1−1u = 2 + 2|wi|(uv)ai+1−1u (which equals either 2 or 4, depend-
ing on whether ai+1 − 1 is greater than ai or equal to it, respectively).

Furthermore, if i is any number that satisfies 1), 2) and 3), then each number
k, k > i, has the same properties.

Note. Since Lemmas 2.11 and 2.12 seem to somewhat overlap and might
confuse the reader, before we proceed to the proof, we shall say a few words
on their mutual relationship (including a sketch of the proof of Lemma 2.12,
in order to let the reader know what structure of the proof to expect, and
what will be the role of Lemma 2.11 there).

The proof of Lemma 2.12 consists of two parts: in the first part we prove
that such a number i exists, and then in the second part we prove the last
sentence from the lemma’s statement.

We do the first part by finding a number i, i > 3, that has the property
1). Lemma 2.11 then automatically implies that the same value i also has
the properties 2) and 3), which finishes the first part of the proof.

We then proceed to the second part of the proof, which we do by induc-
tion. We assume that a number k − 1 is given that has all the properties 1),
2) and 3), and then prove that the number k also has the properties 1), 2)
and 3), which we show one by one (the inductive assumption stands for the
whole time, assuming that k − 1 has all three properties simultaneously). In
this part of the proof we have to show all the three properties one by one,
that is, we cannot only show the property 1) and then refer to Lemma 2.11
for 2) and 3) (as we do in the first part of the proof), because for that we
would need the condition k > 3, which might not hold. However, the proofs
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for 2) and 3) here are not just repeating the proof of Lemma 2.11 all over
(although some of the steps are indeed quite similar), since the assumptions
are different: in Lemma 2.11 we proved that, if k had the property 1) and
k > 3, then k also had the properties 2) and 3), while in this proof we do not
have the inequality k > 3 anymore, but instead have the assumption that
k − 1 has all the properties 1), 2) and 3).

We hope that this additional explanation will clear any eventual confusion
of the reader. We also add that Lemma 2.12 is a key result that we shall refer
to multiple times in the thesis, while Lemma 2.11 is a technical device that
we use in the proof of Lemma 2.12 (only in the first part of the proof), and
after that we shall not refer to it anymore.

Proof. We first show the existence of such an integer i. Let i be such that
i > 3 and |(uv)aiu| > |vuwuv|. Recall

wi = wi−1(uv)aiuwi−1.

Let us show that this choice of i satisfies the properties 1), 2) and 3) from
the statement. It is enough to show only the part 1), since then the parts 2)
and 3) will follow by Lemma 2.11.

We show that the factor (uv)aiu occurs exactly once in wi. We clearly
have one copy of it in the center, so we need to prove that there are no
other copies. Suppose the contrary, that there is another copy. Assume first
that that copy (partly) overlaps the central copy, and that, without loss of
generality, it is positioned to the left of the central copy. We again have, as
in the proof of Lemma 2.11, that the length of the overlapping part cannot
be greater than or equal to |uv|; therefore, the overlapping part is shorter
than |uv|. The part of the considered copy of (uv)aiu that does not overlap
presents a suffix of wi−1 and its length is greater than (uv)ai−1u, which is,
by the choice of i, at least |vuw|. Since vuw ∈ Suff(wi−1), we have that vuw
is a suffix of the considered part of (uv)aiu. But then Remark 2.4 gives that
the beginning of that suffix vuw must coincide with an obvious position of
vu within the considered copy of (uv)aiu; since that suffix vuw is followed by
uv, altogether we obtain that wuv begins with vu, which is in contradiction
with the lemma’s assumption. Therefore, we are left to analyze only the case
when there is no overlap, that is, (uv)aiu ∈ Fact(wi−1). But this implies in
the same way (uv)aiu ∈ Fact(wi−2), then (uv)aiu ∈ Fact(wi−3) etc., which is
clearly a contradiction. This proves that the chosen value of i indeed satisfies
the properties 1), 2) and 3).
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Let us now prove the last sentence from the lemma’s statement. Assume
that i is given as required. We proceed by induction on k. We have the base
for k = i. Now assume that the assertion holds for k − 1.

We first prove
|wk|(uv)aku = 1. (2.5)

Recall
wk = wk−1(uv)akuwk−1.

Clearly, |wk|(uv)aku > 1. Suppose that there is another copy of (uv)aku (besides
the one in the center) in wk. It cannot overlap the central copy of (uv)ak+1u for
a length of |uv| nor more (as we have already seen several times); therefore,
the length of the overlap is less than |uv|. Then there is a copy of (uv)ak−1u in
wk−1. Note that this copy contains the factor (uv)ak−1u, and by the inductive
assumption, we have that the only copy of this factor in wk−1 is the one in the
center; however, it is followed by wuv and preceded by vuw (or only w both
times, in the special case k = 2), and now because of the assumption vu /∈
Pref(wuv) (then also uv /∈ Suff(vuw)) we get that this copy of (uv)ak−1u in
wk−1 cannot be a part of the considered copy of (uv)aku in wk, a contradiction.
This proves (2.5).

Let us now prove
|wk+1|wk

= 2. (2.6)

(Note that we cannot simply use Lemma 2.11 here, since the inequality k > 3
might not hold.) Recall

wk+1 = wk(uv)ak+1uwk.

Clearly, |wk+1|wk
> 2. Suppose that there is a third copy of wk in wk+1.

Note that (uv)aku occurs in the center of the considered copy of wk, and
we now conclude that this copy of (uv)aku must (partly) overlap the central
copy of (uv)ak+1u in wk+1 (otherwise we would have |wk|(uv)aku > 2, which is
impossible), and, by the argument that we have already seen, the length of
the overlapping part cannot be greater than or equal to |uv|. But then, since
the considered copy of (uv)aku is both preceded by and followed by wk−1, we
get that one of those two copies of wk−1 is encompassed inside wk, neither at
its beginning nor at its end. But this implies |wk|wk−1

> 3, which contradicts
the inductive assumption. This proves (2.6).

Finally, we need to prove

|wk+1|(uv)ak+1−1u = 2 + 2|wk|(uv)ak+1−1u.
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2.4. Defect of generalized highly potential words

We again assume that there is a “superfluous” copy of (uv)ak+1−1u in wk+1.
Then (again) it overlaps the central copy of (uv)ak+1u for a length of less
than |uv|, which means that the non-overlapping part of the considered copy
of (uv)ak+1−1u is of length at least |(uv)ak+1−2u|, which is at least |(uv)ak−1u|;
however, this non-overlapping part is encompassed within wk and we see that
it contains a copy of (uv)ak−1u that is “superfluous” in wk, in contrary to the
inductive assumption. This completes the proof of the lemma. �

We are now ready for the main theorem of this section (and arguably of
the whole chapter).

Theorem 2.13. Let ghpw(w, u, v, A) be a generalized highly potential word.
We have

D(ghpw(w, u, v, A)) <∞.

Proof. If ghpw(w, u, v, A) is periodic, the proof will be given in the next
subsection. Therefore, assume that ghpw(w, u, v, A) is not periodic, and we
may further assume, without loss of generality, that it is given in standard
form. We shall first work under the assumption vu /∈ Pref(wuv) (and then
also uv /∈ Suff(vuw)), and then return to the general case at the end of the
proof.

Let i be a number whose existence is guaranteed by Lemma 2.12. It is
enough to prove that for each k, k > i+ 1, we have

D(wk) = D(wi+1). (2.7)

Indeed, in that case we would have, by Theorem 1.6 and the equality (2.1),

D(ghpw(w, u, v, A)) = sup
z∈Fact(ghpw(w,u,v,A))

D(z) = sup
j∈N0

D(wj)

= D(wi+1),

as needed.
In order to show (2.7), it is enough to prove only

D(wi+2) = D(wi+1); (2.8)

indeed, in that case, by then choosing i + 1 instead of i (note that, by the
second part of Lemma 2.12, i + 1 indeed satisfies the same requirements as
i does), we would get D(wi+3) = D(wi+2) in the same way, then D(wi+4) =
D(wi+3) etc., which gives (2.7).
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Therefore, in order to prove (2.8), our goal is to find |wi+2|− |wi+1| palin-
dromes in wi+2 that do not occur in wi+1. Since

|wi+2| − |wi+1| = |wi+1|+ ai+2|uv|+ |u|+ |wi+1| − |wi+1|
= |wi+1|+ ai+2|uv|+ |u|,

we need to find |wi+1| + ai+2|uv| + |u| new palindromes. (Note: by our con-
struction of the required number of palindromes, it will not be obvious that
our list contains all the new palindromes. But this is not relevant: it is enough
to find at least the required number of new palindromes, and Theorem 1.6
then implies that there cannot be more of them.) We distinguish four types
of palindromes (after defining each type, we first explain why that type is
disjoint from all the types before it; these explanations are marked by the
symbol “/”).

• We first enumerate new palindromes that have the factor (uv)ai+2u in
the center; they can be obtained by “expanding” (to the left and the
right side) the boxed part below:

wi+1 (uv)ai+2uwi+1.

Clearly, there is a total of |wi+1| palindromes of this type (not counting
the palindrome (uv)ai+2u itself), and all of them must be new because
(uv)ai+2u occurs only once in wi+2 (and does not occur in wi+1).

• We now enumerate new palindromes that have the factor wi in the
center; they can be obtained by “expanding” the boxed part below:

wi+1(uv)ai+2uwi (uv)ai+1uwi.

/ This type is disjoint from the first type since, by the property
1) from Lemma 2.12, there is only one copy of (uv)ai+2u in wi+2,
which cannot be in the center of a palindrome of this type.

Since there are only two occurrences of wi in wi+1 (by the choice of
i: Lemma 2.12, property 2)), we get that all the palindromes x̃wix for
x ∈ Pref((uv)ai+1u) \ {ε} are new. But there may be even more new
palindromes. Note that wi begins with wuv. If

t = max{|p| : p ∈ Pref(wuv) ∩ Pref(vu)},
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2.4. Defect of generalized highly potential words

then the expanding can continue further for t more new palindromes
(and since vu /∈ Pref(wuv), this is the best we can do). In total, we
have

ai+1|uv|+ |u|+ t

new palindromes of this type.

• Let us enumerate new palindromes that have the factor (uv)ai+2−1u in
the center; they can be obtained by “expanding” the boxed part below:

wi+1uv (uv)ai+2−1uwi+1.

/ This type is disjoint from both the previous types since, by the
property 3) from Lemma 2.12, there are either 2 or 4 copies of
(uv)ai+2−1u in wi+2, and none of them can be in the center of a
palindrome of one of the previous two types.

Note: these palindromes are new only if ai+2 > ai+1 + 1, and we shall
do the counting under this assumption (otherwise, all of them would
be factors of wi+1). Since wi+1 begins with wuv, we have a total of t
new palindromes here.

• Finally, we enumerate new palindromes that are factors of (uv)ai+2u.

/ This type is disjoint from the first type since each palindrome of
the first type is longer than each palindrome of this type.

/ Let us prove that this type is disjoint from the second type.
Suppose the contrary: there is a palindrome p that is of both
the second and the fourth type. We shall soon see that all the
palindromes of the fourth type are of length strictly greater than
|(uv)ai+1−1u| + 2t, and thus strictly greater than |(uv)aiu| + 2t.
Since p is of the second type, p has (uv)aiu in the center (because
wi has (uv)aiu in the center). The letter at t + 1 positions right
of this copy of (uv)aiu in p is (wuv)[t+ 1], which is different from
(vu)[t+ 1] by the definition of t. However, by Remark 2.4 and the
fact that p ∈ Fact((uv)ai+2u) (because p is of the fourth type also),
we have that the observed copy of (uv)aiu in p has to be followed
by vu, a contradiction. This proves the claim.

/ Finally, we show that this type is disjoint from the third type. As
we shall see in a moment, this type will be divided into two sub-
types ((2.9) and (2.10) below). The first subtype is disjoint from
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the third type since there are either 2 or 4 copies of (uv)ai+2−1u
in wi+2, none of which is in the center of (uv)ai+2u, while all the
palindromes of the first subtype are in the center of (uv)ai+2u,
and therefore they cannot have a copy of (uv)ai+2−1u in their cen-
ter. The second subtype is disjoint from the third type since each
palindrome of the third type is longer than each palindrome of the
second subtype.

Let us first consider palindromes of the form

((uv)ai+2u)[j, |(uv)ai+2u| − j + 1]. (2.9)

In other words, they can be obtained by removing one by one letter from
both ends of (uv)ai+2u simultaneously. At one moment, we shall arrive
to (uv)ai+1u or (uv)ai+1−1u (depending on whether ai+2 and ai+1 are of
the same parity or not, respectively). Assume, e.g., the second case (the
first one is similar but even easier). At this moment, the palindrome
that we arrive to belongs to Fact(wi+1), so there is no point to continue
further. We shall now check how many of all those palindromes exist
already in Fact(wi+1). Note that, by the choice of i (in particular, the
property 3) from Lemma 2.12), we know exact positions of all the copies
of (uv)ai+1−1u within wi+1: there are two copies that are parts of the
central (uv)ai+1u, and additionally, if they exist (that is, if ai+1−1 = ai),
two copies in the centers of the starting and ending wi. Since each of
these copies is either preceded by vuw or followed by wuv (or both), it is
easy to see that the number of the considered palindromes that belong
to Fact(wi+1) is precisely t. The same conclusion holds if ai+2 and ai+1

are of the same parity. This means that so far we have enumerated
dai+2−ai+1

2
e|uv| − t new palindromes.

We now consider palindromes of the form

((uv)ai+2−1u)[j, |(uv)ai+2−1u| − j + 1]. (2.10)

We again remove one by one letter from both ends of (uv)ai+2−1u simul-
taneously until we reach (uv)ai+1u or (uv)ai+1−1u. The same argument
as in the previous paragraph shows that there are bai+2−ai+1

2
c|uv| − t

new palindromes here, but there is one exceptional case: namely, if
ai+2 = ai+1 + 1, then already the starting palindrome (uv)ai+2−1u be-
longs to Fact(wi+1), and thus then we get 0 new palindromes (the for-
mula above would give a senseless value of −t, the explanation of which
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is that the subtracted t palindromes in this exceptional case are not fac-
tors of (uv)ai+2−1u, and thus we do not need to subtract them).

Since dai+2−ai+1

2
e + bai+2−ai+1

2
c = ai+2 − ai+1, we may conclude that,

altogether, there is a total of

(ai+2 − ai+1)|uv| − 2t

new palindromes of this type if ai+2 > ai+1 + 1, and

|uv| − t

if ai+2 = ai+1 + 1.

Finally, let us sum all the numbers. If ai+2 = ai+1 + 1, then we have found

|wi+1|+ (ai+1|uv|+ |u|+ t) + (|uv| − t) = |wi+1|+ (ai+1 + 1)|uv|+ |u|
= |wi+1|+ ai+2|uv|+ |u|

new palindromes (recall that we ignore the third bullet here); if ai+2 > ai+1+
1, then we have found

|wi+1|+ (ai+1|uv|+ |u|+ t) + t+ ((ai+2−ai+1)|uv| − 2t)

= |wi+1|+ |u|+ ai+2|uv|

new palindromes. In both cases, we get what was to be proved.

We now need to address the case vu ∈ Pref(wuv). Let

s = min{j : (wuv)[j] 6= (vu)∞[j]} − |uv|

(such a number s must exist since otherwise Remark 2.4 would imply that
w is of the form vuvu . . . vuv and thus ghpw(w, u, v, A) would be periodic).
Note that the assumption vu ∈ Pref(wuv) implies that s is positive. We

also show that s 6
⌊ |w|

2

⌋
: indeed, if this were not the case, then the word

vuwuv would be a palindromic word that would match (vu)∞ for the first

|vu|+
⌊ |w|

2

⌋
+|uv| (which is

⌊ |vuwuv|
2

⌋
+|uv|) letters, and then Lemma 2.5 would

imply vuwuv = (vu)mv; therefore, w would also be of the form vuvu . . . vuv,
which would contradict the fact that ghpw(w, u, v, A) is not periodic. Now,
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let:

e = (|u|+ 2s) mod |uv|;
l = (−s) mod |uv|;

w′ = w[s+ 1, |w| − s];
u′ = (uvuv)[l + 1, l + e];

v′ = (uvuv)[l + e+ 1, l + |uv|];

A′ =
(
ai +

|u|+ 2s− e
|uv|

)∞
i=1

= (a′i)
∞
i=1.

(2.11)

Notice that u′v′ is a conjugate of uv, and we have

(u′v′)∞ = (uv)[l + 1, |uv|](uv)∞ = (u′v′)∞[1, |uv| − l](uv)∞

= (u′v′)∞[1, s](uv)∞,
(2.12)

and also

(u′v′)∞[1, s]̃ = (uv)[l + 1, |uv|](uv)b
s
|uv| c̃ = (vu)b

s
|uv|c(vu)[1, |uv| − l]

= (vu)∞[1, s].

Further, by the definition of s, we have

w[1, s] = (vu)∞[1, s] = (u′v′)∞[1, s]̃.

We claim:

ghpw(w, u, v, A) = w[1, s] ghpw(w′, u′, v′, A′). (2.13)

It is enough to prove that for each i we have

w[1, s]w′i = wi[1, |wi| − s]. (2.14)

Before we proceed, we shall first check what do we get of the word
(u′v′)a

′
iu′ when we erase the prefix and the suffix of the length s. By (2.12),

we notice that, after erasing the prefix, there remains a word of the form
uvuvuv . . . . Therefore, since (u′v′)a

′
iu′ is a palidrome, erasing both the prefix

and the suffix leaves a word of the form (uv)ku for a nonnegative integer k.
We have k|uv|+ |u|+ 2s = a′i|uv|+ |u′|, which reduces to

k = a′i +
|u′| − |u| − 2s

|uv|
= ai +

|u|+ 2s− e
|uv|

+
e− |u| − 2s

|uv|
= ai.
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2.4. Defect of generalized highly potential words

The proof of (2.14) is now a straightforward induction: the base (for i = 0)
is clear, and for the induction step we have:

w[1, s]w′i+1 = w[1, s]w′i(u
′v′)a

′
i+1u′w′i

= wi[1, |wi| − s](u′v′)∞[1, s](uv)ai+1u(u′v′)∞[1, s]̃w′i
= wi(uv)ai+1uw[1, s]w′i
= wi(uv)ai+1uwi[1, |wi| − s]
= wi+1[1, |wi+1| − s],

which was to be proved.
Now notice the following: w′ is a palindrome (by its definition), u′v′

is primitive (since it is a conjugate of uv, which is primitive), and v′u′ /∈
Pref(w′u′v′) (because of (v′u′)[|v′u′|] = (u′v′)[1] = (uv)[l + 1] = (vu)∞[s] =
(vu)∞[s+ |uv|] and (w′u′v′)[|v′u′|] = (wuv)[s+ |uv|], and these two letters are
different by the choice of s). Therefore, the word ghpw(w′, u′, v′, A′) satisfies
all the assumptions of the first part of the proof, and we conclude that its
defect is finite. Now, since ghpw(w, u, v, A) is recurrent, by (2.13) we con-
clude that each its factor is also a factor of ghpw(w′, u′, v′, A′) (and the other
direction obviously holds, too), which finally implies:

D(ghpw(w, u, v, A)) = D(ghpw(w′, u′, v′, A′)) <∞.

The proof is completed. �

Since, as mentioned in the Preface, infinite words of defect 0 have been
studied significantly more than infinite words of finite nonzero defect, it
makes sense to give a characterization of generalized highly potential words
of (non)zero defect. Such a characterization can easily be inferred from the
proof of Theorem 2.13. We give it in the following corollary (the corollary
assumes that a word is given in standard form, but if it is not, we can always
rechoose the defining parameters as in the proof of Lemma 2.3 and make it
in standard form).

Corollary 2.14. Given a nonperiodic ghpw(w, u, v, A) in standard form, we
have:

1◦ If vu /∈ Pref(wuv), choose the smallest integer i that satisfies 1), 2) and
3) from the statement of Lemma 2.12, and then D(ghpw(w, u, v, A)) =
D(wi+1).
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2◦ If vu ∈ Pref(wuv), choose w′, u′, v′ and A′ as in (2.11), and then
D(ghpw(w, u, v, A)) = D(ghpw(w′, u′, v′, A′)), which is evaluated as in
1◦ above.

In particular, in this way we can determine whether D(ghpw(w, u, v, A))
is 0 or positive, which gives a characterization of generalized highly potential
words of (non)zero defect.

Also note, we can easily produce many examples of generalized highly
potential words of nonzero defect. The simplest way is just to take any of the
words w, u or v to have nonzero defect, and then ghpw(w, u, v, A) also has
nonzero defect. This is a sufficient, but not necessary condition: for example,
if w, u and v are all rich words, but such that one of the words wu or uv has
positive defect, then ghpw(w, u, v, A) again has positive defect.

In fact, if any two of the words w, u and v are such that they cannot be
factors of the same rich word, then ghpw(w, u, v, A) has positive defect. It
was an open question posed in [51] if it is decidable whether two rich words
can be factors of the same rich word; this question has been settled (in the
affirmative) very recently [54], though the deciding algorithm is not really
practical. An elegant necessary condition for two rich words to be factors of
the same rich words is as follows [22, Theorem 6]: no two different factors
of a rich word can have the same longest palindromic prefix as well as the
same longest palindromic suffix (therefore, if we want ghpw(w, u, v, A) to
have positive defect, it is sufficient to have the stated condition violated for
any two of the words w, u, v). It has been asked in [59, Open problem 6.2]
whether the stated condition is also sufficient (that is, whether any two rich
words that have different longest palindromic prefix or longest palindromic
suffix must be factors of the same rich word); if true, this would greatly
simplify the mentioned algorithm from [54], but up to the present author’s
knowledge, this problem is still open.

2.5 Periodic case

Finally, we show that periodic generalized highly potential words also have
finite defect.

Theorem 2.15. The defect of a periodic generalized highly potential word is
finite.
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Proof. Let ghpw(w, u, v, A) be given in standard form, and let

ghpw(w, u, v, A) = p∞.

We claim that we may assume that p is a primitive word that is a product
of two palindromes (where one of them is possibly ε). Indeed, Theorem 2.6
implies that we may assume either p = vu or p ∈ {w, u, v}, but in the latter
case, if p is not primitive but, say, p = tn, we may take t in place of p (t is
then a palindrome since it is both a prefix and a suffix of a palindrome). Now
Theorem 1.9 gives

D(ghpw(w, u, v, A)) <∞.

�
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3
MP-ratio in the ternary case

Consider the n-ary alphabet Σ = {0, 1, . . . , n − 1}. Clearly, each w ∈ Σ∗

contains a subpalindrome of length at least
⌈ |w|
n

⌉
. Therefore, it is natural to

say that a word w ∈ Σ∗ is minimal-palindromic if and only if it does not
contain a subpalindrome longer than

⌈ |w|
n

⌉
. For a word w ∈ Σ∗, a pair (r, s),

where r, s ∈ Σ∗, such that rws is minimal-palindromic, is called an MP-
extension of w, and we define an SMP-extension and the MP-ratio in the
same way as in the binary case. However, as mentioned earlier, in case of an
arity greater than 2, it is not clear whether an MP-extension always exists,
and thus whether the MP-ratio is well-defined. In this chapter we prove that
this is true for ternary alphabet.

We first show an easy proposition that will be useful later.

Proposition 3.1. Let w ∈ {0, 1, 2}∗, and let (r, s) be an SMP-extension of
w and |rs| > 2. Then |rws| = 3k − 2 for some positive integer k, and the
values |rws|0, |rws|1, |rws|2 are (in some permutation) either k − 1, k − 1, k
or k − 2, k, k.

Proof. Suppose the contrary: (r, s) is an SMP-extension of w, |rs| > 2 and
|rws| = 3k − 1 (respectively |rws| = 3k). Let r′s′ denote the word obtained
by erasing any letter (respectively any two letters) from rs (where r′ is a
subword of r and s′ of s). Clearly, the length of a longest subpalindrome of
r′ws′ is not greater than the length of a longest subpalindrome of rws, which
is at most

⌈ |rws|
3

⌉
. Since

⌈ |r′ws′|
3

⌉
=
⌈
3k−2
3

⌉
= k =

⌈ |rws|
3

⌉
, we conclude that

(r′, s′) is an MP-extension, and |r′|+ |s′| < |r|+ |s|, a contradiction.
Therefore, we now know that |rws| = 3k−2. Let us show the second part

of the statement. Let c be a prevalent letter in rws. Since
⌈ |rws|

3

⌉
=
⌈
3k−2
3

⌉
= k
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and rws is minimal-palindromic, we have |rws|c 6 k. If |rws|c < k, then
|rws| 6 3(k − 1) < 3k − 2 would follow, which is a contradiction. Therefore,
the only possibility is |rws|c = k. If a prevalent letter is unique, then we see
that each of the other two letters has to occur exactly k − 1 times, while if
there are two prevalent letters (both occurring k times), then the third letter
has to occur k − 2 times. �

3.1 An upper bound on the MP-ratio

Our aim is in this section to show that the MP-ratio of any ternary word w
is at most 6. We fix the alphabet Σ = {0, 1, 2}.

The following functions will be needed. For w ∈ Σ∗ and a, b ∈ Σ, let

γ(w, a, b) = min
{

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , |w|+ 1
}
,

and let

g(w, a, b) = max
{

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , |w|+ 1
}
.

Further, let j(a, w) denote the position of the last occurrence of a in w (that
is, w[j(a, w)] = a and w[k] 6= a for each k, k > j(a, w)), and j(a, w) = 0 if a
does not occur in w. We define

g′(w, a, b) = max
({

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , j(a, w)
}
∪ {0}

)
.

We first show two easy properties of these functions.

Lemma 3.2. Let w be a finite word and let a and b be two distinct letters.
Then:

a) g′(w, a, b) 6 g(w, a, b);

b) γ(w, a, b) + g(w̃, a, b) = g(w, a, b) + γ(w̃, a, b) = 2|w|a − |w|b.

Proof. a) Follows from the definitions of g and g′.
b) We first show that for each i, 1 6 i 6 |w|+ 1, we have the equality(

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

)
+
(
2
∣∣w̃[|w| − i+ 2, |w|]

∣∣
a
−
∣∣w̃[|w| − i+ 2, |w|]

∣∣
b

)
= 2|w|a − |w|b.
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The equality follows by observing that each occurrence of the letter a is
counted in exactly one of the parenthesis, and the same holds for each occur-
rence of the letter b. Note that, because of this equality, the first parenthesis
reaches its minimum exactly when the second parenthesis reaches its maxi-
mum, and vice versa. When the first parenthesis reaches its minimum (and
the second one its maximum), the expression on the left-hand side becomes
γ(w, a, b)+g(w̃, a, b) (by the definition of γ and g); when the first parenthesis
reaches its maximum (and the second one its minimum), the expression on
the left-hand side becomes g(w, a, b) +γ(w̃, a, b). This proves the lemma. �

The following property of the function g is less obvious, but will also be
very useful.

Lemma 3.3. Let w ∈ Σ∗, let b be a prevalent letter in w, and let a be a
letter distinct from b. We have:

g(w, a, b) + g(w̃, a, b) 6 3|w|a.

Proof. First, we have the following sequence of equivalences (where Lemma
3.2b) is used in the first step):

g(w, a, b) + g(w̃, a, b) 6 3|w|a if and only if

g(w, a, b)− γ(w, a, b) + 2|w|a − |w|b 6 3|w|a if and only if

g(w, a, b)− γ(w, a, b) 6 |w|a + |w|b.

Therefore, it is enough to show that g(w, a, b)− γ(w, a, b) 6 |w|a + |w|b.
Now, let K, respectively k, where 1 6 K, k 6 |w| + 1, denote the value

of i for which the expression

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

reaches its maximal, respectively minimal, value. In other words,

g(w, a, b) = 2
∣∣w[K, |w|]

∣∣
a
−
∣∣w[K, |w|]

∣∣
b

and
γ(w, a, b) = 2

∣∣w[k, |w|]
∣∣
a
−
∣∣w[k, |w|]

∣∣
b
.

We distinguish two cases depending on which one of k and K is greater, and
show that in both cases the expected inequality holds.

Let first K 6 k. Now, let i transition gradually from K to k, and we
monitor changes in the value 2

∣∣w[i, |w|]
∣∣
a
−
∣∣w[i, |w|]

∣∣
b
. If w[i] = a, then the
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3. MP-RATIO IN THE TERNARY CASE

value of the expression 2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

in the next step will decrease
by 2 (in comparison to the current value); if w[i] = b then the considered
value will increase by 1; if w[i] /∈ {a, b}, then the considered value will not
change. Since g(w, a, b) > γ(w, a, b), we conclude that the difference between
them is at most twice the number of letters a in the factor w[K, k− 1] (that
is, the maximum is reached when the considered value constantly decreases
during the described process). Now we have:

g(w, a, b)− γ(w, a, b) 6 2|w[K, k − 1]|a 6 2|w|a 6 |w|a + |w|b

(where the last inequality holds because of the assumption that b is a preva-
lent letter in w).

Let now k 6 K. In a similar manner as in the previous paragraph, we get
that in this case the difference between g(w, a, b) and γ(w, a, b) is at most
the number of letters b in the factor w[k,K − 1]. Therefore, in this case we
have:

g(w, a, b)− γ(w, a, b) 6 |w[k,K − 1]|b 6 |w|b 6 |w|a + |w|b.

This completes the proof. �

Now we are ready to construct an MP-extension of a given word w. For the
rest of this section, without loss of generality, we assume |w|0 6 |w|1 6 |w|2.
We shall describe two extensions of the word w, denoted by f(w) and f ′(w),
and show that at least one of them is an MP-extension. Those two extensions
are:

f(w) = 02|w|−|w|022|w|−|w|2−g′(w,0,2) w 2g
′(w,0,2)12|w|−|w|1 ;

f ′(w) = 12|w|−|w|12g
′(w̃,0,2) w 22|w|−|w|2−g′(w̃,0,2)02|w|−|w|0 .

Note that f ′(w) = f̃(w̃). By r and s, respectively r′ and s′, we shall refer to
the prefix and the suffix attached to w in f(w), respectively f ′(w).

In other words, the letters 1 and 0 are piled up at the ends, and the letter
2 is arranged around w in an asymmetric way. We shall later need a more
precise “quantification” of this asymmetry, so let us show that

(2|w| − |w|2 − g′(w, 0, 2))− g′(w, 0, 2) > |w|2 (3.1)

(and the same holds with w̃ in place of w), which reduces to

g′(w, 0, 2) + |w|2 6 |w|.
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And indeed:

g′(w, 0, 2) + |w|2 6 2|w|0 + |w|2 6 |w|0 + |w|1 + |w|2 = |w|,

which was to be proved.

Note. The presented construction is not the only one possible. Another
possibility is to use the function g in place of g′ (or any intermediate value),
and the proof in that case is completely the same. We decided to present the
version with g′ because that version is exactly a “borderline” case in the sense
that the letters 2 are arranged in the “mostly asymmetric” way possible; in
other words, by transferring only one letter 2 from the “smaller pile” to the
“larger pile” we would not have an MP-extension anymore.

As already announced, we claim that at least one of the pairs (r, s) and
(r′, s′) represents an MP-extension of w; that is, at least one of the words f(w)
and f ′(w) does not have subpalindromes whose length exceeds 2|w| (having
in mind that |f(w)| = |f ′(w)| = 6|w|). The proof consists of a number of
intermediate assertions.

Lemma 3.4. The length of an arbitrary subpalindrome of the form 0p0 in
each of the words f(w) and f ′(w) is less than or equal to 2|w|.

Proof. Without loss of generality, we prove the assertion for the word f(w).
(This indeed does not affect the generality: if we prove the claim for f(w) for
each w, then it also holds for each f(w̃), and now we only need to recall the

equality f ′(w) = f̃(w̃) and the fact that the claimed property remains true

for f̃(w̃) if it is true for f(w̃).) Each subword of f(w) of the form 0p0 must
be a subword of

rw = 02|w|−|w|022|w|−|w|2−g′(w,0,2)w,

because s obviously does not contain the letter 0.
If at least |0p0|

2
letters from w participate in the palindrome 0p0 (which

means: 0p0 is a subword of rw obtained by selecting at least |0p0|
2

letters from
w, while the rest of the letters are selected from r), then, clearly, |0p0| 6 2|w|,
which was to be proved. Assume now that more than |0p0|

2
letters from r

participate in the palindrome 0p0 (it must be so if the assumption from the
previous sentence is not true). Then, clearly, 0p0 ∈ 0∗2∗0∗.

If 0p0 ∈ 0∗, then we immediately have

|0p0| 6 |rw|0 = (2|w| − |w|0) + |w|0 = 2|w|,
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3. MP-RATIO IN THE TERNARY CASE

which was to be proved. Therefore, it remains to check the case 0p0 ∈ 0∗2+0∗.
Note that then there exists a position i in the word w such that among
the letters at the positions 1, 2, . . . , i − 1, respectively i, i + 1, . . . , |w|, only
the letters 2, respectively the letters 0, can participate in the palindrome
0p0. Hence, there can be at most

∣∣w[i, |w|]
∣∣
0

zeros at the end of 0p0, and

therefore also at the beginning. Altogether, we conclude |0p0| 6 |r|2+
(
|w|2−∣∣w[i, |w|]

∣∣
2

)
+ 2
∣∣w[i, |w|]

∣∣
0
. Since 0p0 ends with 0, we have that i is at most

the position of the rightmost letter 0 in w; this gives that the expression from
the previous sentence is bounded from above by |r|2 + |w|2 + g′(w, 0, 2) (by
the definition of g′). In other words, we again have

|0p0| 6 |r|2 + |w|2 + g′(w, 0, 2)

= (2|w| − |w|2 − g′(w, 0, 2)) + |w|2 + g′(w, 0, 2) = 2|w|,

which completes the proof. �

Lemma 3.5. The length of an arbitrary subpalindrome of the form 1p1 in
each of the words f(w) and f ′(w) is less than or equal to 2|w|.

Proof. We again prove the assertion only for the word f(w). We may assume
1p1 ∈ 1∗2+1∗ (everything else can be dealt with in a completely analogous
way like in Lemma 3.4). Then we can write the palindrome 1p1 in the form
1pwp2p11, where 1pw ∈ Subw(w), p2 ∈ 2∗ and p11 ∈ 1∗. Since there are at
most |w|1 letters 1 to the left of p2, we conclude |p11| 6 |w|1. Now we have

|1p1| = |1pwp2p11| = |1pw|+ |p2|+ |p11| 6 |w|+ g′(w, 0, 2) + |w|1
6 |w|+ 2|w|0 + |w|1 6 |w|+ |w|0 + |w|2 + |w|1
= 2|w|,

which completes the proof. �

Lemma 3.6. Let p and q be two nonempty subpalindromes of w. Let wp,
v, wq and t be such that w = wpv = twq, p is a subword of wp, and q is a
subword of wq. Then

|p|+ 2|v|2 + |q|+ 2|t|2 6 4|w|2 + |w|1 + |w|0. (3.2)

Proof. Define the word w′, |w′| = |w|, in the following way:

w′[i] =

{
1, if w[i] = 0 or w[i] = 1;
2, if w[i] = 2.
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3.1. An upper bound on the MP-ratio

We obviously have |w′|2 = |w|2 and |w′|1 = |w|1 + |w|0. By the assumption
|w|2 > |w|1 > |w|0 we get 2|w′|2 > |w′|1. Similarly, let p′, v′, q′, t′, be the
words obtained from p, v, q, t, respectively, by replacing all 0s by 1s. Then
p′ and q′ are subpalindromes of the word w′, and by applying Theorem 3.19
(formulated and proved later in Section 3.4) we get

|p′|+ 2|v′|2 + |q′|+ 2|t′|2 6 4|w′|2 + |w′|1.

Note that the left-hand side is the left-hand side of (3.2), and the right-hand
side is the right-hand side of (3.2), which proves the lemma. �

Lemma 3.7. At least one among the words f(w) and f ′(w) does not contain
a subpalindrome of the form 2p2 longer than 2|w|.
Proof. Suppose the contrary: in both the words f(w) and f ′(w) the length
of a longest subpalindrome of the form 2p2 is greater than 2|w|. Consider
the word f(w). Since |f(w)|2 = 2|w|, such a longest subpalindrome of f(w)
contains a letter different from 2, and thus, by (3.1), we can write it as
2l+|s|2pw2l+|s|2 where pw = p̃w and pw2l ∈ Subw(w). This palindrome has
length |pw| + 2l + 2|s|2, which equals |pw| + 2l + 2g′(w, 0, 2). Therefore, the
assumption from the beginning reduces to:

|pw|+ 2l + 2g′(w, 0, 2) > 2|w|.

In a similar manner, considering f ′(w), we get:

|qw|+ 2l′ + 2g′(w̃, 0, 2) > 2|w|

(where qw and l′ are defined analogously).
Summing the last two inequalities yields:

|pw|+ 2l + |qw|+ 2l′ + 2g′(w, 0, 2) + 2g′(w̃, 0, 2) > 4|w|,

which is equivalent to:

|pw|+ 2l + |qw|+ 2l′ > 4|w| − 2g′(w, 0, 2)− 2g′(w̃, 0, 2). (3.3)

Note that the left-hand side of (3.3) equals the left-hand side of (3.2),
which is, by Lemma 3.6, less than or equal to 4|w|2 + |w|1 + |w|0. On the
other hand, for the right-hand side of (3.3) we have:

4|w| − 2g′(w, 0, 2)− 2g′(w̃, 0, 2)

> 4|w| − 2g(w, 0, 2)− 2g(w̃, 0, 2) > 4|w| − 6|w|0
= 4|w|2 + 4|w|1 − 2|w|0 > 4|w|2 + |w|1 + 3|w|0 − 2|w|0
= 4|w|2 + |w|1 + |w|0,

63



3. MP-RATIO IN THE TERNARY CASE

where we used Lemma 3.2a) and Lemma 3.3. This gives a contradiction, and
the lemma is thus proved. �

We are now ready for the main theorem of this section.

Theorem 3.8. The MP-ratio of any ternary word is at most 6.

Proof. The assertion follows directly from Lemmas 3.4, 3.5 and 3.7. �

Note. We make no claim that the considered extension is an SMP-extension.
In fact, having in mind Proposition 3.1, we see that this is certainly not the
case; by erasing any two letters from r and s, we would get a shorter MP-
extension, which at the same time shows that the MP-ratio of any ternary
word is strictly less than 6. However, because of the following section, this
does not make any crucial difference. We chose to write the proof in the
presented way since we felt that it was a little bit easier (from a technical
point of view) if each letter in rws had the same number of occurrences. In
any case, an MP-extension obtained by erasing two letters from our extension
still does not have to be an SMP-extension. The question of constructing an
SMP-extension of a given word is much harder, and seems to be far out of
reach even in the binary case [13].

3.2 Optimality of the upper bound

We shall now show that the constant 6 from the previous section is optimal.

In Section 1.3 we introduced the properties of a binary word being eco-
nomic and k-economic. We slightly modify this definition to make an appro-
priate adaptation for the ternary case. We say that a word w ∈ {0, 1, 2}∗ is
k-economic (with respect to the letter 1) if and only if w is a palindrome and
the word w1k contains a subpalindrome of length at least |w|1 + k + 3. Each
such subpalindrome can be written in the form 1mq1m where 0 6 m 6 k and
1mq ∈ Subw(w); the pair (q,m) is then called a k-witness of w. We say that
w is economic if and only if it is k-economic for every k, k = 0, 1, . . . , |w|1.

The following lemmas are (more or less) direct adaptations of Lemma
1.14, Lemma 1.15 and Lemma 1.16.

Lemma 3.9. Let w ∈ {0, 1, 2}∗, and let (r, s) be an MP-extension of w. If
w is economic, then |rs|1 > |w|1.
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Proof. Suppose the contrary: |rs|1 6 |w|1. Let |r|1 = i and |s|1 = j, and as-
sume, without loss of generality, i 6 j. Since w is economic and j− i 6 |s|1 6
|rs|1 6 |w|1, it follows that w is (j − i)-economic. Therefore, w1j−i contains
a subpalindrome of length at least |w|1 + j − i+ 3, and that subpalindrome
can be written in the form 1mq1m for m 6 j − i and 1mq ∈ Subw(w). But
we now have that 1m+iq1m+i is a subpalindrome of rws, and we calculate:

|1m+iq1m+i| = 2i+ |1mq1m| > 2i+ |w|1 + j − i+ 3 = |w|1 + i+ j + 3

= |rws|1 + 3 > |rws|1 + 2 >

⌈
|rws|

3

⌉
(the last inequality follows from Proposition 3.1). Contradiction, since the
word rws is minimal-palindromic. This proves the lemma. �

Lemma 3.10. Let w ∈ {0, 1, 2}∗, and let (r, s) be an MP-extension of w. If
w is economic, then |rws| > 6|w|1.
Proof. The proof is a straightforward computation that relies on Proposition
3.1 and the previous lemma:

|rws| = |rws|0 + |rws|1 + |rws|2 > 3|rws|1 − 2 = 3|w|1 + 3|rs|1 − 2

> 3|w|1 + 3(|w|1 + 1)− 2 > 6|w|1.

�

Lemma 3.11. Let w0 be an economic word and let the sequence (wi)i>0 be
defined recursively by wi+1 = wi1

tiwi, where (ti)i>0 is a given sequence of
positive integers. If for each nonnegative integer i we have ti < |wi|0, then
all the words wi are economic.

Proof. We proceed by induction on i. The base is clear (there is nothing to
prove for i = 0). We now assume that wi is economic and prove that then
wi+1 is also economic. We should prove that wi+1 is k-economic for each k,
k = 0, 1, . . . , |wi+1|1.

Assume first 0 6 k 6 |wi|1. By the inductive assumption, wi is k-
economic. Let (q,m) be a k-witness of wi. Recall that m 6 k and 2m+ |q| >
|wi|1 + k + 3. Let

p = 1mq1ti+mq1m.

Since 1mq ∈ Subw(wi) and 1m ∈ Subw(1k), we have p ∈ Subw(wi1
tiwi1

k) =
Subw(wi+11

k). Furthermore,

|p| = 3m+ 2|q|+ ti = 2(2m+ |q|)−m+ ti > 2(|wi|1 + k + 3)− k + ti

= |wi+1|1 + k + 6 > |wi+1|1 + k + 3.
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3. MP-RATIO IN THE TERNARY CASE

This gives that wi+1 is k-economic.

Assume now k = |wi|1+1. Then the word wi is (k−1)-economic. Let (q,m)
be a (k − 1)-witness of wi (now m 6 k − 1). Let (again) p = 1mq1ti+mq1m.
Then p ∈ Subw(wi+11

k) and

|p| = 3m+ 2|q|+ ti = 2(2m+ |q|)−m+ ti

> 2(|wi|1 + k − 1 + 3)− (k − 1) + ti = |wi+1|1 + k + 5 > |wi+1|1 + k + 3;

therefore, wi+1 is k-economic.

Let now |wi|1 + 1 < k 6 |wi|1 + ti. Then we write

p = 1kwi1
k.

Clearly, p ∈ Subw(wi+11
k), and since ti + 1 6 |wi|0 and |wi|1 + 2 6 k, we

have

|p| = 2k + |wi|1 + |wi|0 > k + 2|wi|1 + 2 + ti + 1 = |wi+1|1 + k + 3,

which means that wi+1 is k-economic.

Finally, assume |wi|1 + ti < k 6 |wi+1|1. Let j = |wi|1 + ti and l = k − j.
Since k − j 6 |wi|1, we conclude that wi is l-economic. Let (q,m) be an
l-witness of wi. Write

p = 1j+mq1j+m.

Since 1j ∈ Subw(wi1
ti), 1mq ∈ Subw(wi) and j + m 6 k, we have p ∈

Subw(wi+11
k). Furthermore,

|p| = 2j + |1mq1m| > 2j + |wi|1 + l + 3 = |wi+1|1 + k + 3.

Therefore, wi+1 is economic also in this case, which completes the proof. �

For a sequence (ti)i>0, let w(t0, t1, . . . , tj−1) denote the word wj from the
statement of Lemma 3.11, with the initial term w0 = 0000 (we observe that
w0 is economic as a ternary word; indeed, since |w0|1 = 0, we only have to
check whether w0 is 0-economic, and it clearly is since w0 itself is a palindrome
of length 4). Note that, if the sequence (ti)i>0 satisfies 2i 6 ti < 2i+2 for each
i, then we easily see tj < 2j+2 = |w(t0, t1, . . . , tj−1)|0, and thus, by Lemma
3.11, the word w(t0, t1, . . . , tj−1) is economic (for each j and for each sequence
(ti)i>0 satisfying the required property). As we have seen in Lemma 1.17, for
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every large enough integer k there exists a word, say vk, that can be obtained
by the described construction, such that |vk| = k; further, we have

lim
k→∞

|vk|1
|vk|

= 1. (3.4)

We now have enough prerequisites to prove the main theorem of this section.

Theorem 3.12. Let R3(n) denote the maximal MP-ratio over all the words
w ∈ {0, 1, 2}∗, |w| = n. We have

lim
n→∞

R3(n) = 6.

Proof. Given a positive real number η, choose an integer k0 such that, for
each k > k0, we have

|vk|1
|vk|

> 1− η

6

(such k0 exists because of (3.4)). Let a pair (r, s) be an MP-extension of vk,
k > k0. By Lemma 3.10, due to the fact that the word vk is economic, we
have

|rvks|
|vk|

>
6|vk|1
|vk|

> 6− η;

therefore, the MP-ratio of vk is greater than 6− η. This completes the proof.
�

3.3 A postponed technical theorem

Theorem 3.13. Let u ∈ {1, 2}∗, let t, v ∈ 2∗, and let p and q be subpalin-
dromes of tu and uv, respectively. If

|p|+ |q| > 2|u|,

then

|u|1 6
|tv| − 1

|tv|
|tuv|2. (3.5)

Before we begin the proof, we shall show that it is enough to prove the
theorem in the special case when the subpalindrome p, respectively q, starts
(and ends) with t, respectively v. Assume that this case of the theorem is
proved. Let now t, u, v, p and q be as in the statement of the theorem, but
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3. MP-RATIO IN THE TERNARY CASE

not satisfying the conditions of the described special case. Let t0, respectively
v0, be the longest prefix (and suffix) of p, respectively q, that is a subword
of t, respectively v; note that |t0v0| < |tv|. Then p and q are subpalindromes
of t0u and uv0, respectively, |p|+ |q| > 2|u|, and t0, u, v0, p and q satisfy the
condition of the described special case. Since the theorem is assumed to hold
in this case, we have

|u|1 6
|t0v0| − 1

|t0v0|
|t0uv0|2 <

|tv| − 1

|tv|
|tuv|2 (3.6)

(where the second inequality follows from |t0v0|−1
|t0v0| = 1− 1

|t0v0| < 1− 1
|tv| = |tv|−1

|tv|
and |t0uv0|2 < |tuv|2); therefore, the theorem holds for t, u, v, p and q.

From now onward we assume that p, respectively q, contains all the letters
from t, respectively v.

In the following two subsections we shall give two (very) different proofs
of Theorem 3.13. The second proof is (much) shorter than the first one, and
many would probably agree that it is also more elegant. However, we feel that
the second proof is a neat little “trick” that works almost by a coincidence,
while the first proof presents a deep structural analysis and gives some insight
into why the theorem is true (we actually feel that the first proof is more
intuitive than the second one, despite some quite heavy expressions at some
places). In case that a result similar to Theorem 3.13 turns out to be needed
to deal with (for example) the MP-ratio for alphabets of larger arities, we
think that it would not be surprising if the (suitably modified) first proof
would then still work, but the second one would not. Therefore, it is our
belief that, despite the evident disparity in their lengths, both proofs have
their own merits, and thus we decided to present them both.

3.3.1 First proof

We first define sequences P1, P2, . . . , P|p| and Q1, Q2, . . . , Q|q| such that 1 6
P1 < P2 < · · · < P|p| 6 |tu| and |t|+ 1 6 Q1 < Q2 < · · · < Q|q| 6 |tuv|,

p = (tuv)[P1](tuv)[P2] . . . (tuv)[P|p|]

and

q = (tuv)[Q1](tuv)[Q2] . . . (tuv)[Q|q|].

We write P = {P1, P2, . . . , P|p|} and Q = {Q1, Q2, . . . , Q|q|}.
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We define σP : P → P by σP : Ps 7→ P|P |−s+1 and σQ : Q → Q by
σQ : Qs 7→ Q|Q|−s+1. Note that σP and σQ are bijections, and their squares
are identical mappings.

For 1 6 n 6 |t|, let σ0(n) = n and

σi+1(n) =


σP (σi(n)), for 2 | i and σi(n) ∈ P ;
σQ(σi(n)), for 2 - i and σi(n) ∈ Q;
undefined, otherwise.

In a similar manner, for |tu|+ 1 6 n 6 |tuv|, let σ0(n) = n and

σi+1(n) =


σQ(σi(n)), for 2 | i and σi(n) ∈ Q;
σP (σi(n)), for 2 - i and σi(n) ∈ P ;
undefined, otherwise.

Note. Before we proceed further, we would like to mention that, although
we do believe (as we have already said) that the proof that is about to follow
is quite natural in its essence, an unfortunate occurrence is that among its
“repulsive aspects” is not only its length, but also some quite heavy expres-
sions at some places. Because of both of these aspects, we find it possible that
the reader gets overwhelmed and misses its substance. For that reason, in the
Appendix at the end of this section we sketch the main ideas of the proof,
showing them on some examples. The Appendix is not, by any means, nec-
essary for understanding the proof, and it can be skipped altogether, but we
believe that it makes the task of understanding the proof much less demand-
ing. Therefore, we recommend the reader at this point to read the Appendix
first, and then return here and continue reading the formal account of the
proof (“enriched” with all the technical details).

We now show a few properties of the defined notions.

Proposition 3.14. a) For every n,m ∈ Q (respectively, n,m ∈ P ), if
n < m, then σQ(n) > σQ(m) (respectively, σP (n) > σP (m)).

b) We have σ0(n) > σ2(n) > σ4(n) > · · · and σ1(n) < σ3(n) < σ5(n) <
· · · for n > |tu| + 1, and σ0(n) < σ2(n) < σ4(n) < · · · and σ1(n) >
σ3(n) > σ5(n) > · · · for n 6 |t|. (The inequalities are extended as long
as the terms are defined.)

c) If one of the following holds:
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1) n and m simultaneously belong to the interval [1, |t|]N or the in-
terval [|tu|+ 1, |tuv|]N, and i and j are of the same parity; or

2) n and m are in different intervals and i and j are of opposite
parities,

then σi(n) = σj(m) implies n = m and i = j. (In particular, σi(n) =
σj(m) is impossible in the second case.)

d) For each n such that n 6 |t| or n > |tu|+1, there exists z ∈ N such that
σz(n) is the last defined term in the sequence σ0(n), σ1(n), σ2(n) . . .

Proof. a) Let n,m ∈ Q and n < m. Write n = Qs and m = Qr. Since s < r,
we have |Q| − s+ 1 > |Q| − r + 1, and thus

σQ(n) = σQ(Qs) = Q|Q|−s+1 > Q|Q|−r+1 = σQ(Qr) = σQ(m),

which was to be proved. The proof of the claim for n,m ∈ P and σP is
analogous.

b) We consider only the case n > |tu| + 1 (the other one is analogous).
Since σ2(n) = σP (σQ(n)) ∈ P (assuming, of course, that σ2(n) is defined),
we have

σ2(n) 6 |tu| < |tu|+ 1 6 n = σ0(n).

Iteratively applying a), we get

σ3(n) = σQ(σ2(n)) > σQ(σ0(n)) = σ1(n),

then
σ4(n) = σP (σ3(n)) < σP (σ1(n)) = σ2(n)

etc., which was to be proved.
c) Let σi(n) = σj(m). Assume first that 1) holds. Without loss of gener-

ality, let m,n > |tu| + 1 (the case m,n 6 |t| is analogous), and let i > j. If
i > j = 0, then 2 | i, and we have σP (σi−1(n)) = σi(n) = σj(m) = m, which
is impossible since the left-hand side is in P , and thus no greater than |tu|,
while m > |tu|+ 1. Therefore, if j = 0, then i = 0, and we then immediately
have n = m, which was to be proved. Assume now i > j > 0. If i and j
are even, then σP (σi−1(n)) = σi(n) = σj(m) = σP (σj−1(m)), which implies
σi−1(n) = σj−1(m); if i and j are odd, we get the same conclusion in a similar
manner. Iterating this, we obtain σi−j(n) = σ0(m). By the previous case, we
get n = m and i− j = 0, that is, i = j, which was to be proved.
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Assume now that 2) holds and let i > j. In the same way as in the previous
paragraph we conclude that σi(n) = σj(m) implies σi−j(n) = σ0(m) = m.
However, if |n| > |tu| + 1 (and then m 6 |t|), then, since 2 - i − j, we have
σi−j(n) = σQ(σi−j−1(n)) > |t|+ 1, a contradiction; if n 6 |t|, we again get a
contradiction in a similar manner.

Therefore, we have proved that, under any of the assumptions 1) or 2),
σi(n) = σj(m) implies n = m and i = j.

d) This is a direct consequence of b). �

The following lemma will be useful.

Lemma 3.15. a) For each n ∈ Q such that σP (σQ(n)) is defined (that is,
σQ(n) ∈ P ), we have

n− σP (σQ(n)) 6 2(|t|+ |v|)− 1

− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|
− |[1, σQ(n)]N \ P | − |[1, σP (σQ(n))]N \ P |.

Also, for each n ∈ P such that σQ(σP (n)) is defined (that is, σP (n) ∈
Q), we have

σQ(σP (n))− n 6 2(|t|+ |v|)− 1

− |[1, n]N \ P | − |[1, σP (n)]N \ P |
− |[σP (n), |tuv|]N \Q| − |[σQ(σP (n)), |tuv|]N \Q|.

b) For each n ∈ Q such that σP (σQ(n)) is undefined (that is, σQ(n) /∈ P ),
we have

n 6 2(|t|+ |v|) + |P | − σQ(n)− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|.

Also, for each n ∈ P such that σQ(σP (n)) is undefined (that is, σP (n) /∈
Q), we have

|tuv|+ 1− n 6 2(|t|+ |v|) + |Q| − (|tuv|+ 1− σP (n))

− |[1, n]N \ P | − |[1, σP (n)]N \ P |.

Proof. a) We shall prove only the first statement (the second one is analo-
gous).

The following equalities will be used repeatedly: for any x ∈ [1, |P |]N we
have

Px = x+ |[1, Px]N \ P |,
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and for any x ∈ [1, |Q|]N we have

Qx = |t|+ x+ |[|t|+ 1, Qx]N \Q|
= |t|+ x+ (|[|t|+ 1, |tuv|]N \Q| − |[Qx, |tuv|]N \Q|)
= |t|+ x+ ((|uv| − |Q|)− |[Qx, |tuv|]N \Q|)
= |tuv|+ x− |Q| − |[Qx, |tuv|]N \Q|.

Let us now proceed to the proof. Since n ∈ Q and σQ(n) ∈ P , we may
write n = Qs and σQ(n) = Q|Q|−s+1 = Pr (and also σP (σQ(n)) = P|P |−r+1).
We then have:

n− σP (σQ(n)) = Qs − P|P |−r+1

= |tuv|+ s− |Q| − |[n, |tuv|]N \Q|
− (|P | − r + 1 + |[1, σP (σQ(n))]N \ P |)

= |tuv|+ s− |Q| − |[n, |tuv|]N \Q| − |P | − 1

− |[1, σP (σQ(n))]N \ P |+ (Pr − |[1, Pr]N \ P |)
= |tuv|+ s− |Q| − |[n, |tuv|]N \Q| − |P | − 1

− |[1, σP (σQ(n))]N \ P |+Q|Q|−s+1 − |[1, σQ(n)]N \ P |
= |tuv|+ s− |Q| − |[n, |tuv|]N \Q| − |P | − 1

− |[1, σP (σQ(n))]N \ P | − |[1, σQ(n)]N \ P |
+ (|tuv|+ |Q| − s+ 1− |Q| − |[σQ(n), |tuv|]N \Q|)

= 2(|t|+ |v|) + 2|u| − |P | − |Q| − |[n, |tuv|]N \Q|
− |[1, σP (σQ(n))]N \ P | − |[1, σQ(n)]N \ P |
− |[σQ(n), |tuv|]N \Q|
6 2(|t|+ |v|)− 1− |[n, |tuv|]N \Q| − |[1, σP (σQ(n))]N \ P |
− |[σQ(n), |tuv|]N \Q| − |[1, σQ(n)]N \ P |,

(3.7)

which was to be proved.
b) We shall prove only the first statement (the second one is analogous).

In addition to the two equalities from the part a), we shall also use the
following one: for any x ∈ [1, |Q|]N we have

σQ(Qx) = Q|Q|−x+1 = |tuv|+ (|Q| − x+ 1)− |Q| − |[σQ(Qx), |tuv|]N \Q|

= |tuv| − x+ 1− |[σQ(Qx), |tuv|]N \Q|.
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Let us now proceed to the proof. Since n ∈ Q, we may write n = Qs. We
then have:

n = Qs = |tuv|+ s− |Q| − |[n, |tuv|]N \Q|
= |tuv|+ (|tuv| − σQ(n) + 1− |[σQ(n), |tuv|]N \Q|)
− |Q| − |[n, |tuv|]N \Q|

= 2(|t|+ |v|) + 2|u|+ 1

− |Q| − σQ(n)− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|
6 2(|t|+ |v|) + |P | − σQ(n)− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|,

which was to be proved. �

Given a number n, n 6 |t| or n > |tu|+ 1, let end(n) denote the number
z whose existence was shown in Proposition 3.14d). We say that n, n 6 |t| or
n > |tu|+ 1, dies if and only if |t|+ 1 6 σend(n)(n) 6 |tu|. Let n be such that
n dies and that σend(n)(n) /∈ P . Note that it is impossible for any m, m 6= n,
to have σend(m)(m) = σend(n)(n) (and thus σend(m)(m) /∈ P ). Indeed, in that
case n and m would satisfy one of the conditions 1) or 2) from Proposition
3.14c), which would imply m = n, a contradiction. Therefore,

|{n : n dies and σend(n)(n) /∈ P}| 6 |[|t|+ 1, |tu|]N \ P |
= |[1, |tu|]N \ P | = |tu| − |p|.

Analogously, we prove

|{n : n dies and σend(n)(n) /∈ Q}| 6 |[|t|+ 1, |tu|]N \Q|
= |[|t|+ 1, |tuv|]N \Q| = |uv| − |q|.

Therefore, there are at most |tu| − |p| + |uv| − |q| < |t| + |v| numbers n
that die. This implies that there exists n, n 6 |t| or n > |tu| + 1, that does
not die. Let n0 be any such number. Without loss of generality, we may
assume n0 > |tu| + 1. By the choice of n0, we have either σend(n0)(n0) 6 |t|
or σend(n0)(n0) > |tu|+ 1.

Lemma 3.16. Let i, i > 0, be such that σ2i+2(n0) is defined.

a) For each m, m > |tu|+ 1, we have one of the following:

• there exists j such that σ2i+2(n0) < σj(m) 6 σ2i(n0);

• 2 | end(m) and σend(m)(m) > max{σ2i(n0), σ2i+1(n0)};
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• 2 - end(m) and σend(m)(m) < min{σ2i+1(n0), σ2i+2(n0)}.

Also, for each m, m 6 |t|, we have one of the following:

• there exists j such that σ2i+2(n0) < σj(m) 6 σ2i(n0);

• 2 - end(m) and σend(m)(m) > max{σ2i(n0), σ2i+1(n0)};
• 2 | end(m) and σend(m)(m) < min{σ2i+1(n0), σ2i+2(n0)}.

b) To each m, m 6 |t| or m > |tu|+ 1, for which there exists j described
in a) we can assign one such j in such a way that all the corresponding
values σj(m) are different.

Proof. a) We shall prove only the first assertion (the second one is analogous).
Choose the least even j such that σj(m) 6 σ2i(n0), or the least odd j such
that σj(m) > σ2i+2(n0), assuming that there exists j that satisfies either of
these two conditions. We claim that in that case we have

σ2i+2(n0) < σj(m) 6 σ2i(n0).

Assume first that j is even. If j = 0, then

σ2i+2(n0) = σP (σ2i+1(n0)) 6 |tu| < m = σj(m),

which was to be proved. If j > 0, then σ2i(n0) < σj−2(m) (by the minimality
of j), and Proposition 3.14a) (applied twice) now gives

σ2i+2(n0) < σj(m),

which was to be proved. Assume now that j is odd. If j = 1, then, having in
mind that σ2i+2(n0) is defined, that is, σ2i+1(n0) ∈ P , we obtain m > |tu| >
σ2i+1(n0), and now Proposition 3.14a) gives

σ1(m) = σQ(m) < σQ(σ2i+1(n0)) = σQ(σQ(σ2i(n0))) = σ2i(n0),

which was to be proved. If j > 1, then σj−2(m) 6 σ2i+2(n0) (by the minimal-
ity of j), and Proposition 3.14a) (applied twice) now gives

σj(m) = σQ(σP (σj−2(m))) 6 σQ(σP (σ2i+2(n0)))

= σQ(σP (σP (σQ(σ2i(n0))))) = σ2i(n0),

which was to be proved.
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Assume now that j from the previous paragraph does not exist. Let 2 |
end(m). Then clearly

σend(m)(m) > σ2i(n0),

since otherwise there would exist the even j from the previous paragraph.
We now prove

σend(m)(m) > σ2i+1(n0).

Suppose σ2i+1(n0) > σend(m)(m). In fact, the inequality must be strict, since
the right-hand side does not belong to Q (by the definition of end(m)), while
the left-hand side does. Then, by Proposition 3.14a), we have

σ2i+2(n0) = σP (σ2i+1(n0)) < σP (σend(m)(m))

= σP (σP (σend(m)−1(m))) = σend(m)−1(m),

and thus there would exist the odd j from the previous paragraph, a contra-
diction. The case 2 - end(m) is similar. Indeed, the inequality

σend(m)(m) > σ2i+2(n0)

is impossible, since it would have to be strict (the right-hand side is in P ,
the left-hand side is not), and thus the odd j from the previous paragraph
would exist; the inequality

σend(m)(m) > σ2i+1(n0)

is also impossible, since applying σQ to the both sides gives, by Proposi-
tion 3.14a), σend(m)−1(m) 6 σ2i(n0), and thus the even j from the previous
paragraph would exist. This completes the proof.

b) Define the following relation on the set [1, |t|]N ∪ [|tu|+ 1, |tuv|]N:

m ∼ m′ if and only if there exists l such that m′ = σl(m).

Let us show that “∼” is an equivalence relation. Indeed, it is clearly reflexive
and symmetric (if m′ = σl(m), then it is easily checked that m = σl(m

′)),
and if m′ = σl(m) and m′′ = σl′(m

′), then m′′ = σl′(σl(m)), while it is not
hard to see that either σl′(σl(m)) = σl′+l(m) or σl′(σl(m)) = σ|l′−l|(m); this
proves the assertion.

We claim that each equivalence class is of size either 1 or 2. This is
implied by the following observation: if m′ 6= m, m′ = σl(m) and m′ and m
simultaneously belong to the interval [1, |t|]N or the interval [|tu|+ 1, |tuv|]N,
then l is odd, while if m′ and m are in different intervals, then l is even.
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We are now ready to prove b). In the rest of the proof, m (and also m′)
will always denote a value from [1, |t|]N ∪ [|tu| + 1, |tuv|]N such that there
exists j for which σ2i+2(n0) < σj(m) 6 σ2i(n0).

Note that, if σj(m) = σj′(m
′), then m ∼ m′ (since either m′ = σj+j′(m)

or m′ = σ|j−j′|(m)). Therefore, if m is alone in its class, then its assigned
j (whichever we choose if there is a choice) will not collide with the other
assignments. Let now m ∼ m′, m 6= m′. We prove that there exist j and j′

such that
σ2i+2(n0) < σj(m), σj′(m

′) 6 σ2i(n0)

and
σj(m) 6= σj′(m

′).

Note that from m ∼ m′ we get that neither m nor m′ dies. It is enough
to prove that for any m that does not die there exist both an even j and
an odd j that satisfy the requirement. Let us first show why this is enough.
Since neither m nor m′ dies, if, say, both m,m′ > |tu|+1 (the other cases are
similar), then we can choose j and j′ to be of the same parity, and Proposition
3.14c) implies σj(m) 6= σj′(m

′), which was to be proved.
Therefore, assume that m does not die, and let, without loss of gener-

ality, m > |tu| + 1. If 2 | end(m), then, because of σend(m)(m) ∈ P , we
have σend(m)(m) 6 |t|. Since σ2i(n0) ∈ Q (because σ2i+1(n0) is defined) and
σ2i+1(n0) ∈ Q (because it equals σQ(σ2i(n0))), we have that σend(m)(m) is
less than both of these values. But this implies, as seen during the proof of
the part a), that there exist both an even j and an odd j that satisfy the
requirement, which was to be proved. The case 2 - end(m) is analogous. This
completes the proof. �

Finally, we shall need the following lemma.

Lemma 3.17. Let n be such that n > |tu| + 1 and σend(n)(n) > |tu| + 1.
Then:

2|tuv|+ 1− n− σend(n)(n)

> |{m : m > |tu|+ 1, end(m) > end(n) and σend(m)(m) > |tu|+ 1}|
+ |{m : m > σend(n)(n) and m dies}|.

Proof. Let us first prove the following: if |tu| + 1 6 m < m′ and both
σend(m)(m), σend(m′)(m

′) > |tu| + 1, then end(m) 6 end(m′). Suppose the
contrary: end(m) > end(m′). We get 2 - end(m′) (because of σend(m′)(m

′) /∈
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P ); therefore, by Proposition 3.14a), from m < m′ we obtain σend(m′)(m) >
σend(m′)(m

′) (the left-hand side is defined since end(m) > end(m′)). However,
this implies σend(m′)(m) > |tu|+1 and thus σend(m′)(m) /∈ P , which contradicts
end(m) > end(m′). This proves the assertion.

Now, let n be as in the lemma’s statement. In the calculations below we
shall need only one more observation: the function m 7→ σend(m)(m) bijec-
tively maps the set

{m : m > n, end(m) = end(n) and σend(m)(m) > |tu|+ 1}

to the set

{m : m < σend(n)(n), end(m) = end(n) and σend(m)(m) > |tu|+ 1}

(indeed, this follows by Proposition 3.14a), having in mind that 2 - end(n),
and we see that the considered function is its own inverse). For the sake of
brevity, we say thatm,m > |tu|+1, is pleasant if and only if end(m) > end(n)
and σend(m)(m) > |tu|+1, and is delightful if and only if end(m) = end(n) and
σend(m)(m) > |tu| + 1. Note that, by the assertion from the first paragraph,
there are no pleasant numbers less than n, nor less than σend(n)(n) (since
end(σend(n)(n)) = end(n)). We finally have:

2|tuv|+ 1− n− σend(n)(n)

= |[n+ 1, |tuv|]N|+ |[σend(n)(n), |tuv|]N|
> |{m : m > n, m is pleasant or delightful}|

+ |{m : m > σend(n)(n), m is pleasant or delightful, or m dies}|
= |{m : m > n, m is delightful}|+ 2|{m : m is pleasant}|

+ |{m : m > σend(n)(n), m is delightful or m dies}|
= |{m : m < σend(n)(n), m is delightful}|+ 2|{m : m is pleasant}|

+ |{m : m > σend(n)(n), m is delightful or m dies}|
= |{m : m is delightful}|+ 2|{m : m is pleasant}|

+ |{m : m > σend(n)(n) and m dies}|
> |{m : m is pleasant or delightful}|

+ |{m : m > σend(n)(n) and m dies}|,

(3.8)

which was to be proved. �

Finally, we are ready to prove Theorem 3.13.
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First proof of Theorem 3.13. First of all, we make a (trivial) observation
that, whenever m ∈ [1, |t|]N ∪ [|tu| + 1, |tuv|]N and σi(m) is defined, then
holds (tuv)[σi(m)] = 2.

Assume first 2 | end(n0) (where n0 is chosen as described earlier). Then
σend(n0)(n0) ∈ P , and therefore σend(n0)(n0) 6 |t|. By Proposition 3.14b), we
may write

|tuv|2 =
∣∣(tuv)[n0 + 1, |tuv|]

∣∣
2

+

end(n0)
2
−1∑

i=0

∣∣(tuv)[σ2i+2(n0) + 1, σ2i(n0)]
∣∣
2

+
∣∣(tuv)[1, σend(n0)(n0)]

∣∣
2

= (|tuv| − n0) +

end(n0)
2
−1∑

i=0

∣∣(tuv)[σ2i+2(n0) + 1, σ2i(n0)]
∣∣
2

+ σend(n0)(n0).

(3.9)

Write k = |tv|. Let us first prove that, for each i such that σ2i+2(n0) is
defined, we have

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2 >
k

k − 1
|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1. (3.10)

It is enough to prove

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2 >
σ2i(n0)− σ2i+2(n0) + 1

2
;

indeed, we note that then we would have |(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1 6
σ2i(n0)−σ2i+2(n0)−1

2
, and thus

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2
|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1

>
σ2i(n0)− σ2i+2(n0) + 1

σ2i(n0)− σ2i+2(n0)− 1

= 1 +
2

σ2i(n0)− σ2i+2(n0)− 1

> 1 +
2

(2k − 1)− 1
= 1 +

1

k − 1
=

k

k − 1
(3.11)

(the last inequality follows by Lemma 3.15a) for n = σ2i(n0)), which is what
we want to prove. Therefore, let us prove the claimed inequality.
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We shall use Lemma 3.16 here. If σend(m)(m) > max{σ2i(n0), σ2i+1(n0)}
for either m > |tu| + 1 and 2 | end(m), or m 6 |t| and 2 - end(m), then we
have σend(m)(m) /∈ Q; therefore, there are at most

min{|[σ2i(n0), |tuv|]N \Q|, |[σ2i+1(n0), |tuv|]N \Q|}

such values m (we recall that, for any two such different values m and m′, we
have σend(m)(m) 6= σend(m′)(m

′), which was necessary for the last conclusion).
In a similar manner, we see that there are at most

min{|[1, σ2i+1(n0)]N \ P |, |[1, σ2i+2(n0)]N \ P |}

values m such that σend(m)(m) < min{σ2i+1(n0), σ2i+2(n0)} and either m >
|tu| + 1 and 2 - end(m), or m 6 |t| and 2 | end(m). Altogether, in the set
[1, |t|]N ∪ [|tu|+ 1, |tuv|]N there are at least

k −min{|[σ2i(n0), |tuv|]N \Q|, |[σ2i+1(n0), |tuv|]N \Q|}
−min{|[1, σ2i+1(n0)]N \ P |, |[1, σ2i+2(n0)]N \ P |}

values m for which there exists a corresponding j from Lemma 3.16. But then
Lemma 3.16b) immediately implies that this bound is also a lower bound for
|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2. And now, by Lemma 3.15a) for n = σ2i(n0),
we obtain

σ2i(n0)− σ2i+2(n0) + 1

2

6 k − |[σ2i(n0), |tuv|]N \Q|+ |[σ2i+1(n0), |tuv|]N \Q|
2

− |[1, σ2i+1(n0)]N \ P |+ |[1, σ2i+2(n0)]N \ P |
2

6 k −min{|[σ2i(n0), |tuv|]N \Q|, |[σ2i+1(n0), |tuv|]N \Q|}

−min{|[1, σ2i+1(n0)]N \ P |, |[1, σ2i+2(n0)]N \ P |}

6 |(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2,

which proves the claim.
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Using (3.10), from (3.9) we get

|tuv|2 >
k

k − 1

end(n0)
2
−1∑

i=0

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1

=
k

k − 1
|(tuv)[σend(n0)(n0), n0]|1 =

k

k − 1
|u|1

(3.12)

(the inequality is strict since the rightmost summand at (3.9) is nonzero;
the last equality follows from σend(n0)(n0) 6 |t| and n0 > |tu| + 1), which
completes the case 2 | end(n0).

We can now assume that not only 2 - end(n0), but also 2 - end(n) for
any n that does not die (otherwise, if there were such n, we could take it for
n0, and the above proof would work). We still assume n0 > |tu|+ 1, without
loss of generality. Finally, a further assumption we can make is that end(n0)
is no greater than end(n) for any n that does not die and that n > |tu| + 1
(since otherwise we could again rechoose n0). With all these assumptions, we
proceed to the rest of the proof.

Using (3.10), we get

|tuv|2 =
∣∣(tuv)[n0 + 1, |tuv|]

∣∣
2

+

end(n0)−3
2∑
i=0

∣∣(tuv)[σ2i+2(n0) + 1, σ2i(n0)]
∣∣
2

+
∣∣(tuv)[1, σend(n0)−1(n0)]

∣∣
2

> (|tuv| − n0) +
k

k − 1

end(n0)−3
2∑
i=0

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1

+ |(tuv)[1, σend(n0)−1(n0)]|2

= |tuv| − n0 + |(tuv)[1, σend(n0)−1(n0)]|2

+
k

k − 1
|(tuv)[σend(n0)−1(n0) + 1, n0]|1.

Therefore, it is enough to prove

|tuv| − n0 + |(tuv)[1, σend(n0)−1(n0)]|2 >
k

k − 1
|(tuv)[1, σend(n0)−1(n0)]|1
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(in that case the calculations above would give |tuv|2 > k
k−1 |u|1, which is

what we need).
The following sets will be needed through the proof, and for the sake of

brevity, we name them as follows:

A= {m : |tu|+16m<σend(n0)(n0) and |t|+16 σend(m)(m)6 σend(n0)−1(n0)};

B = {m : |tu|+16m<σend(n0)(n0) and σend(n0)−1(n0)<σend(m)(m)6 |tu|};

C = {m :m> σend(n0)(n0) and m dies};

D= {m :m> |tu|+1, end(m)> end(n0) and σend(m)(m)> |tu|+1}

= {m :m> |tu|+1 and m does not die};

E = [σend(n0)−1(n0)+1, |tu|]N\P ;

F = [σend(n0)−1(n0)+1, |tu|]N\Q= [σend(n0)−1(n0), |tuv|]N\Q.

The equality between the two forms of D follows by the assumption intro-
duced above, and the one between the two forms of F is clear. We shall also
use the equality

|A|+ |B|+ |C|+ |D| = |v|
(which is easily seen), as well as the inequality

|E|+ |F | > |B|
(which follows by the observation that the function m 7→ σend(m)(m) injec-
tively maps the set B to the set E ∪ F ).

Note that, for each m where σend(n0)(n0) 6 m 6 |tuv|, we have |t| +
1 6 σQ(m) 6 σend(n0)−1(n0); that makes for |tuv| − σend(n0)(n0) + 1 let-
ters 2 in the word (tuv)[|t| + 1, σend(n0)−1(n0)]. Further, for each m ∈ A,
the value σend(m)(m) marks the position of another letter 2 in the word
(tuv)[|t| + 1, σend(n0)−1(n0)] (and all these positions are pairwise different,
and also different from the positions from the previous sentence, since we
recall that all the positions “generated” by a number that dies are unique).
Therefore:

|(tuv)[1, σend(n0)−1(n0)]|2 > |t|+ (|tuv| − σend(n0)(n0) + 1) + |A|.
From this inequality we get

|tuv| − n0+|(tuv)[1, σend(n0)−1(n0)]|2
> |tuv| − n0 + |t|+ (|tuv| − σend(n0)(n0) + 1) + |A|
> |D|+ |C|+ |t|+ |A| = |t|+ |v| − |B| = k − |B|

(3.13)
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(the second inequality is due to Lemma 3.17), and

|(tuv)[1,σend(n0)−1(n0)]|1
= σend(n0)−1(n0)− |(tuv)[1, σend(n0)−1(n0)]|2
6 2(|t|+ |v|) + |P | − σend(n0)(n0)− |[σend(n0)−1(n0), |tuv|]N \Q|
− (|t|+ (|tuv| − σend(n0)(n0) + 1) + |A|)

= |t|+ |v|+ (|P |+ |v| − |tuv|)− |F | − 1− |A|
= k − |[1, |tu|]N \ P | − |F | − 1− |A|
6 k − |E| − |F | − 1− |A| 6 k − 1− |A| − |B|

(3.14)

(the first inequality has been obtained with the help of Lemma 3.15b) for
n = σend(n0)−1(n0); note that then |[σQ(n), |tuv|]N\Q| = |[σend(n0)(n0), |tuv|]N\
Q| = 0, since σend(n0)(n0) > |tu|+ 1). Finally,

|tuv| − n0 + |(tuv)[1, σend(n0)−1(n0)]|2
|(tuv)[1, σend(n0)−1(n0)]|1

>
k − |B|

k − 1− |A| − |B|
>

k − |B|
k − 1− |B|

= 1 +
1

k − 1− |B|

> 1 +
1

k − 1
=

k

k − 1
,

(3.15)

which completes the proof. �

It turns out that the case when the equality in (3.5) is reached has an
interesting characterization, which can be obtained from the above proof in
a (more or less) straightforward manner.

Proposition 3.18. Under the conditions of Theorem 3.13, the equality in
(3.5) is reached if and only if, for a positive integer k and a nonnegative
integer l, we have u = (1k−12k)l1k−1, t = ε and v = 2k (or vice versa).

Proof. Assume that u, t, v, p and q are such that the equality is reached.
We may also assume that p and q are longest subpalindromes of tu and uv,
respectively.

We first note that p, respectively q, contains all the letters from t, respec-
tively v (since otherwise the equality cannot be reached because of the strict
inequality in (3.6)). Let n0 be as in the proof. Since in the case 2 | end(n0)
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we have a strict inequality in (3.12), we conclude 2 - end(n0), and we then
also recall all the assumptions from the paragraph following (3.12). Now, in
order for the second and the third inequalities in (3.15) to be equalities, we
conclude A = ∅ and B = ∅, and then, in order for the last inequality in
(3.14) to be equality, we conclude |E| + |F | = |B|, that is, E = F = ∅.
The penultimate inequality in (3.14) (when converted to equality) now gives
|[1, |tu|]N \ P | = |E| = 0, that is,

p = tu. (3.16)

Since Lemma 3.17 for n0 was used in (3.13), we need to have equality in
that lemma. Looking at (3.8), we see that there must not be any pleasant
number (in order to reach the equality at the end), as well as that there
must not be any number greater than n0 that dies (in order to reach the
equality at the beginning). In particular, |tuv| does not die (and this im-
plies 2 - end(|tuv|), that is, σend(|tuv|)(|tuv|) > |tu| + 1, because of the re-
called assumptions about n0), end(|tuv|) 6 end(n0) (because there are no
pleasant numbers), and from this we conclude that the only possibility is
end(|tuv|) = end(n0) (again because of the assumptions about n0). There-
fore, |tuv| satisfies all the same assumptions as n0 does, and thus for the rest
of the proof we may assume n0 = |tuv| (we rechoose n0 if necessary).

Assume first end(|tuv|) = 1, that is, σQ(|tuv|) > |tu|+ 1. Then it is easy
to see that q = v, and furthermore, u contains only 1s (since otherwise 2|uv|2

would be a subpalindrome of uv longer than q). Now from (3.16) we get t = ε,

and thus the equality in (3.5) reduces to |u| = |v|−1
|v| |uv|2 = |v|−1

|v| |v| = |v| − 1;

in other words, v = 2k and u = 1k−1, which was to be proved.
Assume now end(|tuv|) > 1. Let k = |tv|. Then the second inequality in

(3.11) for i = 0 (when converted to equality) gives |tuv|−σ2(|tuv|) = 2k− 1,
and the first inequality gives

∣∣(tuv)[σ2(|tuv|) + 1, |tuv|]
∣∣
2

=
|tuv| − σ2(|tuv|) + 1

2
= k (3.17)

and ∣∣(tuv)[σ2(|tuv|) + 1, |tuv|]
∣∣
1

=
|tuv| − σ2(|tuv|)− 1

2
= k − 1. (3.18)

Also note that the second inequality in (3.11) is an application of Lemma
3.15a), and in order for the equality to hold in that lemma, from the last
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lines of (3.7) we see that |p|+ |q| = 2|u|+ 1 must hold; (3.16) reduces this to
|t|+ |q| = |u|+ 1, which implies

|uv| − |q| = |t|+ |v| − 1 = k − 1. (3.19)

Further, since (3.16) implies that tu ends with |t| letters 2, that is, tuv ends
with k letters 2, by (3.17) and (3.18) we conclude that there is an array of k−1
letters 1 immediately preceding those 2s. In other words, 1k−12|t| ∈ Suff(tu),
and now because of (3.16) we have 2|t|1k−1 ∈ Pref(tu), that is, 1k−1 ∈ Pref(u).
Those 1s clearly do not participate in the palindrome q, and now (3.19)
implies that everything else has to, that is,

q = (uv)[k, |uv|]. (3.20)

Starting from tuv = 2|t|1k−1 . . . 1k−12k, by (3.20) we get

tuv = 2|t|1k−12k1k−1 . . . 1k−12k,

then by (3.16)
tuv = 2|t|1k−12k1k−1 . . . 1k−12k1k−12k,

then we again use (3.20) etc. To conclude,

tuv = 2|t|(1k−12k)l1k−12k for a nonnegative integer l.

Now we evaluate |u|1 = (l+ 1)(k−1) and |tuv|2 = |t|+ (l+ 1)k. The equality
case in (3.5) is now reduced to (l + 1)(k − 1) = k−1

k
(|t| + (l + 1)k), that is,

k(l + 1) = |t| + (l + 1)k, which gives |t| = 0, that is, t = ε. We then have
v = 2k and u = (1k−12k)l1k−1, and it is straightforward to check that these
words indeed satisfy the required equality. �

3.3.2 Second proof

Second proof of Theorem 3.13. We prove the theorem by induction on |u|. If
|u| = 0, then (3.5) trivially holds, since the left-hand side is 0 while the right-
hand side is always nonnegative. Now we assume that the assertion holds for
each word shorter than u, and prove that it holds for u. Let v′ denote the
shortest prefix of uv such that |v′|2 = |v|, and let t′ denote the shortest suffix
of tu such that |t′|2 = |t|.

Assume first that |v′| + |t′| < |u|. Let u = v′u′t′, and let p′ and q′ be
longest subpalindromes of u′t and vu′, respectively (note that we now put
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t to the right and v to the left of u′, not vice versa, as it was before!). We
claim that

|q′| > |p| − 2|t| − 2(|v′| − |v|).
We can write p = 2|t|p1p22

|t|, where p1 ∈ Subw(v′) and p2 ∈ Subw(u′). We
have that p1p2 is a palindrome of length |p|−2|t|; erasing all the letters 1 from
p1 (and there are at most |v′|1, which is |v′| − |v|, of them), and additionally
erasing (if necessary) all the “mirror images” (with respect to the midpoint
of p) of all these 1s, we obtain a subpalindrome of vu′ of length at least
|p| − 2|t| − 2(|v′| − |v|), which proves the claim. Analogously, we also obtain

|p′| > |q| − 2|v| − 2(|t′| − |t|).

We aim to use the inductive assumption on the words v, u′ and t. Clearly,
|u′| = |u|−|v′|−|t′| 6 |u|−|v|−|t| < |u|. Let us now show that the condition
of the theorem is satisfied:

|q′|+ |p′| > |p| − 2|t| − 2(|v′| − |v|) + |q| − 2|v| − 2(|t′| − |t|)
= |p|+ |q| − 2|v′| − 2|t′| > 2|u| − 2|v′| − 2|t′| = 2|u′|.

Therefore, by the inductive assumption, we get

|u′|1 6
|vt| − 1

|vt|
|vu′t|2. (3.21)

Note that, since 1s inside the word v′ do not participate in the palindrome
q (since the first |v| letters of q are 2), we have |v′|1 6 |uv|− |q|. Analogously,
|t′|1 6 |tu| − |p|. Therefore,

|v′|1 + |t′|1 6 |uv| − |q|+ |tu| − |p| < |t|+ |v|. (3.22)

Now, (3.21) and (3.22) yield:

|u|1 = |v′|1 + |u′|1 + |t′|1 6 |tv| − 1 + |u|1 6
|tv| − 1

|tv|
(|tv|+ |vu′t|2)

=
|tv| − 1

|tv|
(|t′|2 + |v′|2 + |vu′t|2) =

|tv| − 1

|tv|
|tuv|2,

which was to be proved.
Finally, we need to take care of the case |v′|+ |t′| > |u|. Then we have:

|u|1 6 |v′|1 + |t′|1 6 |t|+ |v| − 1 =
|tv| − 1

|tv|
|tv| 6 |tv| − 1

|tv|
|tuv|2,

(where the second inequality was already seen at (3.22)), which was to be
proved. �
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Appendix: Examples

The mappings σi are illustrated in Figure 3.1, where m1 = 23, m2 = 22, m3 =
21 andm4 = 1. The positions in P are marked by the underlines, and the posi-
tions in Q by the overlines. Note that the sequence σ0(mi), σ1(mi), σ2(mi) . . .
can end either in the same part (that is, t or v) where it started from (such is
the case for m4, which returns exactly to itself, and also for m1 and m2, which
end at each other), or inside u (such is the case for m3), or at the opposite
end (t or v) with respect to the one in started from (no such examples in
Figure 3.1, but this is the case, for example, for the 1st and the 18th position
in Figure 3.3).

Figure 3.1: The mappings σi.

Let us now show the idea of the proof on the example in Figure 3.2 (note
that, in that example, t = ε). The two vertical dashed lines are exactly in the
center of the palindrome p (the one on the left) and the palindrome q (the
one on the right). All the dashed arrows present the mapping σP (which is
the reflection with respect to the center of p), and all the solid arrows present
the mapping σQ (which is the reflection with respect to the center of q). Let
k = |t|+ |v|; therefore, our aim is to prove that the ratio of the number of 2s
in tuv and the number of 1s in tuv is at least k

k−1 .

We choose a position n0 in t or v for which the sequence of mappings
does not end in u (it will be shown that there always exist such one); in our
example, n0 = 19.

In Proposition 3.14 we show some basic properties of σ’s; one of the
most important ones is the fact that the sequence σ0(n0), σ2(n0), σ4(n0) . . .
is strictly decreasing (if n0 is in v, which is the case in our example; otherwise,
it would be strictly increasing, which is analogous). Owing to this property,
we can partition the word tuv into a number of intervals, plus some additional
letters to the left of the leftmost interval and to the right of the rightmost
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Figure 3.2: An example for the proof of Theorem 3.13.

interval; in Figure 3.2, each such interval is the part between two vertical
thick lines. The proof is then over once we show the following two assertions.

• Within each interval, the ratio of the number of 2s and the number of
1s is at least k

k−1 .

We prove this by first showing an upper bound on the length of each
interval. The bound is shown in Lemma 3.15a), and it equals 2k − 1
minus some “noise.” In our example, there is no “noise,” that is, all
the intervals are of length 5 (this is the case in which the inequality is
tightest; if the intervals were shorter, the considered ratio would be even
greater than needed). Therefore, it is enough to show that there are at
least k letters 2 in each interval, and we show this by noting that all
k letters 2 from t and v, while “jumping around,” leave k “footprints”
in each interval, which accounts for k letters 2 in each of them. This
is precisely what Lemma 3.16b) is about. (Note: if there is a letter 2
that ends the jumping sequence inside u, then there might exist an
interval with less than k letters 2. But then the calculations show that
the “noise” mentioned above shortens the interval enough so that the
number of 2s inside it will still be sufficient with respect to its length.)

• The ratio of the number of 2s and the number of 1s not belonging to
any of the intervals is at least k

k−1 .

This is probably the most technical part of the whole proof. Lemma
3.15b) gives an upper bound on the length of the part to the left of
the leftmost interval. Lemma 3.17 provides another technical inequality
that will be needed in this case (in particular, it will be of use, later
in the proof, to bound from below the number of 2s not belonging to
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any of the intervals). Direct (albeit messy) calculations then show what
was needed.

In the example that we have just shown, the position n0 belongs to v,
and its sequence of mappings ends again in v. It turns out that this is the
harder case; if n0 can be chosen that is in v but ends in t (or vice versa), the
proof is easier (an example will be shown in a moment). For that reason, the
case presented above includes the assumption that no n0 as in the previous
sentence can be chosen, and not only that, but also, among all the possible
choices for n0, it is required to choose the one whose mapping sequence is
of the minimal possible length. This assumption is indeed necessary: the
reader may check that, if we choose n0 = 21 in the example from Figure
3.2 (its mapping sequence is of length 9, while note that for n0 = 19 its
mapping sequence was of length 7), the proof sketched above will not work
(in particular, the statement from the lower bullet point will be false).

Consider now the example from Figure 3.3 and n0 = 18. We draw the
intervals as before. The part of the proof that shows the first bullet point from
the previous example is the same, but in this case this is actually everything
we need, since there are no 1s at all that do not belong to any interval (this
is so not only in the example from Figure 3.3, but it is easy to see that this
property always holds in this case).

Figure 3.3: Another example for the proof of Theorem 3.13.

As a bonus feature, note that in this example the intervals are of length
less than 2k − 1 (that is, less than 7, since k = 4), and there is an interval
with less than k letters 2 (which we mentioned earlier as a possibility if there
exists a position in t or v which ends the jumping sequence inside u, which is
indeed the case here, for the 19th position), but of course, in each interval the
ratio between the number of 2s and the number of 1s is at least k

k−1 (actually,
even greater than that).
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Finally, in order to avoid any confusion of the reader, we mention that,
in the formal write-up of the proof in Subsection 3.3.1, the “easier” case is
treated before the “harder” one (that is, in reversed order with respect to
the one in which they are presented here).

3.4 Another postponed technical theorem

Theorem 3.19. Let w ∈ {1, 2}∗ be such that 2|w|2 > |w|1. Let p and q
be two nonempty subpalindromes of w. Let wp, v, wq and t be such that
w = wpv = twq, p is a subword of wp, and q is a subword of wq. Then

|p|+ 2|v|2 + |q|+ 2|t|2 6 4|w|2 + |w|1.

Proof. We distinguish two cases:

• Case 1◦: |wp| 6 |t|;

• Case 2◦: |t| < |wp|.

Case 1◦. In this case we have |p|1 + |q|1 6 |w|1. Furthermore, we have:

|p|2 + 2|v|2 6 |w|2 + |v|2 6 2|w|2.

In an analogous way we obtain |q|2 + 2|t|2 6 2|w|2. Now, we get the required
inequality directly:

|p|+ 2|v|2 + |q|+ 2|t|2 6 |p|1 + |q|1 + |p|2 + 2|v|2 + |q|2 + 2|t|2
6 |w|1 + 4|w|2.

Case 2◦. In this case we may write w = tuv, where u is a nonempty
word. Now suppose that the required inequality does not hold, that is,

|p|+ 2|v|2 + |q|+ 2|t|2 > |w|1 + 4|w|2.

This reduces to

|p|+ |q| > |w|1 + 2|w|2 + 2|u|2 > 2|w|1 + 2|u|2. (3.23)

Let t̂ and v̂ be the words obtained from the words t and v, respectively,
by erasing all the letters 1 (or, equivalently, t̂ = 2|t|2 and v̂ = 2|v|2), and let
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p̂ and q̂ be the longest subpalindromes of t̂u and uv̂, respectively. We then
have:

|p̂| > |p| − 2|t|1;
|q̂| > |q| − 2|v|1.

Therefore,

|p̂|+ |q̂| > |p| − 2|t|1 + |q| − 2|v|1 > (2|w|1 + 2|u|2)− 2|t|1 − 2|v|1 = 2|u|,

which means that the conditions of Theorem 3.13 are satisfied (for u, t̂, v̂, p̂
and q̂); by that theorem we obtain

|u|1 6
|t̂v̂| − 1

|t̂v̂|
|t̂uv̂|2 < |t̂uv̂|2 6 |tuv|2 = |w|2.

On the other hand, since |p|+ |q| 6 |w|+ |u|, by the first inequality in (3.23)
we have |w| + |u| > |w|1 + 2|w|2 + 2|u|2, that is, |u|1 > |w|2 + |u|2 > |w|2, a
contradiction. The proof is completed. �
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4
Conclusion

In this thesis we collected several results related to some reversal-invariant
complexity measures of words. The two such measures we were investigating
are the palindromic defect and the MP-ratio of a given word.

One of our main results is the introduction of the class of generalized
highly potential words. We proved that their defect is always finite, and in
many cases positive, that their set of factors is closed under reversal, and
that each of them is either periodic, or recurrent but not uniformly recurrent.
The significance of this class of words lies in the fact that this conjunction of
properties is rarely met in words, which makes our words a very good supply
of examples and counterexamples for various problems of words.

The other main result of this thesis is the extension of the definition of the
MP-ratio to ternary words. The notion of the MP-ratio was defined originally
only for binary words ten years ago, the possibility of generalization for larger
alphabets was left as an open question, and there was no progress at all until
now. We showed that the MP-ratio is well-defined in the ternary case, that it
is bounded from above by 6, and that this is the best possible upper bound.
Finding a sharp upper bound on the MP-ratio in general case is still open,
but we believe that our work represents a significant step in this direction.

Note. After the main text of this thesis was completed, we have proved that
the MP-ratio for n-ary alphabet is well-defined for any n. An article is in
preparation.
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Prošireni izvod

U oblasti kombinatorike na rečima definisane su razne funkcije koje pred-
stavljaju mere složenosti neke date reči. U ovoj tezi posmatramo neke od
njih koje su invarijantne u odnosu na operaciju preokretanja reči. Videćemo
(kao što i jeste očekivano) da su te mere složenosti tesno povezane s poj-
mom palindroma. Izdvajamo dva pravca istraživanja i dajemo odgovor na
vǐse pitanja u vezi s njima.

Jedan pravac istraživanja se bazira na rezultatima Droubaya, Justina i
Pirilla [30], koji su primetili da reč dužine n sadrži najvǐse n + 1 različitih
palindromskih faktora. Razlika izmed̄u ovog gornjeg ograničenja i ukupnog
broja palindromskih faktora se zove palindromski defekt (ili samo defekt) date
reči [19] (koji je, po definiciji, uvek nenegativan). Iako je definicija suštinski
zasnovana na konačnosti date reči, ispostavlja se da se definicija defekta može
prirodno uopštiti i na beskonačne reči (defekt beskonačne reči se definǐse
kao supremum defekata njenih konačnih faktora). Reči defekta 0 se nazivaju
pune ili bogate, i o njima se u literaturi može naći priličan broj rezultata
[47, 21, 50, 59, 36, 60, 53, 51].

Nasuprot tome, beskonačne reči konačnog pozitivnog defekta su znatno
manje istražene. Jedan od razloga leži u tome što se eksplicitne konstrukcije
takvih reči, uz možda neke dodatne uslove (pre svega aperiodičnost, budući
da su periodične reči uglavnom pravolinijske za ispitivanje), ispostavljaju kao
relativno deficitarne u literaturi. Dugo nije bio poznat nijedan primer besko-
načne reči koja je aperiodična, koja ima konačan pozitivan defekt, i čiji je
skup faktora zatvoren za preokretanje, a za reči s ovim sklopom osobina se
smatralo da mogu bar do neke mere rasvetliti hipoteze koje su bile postavljene
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[17, 20]. Veliki napredak se pojavio u radu [15], gde je definisana konstrukcija
beskonačne familije beskonačnih reči, tzv. visokopotencijalnih reči, koje su
sve aperiodične, imaju skup faktora zatvoren za preokretanje, i imaju ko-
načan pozitivan defekt (štavǐse, prikazana konstrukcija zapravo predstavlja
metod kojim se takva reč dobija od bilo koje konačne reči koja nije palin-
drom). Kako se može videti u tom radu, te reči deluju kao vrlo korisna zaliha
primera i kontrapimera za razne probleme o rečima (po čemu su i dobile
naziv). Pritom, treba reći da je hronološki prvi primer aperiodične beskona-
čne reči koja ima konačan pozitivan defekt i čiji je skup faktora zatvoren za
preokretanje ipak vid̄en nešto ranije: videti [9, Example 3.4], gde je konstru-
isana jedna takva reč, koja je pritom uniformno rekurentna. U radu [14] je
konstruisana jedna takva reč koja nije uniformno rekurentna i pomoću ko-
je je demonstriran suštinski propust u jednom dokazu iz [10]; ova reč, iako
očigledno ima dosta zajedničkog s familijom visokopotencijalnih reči, ipak
zapravo ne pripada toj familiji.

U ovoj tezi konstruǐsemo novu familiju beskonačnih reči čiji je defekt
konačan, i u mnogo slučaja pozitivan (daćemo tačnu karakterizaciju kada im
je defekt 0). Ta konstruisana familija, štavǐse, kao specijalne slučajeve odje-
dnom obuhvata i visokopotencijalne reči (stoga je radni naziv za nju uopštene
visokopotencijalne reči) i pomenutu specijalno konstrusanu reč iz [14]. Dalje,
u [34, Proposition 2.10] autori su pokazali egzistenciju bogatih beskonačnih
reči koje su rekurentne ali ne i uniformno rekurentne, navodeći tri primera;
ispostavlja se da ova tri primera takod̄e pripadaju klasi uopštenih visokopo-
tencijalnih reči. Verujemo da sve ovo svedoči o visokom nivou generalnosti
naše konstrukcije. Sve reči naše familije su zatvorene za preokretanje i je-
su ili periodične (što je manje zanimljiv slučaj i eksplicitno okarakterisan),
ili rekurentne ali ne i uniformno rekurentne. Činjenica da nisu uniformno
rekurentne (osim ako su periodične) posebno je značajna zbog: prvo, u lite-
raturi se tu i tamo još i mogu naći neki rezultati i primeri u vezi sa uniformno
rekurentnim rečima (videti, na primer, [34, Proposition 4.8], ili [9], ili kon-
traprimer za tzv. hipotezu nultog defekta iz [23], koji je definisan kao fiksna
tačka odred̄enog primitivnog morfizma, a poznato je [6, Theorem 10.9.5] da
su fiksne tačke primitivnih morfizama su uvek uniformno rekurentne), dok
se o aperiodičnim rečima koje nisu uniformno rekurentne ne zna praktično
nǐsta; drugo, u [49, Theorem 2] je pokazano da svaka uniformno rekurent-
na reč konačnog defekta zapravno mora biti morfična slika neke reči defekta
nula (dok je rezultat koji autori dobijaju bez pretpostavke uniformne reku-
rentnosti slabiji, i u poslednjoj sekciji analiziraju značaj te pretpostavke, i
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ostavljaju kao otvoreno pitanje da li jači rezultat važi bez nje), što sve su-
gerǐse da je sa uniformno rekurentnim rečima donekle lakše raditi, dok one
koje nisu uniformne rekurentne predstavljaju slabije istraženu teritoriju koja
zaslužuje da se podrobnije izuči.

Holub i Saari [39] su uveli još jedan način za merenje koliko je neka reč
,,bogata“ palindromima, tzv. MP-razmeru date reči. MP-razmera je racio-
nalan broj veći od ili jednak sa 1 takav da, što je MP-razmera veća, reč je
,,bogatija“ palindromima (autori rada [39] za takve reči kažu da su ,,jako
palindromične“); za reč MP-razmere 1 kažemo da je minimalno-palindromi-
čna. Ispostavilo se da su neke osobine MP-razmere znatno dublje nego što bi
se moglo pomisliti na osnovu prvog utiska jer, kao što je pokazano u [13], MP-
razmera se ponekad ponaša na vrlo nepredvidiv način. Pojam MP-razmere se
bazira na palindromičnim podrečima (a ne faktorima) date reči, što je znatno
manje izučavano u literaturi. Med̄utim, i one imaju neke zanimljive osobine.
Kao što je pokazano u [39], svaka binarna reč, do na preokretanje, može se
rekonstruisati na osnovu skupa njenih palindromičnih podreči. Takod̄e u [39],
definisan je pojam abelovske neomed̄enosti, i pokazano je da svaka binarna
minimalno-palindromična reč jeste abelovski neomed̄ena (što je jaka verzi-
ja neomed̄enosti); abelovska (ne)omed̄enost reči privlači sve veću pažnju u
poslednje vreme [28, 35, 26, 7, 16]. Med̄utim, najveći nedostatak koncepta
MP-razmere je činjenica da je MP-razmera definisana samo za binarni alfa-
bet. Iako postoji prirodno proširenje definicije i na veći alfabet, nije jasno
da li će u tom slučaju MP-razmera uopšte biti dobro definisana. Zbog toga
su autori rada [39] ostavili problem dobre definisanosti MP-razmere za veće
alfabete kao otvoreno pitanje. U ovoj tezi rešavamo ovaj problem za ternarni
alfabet. Pokazaćemo da MP-razmera jeste dobro definisana u ternarnom slu-
čaju, da je ograničena s gornje strane kontantom 6, i da je ta granica najbolja
moguća.

Teza je organizovana na sledeći način.

Glava 1 je uvodna. U sekciji 1.1 navodimo osnovne pojmove i teoreme o
rečima generalno. U sekcijama 1.2 i 1.3 predstavljamo relevantne rezultate
vezane za defekt i za MP-razmeru, respektivno. Svi rezultati iz ove glave su
poznati u literaturi i dati sa odgovarajućim referencama.

Glave 2 i 3 predstavljaju u potpunosti originalan doprinos, i najvećim
delom su sadržane u radovima [4], odnosno [2] i [3].

Glava 2 je posvećena uopštenim visokopotencijalnim rečima. Njihova de-
finicija i neki tehnički preliminarni rezultati su dati u sekcijama 2.1 i 2.2.
U sekciji 2.3 dajemo potreban i dovoljan uslov za periodičnost uopštenih
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visokopotencijalnih reči, pokazujemo da je skup njihovih faktora zatvoren za
preokretanje (što implicira da su one rekurentne), i još pokazujemo da one
koje nisu periodične nisu ni uniformno rekurentne. U sekciji 2.4 pokazujemo
da je njihov defekt uvek konačan i dajemo potreban i dovoljan uslov kada je
pozitivan. Zasebno, u sekciji 2.5 na kraju se bavimo periodičnim uopštenim
visokopotencijalnim rečima (što je manje interesantan slučaj).

Glava 3 se bavi MP-razmerom. U sekciji 3.1 pokazujemo da za bilo ko-
ju ternarnu reč w uvek postoji MP-proširenje (r, s); štavǐse, pošto za našu
konstrukciju važi |rws| = 6|w|, dobijamo da je MP-razmera ograničena s
gornje strane sa 6. Tokom dokaza potrebna su nam dva tehnička rezultata,
koji su dati izdvojeno u sekcijama 3.3 i 3.4 (gde je sekcija 3.3 nezavisna od
prethodnih sekcija, a sekcija 3.4 se oslanja jedino na sekciju 3.3, pa verujemo
da čitalac neće doći u zabunu); osim toga, ova dva rezultata su u suštini
rezultati vezane za binarne reči (i postoji mala šansa da se mogu upotrebiti
i negde drugde), pa je i zbog toga prirodnije dati ih odvojeno od dokaza u
sekciji 3.1. U sekciji 3.2 pokazujemo da MP-razmera može biti proizvoljno
blizu konstanti 6, što zapravo daje da je 6 najbolja moguća gornja granica
MP-razmere u ternarnom slučaju.

1 Uvod

1.1 O rečima

U ovoj sekciji uvodimo osnovne definicije i osobine koje se pominju u tezi.
Sve što je navedeno je poznato i može se pronaći recimo u [6].

Neka je Σ konačan neprazan skup simbola, koji zovemo alfabet, a njego-
ve elemente zovemo slovima. Konačne (respektivno beskonačne) nizove slo-
va nazivamo reči (respektivno beskonačne reči) nad alfabetom Σ. (Ponekad
ćemo zloupotrebiti terminologiju i reći samo ,,reč“ kada je jasno iz konteksta
da je u pitanju beskonačna reč, ili dodatno naglašavati ,,konačna reč“, kada
smatramo da je tako zgodnije.) Označimo sa Σ∗ skup konačnih reči, a sa Σ∞

skup konačnih ili beskonačnih reči. U slučaju |Σ| = 2 govorimo o binarnim
rečima, u slučaju |Σ| = 3 o ternarnim rečima, i generalno, u slučaju |Σ| = n
govorimo o n-arnim rečima. Za w = a1a2...an, gde a1, a2, . . . , an ∈ Σ, kažemo
da je n dužina reči w, i pǐsemo |w| = n. Jedinstvenu reč dužine 0 zovemo
prazna reč, i označavamo sa ε.

Konkatenacije (ili proizvod) reči u i v, u = a1a2 . . . an i v = b1b2 . . . bm,
jeste reč a1a2 . . . anb1b2 . . . bm, i označavamo je sa uv. Proizvod uv za u ∈ Σ∗
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i v ∈ Σ∞\Σ∗ je slično definisan. Za reč w i za prirodan broj k, sa wk označa-
vamo reč ww . . . w︸ ︷︷ ︸

k

, a sa w∞ beskonačnu reč wwww . . . ; takod̄e, definǐsemo

w0 = ε za bilo koju reč w. Reč w ∈ Σ∗ je primitivna ako i samo ako nije
oblika zk za neko z ∈ Σ∗\{ε} i ceo broj k, k > 2.

Za A ⊆ Σ, sa A∗ označavamo skup

{a1a2 . . . ak : k > 0 i ai ∈ A za svako i},

a A+ = A∗\{ε}. Ako skup A sadrži samo jedan element, recimo A = {a},
pǐsemo a∗ i a+ umesto {a}∗ i {a}+. Ako su A i B skupovi reči, pǐsemo
AB = {uv : u ∈ A, v ∈ B}. Kako je konkatenacija reči asocijativna operacija,
i proizvod vǐse od dva skupa reči takod̄e je dobro definisan.

Reč u ∈ Σ∗ se zove faktor (respektivno prefiks, sufiks) reči w ∈ Σ∞ ako
i samo ako postoje reči x ∈ Σ∗ i y ∈ Σ∞ takve da w = xuy (respektivno
w = uy, w = xu). Reč u ∈ Σ∗ je podreč reči w ∈ Σ∗ ako i samo ako postoje
reči x1, x2, . . . , xn, xn+1 ∈ Σ∗ i y1, y2, . . . , yn ∈ Σ∗ takve da u = y1y2 . . . yn
i w = x1y1x2y2 . . . xnynxn+1 (ili, ekvivalentno, u je podreč reči w ako je u
njen podniz). Ako je w proizvoljna reč, skup svih faktora (respektivno pre-
fiksa, sufiksa, podreči) označavamo sa Fact(w) (respektivno Pref(w), Suff(w),
Subw(w)).

Koristićemo oznaku w[i] za i-to slovo u reči w, a za par (i, j) celih brojeva,
gde 1 6 i 6 j 6 |w|, sa w[i, j] ćemo označavati faktor w[i]w[i + 1] . . . w[j]
(jasno, w[i, i] = w[i]). U slučaju i > j, kao i u slučajevima i > |w| ili
j < 1, definǐsemo w[i, j] = ε. Po konvenciji, ova operacija ima prednost nad
konkatenacijom; drugim rečima, uv[i] (i slično uv[i, j]) označava u(v[i]), a ne
(uv)[i].

Za prirodne brojeve i i j, i 6 j, sa [i, j]N označavamo skup {i, i + 1, i +
2, . . . , j}. (Sa N označavamo pozitivne cele brojeve, dok sa N0 označavamo
nenegativne cele brojeve.)

Za reči u i v sa |u|v označavamo broj različitih pojavljivanja reči v unutar
u, to jest,

|u|v = |{i : 1 6 i 6 |u| − |v|+ 1, u[i, i+ |v| − 1] = v}|.

Kažemo da je slovo c dominantno u reči w ako i samo ako |w|c = max{|w|a :
a ∈ Σ}. (Primetimo da dominantno slovo nije nužno jedninstveno.)

Preokretanje reči w = a1a2 . . . an, gde a1, a2, . . . , an ∈ Σ, definisano je sa
w̃ = anan−1 . . . a1. Kažemo da je skup faktora w zatvoren za preokretanje ako
i samo ako za proizvoljno v ∈ Fact(w) važi ṽ ∈ Fact(w). Za reč w kažemo
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da je palindrom ako i samo ako w = w̃. (Praznu reč takod̄e smatramo palin-
dromom.) Palindromsku podreč date reči zovemo potpalindrom. Koristimo
oznaku Pal(w) = {u ∈ Fact(w) : u = ũ}.

Preslikavanje ϕ : Σ∗ → Σ∗ nazivamo morfizam ako i samo ako ϕ(uv) =
ϕ(u)ϕ(v) za sve u, v ∈ Σ∗.

Pre naredne teoreme [45, Proposition 1.3.2] uvodimo sledeći pojam: reč
w′ je konjugat reči w ako i samo ako postoje reči x i y takve da w = xy i
w′ = yx.

Teorema 1.1. Neka x, y ∈ Σ∗\{ε}. Tada xy = yx ako i samo ako postoje
t ∈ Σ∗ i prirodni brojevi p, q takvi da x = tp, y = tq. Drugim rečima, ako je
reč jednaka svom konjugatu (različitom od same date reči), tada ona mora
biti potpun stepen sa eksponentom bar dva.

Beskonačna reč w je periodična ako i samo ako je oblika w = u∞ za neko
u ∈ Σ∗, eventualno periodična ako i samo ako je oblika vu∞ za neko u, v ∈ Σ∗

i aperiodična ako i samo ako nije eventualno periodična. Prirodan broj p se
naziva period reči w ako i samo ako w[i] = w[i + p] za svako i > 1. (Period
ne mora biti jedinstven.) Beskonačna reč w je rekurentna ako i samo ako se
svaki faktor reči w pojavljuje beskonačno mnogo puta u reči w, a uniformno
rekurentna ako i samo ako za svaki konačan faktor u reči w postoji ceo broj
n takav da u ∈ Fact(v) za svako v ∈ Fact(w) takvo da |v| = n.

Sledeće tri teoreme su poznate i mogu se naći u [6], Exercise 10.50a),
Example 10.9.1 i Exercise 10.37, respektivno.

Teorema 1.2. Za beskonačnu reč w, ako je Fact(w) zatvoreno za preokre-
tanje, tada je w rekurentna.

Teorema 1.3. Svaka periodična reč je uniformno rekurentna.

Teorema 1.4. Svaka rekurentna, eventualno periodična reč je periodična.

1.2 Palindromski defekt

Sledeću nejednakost su primetili Droubay, Justin i Pirillo [30, Proposition 2].

Teorema 1.5. Neka je w konačna reč. Tada:

|Pal(w)| 6 |w|+ 1.
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Ova nejednakost je inspirisala Brleka et al. [19] da definǐsu palindromski
defekt (ili samo defekt) reči w, u oznaci D(w):

D(w) = |w|+ 1− |Pal(w)|.
Oni su uočili da defekt faktora date reči nikada nije veći od defekta po-

lazne reči; drugim rečima:

Teorema 1.6. Neka je w konačna reč i v ∈ Fact(w). Tada

D(v) 6 D(w).

Ovo daje motivaciju za uopštenje definicije defekta i na beskonačne reči:
za w ∈ Σ∞\Σ∗ definǐsemo

D(w) = sup
v∈Fact(w)

D(v).

(Naravno, ova nejednakost takod̄e važi i za konačne reči.) Primetimo da je
defekt bilo koje konačne ili beskonačne reči uvek nenegativan ili beskonačan.

1.2.1 Defekt nekih periodičnih reči

U ovoj podsekciji posmatramo specijalan slučaj periodičnih reči u kom je
defekt uvek konačan i lako izračunljiv. Teoreme 1.7 (videti [19, Lemma 5] i
[45, Proposition 1.3.4]) i 1.8 (videti [19, Theorem 6]) predstavljaju tehničke
rezultate koji vode ka glavnoj teoremi ove podsekcije, teoremi 1.9 (iz [19,
Corollary 8]).

Teorema 1.7. Neka w = xy = yz. Ako je w palindrom, tada postoje palin-
dromi u i v takvi da x = uv, z = vu i y = (uv)i−1u za neki prirodan broj i.
Dalje, tada je xyz takod̄e palindrom.

Teorema 1.8. Neka je p primitivna reč koja je proizvod dva palindroma u i
v, |u| > |v|. Tada:

D(p∞) = D

(
p∞
[
1, |uv|+

⌊
|u| − |v|

3

⌋])
.

Teorema 1.9. Ako je p primitivna reč koja je proizvod dva palindroma (od
kojih jedan može biti i prazna reč), tada postoji neki konjugat q od p takav
da

D(p∞) = D(q).

Komentar. Zapravo, zbog definicije defekta beskonačne reči, u prethodnoj
teoremi za q možemo (i moramo) birati onaj konjugat za koji je D(q) maksi-
malan (ili bilo koji takav, ako ih ima vǐse).
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1.2.2 Visokopotencijalne reči

Familija beskonačnih reči, tzv. visokopotencijalnih reči, uvedena je u [15].
Neka je data reč w koja nije palindrom i slovo c koje se ne pojavljuje u w, i
definǐsimo:

w0 = w;

wi = wi−1c
iw̃i−1, i ∈ N;

hpw(w) = lim
i→∞

wi.

Beskonačna reč hpw(w) se zove visokopotencijalna reč generisana sa w. (Li-
mes je dobro definisan jer je svako wi prefiks od wi+1.)

Glavne osobine visokopotencijalnih reči su date u sledeće dve teoreme.

Teorema 1.10. Neka je hpw(w) visokopotencijalna reč. Tada:

• hpw(w) je aperiodična;

• Fact(hpw(w)) je zatvoreno za preokretanje;

• hpw(w) je rekurentna;

• hpw(w) nije uniformno rekurentna.

Teorema 1.11. Neka je hpw(w) visokopotencijalna reč. Tada:

D(hpw(w)) = D(w) + 1.

1.2.3 Još nekoliko aperiodičnih reči konačnog defekta

Sledeća reč je definisana u [14].

Teorema 1.12. Neka je f morfizam definisan sa f(1) = 1213, f(2) = ε i
f(3) = 23. Neka f∞(1) = limi→∞ f

i(1). Beskonačna reč f∞(1) ima sledeće
osobine:

• f∞(1) je aperiodična;

• Fact(f∞(1)) je zatvoreno za preokretanje;

• f∞(1) je rekurentna ali nije uniformno rekurenta;

• D(f∞(1)) je konačan i pozitivan.
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Ovo je bio i prvi konstruisan primer u literaturi reči koja ima skup faktora
zatvoren za preokretanje, nije uniformno rekurentna, a ima konačan i poziti-
van defekt. Prethodno su u [34] vid̄eni i sledeći primeri reči koje nisu uniform-
no rekurentne a imaju defekt 0: 1) ϕ∞1 (a) gde ϕ1 : a 7→ aba, b 7→ bb (primer
uzet iz [25], gde je bio razmatran u druge svrhe); 2) Cantorova reč (takod̄e
poznata i kao reč Sierpińskog), to jest, ϕ∞2 (a) gde ϕ2 : a 7→ aba, b 7→ bbb
(poznata reč; videti, na primer, [52], što i autori citiraju); 3) ϕ∞3 (a) gde
ϕ3 : a 7→ abab, b 7→ b (primer od autorâ); dokaz da one imaju navedena
svojstva takodje će biti specijalan slučaj rezultata iz ove teze.

1.3 MP-razmera

Jasno, svaka binarna reč sadrži potpalindrom dužine bar
⌈ |w|

2

⌉
(recimo pot-

palindrom koji je sačinjen od dominantnog slova reči w). Kažemo da je
binarna reč w minimalno-palindromična ako ne sadrži potpalindrom duži
od
⌈ |w|

2

⌉
. Za w ∈ {0, 1}∗ ured̄eni par (r, s), gde r, s ∈ {0, 1}∗, takav da je

rws minimalno-palindromična zove se MP-proširenje reči w, a ako je dužina
|r|+|s| najmanja moguća, tada se (r, s) zove najkraće MP-proširenje, ili SMP-

proširenje reči w. Racionalan broj |rws||w| , gde (r, s) predstavlja SMP-proširenje

reči w, zove se MP-razmera reči w. Kako je pokazano u [39], za svaku binarnu
reč postoji MP-proširenje (i time i SMP-proširenje, pa je MP-razmera dobro
definisana); dalje, MP-razmera proizvoljne binarne reči je ograničena s gornje
strane sa 4, i ova granica je najbolja moguća.

Teorema 1.13. MP-razmera bilo koje binarne reči je najvǐse 4.

Može se pokazati da je 4 najbolja moguća gornja granica za MP-razmeru u
binarnom slučaju. Prvo treba da uvedemo pojam k-ekonomične i ekonomične
reči i takod̄e nam treba i nekoliko pomoćnih lema.

Kažemo da je reč w ∈ {0, 1}∗ k-ekonomična (u odnosu na slovo 1) ako
i samo ako je w palindrom i ako reč w1k sadrži potpalindrom dužine bar
|w|1 + k + 2. Svaki takav potpalindrom može se napisati u obliku 1mq1m

za 0 6 m 6 k i 1mq ∈ Subw(w); ured̄eni par (q,m) se zove k-svedok od
w. Kažemo da je w ekonomična ako i samo ako je k-ekonomična za sve k,
k = 0, 1, . . . , |w|1.
Lema 1.14. Neka w ∈ {0, 1}∗ i neka je (r, s) MP-proširenje od w. Ako je w
ekonomična, tada |rs|1 > |w|1.
Lema 1.15. Neka w ∈ {0, 1}∗ i neka je (r, s) MP-proširenje od w. Ako je w
ekonomična, tada |rws| > 4|w|1.
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Lema 1.16. Neka je w0 ekonomična reč. Definǐsemo niz (wi)i>0 rekurzivno
na sledeći način:

wi+1 = wi1
tiwi,

gde je (ti)i>0 neki unapred zadat niz prirodnih brojeva. Ako za svaki pozitivan
broj i važi ti < |wi|0, tada su sve reči wi ekonomične.

U sledećoj lemi pokazujemo da postoje ekonomične reči proizvoljno velike
dužine.

Lema 1.17. Za niz (ti)i>0 označavamo sa w(t0, t1, . . . , tj−1) reč wj defini-
sanu rekurzivnom formulom datoj u lemi 1.16 za početni term w0 = 0000.
Za svako k, k > 448, postoji ekonomična reč vk dužine k, takva da vk =
w(t0, t1, . . . , tn−1) za neko n, n > 6, i neke brojeve t0, t1, . . . , tn−1 koje zado-
voljavaju 2i 6 ti < 2i+2 za sve i, i = 0, 1, . . . , n− 1.

Ove leme su dovoljne da se pokaže da je navedena gornja granica opti-
malna [39, Theorem 5].

Teorema 1.18. Označimo sa R2(n) maksimalnu MP-razmeru nad svim re-
čima w ∈ {0, 1}∗, |w| = n. Tada:

lim
n→∞

R2(n) = 4.

2 Uopštene visokopotencijalne reči

2.1 Konstrukcija

Definicija 2.1. Neka w, u, v ∈ Σ∗, gde wuv 6= ε i u i v su palindromi, i neka
je A = (ai)i∈N strogo rastući niz prirodnih brojeva. Definǐsemo rekurzivno:

w0 = w;

wi = wi−1(uv)aiuw̃i−1, i ∈ N;

i označimo:
ghpw(w, u, v, A) = lim

i→∞
wi.

(Limes je dobro definisan jer je svako wi prefiks od wi+1.) Beskonačna reč
ghpw(w, u, v, A) se zove uopštena visokopotencijalna reč generisana sa w, u,
v i A.
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Napomena 2.2. Primetimo da uopštene visokopotencijalne reči zaista pred-
stavljaju uopštenje visokopotencijalnih reči: ako je w reč koja nije palindrom,
c slovo koje se ne pojavljuje u w, a I niz (i)i∈N, tada, jasno, važi

hpw(w) = ghpw(w, ε, c, I).

Dalje, za reč iz teoreme 1.12 u podsekciji 1.2.3 važi

f∞(1) = ghpw(1213121, 3, 2, I).

Takod̄e, lako se vidi da se preostale tri reči iz iste podsekcije mogu zapisati
kao:

ϕ∞1 (a) = ghpw(a, ε, b, (2i−1)i∈N),

ϕ∞2 (a) = ghpw(a, ε, b, (3i−1)i∈N),

ϕ∞3 (a) = ghpw(a, ε, b, I).

2.2 Standardni oblik

Razne ured̄ene četvorke (w, u, v, A) mogu da generǐsu istu uopštenu visokopo-
tencijalnu reč. U sledećoj lemi je pokazano da se za svaku uopštenu visokopo-
tencijalnu reč može odabrati ured̄ena četvorka sa nekim odred̄enim osobina-
ma koje će biti od koristi.

Lema 2.3. Neka je ghpw(w, u, v, A) uopštena visokopotencijalna reč. Tada
postoje reči wS, uS, vS i niz AS takvi da je wS palindrom, uSvS je primitivna
reč i

ghpw(w, u, v, A) = ghpw(wS, uS, vS, AS).

Ideja dokaza. Lako se vidi da

ghpw(w, u, v, A) = ghpw(w1, u, v, B),

za w1 = w(uv)a1uw̃ (w1 je palindrom) i B = (bi)i∈N, bi = ai+1.
Takod̄e, pokazuje se da

ghpw(w, u, v, A) = ghpw(w, u′, v′, C),

gde je u′v′ primitivna reč takva da uv = (u′v′)n, u = (u′v′)ku′, a C = (ci)i∈N,
ci = nai + k. �
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Ako je u ured̄enoj četvorci (w, u, v, A) w palidrom a uv primitivna reč,
kažemo da je ghpw(w, u, v, A) u standardnom obliku. Po prethodnoj lemi,
svaka uopštena visokopotencijalna reč se može zapisati u standardnom obli-
ku.

Napomena 2.4. Pretpostavka da je uv primitivna će biti korǐsćena često,
uglavnom u obliku sledeće posledice: na osnovu teoreme 1.1 sledi da se uv
pojavljuje kao faktor u uvuvuv . . . samo na ,,očiglednim mestima“ (drugim
rečima, |uvuv|uv = 2; još preciznije, ovu terminologiju ćemo koristiti za
pojavljivanja uv unutar uvuvuv . . . koja počinju na poziciji i za i ≡ 1
(mod |uv|)); dalje, slično tvrd̄enje važi i za svaki konjugat od uv (svaki kon-
jugat primitivne reči je takod̄e primitivan, što lako sledi na osnovu teoreme
1.1).

Sledeća (tehnička) lema je takod̄e posledica primitivnosti reči uv, i biće
korisna u nastavku.

Lema 2.5. Neka su u i v palindromi, uv 6= ε, takvi da je reč uv primi-
tivna. Neka je x palindrom takav da |x| > 2|uv| − 1 i x

[
1,
⌊ |x|

2

⌋
+ |uv|

]
=

(vu)∞
[
1,
⌊ |x|

2

⌋
+ |uv|

]
. Tada x = (vu)mv za neki prirodan broj m.

2.3 Osnovne osobine

Prvo prezentujemo potreban i dovoljan uslov za periodičnost uopštene vi-
sokopotencijalne reči.

Teorema 2.6. Neka je reč ghpw(w, u, v, A) data u standardnom obliku. Tada
je ghpw(w, u, v, A) periodična ako i samo ako ili w = (vu)mv za neki nene-
gativan ceo broj m, ili je tačno jedna od reči w, u i v neprazna.

Sledeća propozicija će biti značajna.

Propozicija 2.7. Fact(ghpw(w, u, v, A)) je zatvoreno za preokretanje.

Sada, teorema 1.2 odmah daje sledeću posledicu.

Posledica 2.8. Svaka uopštena visokopotencijalna reč je rekurentna.

Što se uniformne rekurentnosti tiče, imamo sledeće:

Propozicija 2.9. Uopštena visokopotencijalna reč je uniformno rekurentna
ako i samo ako je periodična.

Konačno, važi sledeće:

Propozicija 2.10. Ako uopštena visokopotencijalna reč nije periodična, on-
da je aperiodična.
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2.4 Defekt uopštenih visokopotencijalnih reči

U ovoj sekciji pokazujemo da je defekt uopštene visokopotencijalne reči uvek
konačan. Pre glavne teoreme, potrebne su dve tehničke leme.

Lema 2.11. Neka je neperiodična reč ghpw(w, u, v, A) data u standardnom
obliku, gde vu /∈ Pref(wuv). Pretpostavimo da postoji ceo broj i takav da
i > 3 i

|wi|(uv)aiu = 1.

Tada

|wi+1|wi
= 2

i

|wi+1|(uv)ai+1−1u = 2 + 2|wi|(uv)ai+1−1u.

Lema 2.12. Neka je neperiodična reč ghpw(w, u, v, A) data u standardnom
obliku, gde vu /∈ Pref(wuv). Tada postoji prirodan broj i takav da:

1) |wi|(uv)aiu = 1 (gde je to jedno pojavljivanje (uv)aiu na sredini od wi);

2) |wi+1|wi
= 2 (gde su ta dva pojavljivanja wi na početku i na kraju od

wi+1);

3) |wi+1|(uv)ai+1−1u = 2 + 2|wi|(uv)ai+1−1u (što iznosi ili 2 ili 4, u zavisnosti od
toga da li je ai+1 − 1 veće od ili jednako sa ai, respektivno).

Štavǐse, ako je i bilo koji broj koji zadovoljava 1), 2) i 3), tada i svako k,
k > i, zadovoljava te osobine.

Sledeća teorema je glavna teorema ove sekcije, i u suštini i cele glave:

Teorema 2.13. Neka je ghpw(w, u, v, A) uopštena visokopotencijalna reč.
Tada

D(ghpw(w, u, v, A)) <∞

Ideja dokaza. Pretpostavimo da je reč ghpw(w, u, v, A) data u standardnom
obliku, da nije periodična i da vu /∈ Pref(wuv). Neka je i broj čije posto-
janje sledi iz leme 2.12. Pokazujemo D(ghpw(w, u, v, A)) = D(wi+1), a za to
je zapravo dovoljno ustanoviti D(wi+2) = D(wi+1). Da bismo pokazali ovu
jednakost, treba naći |wi+2| − |wi+1| = |wi+1| + ai+2|uv| + |u| palindroma u
wi+2 koji se ne pojavljuju u wi+1. Razlikujemo sledeće klase palindroma.
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• Palindroma koji se mogu dobiti ,,̌sirenjem“ (nalevo i nadesno) uokvire-
nog faktora (uv)ai+2u u

wi+1 (uv)ai+2uwi+1

ima ukupno |wi+1|.

• Palindroma koji se mogu dobiti ,,̌sirenjem“ wi u

wi+1(uv)ai+2uwi (uv)ai+1uwi

ima ukupno ai+1|uv| + |u| + t, za t = max{|p| : p ∈ Pref(wuv) ∩
Pref(vu)}.

• Palindroma koji se mogu dobiti ,,̌sirenjem“ (uv)ai+2−1u u

wi+1uv (uv)ai+2−1uwi+1

ima t u slučaju ai+2 > ai+1 + 1, a inače ovi palindromi nisu novi.

• Konačno, nabrajamo nove palindrome koji su faktori od (uv)ai+2u.
Može se pokazati da njih ima (ai+2 − ai+1)|uv| − 2t u slučaju ai+2 >
ai+1 + 1, a |uv| − t u slučaju ai+2 = ai+1 + 1.

Sabiranjem ovih brojeva dobija se traženo.
Treba još razmotriti slučaj vu ∈ Pref(wuv). Označimo:

s = min{j : (wuv)[j] 6= (vu)∞[j]} − |uv|;
e = (|u|+ 2s) mod |uv|;
l = (−s) mod |uv|;

w′ = w[s+ 1, |w| − s];
u′ = (uvuv)[l + 1, l + e];

v′ = (uvuv)[l + e+ 1, l + |uv|];

A′ =
(
ai +

|u|+ 2s− e
|uv|

)∞
i=1

= (a′i)
∞
i=1.

Tada važi ghpw(w, u, v, A) = w[1, s] ghpw(w′, u′, v′, A′), gde je za reč
ghpw(w′, u′, v′, A′) ispunjeno da je w′ palindrom, u′v′ je primitivno i v′u′ /∈
Pref(w′u′v′), pa na osnovu prvog dela dokaza sledi da jeD(ghpw(w′, u′, v′, A′))
konačan. Kako Fact(ghpw(w, u, v, A)) = Fact(ghpw(w′, u′, v′, A′)), sledi

D(ghpw(w, u, v, A)) = D(ghpw(w′, u′, v′, A′)) <∞.

�
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Kako je rečeno u predgovoru, o beskonačnim rečima defekta 0 mnogo
vǐse se zna nego o onima koje imaju konačan pozitivan defekt. Zbog toga
ima smisla okarakterisati kada je defekt uopštenih visokopotencijalnih reči
(ne)nula. Takva karakterizacija lako sledi iz dokaza teoreme 2.13. Dajemo
je u sledećoj posledici (gde pretpostavljamo da je reč data u standardnom
obliku, a ako to nije slučaj, uvek možmo reizabrati parametre kao u dokazu
leme 2.3 i time prevesti reč u standardni oblik).

Posledica 2.14. Neka reč ghpw(w, u, v, A) nije periodična i neka je data u
standardnom obliku. Tada:

1◦ Ako vu /∈ Pref(wuv), biramo najmanji ceo broj i koji zadovoljava 1),
2) i 3) iz formulacije leme 2.12, i tada važi D(ghpw(w, u, v, A)) =
D(wi+1).

2◦ Ako vu ∈ Pref(wuv), biramo w′, u′, v′ i A′ kao malopre, i tada važi
D(ghpw(w, u, v, A)) = D(ghpw(w′, u′, v′, A′)), što se izračunava kao
pod 1◦ gore.

Specijalno, ovako možemo odrediti da li je D(ghpw(w, u, v, A)) pozitivan
ili 0, što daje karakterizaciju uopštenih visokopotencijalnih reči (ne)nula de-
fekta.

Takod̄e primetimo da lako možemo konstruisati uopštene visokopotenci-
jalne reči pozitivnog defekta. Najjednostavnije je prosto uzeti da neka od
reči w, u ili v ima pozitivan defekt, i tada će i ghpw(w, u, v, A) imati pozi-
tivan defekt. Ovo je dovoljan ali ne i potreban uslov: na primer, mogu sve
reči w, u i v biti bogate, ali ako pritom wu ili uv ima pozitivan defekt, tada
ghpw(w, u, v, A) opet ima pozitivan defekt.

Zapravo, ako su bilo koje dve od reči w, u i v takve da ne mogu biti faktori
iste bogate reči, tada ghpw(w, u, v, A) ima pozitivan defekt. Otvoren problem
iz rada [51] je bio sledeće: da li je odlučiv problem odrediti mogu li dve
bogate reči biti faktori iste bogate reči; taj problem je rešen (potvrdno) vrlo
skoro [54], no algoritam nije baš praktičan. Jedan elegantan dovoljan uslov
za to da dve bogate reči budu faktori iste bogate reči sledi iz [22, Theorem
6]: nikoja dva faktora bogate reči ne mogu imati isti najduži palindromski
prefiks i istovremeno najduži palindromski sufiks (prema tome, ako želimo da
ghpw(w, u, v, A) ima pozitivan defekt, dovoljno je da ovaj uslov bude narušen
za neke dve od reči w, u, v). U [59, Open problem 6.2] je postavljeno pitanje
da li je ovaj uslov i potreban (to jest, da li dve bogate reči koje imaju različit
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najduži palindromski prefiks ili sufiks moraju biti faktori iste bogate reči);
ako bi se ispostavilo da je ovo tačno, to bi znatno pojednostavilo pomenuti
algoritam iz [54], ali koliko je poznato autoru ove teze, taj problem je i dalje
otvoren.

2.5 Periodični slučaj

Teorema 2.15. Periodične uopštene visokopotencijalne reči imaju konačan
defekt.

3 MP-razmera u ternarnom slučaju

Posmatrajmo n-arni alfabet Σ = {0, 1, . . . , n − 1}. Jasno, svaka reč w ∈ Σ∗

sadrži potpalindrom dužine bar
⌈ |w|
n

⌉
. Dakle, prirodno je reći da je reč w ∈ Σ∗

minimalno palindromična ako ne sadrži potpalindrom duži od
⌈ |w|
n

⌉
. Za reč

w ∈ Σ∗ ured̄eni par (r, s), gde r, s ∈ Σ∗, takav da je rws minimalno palin-
dromična, zove se MP-proširenje reči w. SMP-proširenje, kao i MP-razmera,
definǐsu se slično kao u binarnom slučaju. Med̄utim, kako je rečeno ranije,
u slučaju vǐsearnih alfabeta nije jasno da li MP-proširenje uvek postoji, pa
time i da li je MP-razmera dobro definisana. U ovoj glavi pokazujemo da
MP-razmera jeste dobro definisana u slučaju ternarnog alfabeta.

Sledeća propozicija će biti korisna u nastavku

Propozicija 3.1. Neka w ∈ {0, 1, 2}∗, neka je (r, s) SMP-proširenje od w
i neka |rs| > 2. Tada |rws| = 3k − 2 za neki prirodan broj k, a vrednosti
|rws|0, |rws|1, |rws|2 su jednake (u nekoj permutaciji) k − 1, k − 1, k ili k −
2, k, k.

3.1 Gornja granica za MP-razmeru

Naš je cilj u ovoj sekciji da pokažemo da je MP-razmera bilo koje ternarne
reči w najvǐse 6. Fiksirajmo alfabet Σ = {0, 1, 2}.

Trebaju nam sledeće funkcije. Za w ∈ Σ∗ i a, b ∈ Σ, označimo

γ(w, a, b) = min
{

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , |w|+ 1
}
,

g(w, a, b) = max
{

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , |w|+ 1
}
.
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Dalje, neka j(a, w) označava poziciju poslednjeg pojavljivanja slova a unutar
w (to jest, w[j(a, w)] = a i w[k] 6= a za sve k, k > j(a, w)), i j(a, w) = 0 ako
se a ne pojavljuje u w. Definǐsimo

g′(w, a, b) = max
({

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , j(a, w)
}
∪ {0}

)
.

Prvo navodimo dve jednostavne osobine ovih funkcija.

Lema 3.2. Neka je w konačna reč i neka su a i b dva različita slova. Tada:

a) g′(w, a, b) 6 g(w, a, b);

b) γ(w, a, b) + g(w̃, a, b) = g(w, a, b) + γ(w̃, a, b) = 2|w|a − |w|b.

Sledeća osobina funkcije g je manje očigledna, ali biće korisna.

Lema 3.3. Neka w ∈ Σ∗, neka je b dominantno slovo u w i neka je a slovo
različito od b. Tada:

g(w, a, b) + g(w̃, a, b) 6 3|w|a.

Sada smo spremni da konstruǐsemo MP-proširenje date reči w. Do kraja
ove sekcije, bez umanjenja opštosti, pretpostavimo |w|0 6 |w|1 6 |w|2. Za-
pravo, daćemo dva proširenja reči w, f(w) i f ′(w), i pokazati da je bar jedno
od njih MP-proširenje. Ta dva proširenja su

f(w) = 02|w|−|w|022|w|−|w|2−g′(w,0,2) w 2g
′(w,0,2)12|w|−|w|1 ;

f ′(w) = 12|w|−|w|12g
′(w̃,0,2) w 22|w|−|w|2−g′(w̃,0,2)02|w|−|w|0 .

Primetimo, f ′(w) = f̃(w̃). Sa r i s, respektivno r′ i s′, označavamo prefiks i
sufiks koji smo dodali na w u f(w), respektivno u f ′(w).

Drugim rečima, slova 1 i 0 su stavljena na krajeve, dok je slovo 2 ras-
pored̄eno oko w na asimetričan način. Preciznije, važi

(2|w| − |w|2 − g′(w, 0, 2))− g′(w, 0, 2) > |w|2

(i slično za drugo proširenje sa w̃ umesto w).

Komentar. Date konstrukcije nisu jedine moguće. Još jedna mogućnost je
koristiti funkciju g umesto g′ (ili zapravo bilo koju med̄uvrednost), i dokaz
bi bio u potpunosti isti. Verzija sa g′ zapravo predstavlja granični slučaj u
smislu da su dvojke raspored̄ene najasimetričnije moguće; drugim rečima,
ako bismo samo jednu dvojku pomerili sa manje ,,gomile“ na veću, vǐse ne
bismo imali MP-proširenje.
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Kako smo rekli, bar jedan od ured̄enih parova (r, s) i (r′, s′) predsta-
vlja MP-proširenje reči w, to jest, bar jedna od reči f(w) i f ′(w) ne sadrži
potpalindrom duži od 2|w| (primetimo, |f(w)| = |f ′(w)| = 6|w|). Dokaz se
sastoji od nekoliko tvrdnji.

Lema 3.4. Dužina proizvoljnog potpalindroma oblika 0p0 unutar obe reči
f(w) i f ′(w) je najvǐse 2|w|.

Lema 3.5. Dužina proizvoljnog potpalindroma oblika 1p1 unutar obe reči
f(w) i f ′(w) je najvǐse 2|w|.

Lema 3.6. Neka su p i q dva neprazna potpalindroma reči w. Neka su wp,
v, wq i t reči takve da w = wpv = twq, p je podreč od wp i q je podreč od wq.
Tada imamo:

|p|+ 2|v|2 + |q|+ 2|t|2 6 4|w|2 + |w|1 + |w|0.

Ideja dokaza. Na reč w′, |w′| = |w|, koja je definisana na sledeći način:

w′[i] =

{
1, ako w[i] = 0 ili w[i] = 1;
2, ako w[i] = 2.

primenimo teoremu 3.19 (koja je formulisana i dokazana kasnije u sekciji
3.4). �

Lema 3.7. Dužina proizvoljnog potpalindroma oblika 2p2 unutar bar jedne
reči f(w) i f ′(w) je najvǐse 2|w|.

Ideja dokaza. Pretpostavimo suprotno: najduži potpalindromi u obe reči su
duži od 2|w|. Tada su oni oblika 2l+|s|2pw2l+|s|2 i 2l

′+|r′|2qw2l
′+|r′|2 , gde su pw

i qw palindromi i važi pw2l ∈ Subw(w), odnosno 2l
′
qw ∈ Subw(w). Može se

pokazati sledeće:

|pw|+ 2l + |qw|+ 2l′ > 4|w| − 2g′(w, 0, 2)− 2g′(w̃, 0, 2).

Sada je leva strana nejednakosti, na osnovu leme 3.6, manja od ili jednaka
sa 4|w|2 + |w|1 + |w|0, dok je desna strana jednakosti na osnovu lema 3.2a) i
3.3 veća od ili jednaka sa 4|w|2 + |w|1 + |w|0, što je kontradikcija. �

Sad smo spremni za glavnu teoremu ove sekcije.

Teorema 3.8. MP-razmera bilo koje ternarne reči je najvǐse 6.
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3. MP-razmera u ternarnom slučaju

Komentar. Ne tvrdimo da je pomenuto proširenje SMP-proširenje. Zapravo,
imajući u vidu propoziciju 3.1, možemo zaključiti da sigurno nije; u stvari,
brisanjem proizvoljna dva slova iz r i s dobili bismo još kraće proširenje, što
pokazuje da je MP-razmera proizvoljne ternarne reči strogo manja od 6. No,
kao što se vidi u sledećoj sekciji, ova činjenica suštinski nije relevantna. Dokaz
je ispisan na prikazani način jer je bilo nešto manje tehnički zahtevno ako se
u reči rws svako slovo pojavljuje isti broj puta. U svakom slučaju, brisanje
dva slova iz našeg proširenja i dalje ne mora da vodi do SMP-proširenja.
Konstrukcija SMP-proširenja je mnogo zahtevnija i deluje da je van domašaja
čak i u binarnom slučaju [13].

3.2 Optimalnost gornje granice

Sada ćemo pokazati da je konstanta 6 iz prethodne sekcije optimalna.
U sekciji 1.3 smo uveli pojam ekonomičnosti i k-ekonomičnosti za binarne

reči. Modifikovaćemo malo te definicije kako bismo ih prilagodili za ternarni
slučaj. Kažemo da je reč w ∈ {0, 1, 2}∗ k-ekonomična (u odnosu na slovo
1) ako je w palindrom i reč w1k sadrži potpalindrom dužine bar |w|1 + k +
3. Ovi potpalindromi se mogu zapisati u obliku 1mq1m gde 0 6 m 6 k i
1mq ∈ Subw(w); ured̄eni par (q,m) se zove k-svedok od w. Kažemo da je w
ekonomična ako i samo ako je k-ekonomična za sve k, k = 0, 1, . . . , |w|1.

Sledeće tri leme su (manje-vǐse) direktne adaptacije lema 1.14, 1.15 i 1.16.

Lema 3.9. Neka w ∈ {0, 1, 2}∗ i neka je (r, s) MP-proširenje od w. Ako je
w ekonomična, tada |rs|1 > |w|1.

Lema 3.10. Neka w ∈ {0, 1, 2}∗ i neka je (r, s) MP-proširenje od w. Ako je
w ekonomična, tada |rws| > 6|w|1.

Lema 3.11. Neka je w0 ekonomična reč. Definǐsemo niz (wi)i>0 rekurzivno
na sledeći način:

wi+1 = wi1
tiwi,

gde je (ti)i>0 neki unapred zadat niz prirodnih brojeva. Ako za svaki pozitivan
broj i važi ti < |wi|0, tada su sve reči wi ekonomične.

Za niz (ti)i>0 označavamo sa w(t0, t1, . . . , tj−1) reč wj definisanu rekur-
zivnom formulom datoj u lemi 3.11 za početni term w0 = 0000. (Prime-
timo da je reč 0000 ekonomična i kao ternarna reč.) Dalje, primetimo da,
ako niz (ti)i>0 zadovoljava 2i 6 ti < 2i+2 za sve i, tada tj < 2j+2 =
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|w(t0, t1, . . . , tj−1)|0, i na osnovu leme 3.11 reč w(t0, t1, . . . , tj−1) je ekono-
mična (za sve j i svaki niz (ti)i>0 koji zadovoljava pomenuti uslov). Tada
se može pokazati da za dovoljno veliko k postoji reč vk koja se može dobiti
opisanom konstrukcijom, takva da |vk| = k, pored toga važi

lim
k→∞

|vk|1
|vk|

= 1.

Ovo je dovoljno da se pokaže glavna teorema ove sekcije.

Teorema 3.12. Označimo sa R3(n) maksimalnu MP-razmeru nad svim re-
čima w ∈ {0, 1, 2}∗, |w| = n. Tada:

lim
n→∞

R3(n) = 6.

Ideja dokaza. Za pozitivan realan broj η, biramo k0 takvo da za sve k > k0
važi

|vk|1
|vk|

> 1− η

6
.

�

3.3 Odložena tehnička teorema

Teorema 3.13. Neka u ∈ {1, 2}∗, neka su t, v ∈ 2∗ i neka su p i q potpalin-
dromi od tu i uv, respektivno. Ako

|p|+ |q| > 2|u|,

tada

|u|1 6
|tv| − 1

|tv|
|tuv|2.

Pre dokaza napomenimo, može se pokazati da, bez umanjenja opštosti,
možemo raditi pod pretpostavkom da potpalindromi p i q sadrže sva slova
reči t i v, resprektivno.

U sledeće dve podsekcije dajemo dva (vrlo) različita dokaza teoreme 3.13.
Drugi dokaz je (znatno) kraći od prvog, i mnogi bi se složili da je i elegantniji.
No, smatramo da drugi dokaz radi skoro pa slučajno, dok prvi dokaz daje
duboku strukturnu analizu, i preko njega možemo videti zašto je teorema
zaista tačna (zapravo, mislimo da je prvi dokaz intuitivniji nego drugi, iako
se na nekim mestima javljaju prilično glomazne formule). Rekli bismo da ne bi
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3. MP-razmera u ternarnom slučaju

bilo veliko iznenad̄enje ako bi se za neko tvrd̄enje slično teoremi 3.13 (vezano,
recimo, za MP-razmeru za neki veći alfabet) ispostavilo da adekvatna modifi-
kacija prvog dokaza i dalje radi, dok za drugi dokaz to ne bi bio slučaj. Dakle,
verujemo da oba dokaza, bez obzira na očiglednu razliku izmed̄u njihovih
dužina, imaju svoje prednosti, i zato smo odlučili da ih prezentujemo oba.

3.3.1 Prvi dokaz

Definǐsemo najpre nizove P1, P2, . . . , P|p| i Q1, Q2, . . . , Q|q| takve da 1 6 P1 <
P2 < · · · < P|p| 6 |tu| i |t|+ 1 6 Q1 < Q2 < · · · < Q|q| 6 |tuv|, i

p = (tuv)[P1](tuv)[P2] . . . (tuv)[P|p|]

i
q = (tuv)[Q1](tuv)[Q2] . . . (tuv)[Q|q|].

Pǐsemo P = {P1, P2, . . . , P|p|} i Q = {Q1, Q2, . . . , Q|q|}.
Definǐsemo σP : P → P tako da σP : Ps 7→ P|P |−s+1 i σQ : Q → Q tako

da σQ : Qs 7→ Q|Q|−s+1. Primetimo da su σP i σQ bijekcije, i da je njihov
kvadrat identičko preslikavanje.

Za 1 6 n 6 |t| označimo σ0(n) = n i

σi+1(n) =


σP (σi(n)), za 2 | i i σi(n) ∈ P ;
σQ(σi(n)), za 2 - i i σi(n) ∈ Q;
nedefinisano, inače.

Slično, za |tu|+ 1 6 n 6 |tuv| označimo σ0(n) = n i

σi+1(n) =


σQ(σi(n)), za 2 | i i σi(n) ∈ Q;
σP (σi(n)), za 2 - i i σi(n) ∈ P ;
nedefinisano, inače.

Važe sledeće osobine.

Propozicija 3.14. a) Za svako n,m ∈ Q (respektivno, n,m ∈ P ), ako
n < m, tada σQ(n) > σQ(m) (respektivno, σP (n) > σP (m)).

b) Važi σ0(n) > σ2(n) > σ4(n) > · · · i σ1(n) < σ3(n) < σ5(n) < · · ·
za n > |tu| + 1, i σ0(n) < σ2(n) < σ4(n) < · · · i σ1(n) > σ3(n) >
σ5(n) > · · · za n 6 |t|. (Nejednakosti nastavljamo sve dok su termovi
definisani.)
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c) Ako važi jedan od sledeća dva uslova:

1) n i m su istovremeno u intervalu [1, |t|]N ili [|tu|+ 1, |tuv|]N, a i i
j su iste parnosti; ili

2) n i m su u različitim intervalima, a i i j su suprotne parnosti,

tada σi(n) = σj(m) implicira n = m i i = j. (Zapravo, σi(n) = σj(m)
je nemoguće u drugom slučaju.)

d) Za svako n takvo da n 6 |t| ili n > |tu| + 1 postoji z ∈ N takvo da je
σz(n) poslednji definisan term u nizu σ0(n), σ1(n), σ2(n) . . .

Sledeća lema će biti korisna.

Lema 3.15. a) Za svako n ∈ Q takvo da je σP (σQ(n)) definisano (to jest,
σQ(n) ∈ P ), imamo

n− σP (σQ(n)) 6 2(|t|+ |v|)− 1

− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|
− |[1, σQ(n)]N \ P | − |[1, σP (σQ(n))]N \ P |.

Takod̄e, za svako n ∈ P takvo da je σQ(σP (n)) definisano (to jest,
σP (n) ∈ Q), imamo

σQ(σP (n))− n 6 2(|t|+ |v|)− 1

− |[1, n]N \ P | − |[1, σP (n)]N \ P |
− |[σP (n), |tuv|]N \Q| − |[σQ(σP (n)), |tuv|]N \Q|.

b) Za svako n ∈ Q takvo da σP (σQ(n)) nije definisano (to jest, σQ(n) /∈
P ), imamo

n 6 2(|t|+ |v|) + |P | − σQ(n)− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|.

Takod̄e, za svako n ∈ P takvo da σQ(σP (n)) nije definisano (to jest,
σP (n) /∈ Q), imamo

|tuv|+ 1− n 6 2(|t|+ |v|) + |Q| − (|tuv|+ 1− σP (n))

− |[1, n]N \ P | − |[1, σP (n)]N \ P |.
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3. MP-razmera u ternarnom slučaju

Za prirodan broj n, n 6 |t| ili n > |tu| + 1, neka end(n) označava broj
z čije je postojanje pokazano u propoziciji 3.14d). Kažemo da n umire ako
|t| + 1 6 σend(n)(n) 6 |tu|. Može se pokazati da strogo manje od |t| + |v|
brojeva n umire. To znači da postoji n, n 6 |t| ili n > |tu| + 1, koje ne
umire. Neka je n0 proizvoljan takav broj. Bez umanjenja opštosti možemo
pretpostaviti n0 > |tu|+ 1. Na osnovu odabira n0 važi ili σend(n0)(n0) 6 |t| ili
σend(n0)(n0) > |tu|+ 1.

Lema 3.16. Neka je i, i > 0, takvo da je σ2i+2(n0) definisano.

a) Za svako m, m > |tu|+ 1, važi jedna od sledećih stvari:

• postoji j takvo da σ2i+2(n0) < σj(m) 6 σ2i(n0);

• 2 | end(m) i σend(m)(m) > max{σ2i(n0), σ2i+1(n0)};
• 2 - end(m) i σend(m)(m) < min{σ2i+1(n0), σ2i+2(n0)}.

Takod̄e, za svako m, m 6 |t|, važi jedna od sledećih stvari:

• postoji j takvo da σ2i+2(n0) < σj(m) 6 σ2i(n0);

• 2 - end(m) i σend(m)(m) > max{σ2i(n0), σ2i+1(n0)};
• 2 | end(m) i σend(m)(m) < min{σ2i+1(n0), σ2i+2(n0)}.

b) Svakom m, m 6 |t| ili m > |tu| + 1, za koje postoji j opisano pod
a) možemo pridružiti jedno takvo j tako da sve odgovarajuće vrednosti
σj(m) budu različite.

Konačno, potrebna je sledeća lema.

Lema 3.17. Neka je n takvo da n > |tu|+ 1 i σend(n)(n) > |tu|+ 1. Tada:

2|tuv|+ 1− n− σend(n)(n)

> |{m : m > |tu|+ 1, end(m) > end(n) i σend(m)(m) > |tu|+ 1}|
+ |{m : m > σend(n)(n) i m umre}|.

Sada smo spremni da dokažemo teoremu 3.13.

Ideja prvog dokaza teoreme 3.13. Prvo primetimo, ako m ∈ [1, |t|]N ∪ [|tu|+
1, |tuv|]N i σi(m) je definisano, tada (tuv)[σi(m)] = 2.

Pretpostavimo prvo da 2 | end(n0). Tada na osnovu propozicije 3.14b)
možemo pisati
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|tuv|2 =
∣∣(tuv)[n0 + 1, |tuv|]

∣∣
2

+

end(n0)
2
−1∑

i=0

∣∣(tuv)[σ2i+2(n0) + 1, σ2i(n0)]
∣∣
2

+
∣∣(tuv)[1, σend(n0)(n0)]

∣∣
2

= (|tuv| − n0) +

end(n0)
2
−1∑

i=0

∣∣(tuv)[σ2i+2(n0) + 1, σ2i(n0)]
∣∣
2

+ σend(n0)(n0).

Označimo k = |tv|. Koristeći leme 3.15 i 3.16 može se pokazati da za
svako i takvo da je σ2i+2(n0) definisano važi

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2 >
k

k − 1
|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1.

Konačno, imamo

|tuv|2 >
k

k − 1

end(n0)
2
−1∑

i=0

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1

=
k

k − 1
|(tuv)[σend(n0)(n0), n0]|1 =

k

k − 1
|u|1.

Sada možemo pretpostaviti ne samo da 2 - end(n0), nego i da 2 - end(n)
za bilo koje n koje ne umire (inače bismo mogli reizabrati n0). Dalje, možemo
pretpostaviti da end(n0) nije veće od end(n) za bilo koje n koje ne umire i
za koje važi n > |tu|+ 1 (inače bismo mogli ponovo reizabrati n0).
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Slično kao u prethodnom slučaju, važi

|tuv|2 =
∣∣(tuv)[n0 + 1, |tuv|]

∣∣
2

+

end(n0)−3
2∑
i=0

∣∣(tuv)[σ2i+2(n0) + 1, σ2i(n0)]
∣∣
2

+
∣∣(tuv)[1, σend(n0)−1(n0)]

∣∣
2

> (|tuv| − n0) +
k

k − 1

end(n0)−3
2∑
i=0

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1

+ |(tuv)[1, σend(n0)−1(n0)]|2

= |tuv| − n0 + |(tuv)[1, σend(n0)−1(n0)]|2

+
k

k − 1
|(tuv)[σend(n0)−1(n0) + 1, n0]|1.

Dakle, za kompletiranje dokaza treba pokazati

|tuv| − n0 + |(tuv)[1, σend(n0)−1(n0)]|2 >
k

k − 1
|(tuv)[1, σend(n0)−1(n0)]|1,

što se može dobiti korǐsćenjem (izmed̄u ostalog) leme 3.17. �

Na osnovu prethodnog dokaza mogu se tačno okarakterisati reči za koje
se u teoremi 3.13 dostiže jednakost.

Propozicija 3.18. Pod uslovima teoreme 3.13, u navedenoj nejednakosti
dostǐze se jednakost ako i samo ako za neki prirodan broj k i nenegativan ceo
broj l imamo u = (1k−12k)l1k−1, t = ε i v = 2k (ili obratno).

3.3.2 Drugi dokaz

Ideja drugog dokaza teoreme 3.13. Koristimo indukciju po dužini |u|. Slučaj
|u| = 0 je trivijalan, dakle, pretpostavimo da je tvrd̄enje tačno za sve reči u′

gde |u′| < |u|, i dokazujemo da tada mora važiti i za u.

Označimo sa v′ najkraći prefiks od uv za koji važi |v′|2 = |v|, a sa t′

najkraći sufiks od tu za koji važi |t′|2 = |t|.
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Posmatramo prvo slučaj |v′|+ |t′| < |u|. Zapǐsimo u = v′u′t′, i neka su p′ i
q′ najduži potpalindromi od u′t i vu′, respektivno. (Primetimo, t je sa desne
a v sa leve strane u′, a ne obratno kao ranije!) Može se pokazati da tada važi

|q′| > |p| − 2|t| − 2(|v′| − |v|),

kao i
|p′| > |q| − 2|v| − 2(|t′| − |t|).

Koristimo indukcijsku hipotezu za v, u′ i t. Lako se pokazuje |u′| < |u|, a
na osnovu malopre dobijenih jednakosti dobija se i

|q′|+ |p′| > 2|u′|.

Sada na osnovu indukcijske hipoteze sledi

|u′|1 6
|vt| − 1

|vt|
|vu′t|2.

Direktno se pokazuje:

|v′|1 + |t′|1 6 |uv| − |q|+ |tu| − |p| < |t|+ |v|.

Konačno, sve zajedno imamo

|u|1 = |v′|1 + |u′|1 + |t′|1 6 |tv| − 1 + |u|1 6
|tv| − 1

|tv|
(|tv|+ |vu′t|2)

=
|tv| − 1

|tv|
(|t′|2 + |v′|2 + |vu′t|2) =

|tv| − 1

|tv|
|tuv|2,

što je i trebalo pokazati.
Slučaj |v′|+ |t′| > |u| se rešava (manje-vǐse) direktno. �

3.4 Još jedna odložena tehnička teorema

Teorema 3.19. Neka w ∈ {1, 2}∗, pri čemu važi 2|w|2 > |w|1. Neka su p
i q dva neprazna potpalindroma od w. Neka su wp, v, wq i t reči takve da
w = wpv = twq, p je podreč od wp, i q je podreč wq. Tada

|p|+ 2|v|2 + |q|+ 2|t|2 6 4|w|2 + |w|1.

Ideja dokaza. Posmatramo dva slučaja u zavisnosti od toga da li |wp| 6 |t| ili
|t| < |wp|. U prvom slučaju nakon nekoliko tehničkih koraka zaključak sledi
direktno, dok u drugom slučaju (takod̄e nakon nekoliko tehničkih koraka)
koristimo teoremu 3.13. �
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4 Zaključak

U ovoj tezi smo objedinili nekoliko rezultata vezanih za neke reverznoinva-
rijantne mere složenosti reči. Dve takve mere koje smo posmatrali su palin-
dromski defekt i MP-razmera date reči.

Jedan od naših glavnih rezultata jeste uvod̄enje klase uopštenih visokopo-
tencijalnih reči. Pokazali smo da je njihov defekt uvek konačan, i u mnogo
slučajeva pozitivan, da je njihov skup faktora zatvoren u odnosu na operaciju
preokretanja reči, i da je svaka od njih ili periodična, ili rekurentna ali ne i
uniformno rekurentna. Značaj ove klase reči ogleda se u činjenici da se ova
kombinacija osobina veoma retko sreće kod reči, što ih čini vrlo korisnom
zalihom primera ili kontraprimera za razne probleme na rečima.

Drugi glavni rezultat koji je izložen u ovoj tezi je proširenje definicije MP-
razmere na ternarne reči. Pojam MP-razmere je originalno, pre deset godina,
bio definisan samo za binarne reči, mogućnost proširenja definicije na veće
alfabete je bila ostavljena kao otvoreno pitanje, i od tada nije bilo nikakvog
pomaka sve do sada. Pokazali smo da je MP-razmera dobro definisana u
ternarnom slučaju, da je ograničena s gornje strane sa 6 i da je ovo najbolja
gornja granica. Nalaženje optimalne gornje granice za MP-razmeru u opštem
slučaju i dalje je otvoren problem, ali verujemo da naš rezultat predstavlja
značajan korak u tom smeru.

Komentar. Nakon kompletiranja glavnog teksta ove teze, dokazali smo da
je MP-razmera za n-arni alfabet dobro definisana za svako n. Rad je u fazi
pripreme.
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[10] L’. Balková & E. Pelantová & Š. Starosta, On Brlek-Reutenauer con-
jecture, Theoret. Comput. Sci. 412 (2011), 5649–5655; Corrigendum:
Theoret. Comput. Sci. 465 (2012), 73–74.
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[49] E. Pelantová & Š. Starosta, Almost rich words as morphic images of
rich words, Internat. J. Found. Comput. Sci. 23 (2012), 1067–1083.
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[51] E. Pelantová & Š. Starosta, On words with the zero palindromic defect,
in: Combinatorics on Words, 11th International Conference (WORDS
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ljai“ u Senti je završila 2010. godine. Po za-
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Naučna disciplina: Diskretna matematika
ND
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na koje se ova definicija može prirodno proširiti. Postoje mnogobrojni rezul-
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President: Ivica Bošnjak, Ph.D., Associate Professore, Faculty of Science,
University of Novi Sad
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