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ABSTRACT 

Ensuring adequate pavement cross slope on highways can improve driver safety by 

reducing the potential for water sheeting and ponding.  Collecting cross slope data is 

typically only based on small sample because efficient technology and means to collect 

accurate cross slope data has been evasive.  The advent of Light Detection and Ranging 

(LiDAR) scanning technology has proven to be a valuable tool in the creation of 3D terrain 

models.  Combined with other technologies such as Global Positioning Systems (GPS) and 

Inertial Measurement Unit devices (IMU) it is now possible to collect accurate 3D 

coordinate data in the form of a point cloud while the data collection system is moving. 

This study provides an evaluation of both Airborne LiDAR Scanning (ALS) and Mobile 

Terrestrial LiDAR Scanning (MTLS) systems regarding the accuracy and precision of 

collected cross slope data and documentation of procedures needed to calibrate, collect, 

and process this data.  

ALS data was collected by a single vendor on a section of freeway in Spartanburg, 

South Carolina and MTLS data was collected by six vendors on four roadway sections in 

South Carolina. The MTLS cross slopes were measured on 23 test stations using 

conventional surveying methods and compared with the LiDAR-extracted cross slopes. 

Results indicate that both adjusted and unadjusted MTLS derived cross slopes meets 

suggested cross slope accuracies (±0.2%). Unadjusted LiDAR data did incorporate 

corrections from an integrated inertial measurement unit, and high accuracy real-time 

kinematic GPS, however, was not post-processed adjusted with ground control points. 



iii 

Similarly, airborne LiDAR-extracted cross slopes was compared with conventional 

surveying measurement on five test stations along the freeway study section. Whereas, the 

ALS data accuracy was over the minimum acceptable error when two sides of the travel 

lanes were used to estimate the cross slope, the use of a fitted line to derive the cross slope 

provided accuracies similar to the MTLS systems.  

The levels of accuracy demonstrate that MTLS and ALS can be reliable methods 

for cross slope verification.  Adoption of LiDAR would enable South Carolina Department 

of Transportation (SCDOT) or other highway agencies to proactively address cross slope 

and drainage issues.   

When rain falls on a pavement surface, the water depth that accumulates can result 

in hydroplaning. Previous research has not clearly defined a water depth at which 

hydroplaning occurs; however, there is considerable agreement that a water depth equal to 

0.06 inches as the acceptable upper limit of water depth to minimize the possibility of 

hydroplaning. This research also explored the potential for hydroplaning with regard to the 

range of vehicle speed, tire tread depth, tire pressure, and pavement surface texture. Using 

the results of the sensitivity analysis to provide roadway context combined with MTLS 

derived cross slope data, SCDOT and other highway agencies can use a data driven 

approach to evaluate cross slopes and road segments that need corrective measures to 

minimize hydroplaning potential and enhance safety.     
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CHAPTER ONE 

INTRODUCTION 

Introduction 

Roadway Geometry including horizontal and vertical curves, longitudinal grade, 

super elevation and cross slope are critical elements of designing and planning for all types 

of roadway projects (1). Longitudinal grade and cross slope are used in a number of 

transportation applications, such as stopping and passing sight distance, roadway capacity, 

and drainage pattern (2). Highway pavement cross slope is a crucially important cross-

sectional design element as this provides the means to drain water from the roadway 

surface laterally (3, 4), so that water will run off the surface to a drainage system such as a 

street gutter or roadside ditch. Providing adequate pavement cross slopes minimize the 

occurrence of ponding and improves driver safety by reducing the potential for 

hydroplaning (5). During higher intensity rainfall events, provision of minimum positive 

drainage through roadway cross slopes becomes an even more critical factor in protecting 

drivers from hydroplaning (4). While it is crucial for roadways to meet minimum pavement 

cross slope design criteria, it is also important that maximum standards are not exceeded 

(6). When cross slopes are too steep, vehicles may drift to an adjacent lane, skid laterally 

when braking, and/or become unstable when crossing over the crown to change lanes (7). 

Therefore, problematic pavement cross slope sections should be identified by 

transportation agencies and corrective maintenance should be performed promptly (8).   
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Problem Statement 

Clemson researchers recently conducted a survey of state highway agencies across 

the U.S. that focused on cross slope evaluation practices.  Of the 18 respondents, 70% 

indicated that they collect some type of cross slope data, however almost none did so on a 

system-wide basis. The majority of respondents indicated using mobile techniques to some 

extent with the most popular method being Mobile Terrestrial LiDAR Scanning (MTLS) 

for collecting cross slope data. Nearly 40% of the respondents reported using traditional 

surveying techniques.  Other techniques include using smart levels or other leveling 

methods. Also, most of the states only performed cross slope verification on Interstate and 

primary routes and only on a very limited basis as a response to crash data or drainage 

issues (7).  The “reactive” rather than “preventive” approach to the collection of cross slope 

data suggests that system-wide cross slope evaluation is desirable but not a priority based 

on available resources. 

Conventional roadway cross-section survey methods are time-consuming, labor 

intensive, require surveying crew to work in close proximity to vehicular traffic (2, 5), 

and/or may require short-term lane closures disrupting traffic flow that results in 

congestion (7). Cross section data collected using conventional survey methods are done 

and specified intervals and are not continuous.   

Knowing the limits and extents of existing cross slope problems prior to obtaining 

contractor construction bids for a project is crucial for accurate material quantity estimates, 

and cost-effective repaving projects, with minimal change orders (7). Currently, the 

location of problematic cross slope sections are identified for improvement using a number 
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of approaches including identifying roadway locations where ponding is apparent, cross 

slope verification (particularly after rehabilitation projects) using conventional surveying 

techniques, crash analysis, and tort litigation.  In cases of bodily injury and/or fatalities 

related to hydroplaning crashes, when site investigations determined prevailing pavement 

cross slope did not meet minimum design criteria, South Carolina Department of 

Transportation (SCDOT) has been found at-fault in tort claims brought against the 

department (7).   

This dissertation research provides a basis for evaluating the effectiveness of Light 

Detection and Ranging (LiDAR) technology and equipment for addressing maintenance, 

safety and reconstruction issues in attaining proper pavement cross slope data for use in 

network-based roadway improvement purposes and programs. MTLS may provide an 

efficient, high resolution, and reliable cross slope measurement method along the roadway 

at highway speed (8). Similarly, the Airborne LiDAR Scanning (ALS) platform is capable 

to measuring and monitoring large areas (8) and provide continuous and comprehensive 

3D point cloud which is use for various applications (9).  Both MTLS and ALS are 

evaluated in this research.  

Research Objectives 

The SCDOT’s emphasis on ensuring that adequate pavement cross slopes are 

maintained through verification is predicated upon two principles: 1) Deployment of a safe 

and efficient method for collecting cross slope data, and 2) Adoption occurs system-wide 

so an accurate and comprehensive network-based cross slope database can be maintained. 

Therefore, the primary goal for conducting this research is to investigate if MTLS and ALS 
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can be efficient, effective, and safe methods for collecting a system-wide, reliable, 

continuous, and comprehensive cross slope dataset which can serve multiple users in 

SCDOT and other state highway agencies across the country. The objectives towards 

achieving the research goal are as follows: 

 Develop an efficient work flow for extracting cross slope data from MTLS and ALS

point clouds

 Evaluating the accuracy of MTLS and ALS technologies for system-wide verification

of highway cross slope.

 Include both mapping grade and survey grade MTLS in the accuracy evaluation.

 Defined the critical water depth at which hydroplaning occurs with regard to the range

of vehicle speed, tire tread depth, tire pressure, pavement surface texture, pavement

width, and highway cross slope.

In order to achieve the research objectives, LiDAR data was collected on four 

different roadway test sections, including representative urban and rural restricted roadway 

locations, and rural parkways in Anderson, SC, Easley, SC, and Spartanburg, SC. The 

collected data from a single ALS vendor and from six MTLS vendors were used in 

conducting this evaluation in terms of the accuracy of the collected cross slope data, as 

well as procedures to calibrate, collect, and process the data.  Conventional surveying 

measurement on 23 selected test stations were used for comparison purposes. 

Organization of Dissertation 

This dissertation document consists of three research papers on highway cross slope 

measurement using LiDAR techniques, and each paper accounts for one chapter of the 
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dissertation. The data acquisition sections of the three papers reflect the fact that the same 

point clouds were used. Consequently, there are tasks which are common through all three 

papers. The objectives and tasks performed towards achieving the research goal were 

divided among the three papers and are as follows: 

 Task A: Knowledge acquisition

a. Survey of various state DOTs to Identify current practices related to cross

slope data collection

 Task B: Select rodeo section(s)

a. Non-interstate 4-lane divided section

b. Lower speed limit than interstates and low vehicle volumes road

c. The average cross slope should be 2.08%. With some variability

d. Relatively new pavement - It can be used as a test section over the time

e. Super elevated horizontal curve section

 Task C: Establish validation sites using conventional survey methods

a. Requested as-built plans and survey data for rodeo sites

b. Conducted field surveying under the supervision of an SC Registered Land

Surveyor

c. Primary Survey Control (PSC) points and secoundary control poins were

collected and marked throughout the roadway

d. All control points met SCDOT minimum accuracy.

i. Horizontal coordinate system: NAD 83 South Carolina State Plane

ii. Elevations are on NAVD 88 and tied to at least one National

Geodetic benchmark.  
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 Task D: Developed data collection plan including the location of cross section

station(s)

 Task E: Conducted vendor rodeo to validate MTLS and ALS

a. Vendors were asked to provide a point cloud with attributes (e.g., elevation,

intensity, etc.)

PAPER I: HIGHWAY CROSS SLOPE MEASUREMENT USING MOBILE LIDAR 

OBJECTIVES 

 Develop an efficient work flow for extracting cross slope data from MTLS point clouds

 Evaluating the accuracy of MTLS technologies for system-wide verification of

highway cross slope

 Include both mapping grade and survey grade MTLS in the accuracy evaluation.

TASKS 

 Task F: Extract the cross slopes from both adjusted and unadjusted point clouds on

selected stations

 Task G: Compare the MTLS derived cross slopes and the field surveying measurements

 Task H: Perform statistical analysis to investigate whether the method is accurate and

meets the acceptable error specification.
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PAPER II: EVALUATION OF AIRBORNE AND MOBILE LIDAR ACCURACY IN 

HIGHWAY CROSS SLOPE MEASUREMENT 

OBJECTIVES 

 Develop an efficient work flow for extracting cross slope data from MTLS and ALS

point clouds

 Evaluating the accuracy of MTLS and ALS technologies for system-wide verification

of highway cross slope.

TASKS 

 Task F: Extract the cross slopes from both ALS and MTLS point clouds on selected

stations using two methods 1) Acquisition the elevation of the two ends of the travel

lane along the transverse reference line. 2) The elevation data were extracted along the

reference line every 0.2 feet (2.4 inches). Then, a regression line for the association

between the extracted elevations and the transverse offset of the center line is fitted to

extracted points.

 Task G: Compare the LiDAR-derived cross slopes and the field surveying

measurements.

 Task H: Perform statistical analysis to investigate whether the deviation between field

measurements and LiDAR-derived cross slopes is acceptable.

 Task I: Perform statistical analysis to compare the accuracy of MTLS and ALS.

 Task J: Perform statistical analysis to compare the accuracy of MTLS on a different

traveling lane (e.g., passing and non-passing travel lanes).
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PAPER III: THE HYDROPLANING POTENTIAL WITH REGARD TO HIGHWAY 

CROSS SLOPE 

OBJECTIVE 

 Defined the critical water depth at which hydroplaning occurs with regard to the range

of vehicle speed, tire tread depth, tire pressure, pavement surface texture, pavement

width, and highway cross slope.

TASKS 

 Task F: Estimate the water depth on the pavement surface regarding the rain intensity,

cross slope, longitude grade, pavement width, and pavement surface texture depth.

 Task G: Estimate the critical water depth, and the potential of hydroplaning with regard

to the range of vehicle speed, tire tread depth, tire pressure, and pavement cross slope.

The next three chapters (Chapter Two, Chapter Three and Chapter Four) contain 

the three research papers introduced in this chapter, followed by the dissertation conclusion 

in Chapter Five and then appendices.  



9 

REFERENCES 

1. Baffour, R. A. Collecting Roadway Cross slope Data Using Multi -Anenna-Single

Receiver GPS Configuration. ASCE Proceeding of the International Conference on

Applications of Advanced Technology in Transpotation Engineering , 2002.

2. Souleyrette, R., S. Hallmark, S. Pattnaik, M. O'brien, and D. Veneziano. Grade and

Cross Slope Estimation from LIDAR-based Surface Models. Midwest

Transportation Consortium, Washington D.C, MTC Project 2001-02, 2003.

3. Gallaway, B. M., D. L. Ivey, G. Hayes, W. B. Ledbetter, R. M. Olsen, D. L. Woods,

and R. F. Schiller.Jr. Pavement and Geometric Design Criteria for Minimizing

Hydroplaning. Texas Transportation Institute (TTI), Federal Highway

Administration (FHWA), Washington D.C, Final Report FHWA-RD-79- 31 Final

Rpt, 1979.

4. Guven, O., and J. Melville. Pavement Cross Slope Design. Auburn University

Highway Research Center, Auburn, AL, Technical Review 1999.

5. Chang, J., D. Findley, C. Cunningham, and M. Tsai. Considerations for Effective

Lidar Deployment by Transportation Agencies. Transportation Research Record:

Journal of the Transportation Research Board, Vol. 2440, no. 1, January 2014, pp.

1-8. DOI: 10.3141/2440-01

6. Shams, A., W. A. Sarasua, A. Famili, W. J. Davis, J. H. Ogle, L. Cassule, and A.

Mammadrahimli. Highway Cross-Slope Measurement Using Mobile LiDAR.

Transportation Research Record: Journal of the transportation Research Board,

April 2018. DOI: 10.1177/0361198118756371



10 

7. Tsai, Y., C. Ai, Z. Wang, and E. Pitts. Mobile Cross-slope Measurement Method

Using LIDAR Technology. Transportation Research Record Journal of the

transportation Research Board, Vol. 2367, no. 1, January 2013, pp. 53-59. DOI:

10.3141/2367-06

8. Wulder, M. A., J. C. White, R. F. Nelson, E. Næsset, H. Ole Ørka, N. C. Coops, T.

Hilker, C. W. Bater, and T. Gobakken. Lidar sampling for large-area forest

characterization: A review., Vol. 121, June 2012, pp. 196-209.

9. Olsen, M. J., J. D. Raugust, and V. Roe. Use of Advanced Geospatial Data, Tools,

Technologies, and Information in Department of Transportation Projects.

Transportation Research Board, Washington, D.C, United States of America, 2013.



11 

CHAPTER TWO 

PAPER I: HIGHWAY CROSS SLOPE MEASUREMENT USING MOBILE LIDAR 

This chapter has been published as the following journal article: 

Shams, A., W. A. Sarasua, A. Famili, W. J. Davis, J. H. Ogle, L. Cassule, and A. 

Mammadrahimli. Highway Cross-Slope Measurement Using Mobile LiDAR. 

Transportation Research Record Journal of the transportation Research Board. DOI: 

10.1177/0361198118756371 

Abstract 

Ensuring adequate pavement cross slope on highways can improve driver safety by 

reducing the potential for ponding to occur or vehicles to hydroplane. Mobile Terrestrial 

LiDAR Scanning (MTLS) systems provide a rapid, continuous and cost-effective means 

of collecting accurate 3D coordinate data along a corridor in the form of a point cloud. This 

study provides an evaluation of MTLS systems in terms of the accuracy and precision of 

collected cross slope data and documentation of procedures needed to calibrate, collect, 

and process this data. Mobile Light Detection and Ranging (LiDAR) data were collected 

by five different vendors on three roadway sections. The results indicate the difference 

between ground control adjusted and unadjusted LiDAR derived cross slopes and field 

surveying measurements was less than 0.19% at a 95 % confidence level. The unadjusted 

LiDAR data did incorporate corrections from an integrated inertial measurement unit and 

high accuracy real-time kinematic GPS however was not post-processed adjusted with 

ground control points.  This level of accuracy meets suggested cross slope accuracies for 
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mobile measurements (±0.2 %) and demonstrates that MTLS  is a reliable method for cross 

slope verification.  Performing cross slope verification can ensure existing pavement meets 

minimum cross slope requirements, and conversely is useful in identifying roadway 

sections that do not meet minimum standards. The latter is much more desirable than 

through crash reconnaissance where hydroplaning was evident. Adoption of MTLS would 

enable South Carolina Department of Transportation (SCDOT) to address cross slope 

issues through efficient and accurate data collection methods.   

Keywords: Mobile Terrestrial LiDAR Scanning (MTLS), Cross slope, Semi-Automatic 

data extraction, Point cloud 
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Introduction 

Highway pavement cross slope is a crucially important cross-sectional design 

element as this provides the means to drain water from the roadway surface laterally and 

helps to minimize the occurrence of ponding. Providing adequate pavement cross slopes 

ensures positive drainage on highways and improves driver safety by reducing potential 

for hydroplaning.  

SCDOT minimum cross slope design criteria apply to tangent alignments. On high-

speed roadways, the normal crown cross slope is ¼” per foot (2.08%) on tangent sections 

with some exceptions depending on the number of lanes (1).  Accommodating other 

horizontal design features (e.g. super elevation for circular and spiral curves) requires 

transitioning from a normal cross slope. 

While it is important for roadways to meet minimum pavement cross slope design 

criteria, it is also important that maximum criteria are not exceeded. Cross slopes that are 

too steep can cause vehicles to drift, skid laterally when braking, and become unstable 

when crossing over the normal crown to change lanes. Table 2-1 shows potential adverse 

impacts to safety and operations if minimum and maximum design criteria are not met.  
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Table 2-1 Potential Adverse Safety Impact of Deviation from Design Criteria 

Safety &Operational Issues Freeway Expressway Rural 2-Lane Urban Arterial 

Run-off-road crashes × × × 

Slick pavement × × × × 

Water ponding on the pavement 

surface 
× × × × 

Water spreading onto the traveled 

lanes 
× 

Loss of control when crossing over 

a high cross-slope break 
× × × 

Freeway: high-speed, multi-lane divided highway with interchange access only (rural or urban). 

Expressway: high-speed, multi-lane divided arterial with interchange access only (rural or urban). 

Rural 2-Lane: high-speed, undivided rural highway (arterial, collector, or local). 

Urban Arterial: urban arterial with speeds 45 mph or less 

One of the primary objectives for conducting this research was to investigate 

efficient methods for identifying highway sections that do not meet minimum criteria for 

pavement cross slope.  Currently the location of problematic cross slope sections are 

identified for improvement using a number of approaches including roadway ponding, 

cross slope verification (particularly after rehabilitation projects) using conventional 

surveying techniques, crash analysis, and tort litigation.  In cases of bodily injury and/or 

fatalities related to hydroplaning crashes, when site investigations determined prevailing 

pavement cross slope did not meet minimum design criteria, SCDOT has been found at-

fault in tort claims brought against the Department.  Application of conventional survey 

methods to determine locations of pavement cross slope problems system wide, for all 

practical purposes, is cost prohibitive.  Mobile Terrestrial LiDAR Scanning (MTLS) may 
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provide an efficient and practical solution to addressing this difficult challenge.  Accurate 

pavement cross slope data is crucial for implementing successful and cost-effective 

repaving and rehabilitation programs and projects that can provide targeted corrective 

action to addressing cross slope problems.  

The researchers recently conducted a survey of state highway agencies across the 

U.S. (Sarasua et al., 2017), which determined that while 70% collect some type of cross 

slope data, only 23% of respondents did so to determine cross slope compliance and 

relatively none did so system-wide.  Most of the states only performed cross slope 

verification on Interstate and primary routes.  The fundamental reason for adopting this 

limited approach is states lack necessary resources to conduct surveying work needed to 

inventory and verify pavement cross slopes.  Furthermore, conventional surveying for cross 

slope verification can only be conducted at sample locations and may not be representative 

of segments between the samples.  SCDOT’s emphasis on ensuring that adequate pavement 

cross slopes are maintained through verification is predicated upon two principles: 1) 

deployment of a safe and efficient method for collecting cross slope data; and 2) adoption 

occurs system wide so an accurate and comprehensive network-based cross slope database 

can be maintained.  

A variety of techniques can be used for acquiring roadway cross slope data 

including contractor as-built plans if available, photogrammetry using high-resolution 

stereo images, conventional surveying, attitudinal GPS, remote sensing data such as USGS 

Digital Elevation Models (DEMs), and measuring with an inertial device such as a digital 

gyroscope or an accelerometer (2) (4).  Factors such as accuracy, safety, cost, and time of 
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performance play important roles in selection of one method over another (4).  

Conventional surveying methods provide accurate results at sampled locations; however, 

this approach is very time-consuming (especially for short intervals) and poses safety risks 

to personnel due to close proximity to traffic (2). Stereo photogrammetry is an accurate 

method for collecting topographic data but processing time and the need for extensive 

ground control to produce reasonable cross slope accuracy, plus collecting high-resolution 

aerial imagery, is an expensive option (2). A vehicle mounted inertial device can collect 

data at highway speeds however can only obtain measurements for one travel lane at a 

time. Multiple lanes would require several passes to determine cross slopes for the entire 

roadway. MTLS is capable of collecting an entire cross section , with an exception at steep 

side slopes, at highway speeds in a single pass (5). 

MTLS strengths include continuous and comprehensive data collection, high-

resolution capability, reduced number of field visits, elimination of roadside work hazards 

for survey crews, and multiple end users and opportunities to share for various applications 

(6).  MTLS weaknesses include: expensive up-front cost, line of sight requirements, 

adjustment for vehicles scanned within the traffic stream, and need to automate 

classification of large numbers of points (6).  Further, very accurate ground control points 

is needed to adjust and calibrate MTLS data for applications that require a high level of 

accuracy. 

This research evaluates the use of MTLS for collecting accurate cross slope to 

ensure that adequate cross slope and proper drainage exist on highways. The LiDAR data 

was collected on three roadway test sections, including representative urban and rural 
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restricted roadway locations, and rural parkways. MTLS data from five vendors were used 

in conducting this evaluation.  MTLS is evaluated in terms of the accuracy of the collected 

cross slope data, as well as procedures to calibrate, collect, and process the data.  

Conventional surveying methods were also used for comparison purposes.  

Literature Review 

The literature review focused on mobile methods for collecting cross slope data and 

the relative accuracies of the collected data.  Inertial devices as a sole cross slope data 

collection device is not covered because, while they can be extremely accurate, they can 

only collect a single lane of data with one pass.  The use of MTLS to collect cross slope 

data requires an integrated inertial measurement unit (IMU) for location adjustments and 

to compensate for the roll of the vehicle. 

Baffour (2002) discussed the need of the roadway geometry in many transportation 

projects. Although some geometry information may be extracted from existing road plans, 

but some of the current characteristics may not match with the original design due to 

undocumented changes. The paper discussed the use of multi antenna configurations that 

are synchronized with a single Global positioning System (GPS) receiver to determine the 

three-dimensional orientation of the moving vehicle. After designing the antenna platform 

all of the data collected was compared with standard data collected by conventional 

surveying. The cross slopes were collected at 50’ intervals, and the accuracy was at 0.01%. 

Therefore, the results showed attitudinal GPS has exceptional promise as a tool for 

collecting this data (4).  A drawback of attitudinal GPS is that, similar to an inertial device, 
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only one lane can be collected and thus, multiple passes would be required for multi-lane 

roads. 

Sourleyrette et al. (2003) attempted to collect grade and cross slope from LiDAR 

data on tangent highway sections.  Measurements were compared against grade and cross 

slope collected using an automatic level for 10 test sections along Iowa Highway 1. The 

physical boundaries of shoulders and lanes were determined by visual inspection from (a) 

6-in resolution orthophotos (b) 12-in ortho photo by Iowa DOT and (c) triangular irregular

network (TIN) from LiDAR. Multi linear regression analysis was conducted to fit the plane 

to the LiDAR data corresponding to each analysis section. Vendor accuracy was 0.98-ft 

RMSE and vertical accuracy of 0.49 ft. While the grade was successfully calculated within 

0.5% for most sections, and 0.87% for all sections, the accuracy of the cross-slope data was 

much less accurate.  Cross-slope estimated from LiDAR deviated from field measurements 

by 0.72% to 1.65%.  Thus, results indicated cross-slope could not be practically estimated 

using a LiDAR surface model (2).  

Jaakkola et al. (2008) discussed that laser-based mobile mapping is necessary for 

transportation study due to the large amount of data produced. Data was collected by the 

Finnish Geodetic Institute (FGI) Roamer Mobile Mapping System (MMS). The authors 

classified points belonging to the painted marking on the road, and found the curb stones 

from the height of the image. Finally, they modeled the pavement as a TIN. Therefore, they 

processed the raster image, which is more efficient than point cloud. The proposed method 

was able to locate most curbstones, parking spaces, and a zebra crossing with mean 

accuracies of about 80% or better (5). 
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Zhang and Frey (2012) attempted to model road grade using LiDAR to estimate 

vehicle emissions. It was difficult to measure road grade directly from portable emissions 

monitoring systems (PEMS). The available GPS data has not been proven to be reliable for 

road grade estimation. Therefore, the LiDAR based method was used to model the road 

grade on interstate highways I-40 and I-540, as well as major arterials. The LiDAR data 

was used to fit a plane using regression techniques. The precision of LiDAR data was 

quantified by root mean square error (RMSE). The RSME of LiDAR data used in this work 

was reported to range from 7.7 to 25 cm, which was much smaller than changes in elevation 

that were significant with respect to emissions. Finally LiDAR data was shown to be 

reliable and accurate for road grade estimation for vehicle emission modeling (7).  

Tsai et al. (2013) proposed a mobile cross slope measurement method, which used 

emerging mobile LiDAR technology, a high-resolution video camera, and an accurate 

positioning system composed of a GPS, an inertial measurement unit, and a distance 

measurement instrument. Accuracy and repeatability of the proposed method were 

critically validated through testing in a controlled environment. Results showed the 

proposed method achieved desirable accuracy with a maximum difference of 0.28% cross 

slope (0.17°) and an average difference of less than 0.13% cross slope (0.08°) from the 

digital auto level measurement. Repeatability results showed standard deviations within 

0.05% (0.03°) at 15 benchmarked locations in three runs. However, the acceptable 

accuracy is typically 0.2% (or 0.1°) during construction quality control. The case study on 

I-285 demonstrated the proposed method could efficiently conduct the network-level

analysis. The GIS-based cross slope measurement map of the 3-mile section of studied 
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roadway can be derived in fewer than two person hours with use of the collected raw 

LiDAR data (8). 

Holgado-Barco et.al. (2014) attempted to extract road geometric parameters 

through the automatic processing of mobile LiDAR system point clouds. Their 

methodology was carried out in several different steps: 1) data capture, 2) segmentation to 

simplify the point cloud to extract the road platform, 3) applying principal component 

analysis (PCA)-based on orthogonal regression to fit the best plane on points, and 4) 

extracting vertical and cross section geometric parameter and analysis. The study’s method 

proposed an alternative automated development of the as-built plan. The experiment results 

validate the method within relative accuracies under 3.5% (9).  

Study Area 

This research evaluated the use of MTLS from five vendors to obtain accurate cross 

slope data.  Three roadway test sections were used in performing the research evaluation 

including: 1) a 4-lane parkway without any curb cuts (driveways) in Anderson, SC 2) a 

section of urban restricted access highway in Spartanburg, SC, and 3) a rural restricted 

access highway just west of Easley, SC.  

Study Section 1:  East West Parkway (Using Adjusted Point Cloud) 

The first study section is a 3-mile corridor along East West Parkway (EW Pkwy) 

in Anderson, SC shown in Figure 2-1. The study section originates at US-76 (Clemson 

Boulevard) and terminates at the SC-81 (E Greenville St). EW Pkwy is a limited access 4-

lane 2-way mostly divided highway. It has a variety of geometric design elements including 



21 

15-vertical curves, 7-horizontal curves (all super elevated), one-bridge, two-intersections,

traversable and non-traversable medians,  two-lanes per direction with an additional 

turning lane at intersections, and sections with adjacent bike lane and separate bike path.  

MTLS combines precise ranging, with high accuracy GPS and an integrated IMU 

to obtain a very dense point cloud.  The resulting point cloud can be useful for many 

applications such as asset data collection (lane widths, presence of median, etc.) or 

navigation but may not be accurate enough for surveying or some engineering applications 

such as precise quantity take-offs.  To improve accuracy for this research, a ground control 

survey was conducted that identified primary and secondary geodetic control point (GCP) 

locations throughout the corridor.  At least two primary GCPs were used by venders as 

base station locations for GPS differential correction and all of the GCPs (both primary 

and secondary) were used for post-processing adjustment. Figure 2-1 shows the GCP 

locations along the study corridor.  

Figure 0-1 GCPs and check points along the 3-mile study area section 1 
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The corridor was also surveyed to locate 100-ft. stations along white edge lines.  

These locations were marked with PK surveying nails.  Eight of these locations were 

selected along the corridor as cross slope test sections. The test sections were selected to 

ensure diverse roadway cross slope characteristics including differing lane geometry, 

normal crown, and super elevated sections.  PK surveying nails were also added to the 

yellow centerline markings.  Reflective pavement marking tape was used to ensure that PK 

nail locations could be identified in the LiDAR data using the intensity attribute.   

Study Section 2:  Intestate 85 Business Loop (Using Adjusted Point Cloud) 

The second study section is a 3.4-mile corridor along Interstate 85 business loop (I-

85 BL) in Spartanburg, SC shown in Figure 2-2. The study section originates at I-585 and 

terminates at I-85. I-85 BL is a restricted access 4-lane 2-way divided freeway. Researchers 

measured cross slopes at selected locations prior to the test. These locations correspond with 

panel points P78, P91, P98, P103, P126 and P127 (note that P103, P126 and P127 are on 

ramps).  All panel points are marked with a painted chevron, yellow reflective pavement 

marking tape, and a PK nail. Detailed surveying of horizontal/vertical elements was not 

conducted within the travel way of this study section, however, primary and secondary GCPs 

were established along paved shoulders.  The GCPs were used for GPS differential correction 

and for post-process adjustment. 

Figure 2-2 GCPs and panel point along the study area section 2 
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Study Section 3:  US-123 (using unadjusted point cloud) 

The third study section is a 1-mile corridor along US-123 just west of Easley, SC. 

This section of US-123 is a restricted access 4-lane 2-way divided highway. The survey 

crew measured cross slopes at selected locations prior to the test. These locations correspond 

with different traffic signs located at six pre-designated stations along the corridor. As with 

previous study sections the LiDAR measurements were combined with high accuracy GPS 

and IMU measurements to create a point cloud.  However, on US-123 the point cloud was 

not adjusted through post-processing with GCPs.  It is not uncommon to use unadjusted 

mobile LiDAR point clouds for applications that do not require the highest level of 

accuracy such as statewide asset management or autonomous vehicle applications. 

 Data Collection 

Field Surveying Using Auto Level 

Conventional surveying (auto leveling combined with taping and total station 

measurements) was used to develop ground truth cross slopes for all 3 test sections.  Each 

of the cross section stations were leveled using two different instrument setups to ensure 

accuracy and adjust for random error.  The cross slope along each section was computed 

for each lane from the elevation difference between lane lines, along with horizontal 

distances in between, which was measured by tape or total station.  

LiDAR Data Collection 

LiDAR data for sections 1 and 2 were collected by 2 vendors on June 30th, 2016 

and 2 other vendors on August 30th, 2016. Section 3 data was collected in 2015.  The section 
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1 and 2 vendors and their stated equipment specifications are provided in table 2-2.  On 

section 3, the vendor’s LiDAR system was a Reigl VMX 450. Vendors were allowed to 

calibrate their systems both before and after data collection runs.  A primary benefit of a 

MTLS is that point cloud data can be collected for multiple travel lanes with a single pass. 

For this study, vendors were asked to collect data by direction by driving in the right lane.  

Only a single pass was allowed for each direction.  Vendors were asked to follow a lead 

vehicle that drove at the posted speed limit.  For section 1, traffic control was provided by 

two trailing SCDOT vehicles driving side by side so that no cars could pass the vendor data 

collection vehicles; however, for practical purposes, there was no traffic control for the 

opposing travel direction.  There was no traffic control for section 2 or section 3.  

Table 2-2 Vendor Data Collection Specifications for Test Sections 1 and 2 

Vendor A Vendor B Vendor C Vendor D 

Brand Riegl Teledyne Optech Teledyne Optech Leica 

Model VMX450 M1 SG1 9012 

Single/Dual Laser Dual Dual Dual Single 

Measurement rate 1100 kHz 500 kHz / sensor 600kHz (each Laser) 1000 kHz 

Extracting Cross Slope from Point Cloud 

There were two potential methods to define the cross section line at each test section 

as follows: 1)  in cases where the location of the PK nails on two ends of the test section 

were distinctly identified, a reference line was drawn between the two points, else 2)  the 

LiDAR image of the pavement marking tape pointing to the PK nails was used to create 
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the reference line.  Using the reference line from either method, a 4-inch buffer of points 

was clipped in an automated fashion using ArcGIS.  Two separate mesh grid surfaces were 

fitted to the LiDAR derived points using nearest neighbor interpolation within the buffer 

area.  One mesh grid included continuous values of easting, northing, and elevation, fitted 

to the LiDAR points (Figure 2-3). The second mesh grid included the easting, northing and 

Intensity of the points. 

Figure 0-3 Mesh grid fitted to points within buffer area 

Using the reference line, a continuous cross section is extracted including elevation 

and intensity.  Because the yellow and white pavement markings have higher intensity 

values, they are easily identifiable (Figure 2-4). The cross slope is calculated from the rise 
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and run between the lane lines.  These LiDAR derived cross slopes are directly comparable 

to the field survey cross slopes. 

Figure 2-4 Pavement marking extraction and corresponding elevations 
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Comparison of LiDAR and Conventional Survey Data 

The use of LiDAR to extract pavement cross slope dimensions on three study 

sections was compared against cross slope measurements collected using conventional 

surveying for eight specific roadway stations along EW Pkwy Anderson, SC, six-stations 

on I-85 BL and at six sign locations on US-123.  The MTLS data collected by the vendors 

was provided as dense point clouds and evaluated using a number of comparative methods.  

Reference lines within each roadway study location were created between two distinct 

surveyed points established with PK nails and reflective pavement marking tape.  Elevation 

and intensity of points along the reference lines were extracted from the mesh grid fitted to 

LiDAR point clouds within 4-inches thickness at across each station of interest.  Due to the 

difference of reflectivity of the materials, which resulted in different intensities in the point 

cloud, the edge of the pavement, lane lines and centerline were readily extracted from 

LiDAR data by matching intensity and elevation results. After which, the pavement cross 

slope for each travel lane was calculated by dividing the difference in elevations by the 

distance between two pavement markings. Additionally, pavement cross slopes were 

directly measured in the field for each test section using automatic leveling.  Field 

measurements were used as reference data for comparison against vendor collected LiDAR 

derived data.   

A cross slope comparison for different test sections at three different study areas 

are shown in tables 2-3, 2-4, and 2-5 respectively.  The comparison is based on each 

travelling lane and the vendor names have been removed and are shown in random order.  
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Table 2-3 Cross Slope Comparison between Surveyed Data and LiDAR Derived Cross Slope - Section 1 

Station Lane 

Lane width 

(HD) 

Surveyed 

Data 

Difference from surveyed data 

Vendor A Vendor B Vendor C Vendor D 

1
1

0
+

0
0
 

EB Outer 12.02 1.75% 0.25% 0.30% 0.34% 0.11% 

EB Inner 12.18 1.97% 0.00% 0.22% 0.71% 0.11% 

WB Outer 12.04 1.83% 0.07% 0.10% 0.24% 0.22% 

WB Inner 11.74 2.22% 0.14% 0.00% 0.55% 0.22% 

1
2

4
+

0
0
 

EB Outer 11.72 4.61% 0.23% 0.18% 0.07% 0.08% 

EB Inner 12.93 5.14% 0.30% 0.55% 0.40% 0.54% 

Turning 14.41 4.82% * 0.42% 0.66% 0.80% 

WB Outer 11.7 4.79% 0.20% 0.90% 0.24% 0.35% 

WB Inner 12.04 4.32% 0.02% 0.47% 0.04% 0.02% 

1
2

8
+

0
0
 

EB Outer 11.72 2.39% 0.24% 0.02% 0.10% 0.09% 

EB Inner 12.19 2.26% 0.10% 0.11% 0.15% 0.37% 

Turning 12 1.58% 0.26% 0.19% 0.23% 0.37% 

WB Outer 12 0.46% 0.24% 0.16% 0.02% 0.00% 

WB Inner 12 0.04% 0.03% 0.20% 0.05% 0.00% 

1
4

9
+

0
0
 

EB Outer 11.6 0.86% 0.26% 0.01% 0.03% 0.56% 

EB Inner 11.64 0.69% * 0.10% 0.01% 0.21% 

WB Outer 11.77 2.63% 0.22% 0.15% 0.12% 0.19% 

WB Inner 11.96 2.80% 0.05% 0.39% 0.12% 0.19% 

2
0

3
+

0
0
 

EB Outer 11.94 3.81% 0.09% 0.22% 0.02% 0.00% 

EB Inner 11.83 4.65% 0.08% 0.02% 0.04% 0.23% 

WB Outer 11.57 3.59% 0.07% 0.50% 0.09% 0.07% 

WB Inner 11.86 4.60% 0.06% 0.46% 0.00% 0.19% 
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2
0

8
+

0
0
 

EB Outer 11.62 2.32% 0.28% 0.08% 0.07% 0.05% 

EB Inner 11.88 2.48% 0.17% 0.06% 0.06% 0.02% 

Turning 11.19 2.01% 0.30% 0.01% 0.06% 0.02% 

WB Outer 11.9 1.09% 0.06% 0.34% 0.15% 0.12% 

WB Inner 11.42 0.00% 0.24% 0.12% 0.00% 0.00% 

2
2

7
+

0
0
 

EB Outer 11.73 2.39% 0.00% 0.29% 0.03% 0.19% 

EB Inner 12.13 2.14% 0.03% 0.37% 0.00% 0.19% 

WB Outer 11.81 1.91% 0.98% * * 0.46% 

WB Inner 11.95 1.88% 0.04% 0.32% 0.01% 0.05% 

2
3

2
+

0
0
 

EB Outer 11.7 2.48% 0.00% 0.04% 0.07% 0.10% 

EB Inner 11.75 2.77% 0.12% 0.50% 0.03% 0.01% 

WB Outer 11.48 2.79% 0.02% 0.13% 0.05% 0.05% 

WB Inner 11.92 1.97% 0.02% 0.57% 0.02% 0.00% 

*data were missing in point cloud
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Table 2-4 Cross Slope Comparison between Surveyed Data and LiDAR Derived Cross Slope – Section 2 

Station Lane 

Lane width 

(HD) 

Surveyed 

Data 

Difference from surveyed data 

Vendor A Vendor B Vendor C 

P-78 

WB Outer Lane 12.04 3.26% * 0.12% 0.08% 

WB Inner Lane 11.62 1.40% * 0.18% 0.02% 

EB Inner Lane 11.87 1.31% 0.42% 0.15% 0.31% 

EB Outer Lane 12.09 1.45% 0.24% 0.11% 0.06% 

P-91 

WB Outer Lane 12.01 3.41% 0.12% 0.19% 0.07% 

WB Inner Lane 11.82 1.27% 0.07% 0.23% 0.12% 

EB Inner Lane 11.72 1.71% 0.03% 0.19% 0.03% 

EB Outer Lane 12.07 1.91% 0.02% 0.16% 0.13% 

P-98 

WB Outer Lane 12.04 1.96% 0.00% 0.00% 0.04% 

WB Inner Lane 11.62 1.03% 0.42% 0.25% 0.34% 

EB Inner Lane 11.87 1.60% 0.01% 0.19% 0.01% 

EB Outer Lane 12.07 2.50% 0.03% 0.12% 0.05% 

P-103 

WB Outer Lane 11.77 6.69% 0.63% 0.73% 0.70% 

WB Inner Lane 11.51 7.54% 0.54% 0.56% 0.57% 

P-126 

WB Outer Lane 11.97 3.97% * 0.14% 0.12% 

WB Inner Lane 12.09 4.47% * 0.33% 0.24% 

P-127 

WB Outer Lane 11.43 1.40% 0.48% * 0.04%

WB Inner Lane 12.24 1.12% 0.67% 0.80% 0.12% 

*data were missing in point cloud
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Table 0-5 Cross Slope Comparison between Surveyed Data and LiDAR Derived Cross Slope – Section 3 

Station Lane Lane width Surveyed Data Vendor E Difference from surveyed data 

34+31 

EB outer lane 11.98 1.50% 1.30% 0.20% 

EB Inner lane 12.00 1.92% 2.08% 0.16% 

38+52 

EB outer lane 12.00 1.75% 1.91% 0.16% 

EB Inner lane 11.96 0.92% 1.08% 0.16% 

44+20 

EB outer lane 11.98 2.00% 2.17% 0.17% 

EB Inner lane 12.00 1.16% 1.33% 0.17% 

44+68 

EB outer lane 12.00 2.16% 2.25% 0.09% 

EB Inner lane 11.95 1.25% 1.42% 0.17% 

45+92 

EB outer lane 12.00 1.92% 2.00% 0.08% 

EB Inner lane 11.97 0.92% 1.16% 0.24% 

57+39 

EB outer lane 11.96 8.08% 8.08% 0.00% 

EB Inner lane 11.97 6.58% 6.41% 0.17% 

Evaluation of Results 

In evaluating cross sectional data at reference station locations, cross slope 

estimates from adjusted LiDAR differed from field surveyed measurements ranging from 

0% to 0.98% with an average of 0.19% for all vendors, as shown in table 2-6.  Similarly, 

the comparison between unadjusted LiDAR data and field surveying varies from 0% to 

0.24%.  With regard to SHRP2 guide specification a slope tolerance value of ± 0.2% of the 

design value would be acceptable for final measurement after project completion (10). The 

LiDAR derived point clouds on section 1 and 2 were adjusted using IMU measurements and 

through post-processing with ground control points, however, the section 3 point cloud was 
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adjusted only with the integrated IMU data. The one sided t-test for both adjusted and 

unadjusted LiDAR indicates at a 95 % confidence level the difference of the LiDAR 

derived slopes and field surveying was less than 0.19% (table 2-6). Cross slope calculations 

are based on relative elevation of points along reference lines.  Therefore, study results 

indicate that regardless of whether data is adjusted or unadjusted through post-processing 

with ground control points, cross slopes can accurately be estimated, within acceptable 

tolerance, using LiDAR surface model data.   

Table 2-6  Summary of Cross slope Comparison 

Section 1, East West Parkway 

EB-Outer Lane EB-Inner Lane Turning Lane WB-Inner Lane WB-Outer Lane 

Min 0% 0% 0.01% 0% 0% 

Max 0.56% 0.71% 0.80% 0.57% 0.98% 

Mean 0.14% 0.19% 0.30% 0.14% 0.22% 

Median 0.09% 0.11% 0.26% 0.05% 0.15% 

One side t-

test 

Margin of 

error 
n p-value Significant 

0.18% 136 <0.05 Yes 

Section 2, I-85 Business Loop 

EB-Outer Lane EB-Inner Lane WB-Inner Lane WB-Outer Lane 

Min 0.02% 0.01% 0.02% 0.00% 

Max 0.24% 0.42% 0.80% 0.73% 

Mean 0.1% 0.15% 0.34% 0.23% 

Median 0.11% 0.15% 0.29% 0.12% 

One side t-

test 

Margin of 

error 
n p-value Significant 

0.19% 49 <0.05 Yes 

Section 3, US -123 

EB-Outer Lane EB-Inner Lane 

Min 0.16% 0.00% 

Max 0.24% 0.20% 

Mean 0.18% 0.12% 

Median 0.17% 0.13% 

One side t-test 
Margin of error n p-value Significant 

0.18% 12 <0.05 Yes 
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Cross Slope Sensitivity Analysis 

The typical range for cross slopes along urban arterials is 1.5 to 3 percent (11); the 

lower portion of this range is appropriate where drainage flow is across a single lane and 

higher values are appropriate where flow is across several lanes (11). On high-speed 

roadways, SCDOT recommends that the normal cross slope be 2.08% on tangent sections 

with some exceptions depending on the number of lanes (1). Inherent characteristics of 

paving operations leads to deviations from design cross slope values. As previously 

discussed, these deviations can potentially compromise safety.  Identifying roadway 

sections that do not meet minimum criteria requires accurate cross slope measurements. To 

quantify the safety effects of MTLS cross slope measurement errors the researchers 

conducted a cross slope sensitivity analysis on hydroplaning potential.    

When rain falls on a sloped pavement the path that runoff takes to the pavement 

edge is called the drainage path and the water depth that accumulates on pavement can be 

calculated from the following equations (12). 

𝐿𝑓 = 𝐿𝑥 (( 1 + (
𝑆𝑔

𝑆𝑥
⁄ )2)0.5 (2-1) 

𝑊𝐷0 = 0.00338 𝑇𝑋𝐷0.11𝐿𝑓
0.43𝐼0.59 𝑆𝑥

−0.42 − 𝑇𝑋𝐷 (2-2) 

(2-3) 

Where, 

Sx = cross slope (ft/ft) 

Sg = longitudinal grade (ft/ft) 
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Lx = pavement width (ft) from crown of the pavement 

Lf = length of flow path 

WD = water depth above the top of the surface asperities (in) 

TXD = texture depth (in) 

I = intensity of rainfall in (in/hr) 

On wet pavement, when tires lose contact with the pavement due to water film 

depth, hydroplaning is likely to occur (12). A water depth of 0.15 inches can lead to 

hydroplaning for a passenger vehicle traveling at highway design speeds (12). To 

determine how the difference in cross slope values impact the water depth, the following 

assumption has been made (Sg = 4.5%, TXD = 0.04 (50 percentile) (12)).    Using the above 

equations, the impact of changes in cross slope on water depth accumulation by rainfall 

intensity were calculated and the results are shown in Figure 2-5.  

Driving visibility is reduced when rainfall intensity exceeds 2 in/hr, and becomes 

poor when intensity exceeds 3 in/hr (14). So, it is expected that vehicle operators will 

refrain from driving or drive very slowly during such heavy rainfall periods (12).  The 

SCDOT uses a maximum construction tolerance of +/- 0.348% (1).  For a highway section 

with a typical cross slope of 2.08%, an allowable minimum cross slope would be 1.73%.  

Using the SHRP 2 suggested slope acceptable measurement error ± 0.2% (10) which is 

greater than the average MTLS measurement error of +/- 0.19% found in this research a 

cross slope of 1.93% can potentially be considered acceptable when incorporating a +0.2% 

error.  According to Figure 2-5, a cross slope of 1.93% corresponds to a water depth of  

0.05 inches which has a low potential for hydroplaning for vehicles traveling at highway 
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speeds for rain fall intensities less than 1 in/hr. For longitudinal grade over than 4.5% the 

MTLS needs supplemented sample survey data. This suggests that typical MTLS 

measurement error is acceptable for cross slope verification purposes.   

Figure 0-5 Cross slope sensitivity analysis on pavement water depth 

Conclusion 

The use of MTLS to extract the cross slope was evaluated on 20 stations including 

65 travel lanes. Results of this research proved the feasibility of automated data collection 

vehicles in comparison to human collection methods to collect data efficiently, accurately, 

and reliably. The results of t-test statistical analysis indicated the average deviation 
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between LiDAR data and field surveying measurements was less than the minimum 

acceptable accuracy value (±0.2% specified by SCDOT and SHRP 2) at a 95 % confidence 

level. It is noteworthy that both adjusted and unadjusted LiDAR data met the SCDOT 

standard.   

Common survey data collection methods are time consuming and require data 

collectors to be located on the road, which poses a safety issue. However, new efficient 

methods such as MTLS are available to capture accurate cross-slope, grades, location, and 

a variety of other geometric design characteristics.  These new applications increase 

productivity and minimize road crew exposure and create robust information products that 

serve multiple uses such as flood mapping, hydroplaning, and road inventory.  
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CHAPTER THREE 

PAPER II: EVALUATION OF AIRBORNE AND MOBILE LIDAR ACCURACY IN 

HIGHWAY CROSS SLOPE MEASUREMENT 

This Chapter has been submitted as a paper for presentation at the 98th Transportation 

Research Board Annual Meeting and publication in the Transportation Research Record: 

Journal of the Transportation Research Board 

Abstract 

Adequate water drainage on highways is crucial in minimizing the potential of 

hydroplaning. The highway cross slope has a significant effect of draining water laterally 

from the pavement surface. Currently, field surveying techniques and other manual 

methods are used to collect cross slope data on a limited basis in most states despite the 

fact that field surveying and other manual methods are labor intensive and expose 

personnel to traffic. Further, field surveying cannot provide continuous data; it can only be 

conducted at sample locations. This study provides a technical evaluation of Aerial LiDAR 

Scanning (ALS) and Mobile Terrestrial LiDAR Scanning (MTLS) systems to measure 

cross slopes. The ALS and MTLS data are from a 3.4-mile freeway segment in 

Spartanburg, South Carolina. The cross slopes extracted from the Light Detection and 

Ranging (LiDAR) point clouds were from five selected test sections, using two different 

methods 1) End to End method using elevations only from the pavement edge lines to 
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generate the cross slope; and 2) 0.2 feet interval point extraction along the cross-section 

and using a fitted linear regression line as the basis for the cross slope.  The cross slopes 

were also measured on test sections using conventional surveying methods and compared 

with the LiDAR extracted cross slopes. Results demonstrate that LiDAR methods are 

reliable for collecting accurate pavement cross slopes and should be considered for 

statewide cross slope verification purposes to proactively address cross slope and drainage 

issues.   

Keywords: Airborne LiDAR Scanning (ALS), Mobile Terrestrial LiDAR Scanning 

(MTLS), Cross slope, Point cloud 
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Introduction 

Effective water drainage from the pavement surface is an essential element of 

highway design (1). Water above the pavement surface may interrupt traffic, reduce skid 

resistance, and increase the potential for hydroplaning (1). Water drainage from the 

pavement surface is dependent on pavement longitudinal grade, cross slope, width, surface 

texture, and rainfall intensity (2). Although longitudinal grade may have a significant effect 

on flow path length, it does not appreciably effect pavement water depth (2, 3). However, 

the cross slope has a substantial impact on water film thickness on the pavement surface 

because it helps to drain water laterally and minimize ponding (4). Flat pavements reduce 

driver safety by failing to drain water adequately leading to ponding (5). Conversely, 

steeper cross slopes may cause a vehicle to drift toward the low edge of the travel lane. 

Drifting is a significant concern where rain, snow, and icy conditions are common (5). On 

paved two lane roadways crowned at the center, the acceptable rate of cross slope ranges 

from 1.5 to 2 % (5). When three or more lanes are inclined in the same direction, the rate 

may be increased by approximately 0.5 to 1 %.  However, a cross slope should not typically 

exceed 3 % on tangent alignments unless there are three or more lanes in one direction of 

travel (5). Cross slopes up to 4 % on tangents are acceptable in areas with intense rainfall 

(5).  

The South Carolina Department of Transportation (SCDOT) minimum cross slope 

design criteria apply to tangent alignments. On high-speed roadways, the standard crown 

cross slope is ¼" per foot (2.08%) on tangent sections with some exceptions depending on 
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the number of lanes (6). Accommodating other horizontal design features (e.g., super 

elevation for circular and spiral curves) requires transitioning from a typical cross slope. 

A survey of state highway agencies across the U.S. determined that while 70% 

collect some cross slope data, none did so on a system-wide basis. Most of the states 

surveyed performed cross slope verification only on Interstate and primary routes and only 

at locations with apparent drainage problems or locations that experience a high number of 

weather-related crashes (4, 7).  SCDOT is interested in identifying technology that can be 

used to efficiently collect pavement cross slope data on a wide scale basis.   

Currently, conventional surveying techniques or other manual methods are used to 

collect cross slope data in most states at selected locations. Conventional surveying and 

other manual methods are labor intensive, expose personnel to traffic, and cause delays to 

the traveling public (8). Furthermore, conventional surveying for cross slope verification 

purposes can only be conducted at sample locations and may not be representative of 

segments between the samples (4). SCDOT's emphasis on ensuring that adequate pavement 

cross slopes are maintained through verification is predicated upon two principles: 1) 

deployment of a safe and efficient method for collecting cross slope data; and 2) adoption 

occurs system-wide so an accurate and comprehensive network-based cross slope database 

can be maintained (7). 

Light Detection and Ranging (LiDAR) techniques may provide an efficient and 

practical solution to addressing this difficult challenge.  Accurate pavement cross slope 

data is crucial for implementing successful and cost-effective repaving and rehabilitation 

programs and projects that can provide targeted corrective action in addressing cross slope 



44 

problems. Low altitude Airborne LiDAR Scanning (ALS) is aerial mapping technology 

where airplanes are flown at approximately 1,500 feet above ground level (9), while in 

Mobile Terrestrial LiDAR Scanning (MTLS) the data is captured from a vehicle traveling 

at highway speeds. In both systems, the LiDAR sensor is scanning the ground while 

simultaneously recording positional data using a Global Positioning System (GPS), Inertial 

Measurement Units (IMU), a Distance Measurement Indicator (DMI), and cameras (10). 

The resulting point data cloud contains highly accurate three dimensional (3D) locations 

of topographic features of the roadway and nearby areas (10). The ALS platform is capable 

of scanning large areas and a typical survey can collect data up to 20,000 acres per day (9). 

MTLS systems collect field data of up to 150 road-miles a day (7); however, the airborne 

derived point cloud is typically less dense in comparison to mobile LiDAR point cloud 

because of the relative distance of the LiDAR scanner to the pavement surface. MTLS is 

capable of collecting an entire cross-section (within line of sight) at highway speeds in a 

single pass (11).  Accurate ground control points are often needed to adjust the LiDAR data 

locations for applications that require a high level of positional accuracy. 

This research evaluates the use of MTLS and ALS for collecting accurate cross 

slope data along a corridor to ensure that adequate cross slopes and proper drainage exist 

on highways. The LiDAR data was collected along a 3.4-mile corridor of Interstate 85 

Business Loop (I-85 BL) in Spartanburg, SC.  
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Literature Review 

Uddin (9) evaluated the accuracy, efficiency, and cost-effectiveness of airborne 

LiDAR technology compared with conventional aerial photogrammetry and field 

surveying using a total station. High resolution satellite imagery (e.g., QuickBird 2) with a 

spatial resolution of less than a meter can be used in place of aerial photography as a 

backdrop for LiDAR topography, but does not provide sufficient elevation accuracy for 

accurate terrain mapping. The study was focused on an 8 km (5.9 miles) highway section 

of the Raleigh Bypass near Jackson, Mississippi. The results showed there was no statistical 

difference between, airborne LiDAR, aerial photogrammetry, and ground surveying using 

a total station. However, the Root Mean Square (RMSE) value between the LiDAR and 

the total station was 15 to 18 cm.  

Sourleyrette et al., (12) attempted to collect grade and cross slope information from 

airborne LiDAR data on tangent highway sections.  Measurements were compared against 

grade, and cross slope collected using an automatic level for 10 test sections along Iowa 

Highway 1. The physical boundaries of shoulders and lanes were determined by visual 

inspection from (a) 6-inch resolution orthophotos (b) 12-inch ortho photo by Iowa DOT 

and (c) a LiDAR-derived triangular irregular network (TIN). Multilinear regression 

analysis was conducted to fit the plane to the LiDAR data corresponding to each analysis 

section. The horizontal accuracy was 0.98 feet and vertical accuracy of 0.49 feet. While 

roadway grade was successfully calculated within 0.5% for most sections, and 0.87% for all 

sections, the cross slope data was much less accurate.  Cross slope estimated from LiDAR 

deviated from field measurements by between 0.72% to 1.65%.  Therefore, the results 
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indicated cross slope could not be practically estimated using the acquired aerial LiDAR-

derived surface model.  It is noteworthy that LiDAR technology has improved significantly 

since this study was completed.  

Miller et al., (10) investigated the potential of MTLS technology (using Riegl 

VMX-250) instead of traditional survey methods to collect data for highway improvement 

projects. The project area selected for evaluation was the I-35/IA 92 interchange in Warren 

County, Iowa. The elevation comparison was made on 1823 points on the pavement, which 

were surveyed using a total station and generated through the MTLS process. The MTLS 

derived data met Iowa DOT specifications for surveying with a RMSE of the error was 

0.0695. 

Tsai et al., (13) proposed a mobile LiDAR cross slope measurement method, which 

included mobile LiDAR system (Riegl LMS-Q120i), a high-resolution video camera, and 

an accurate positioning system composed of a GPS, an IMU, and a DMI.  In this system 

thethe scanning line of the forward shooting LiDAR system was aligned parallel to the 

transverse direction as the vehicle moves in the longitudinal direction on the road. 

Accuracy and repeatability of the proposed method were validated through testing in a 

controlled environment with results showing the proposed method achieved desirable 

accuracy with a maximum difference of 0.28% cross slope (0.17°) and an average 

difference of less than 0.13% cross slope (0.08°) from the digital auto level measurement. 

Repeatability results showed standard deviations within 0.05% (0.03°) at 15 benchmarked 

locations in three runs. However, the acceptable accuracy is typically 0.2% (or 0.1°) during 

construction quality control. The case study on I-285 in Atlanta, Georgia, demonstrated the 
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proposed method could efficiently conduct the network-level analysis. The GIS-based 

cross slope measurement map of the 3-mile section of studied roadway can be derived in 

fewer than two person-hours using collected raw LiDAR data. 

Beck et al., (14) conducted a study to examine the accessibility of a forest road 

network especially for non-standard (typically larger) vehicles. The authors developed an 

algorithm to extract geometry of forest roads from airborne LiDAR using LiDAR intensity 

value and ground return intensity. LiDAR intensity, in theory, is determined by an object's 

reflectance, which can be used to identify objects when data is calibrated (15). The intensity 

value varies with material properties, and the ground return on the road is often distinct 

from surrounding areas since canopy mostly covers the forest floor. The road extraction 

process requires easting, northing, and elevation coordinates, intensity values, canopy type, 

and the maximum road grade. To compare the results of the process, nine road segments 

were field surveyed with terrestrial LiDAR to create ground truth control. The cross-section 

view of the road was extracted using the TopCAT toolbar in ArcGIS, and the resulted 

average difference in road cross slope was two percent.  

Shams et al., (4) evaluated the use of adjusted and unadjusted mobile LiDAR data 

for collecting cross slope on three roadway sections in South Carolina. The unadjusted 

LiDAR data incorporated corrections from an integrated IMU. For adjusted data, the point 

cloud was also processed in real-time using a high accuracy differential correction GPS. 

The cross slopes were extracted from the LiDAR-derived point cloud by corresponding 

two separate mesh grid surfaces that were fitted to the points using nearest neighbor 

interpolation. One mesh grid included the elevation and the second mesh grid included the 
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intensity of the return pulse from the points. Since the intensity of the returned pulse for 

the reflective pavement marking is higher than highway surface, the travel lanes could be 

extracted from the point cloud. Then the cross slope was measured along each travel lane 

and compared with field surveyed cross slope data. The deviation between LiDAR-derived 

cross slopes and field measurements were less than 0.19%, which met SHRP2 (22) and 

suggested cross slope accuracies for mobile measurements (±0.2%) and demonstrated that 

mobile LiDAR is a reliable method for cross slope verification.  

Previous studies have evaluated the accuracy of either MTLS or ALS as an effective 

alternative to use of current conventional surveying methods but few recent studies have 

looked at using MTLS or ALS to extract continuous cross slope data and no recent studies 

have compared the two. This study not only evaluates the use of LiDAR technology for 

cross slope verification purposes, but also compares the accuracy of both ALS and MTLS 

according to two sampling methods 1) End to End data acquisition 2) 0.2 feet interval point 

extraction.  

LiDAR Data Collection 

This research evaluates the use of ALS and MTLS from five vendors to obtain 

accurate cross slope data to ensure that roadways have adequate pavement cross slope and 

proper drainage. MTLS data from five vendors was used to conduct this evaluation. 

However, only a single vendor participated in ALS data collection in this research study. 

Both ALS and MTLS were evaluated regarding the accuracy of the collected cross slope 

data, as well as procedures to calibrate, obtain, and process the data. The LiDAR data was 

collected on a 3.4-mile corridor along I-85 BL in Spartanburg, SC. The study section 
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originates at I-585 and terminates at I-85. I-85 BL is a restricted access four-lane dual 

direction divided freeway. Researchers measured cross slopes at selected locations prior to 

the LiDAR test data collection. These locations correspond with aerial chevron panel points 

P-78, P-91, P-103, P-126, and P-127 (note that P-103, P-126, and P-127 are located on

ramps). Aerial chevron painted panels are V shape, having approximately 1.5 feet long and 

4 inches wide yellow reflective pavement marking tape with an interior angle of 60 degrees, 

along with the edge of the paved roadway surface. A PK nail is set at the tip of the target 

panel (16).  Figure 3-1 shows a sample of panel points and CU points. 

Figure 3-6 Aerial chevron panel point, and CU point 

The research team conducted an MTLS vendor rodeo from June 30, 2016, to August 

30, 2016.  The rodeo occurred over multiple dates to maximize participation. Seven 

vendors participated in the rodeo data collection; however, only five vendors submitted 

collected data. Vendors’ equipment and data collection capabilities are summarized in 

Table 3-1. 



50 

Table 3-1 MTLS Rodeo Vendors' Equipment Specification (7) 

Equipment Vendor A Vendor B Vendor C Vendor D Vendor E 

LiDAR 

Brand Riegl Optech Optech  Optech Leica 

Model VMX450 SG1 M1 M1 9012 

Single / Dual 

laser 
Dual Dual Dual Dual Single 

Measurement 

rate 
1.1 MHz 

600 

kHz/sensor 

500 

kHz/sensor 

50,100,200 

and 500 

kHz 

1 MHz 

DMI 
Brand Applanix Applanix Applanix Applanix * 

Model BEI HH5 HS35F LV LV * 

IMU 

Brand Applanix N/A 
Northrop 

Grumman 

Northrop 

Grumman 
NovAtel 

Model AP50 FMU P301 LN 200 LN 200 
SPAN IMU-

FSAS 

Roll/pitch 

accuracy 
0.005° 0.005° 0.25° 0.25° 0.008° 

Heading 

Accuracy 
0.015° 0.015° 0.50° 0.50° 0.023° 

Camera 

Type NIKON/RIEGL 
Point Grey 

360° 
Optech Optech Leica 

No. of 

Cameras 
4 6 4  4 7 

Focal Points 

of Cameras 
2 front, 2 rear N/A 2 front, 2 rear 

2 front, 2 

rear 

2 front, 2 

sides, 2 rear, 

1 above 

Frame Rate 15 fps 3 fps 2 fps 3 fps 8 fps 

Resolution 5 MP 5 MP 5 MP 5 MP 4 MP 

Vehicle 

Mounted 

GPS/GNSS 

Brand Trimble Trimble Trimble * NovAtel 

Model Zepher model 2 
AT1675-

540TS 

Zephyr Model 

2 
 * GPS-702-GG 

Accuracy 10 mm 
0.02' H; 0.04' 

V 
Survey Grade  * N/A 

* Equipment Specification was not provided
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A primary benefit of an MTLS is that point cloud data can be collected for multiple 

travel lanes with a single pass (7). For this study, vendors were asked to collect data by 

direction and by driving in the right lane (outer lane). Only a single pass was allowed for 

each direction. To improve the accuracy of MTLS data collection vendors were allowed to 

calibrate their systems both before and after data collection runs using Primary Survey 

Control (PSC) points. The ground control survey was conducted using Trimble R-7 GPS 

receivers with Trimble Zephyr Geodetic antenna on two-meter fixed height tripods (16). A 

minimum of two separate 10-minute observations was taken on different days for each PSC 

point using the South Carolina VRS Network for differential corrections (16). The 

coordinates projected on NAD 83 (2011) South Carolina State Plane datum and NAVD 88 

vertical Datum for horizontal and elevation coordinates, respectively (16).  Figure 3-2 

shows the location of PSCs, panel points, and CU points along the study area. 

Figure 3-7 PSC points, CU points, and panel points along the study area 

In addition to checking the accuracy of the resulting point clouds, the point location 

data was extracted from vendors’ point clouds for four points (CU points) that were marked 

with reflective chevron panels pointing to PK nails. The CU points were surveyed with 

static GPS using Trimble R-4 receivers with differential correction through Online 
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Positioning User Service (OPUS) post-processing (17). The assumption is that the field 

survey points are control, however, a static OPUS corrected survey with a 1-hour 

observation period has an expected error of about 2 centimeters or 0.067 feet.  Accounting 

for this, data falls within medium to high levels of accuracy (18).  Table 3-2 shows the 

positional accuracy of the MTLS collected CU points. 

Table 3-2 MTLS Accuracy of CU Points 

Points CU - 1 CU - 2 CU - 3 CU - 4 

Easting Northing Easting Northing Easting Northing Easting Northing 

Field survey 1715033.0 1151326.9 1720068.7 1153070.7 1717564.1 1152302.6 1713893.1 1151031.8 

Difference between the LiDAR-derived coordinates and Static GPS data collection 

Vendor A -0.047 -0.022 0.226 -0.192 -0.191 0.134 -0.024 0.361 

Vendor B 0.061 0.029 0.046 -0.073 0.342 0.015 -0.186 0.349 

Vendor C * * 0.104 0.212 0.094 -0.076 0.297 0.344 

Vendor D 0.098 0.108 0.157 0.094 -0.187 -0.092 -0.152 0.434 

Vendor E -0.168 -0.082 -0.013 -0.131 * * * * 

Root Mean Square of the Horizontal Error (RMSE) 

Vendor A 0.052 0.297 0.233 0.362 

Vendor B 0.068 0.086 0.342 0.395 

Vendor C * 0.236 0.121 0.454 

Vendor D 0.146 0.183 0.208 0.460 

Vendor E 0.187 0.132 * * 

Average 0.113 0.187 0.226 0.418 

* Missing data in the point cloud

Figure 3-3 is the sample point cloud resulted from MTLS. Yellow and white 

pavement markings and the chevron panel point are differentiated from the asphalt due to 
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the different material which led to higher intensity of the return pulse of light in MTLS 

point cloud.   

Figure 3-8 Sample point cloud resulted from MTLS showing the pavement markings and panel point 

Vendor A was the only vendor to participate in ALS data collection. Vendor A 

provided airborne LiDAR low attitude mapping for an approximately 19-mile section of I-

85, I-26, and I-85 BL in Spartanburg, SC (19). The imagery data was collected on 

December 06, 2015 using Digital Mapping Camera at a pixel size of smaller than 0.2 feet 

(19). The ALS acquisition was performed on December 10, 2015. The mission consisted 

of 15 flight line passes, with an average flight height of 1,400 feet at 90 knots (19). The 

data was acquired utilizing a Riegl LMS-Q680I. According to the flight plan, there are 6-

8 points per square meter (approximately 10.7 square feet) (19). The airborne LiDAR data 

was calibrated and adjusted to the PSCs using Terrasolid suite software (20), and the RMSE 
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of the data was 0.027 (19). The difference between the field surveying and ALS derived 

coordinates are provided in Table 3-3. The horizontal coordinate of the chevron panels was 

obtained using Trimble R-8 Receivers for 3-minute observation with a differential 

correction from the South Carolina VRS Network (16). The elevation of the chevron panels 

and the primary control points were obtained by differential level runs using digital Leica 

DNA 03 Levels (16). 

Table 3-3 Difference between Field Surveying and Airborne LiDAR-Derived Coordinates on Panel Points 

Panel points Easting Residual Northing Residual Elevation Residual 

P-78 1,713,137.996 0.012 1,150,770.491 -0.056 842.430 0.010 

P-91 1,713,210.505 0.005 1,150,698.831 0.017 841.390 0.040 

P-103 1,726,199.153 0.028 1,157,176.271 -0.039 840.540 0.020 

P-126 1,727,320.707 -0.034 1,158,179.231 0.000 852.230 0.010 

P-127 1,726,217.910 -0.004 1,157,665.319 0.028 856.310 0.000 

Cross Slope Measurement Using Conventional Surveying Methods 

Conventional surveying (auto leveling combined with taping measurements) was 

used to develop ground truth cross slopes for test sections.  Each of the cross-section 

stations was leveled using two different instrument setups to ensure accuracy and adjust 

for random error. The cross slope along each section was computed for each lane from the 

elevation difference between lane lines, along with horizontal distances in between, which 

was measured by tape.  
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Extracting Cross Slope From A Point Cloud 

The cross slope typically is a uniform transverse slope from the crown line on each 

side of the road (5). Each cross slope for a single travel lane falls within two pavement 

marking lines. For the both the MTLS and ALS derived point cloud, the cross-section 

reference line was drawn perpendicular to the travel lanes at the panel point coordinates.  

Each of the LiDAR points incorporates the coordinate of the point, including the elevation 

value along the reference line. Therefore, once the elevation of the two ends of the travel 

lane along the reference line was determined, the transverse slope of the travel lane could 

be calculated. Also, for MTLS, the elevation data was extracted along the reference line 

every 0.2 feet (2.4 inches) using a nearest neighbor interpolation. Because the density of 

the ALS point cloud was much less than the MTLS point cloud, a 0.2 ft-resolution raster 

Digital Elevation Model (DEM) representing the elevation of the pavement surface was 

created from the airborne LiDAR point cloud using ArcMap. Next, the elevation of points 

along the cross-section reference line was extracted from the DEM at the same interval 

(e.g., 0.2 feet). To estimate the cross slope percentage a linear regression line was fitted to 

the 0.2 foot point data along the reference line.  Figure 3-4 demonstrates the cross slope 

calculation on each test section for both the two end method and the linear regression 

method. According to the elevation of the two ends of the travel lane, the rise represents 

the difference of elevation and the run presents the horizontal distance between the noted 

points. Then, the transverse slope of the travel lane could be measured by dividing the rise 

over the run and multiply by 100 to determine the cross slope in percent (Cross slope = 100 

× Rise / Run). Whereas, the slope of the regression fitted line to the 0.2 feet point interval 
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represents the cross slope on the corresponding reference line (Cross slope = regression 

coefficient × 100).  

Figure 3-4 A sample of a cross-section of the roadway surface along the reference line 

Comparison Between Field Surveyed Cross Slope And LiDAR Derived Data 

The use of ALS and MTLS to extract pavement cross slope was compared against 

cross slope measurements collected using conventional surveying on five specific roadway 

stations (panel points) along I-85 BL. Field measurements were used as reference data for 

comparison against vendor collected LiDAR-derived data.  Table 3-4 and Table 3-5 show 

the extracted cross slopes from the LiDAR point cloud and the measured cross slopes using 
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an auto level and tape. The measurements are based on each travel lane, and the vendor 

names have been removed and are shown in random order. 

Table 3-3 Cross Slope Comparison between Surveyed Data and LiDAR-Derived Cross Slope (End to End 

Data Acquisition) 

Panel 

Point 

Travel 

Lanes 

Field 

Surveyed 

Cross slope 

End to End data Acquisition 

ALS 

Vendor 

A 

Vendor 

B 

Vendor 

C 

Vendor 

D 

Vendor E 

P-78 WBO 3.33% 3.18% 3.43% 3.39% 3.41% 3.08% * 

WBI 1.38% 1.62% 1.33% 1.30% * 1.44% * 

EBI 1.30% 1.66% 1.51% 1.72% * * 1.49% 

EBO 1.46% 1.72% 1.62% 1.59% 1.58% 1.51% 1.53% 

P-91 WBO 3.42% 3.23% 3.47% 3.51% 3.61% 3.47% * 

WBI 1.28% 0.96% 1.26% 1.22% 1.32% 1.20% 1.35% 

EBI 1.66% 1.91% 1.79% 1.80% 1.83% * 1.71% 

EBO 1.92% 1.77% 1.83% 1.79% 1.82% * 1.74% 

P-103 WBO 6.85% 6.99% 6.93% 6.90% 6.99% 6.92% * 

WBI 7.43% 7.39% 7.35% 7.43% 7.47% 7.13% 7.34% 

P-126 WBO 3.97% 3.95% * 3.75% 3.83% * * 

WBI 4.47% 4.30% * 4.11% 4.19% * * 

P-127 WBO 1.38% 1.51% 1.39% 1.40% 1.39% * * 

WBI 1.15% * * * * * * 

WBO = West Bound Outer lane, WBI = West Bound Inner lane, EBO = East Bound Outer lane, 

EBI = East Bound Inner lane 

* Missing Data
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Table 3-4 Cross Slope Comparison between Surveyed Data and LiDAR-Derived Cross Slope (0.2 feet 

interval point extraction) 

Panel 

Point 

Travel 

Lanes 

Field 

Surveyed 

Cross slope 

0.2 feet interval point extraction 

ALS 

Vendor 

A 

Vendor 

B 

Vendor 

C 

Vendor 

D 

Vendor E 

P-78 WBO 3.33% 3.32% 3.43% 3.38% 3.41% 3.32% * 

WBI 1.38% 1.41% 1.46% 1.39% * * * 

EBI 1.30% 1.64% 1.67% 1.83% 1.63% * 1.60% 

EBO 1.46% 1.50% 1.47% 1.39% 1.30% 1.48% 1.42% 

P-91 WBO 3.42% 3.45% 3.56% 3.61% 3.53% 3.42% * 

WBI 1.28% 1.14% 1.32% 1.24% * 1.26% 1.36% 

EBI 1.66% 1.73% 1.82% 1.78% 1.77% * 1.74% 

EBO 1.92% 1.76% 1.78% 1.79% 1.71% 1.93% 1.70% 

P-103 WBO 6.85% 7.00% 6.93% 6.92% 6.96% 6.97% * 

WBI 7.43% 7.42% 7.40% 7.44% 7.44% 7.30% 7.39% 

P-126 WBO 3.97% 3.84% * 3.71% 3.72% * * 

WBI 4.47% 4.31% * 4.33% 4.36% * * 

P-127 WBO 1.38% 1.35% 1.33% 1.39% 1.36% * * 

WBI 1.15% * * * * * * 

WBO = West Bound Outer lane, WBI = West Bound Inner lane, EBO = East Bound Outer lane, 

EBI = East Bound Inner lane 

* Missing Data
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Evaluation of Results

The estimated cross slope is a function of the LiDAR platform used (mobile or 

airborne), the instrument for collecting data (varies by vendor), the data collection station 

(panel points), and the travel lane.  Linear Mixed Models (LMM) were used to analyze the 

accuracy of the abilities of both ALS and MTLS to estimate the cross slopes on highways 

to account for both fixed and random effects.  LMMs are an extension of one way analysis 

of variance (ANOVA) models and are employed in this analysis to account for the 

dependence between measurements taken at the same locations and lanes (21). The cross 

slope obtained via vendor i, panel point (location) j, and travel lane k is modeled by: 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘(𝑗) + 𝜀𝑖𝑗𝑘 (3-1) 

The treatment effect associated with the i th vendor is given by αi, βj~N(0,σβ
2) are 

the independent random effects associated with location, γk(j)~N(0,σγ
2) are the independent 

random effects associated with lane nested in location, and εijk~N(0,σε
2) are independent 

random errors. For both data collection methods (End to End data acquisition and 0.2 feet 

interval point extraction), the statistical hypothesis to test is whether the mean of the 

deviation between LiDAR derived cross slopes and field surveying measurement is less 

than 0.2% (upper limit of acceptable cross slope measurement accuracy (22)) is performed 

according to LMM models using JMP statistical discovery software (23).  
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End to End Data Acquisition 

When the elevation data was extracted along the cross-section line on two ends of 

the travel lane the difference between the MTLS and field survey measurement ranged 

from -0.42% to 0.36%. Similarly, the comparison between ALS data and field surveying 

varies from -0.36% to 0.31%. The p-values greater than 0.05 of the paired comparison 

between the ALS and five MTLS data collection show at the 5% level, there is no statistical 

difference between methods (vendors) for collecting highway cross slope. Although, the 

point estimation of difference between the LiDAR-derived cross slopes and field surveying 

is less than 0.2%, but due to the upper limit 95% confidence interval greater than 0.2% and 

the one-tailed t-test p-value greater than 0.05, the ALS is not significantly accurate for 

cross slope verification using the end to end cross slope calculation. While the upper limit 

of the confidence interval (CI) for MTLS data collection is less than 0.2% and the p-value 

less than 0.05 demonstrates that MTLS meets the acceptable error for cross slope data 

collection using the end to end cross slope calculation. Although, the results for Vendor D 

are slightly over the acceptable error, the p-value is less than 0.05. Therefore, the one-tailed 

test is rejected, but the 95% CI includes values that are greater than 0.2%. This is because 

the CI corresponds with the two-tailed test. However, the missing data and small sample 

size undermines the reliability of the results for Vendor D.  
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Table 3-5 Comparison between LiDAR-Extracted Cross Slopes and Field Surveying (End To End Method) 

Data 

Collector 

Estimation of mean 

difference from surveyed data 

Standard 

Error 

df 

Lower 

95% 

Upper 

95% 

p-value

Aerial 0.157 0.032 12.110 0.088 0.226 0.099 

Vendor A 0.077 0.036 12.701 -0.002 0.156 0.002 

Vendor B 0.107 0.032 12.110 0.038 0.176 0.006 

Vendor C 0.113 0.033 13.232 0.043 0.184 0.009 

Vendor D 0.120 0.043 14.709 0.027 0.212 0.041 

Vendor E 0.092 0.051 20.596 -0.015 0.199 0.023 

0.2 feet interval point extraction 

The results indicate when the elevation data was extracted every 0.2 feet along the 

reference line, the difference between the MTLS, ALS and field survey measurements 

range from -0.53% to 0.26% and -0.34% to 0.16% respectively. Similarly, the p-values 

greater than 0.05 of the paired comparison between the ALS and five MTLS data 

collections show at the 5% level, there is no statistically difference between ALS and 

MTLS for collecting highway cross slope. Also, the result of the study indicates the 

difference between both MTLS and ALS derived cross slopes and the field surveying 

measurement are less than 0.2%. These findings were indicated by the p-value less than 

0.05 of the one way t-test at the 5% level.
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Table 03-6 Comparison between LiDAR-Extracted Cross Slopes and Field Surveying (0.2 Interval Points) 

Data Collector 

Estimation of mean 

difference from surveyed 

data 

Standard 

Error 

df 

Lower 

95% 

Upper 

95% 

p-value

Aerial 0.0776 0.0283 6.2330 0.0089 0.1463 0.002 

Vendor A 0.0919 0.0300 7.2838 0.0215 0.1624 0.004 

Vendor B 0.0878 0.0283 6.2330 0.0191 0.1565 0.003 

Vendor C 0.1088 0.0289 6.8929 0.0403 0.1775 0.008 

Vendor D 0.0523 0.0326 9.3512 -0.0210 0.1256 0.001 

Vendor E 0.0930 0.0360 12.4610 0.0148 0.1711 0.005 

Summary of Results 

The comparison between the mean estimation of the difference between ALS 

extracted cross slopes and surveyed data shows that the slope of the fitted regression line 

to 0.2 feet interval extracted points is the better representation of the actual cross slope of 

the travel lane rather than calculating the uniform slope based on the elevation difference 

between the two ends of the travel lane.  

For the MTLS data collection in this study, vendors were asked to collect data by 

direction by driving in the right lane (outer traveling lane). Table 3-8 summarizes the 

absolute deviation between the LiDAR-derived cross slopes and field surveying based on 

the driving traveling lane.  
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Table 3-7 Summary of Cross Slope Comparison Based on the Travel Lane 

Inner travel lanes (left lane) Outer travel lanes (right lane) 

End to End data 

Acquisition 

0.2 feet Interval data 

Acquisition 

End to End data 

Acquisition 

0.2 feet Interval data 

Acquisition 

ALS MTLS ALS MTLS ALS MTLS ALS MTLS 

Min 0.04% 0.00% 0.01% 0.00% 0.02% 0.01% 0.00% 0.01% 

Max 0.36% 0.42% 0.34% 0.53% 0.25% 0.24% 0.16% 0.26% 

Median 0.24% 0.08% 0.10% 0.09% 0.14% 0.09% 0.04% 0.08% 

Mean 0.23% 0.13% 0.13% 0.13% 0.15% 0.10% 0.08% 0.10% 

Although according to the two tail t-test, there is no statistical difference between 

the MTLS LiDAR-derived cross slopes on the outer travel lane and the inner traveling lane 

at a 5 % level, the average deviation for the outer lanes is less than the inner lanes.  This is 

to be expected because the MTLS distance to the outer lane pavement is shorter with a 

more direct angle than the MTLS distance to the inner lane pavement. 

Conclusion 

The use of ALS and MTLS to extract cross slopes was evaluated on five stations 

including 13 travel lanes along I-85 BL in Spartanburg, SC. Results of this research showed 

that both ALS and MLS have comparable cross slope accuracies to conventional manual 

surveying methods. As a result, collection of ALS and MTLS cross slope data provides an 

efficient means for identifying cross slope deficiencies and addressing potential 

hydroplaning issues on a system wide basis.  
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According to SHRP2 guide specifications, a slope tolerance value of ± 0.2% of the 

design value would be acceptable for final measurement after project completion (22). By 

fitting a regression line to the extracted points every 0.2 feet interval used to estimate the 

cross slope, the LMM statistical analysis indicates the deviation between both MTLS and 

ALS derived cross slopes and field surveying measurements were less than acceptable 

accuracy at the 5% level. Whereas, for MTLS data collection using the elevation of the two 

sides of the travel lane met the acceptable accuracy of the cross-sectional calculation; the 

difference between the ALS derived cross slopes and the field surveying is over the upper 

limit of acceptable error; and this is statistically significant at the 5% level.   Therefore, it 

is recommended that a fitted regression line be used for determining cross slopes from ALS 

point clouds to account for lower point density along the pavement surface. Generally, 

MTLS cross slope data collection can be expected to be more accurate than ALS cross 

slope data collection especially if MTLS is collected using at least one pass for each lane.  

Finally, conventional surveying methods are time consuming and require a survey 

crew to be located on the road, which poses safety and traffic issues. However, efficient 

LiDAR scanning platforms are available to capture cross slope, grades, location, and a 

variety of other geometric design characteristics. These new applications increase 

productivity and minimize road crew exposure and create robust information products that 

serve multiple uses beyond cross slope measurement such as highway asset management.  
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CHAPTER FOUR 

PAPER III: THE HYDROPLANING POTENTIAL WITH REGARD TO HIGHWAY 

CROSS SLOPE 

This Chapter has been submitted as a paper for presentation at the 98th Transportation 

Research Board Annual Meeting and publication in the Transportation Research Record: 

Journal of the Transportation Research Board 

Abstract 

Highway pavement cross slope is a crucially important cross-sectional design 

element to properly drain water on highways and improve driver safety by reducing the 

potential for ponding. When rain falls on the pavement surface, the water depth that 

accumulates can result in hydroplaning. Previous research has not clearly defined a water 

depth at which hydroplaning occurs; however, there is considerable agreement that a water 

depth equal to 0.06 inches is the acceptable upper limit of water depth above the pavement. 

In reality, there are situations where hydroplaning can occur at water depths less than 0.06 

inches depending on road, vehicle, and environmental characteristics. This research 

estimates the water depth and presents the potential of hydroplaning with regard to a range 

of vehicle speed, tire tread depth, tire pressure, pavement surface texture, and cross slope.  

The paper includes a series of tables and figures that state highway agencies can use to help 

assess hydroplaning potential based on roadway pavement and cross sectional design 

characteristics.    

Keywords: Roadway hydroplaning, Cross Slope, Critical water depth 
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Introduction 

Although highway safety statistics indicate that most crashes (approximately 94%) 

result from driver error (1), there are many factors that can contribute to the cause and 

severity of a crash. Adverse weather is one of these factors (2,3). Specifically, rain rain can 

reduce pavement friction and impair driver visibility (4), both increasing the likelihood of 

roadway crashes (5). Rainy weather can lead to hydroplaning, which is the separation of 

the tire from the road surface due to a sheet of water (6). In rainy weather, the typical 

pavement friction coefficient of 0.7 to 0.9 be reduced to 0.3 to 0.6 for automobiles, 

significantly increasing vehicle stopping distance (7). The National Transportation Safety 

Board (NTSB) stated that fatal accidents on wet pavement occur 3.9 to 4.5 times more 

often than might be expected on dry pavements (7). If motorists were to drive more slowly 

during adverse weather (rainy conditions), hydroplaning should have no significant 

influence on crashes (8).  Unfortunately, many motorists risk driving too fast for conditions 

and are more susceptible to hydroplaning consequences.  In these instances, hydroplaning 

has been found to have a considerable impact on wet pavement crashes (6). Hydroplaning 

crashes constitute a considerable risk to drivers.  Florida, for example, experienced over 

25,000 hydroplaning related crashes from 2006 to 2011 (9). Table 4-1 presents a summary 

of US weather related crashes from 2005 to 2014.  
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Table 4-1 Weather Related Crash Statistics (Annual Average) (10) 

Road 

Weather 

Conditions 

Weather-Related Crash Statistics 

Crashes (2005-2014) 10-year Percentages

Wet 

Pavement 

907,831 crashes 16% of vehicle crashes 73% of weather-related crashes 

352,221 persons injured 15% of crash injuries 80% of weather-related injuries 

4,488 persons killed 13% of crash fatalities 77% of weather-related fatalities 

Rain 

573,784 crashes 10% of vehicle crashes 46% of weather-related crashes 

228,196 persons injured 10% of crash injuries 52% of weather-related injuries 

2,732 persons killed 8% of crash fatalities 47% of weather-related fatalities 

Weather-

Related 

Crashes 

1,258,978 crashes 22% of vehicle crashes 

445,303 persons injured 19% of crash injuries 

5,897 persons killed 16% of crash fatalities 

To improve the safety of roadways, it is important to identify the problematic 

conditions cause by weather interaction with roadway geometry and traffic conditions, then 

address potential safety issues before crashes occur (4). It is essential to understand the 

relative significance of various factors that influence the accumulation and drainage of 

surface water on pavement surfaces. Highway cross slope promotes water drainage from 

the roadway in a lateral direction, which helps minimize ponding of water on the pavement 

surface (11). Ensuring adequate cross slopes and proper drainage on highway facilities can 

improve driver safety by reducing the potential for hydroplaning. It is highly desirable to 

ensure that adequate cross slopes exist even after freeway repaving and rehabilitation 

projects. Freeways with inadequate cross slopes are especially susceptible to hydroplaning 
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because these facilities have higher design speeds and longer drainage path lengths. 

Therefore, sections with inadequate cross slope should be identified by transportation 

agencies and corrected though timely maintenance practices (11).  It is crucial for 

transportation agencies to have an efficient method for collecting highway cross slope data 

to identify inadequate cross slope sections. Mobile Light Detection and Ranging (LiDAR) 

is one such method that is capable of collecting cross slope data at highway speeds in a 

single pass (12).   

In general, a cross slope range of 1.5% to 4% is recommended for pavement 

surfaces in the United States (13). The lower portion of this range is appropriate where 

drainage flow is across a single lane, and higher values are appropriate where the flow is 

across multiple travel lanes (13). While cross slope is desirable, cross slopes that are too 

steep can cause vehicles to drift and become unstable when crossing over the crown to 

change lanes.  

This research estimates water depth above the pavement surface and presents the 

potential of hydroplaning with regard to the range of vehicle speed, tire tread depth, tire 

pressure, and pavement surface texture. The paper also discusses how mobile LiDAR can 

be used to create a cross slope database to support a cross slope verification program.   

Literature Review 

Gallaway et al., (6) provided a study that included a comprehensive literature 

review, a multistate questionnaire, mathematical models, and field testing to establish a 

relationship between geometric and pavement surface characteristics to minimize 

hydroplaning. Pavement surface water depth is the most critical factor for hydroplaning. 
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The absolute minimum cross slope acceptable in this study was identified to be 1.5%; 

however, the study recommended 2% for most pavements.  A 2% cross slope is used as a 

design value for many roads in the United States.  A standard ¼ inch per foot (2.08%) on 

tangent sections is used on South Carolina Department of Transportation (SCDOT) 

highways as shown in Figure 4-1 (14).    

Figure 4-9 Normal cross slope at South Carolina highways (14) 

The most desirable water depth to ensure that a vehicle will not hydroplane is zero; 

however, water buildup on roadways up to 36 feet wide will not result in hydroplaning for 

a cross slope of 2% or higher and rainfall intensity below 0.5 in/hr (6).  According to the 

experimental study, hydroplaning was observed at a water depth as low as 0.01 inches for 

tires without tread; however, no hydroplaning was reported for tread tires with water depths 

less than 0.08 inches (6). 

Guven and Melville (8) provided a discussion related to the selection of cross slope 

in the design of highway pavements. They indicated that longitudinal grade does not have 

an enormous effect on water depth, but they found the primary factors influencing the water 
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depth at the edge of pavement are the width of the pavement and the cross slope. They also 

suggested that a water depth (WD) of 0.06 inches, as an acceptable upper limit for design 

purposes.  The study further stated that water accumulation in ruts and puddles on the 

pavement surface presents a more severe threat to vehicle safety than water occurring as 

surface sheet flow. Therefore, periodic resurfacing of roadway pavements is a necessary 

and effective means to prevent or minimize the adverse effects of pavement rutting. 

Ong and Fwa (15) developed an analytical model using three dimensional finite 

element models to predict skid residence and potential of hydroplaning under wet 

pavement conditions. Skid resistance is a measure of resistance of the pavement surface to 

sliding or skidding of the vehicle (16). Within the normal passenger car operation, the 

hydroplaning speed (i.e., the vehicle speed at which hydroplaning occurs) is affected most 

by tire inflation pressure followed by water film thickness. Wet pavement skid resistance 

decreases with increasing water film thickness and tends to level-off for a water film 

thickness of more than 6 mm (i.e., 0.24 in). 

Long et al., (17) developed a methodology to identify a threshold level of pavement 

skid resistance for highways. The quantitative relationships between crash risk and skid 

resistance were quantified using the Crash Rate Ratio (CRR) method. Based on an analysis 

of the data, the authors found that skid resistance has a negative impact on crash risk. 

Additionally, based on the developed CRR- Skid Number (SN) model, skid resistance 

thresholds can be determined easily according to the target crash risk level or expected 

crash reduction. The recommended statewide skid resistance thresholds are 14, 28, and 73 
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for all weather crashes, and 17, 29, and 73 for wet weather crashes. Table 4-2 indicates the 

suggested actions to be taken based on skid resistance thresholds. 

Table 4-2 Suggested Actions to be taken for Each Pavement Group (17) 

SN Range Recommended Action 

SN < SN1 Potential project for short-term treatment action(s) 

SN1 < SN < SN2 Detailed project-level testing recommended 

SN2 < SN < SN3 Vigilance recommended 

SN > SN3 Increased SN may have little effect on reducing crash rates 

There are techniques available to predict the hydroplaning speed, such as using 

NCHRP’s PAVDRN computer software (18). However, the PAVDRN program only 

predicts hydroplaning speeds under heavy rain fall condition. Also, the PAVDRN program 

is relatively unreliable for predicting hydroplaning for inner lanes. Therefore, some of its 

limitations warrant more detailed investigation. Gunaratne et al., (19) initiated a systematic 

investigation to validate the analytical procedure and developed the Florida Department of 

Transportation (FDOT) guideline to estimate hydroplaning risk. The research team 

evaluated hydroplaning potential, the effect of each attribute on hydroplaning, and 

hydroplaning risk. The researchers provided models to estimate the wet weather speed 

reduction as well as analytical and empirical methods for predicting hydroplaning speed. 

In addition, the investigators formulated an analytical equation for predicting the critical 

water film thickness under road geometric conditions such as on tangent sections and super 

elevated curves. Also, wet weather crash analysis was performed using crash statistics, 
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geometric data, pavement condition data, and other information collected by FDOT. The 

results indicated that wider sections are more likely to produce hydroplaning crashes.  They 

also found that dense grade pavement surfaces are more likely to induce conditions 

conducive for hydroplaning than open graded pavements.  

Although a great deal of research has been conducted on the most influential factors 

that affect water depth on the pavement surface, previous research has not clearly defined 

the critical water depth at which hydroplaning occurs. However, there is considerable 

agreement on the water depth equal to 0.06 inches is the acceptable upper limit of water 

depth above the pavement (8) (13). This research focused on providing an evaluation of 

the potential of hydroplaning with regard to the range of vehicle speed, tire tread depth, 

tire pressure, pavement surface texture, and cross slope. 

Hydroplaning Potential 

Skid resistance and hydroplaning speed for roadway pavements are primarily 

dependent on the following contributing properties and factors (20): 

1. Pavement properties: Pavement mix design, aggregate type, and surface texture

2. Vehicle factors: Vehicle speed, tire inflation pressure, tire slip ratio, and tire tread depth

3. Environmental factors: Water-film thickness on the pavement surface

On a given pavement with a known rut depth filled with water, the skid resistance 

characteristics and hydroplaning potentials of the pavement are dependent on the operating 

vehicle speed and pavement surface characteristics. This means that for a given rut depth, 

pavement sections belonging to different highway classes (hence different prevailing 
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operating speeds), or having different pavement micro-texture and macro-texture, will 

exhibit different skid resistance characteristics and hydroplaning potentials (20). 

When rain falls on a sloped pavement, the path that runoff takes to the pavement 

edge is called the drainage path. The drainage path length is a function of the number of 

the travel lanes, width of the travel lanes, longitudinal grade of the roadway, and the 

pavement cross slope.  It can be calculated using equations 4-1 and 4-2 (6,8). Based on 

these equations, the surface runoff drainage flow path length increases as the pavement 

width increases or the roadway longitudinal grade is steepened.  

𝑆𝑓 = (𝑆𝑥
2 + 𝑆𝑔

2)
0.5

(4-1) 

𝐿𝑓 = 𝐿𝑥 (
𝑆𝑓

𝑆𝑥
) (4-2) 

Where, 

Sx = Cross slope (ft/ft) 

Sg = Longitudinal grade (ft/ft) 

Sf = Flow path slope (ft/ft) 

Lx = Pavement width (ft) from crown of the pavement 

Lf = Length of flow path 

The water depth that accumulates on pavement depends on the rainfall intensity, 

length of flow path, slope of the flow path, and the texture depth. The texture depth (TXD) 

is a function of the roughness or macro-texture of the pavement which consists of the 

asperities associated with the voids in the pavement surface between particles of aggregates 
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(8). The 50th percentile texture depth for typical pavements is equal to 0.04 inch, however, 

a TXD = 0.02 inch is recommended for design purposes (13). The water depth above the 

pavement surface can be calculated using the empirical equations 4-3 and 4-4 (6,8): 

WD0 = 0.00338 TXD0.11Lf
0.43I0.59 Sx

−0.42 − TXD     (4-3)   

WD = (WD0 + TXD) × √1 + (
Sg

Sx
⁄ )2   − TXD  (4-4) 

Where, 

WD = Water depth above the top of the surface asperities (in) 

TXD = Texture depth (in) 

I = Intensity of rainfall in (in/hr) 

Water thickness above the pavement is measured relatively from the top of the 

pavement surface asperities. In other words, when the water depth is zero or negative, it 

means water surface is below the top of the asperities (8). Previous studies showed that 

longitudinal grade does not affect water depth significantly because while the flow path is 

lengthened for steeper grades the flow velocity increases because of the increased resultant 

slope (6,8,13). This increase in velocity helps drain water from the road more quickly 

which offsets the longer flow path length. To determine how the difference in pavement 

cross slope impacts the water depth, the following assumption has been made (Sg = 0%, 

TXD = 0.02 inch (design value), TXD = 0.04 inch (50 percentile value)). The impact of 

cross slope on pavement water depth accumulation by rain fall intensity is shown in Figure 

4-2 and Figure 4-3.
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Figure 4-10 Cross slope sensitivity analysis on pavement water depth (TXD = 0.02”) 

Figure 4-11 Cross slope sensitivity analysis on pavement water depth (TXD = 0.04”) 
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Figures 4-2 and 4-3 show that the water depth above the pavement increases in 

higher rainfall intensity conditions, whereas, the steeper cross slope helps to drain water 

from the pavement surface.  While steeper cross slopes can help drainage, cross slopes that 

are too steep can cause vehicles to drift, skid laterally when braking, and become unstable 

when crossing over the normal crown to change lanes. So, while it is important for 

roadways to meet minimum pavement cross slope design criteria, it is also important that 

maximum criteria are not exceeded (11).  Furthermore, higher pavement texture results in 

lower water depth above the pavement.  It is generally accepted that the critical water depth 

at which hydroplaning occurs is 0.06 inch, thus producing sufficient loss of tire friction to 

present a significant driving hazard (6,8,13). A rainfall intensity of 2 in/hr can result in 

pavement water depths approaching 0.06 inches at the edge line when the crown of 

pavement and the edge line is approximately 24 feet apart (e.g., two travel lanes). For cross 

slopes less than 1.5% having a TXD = 0.02 inches, the water depth exceeds 0.06 inches for 

SCDOT standard cross slopes of 2.08% for rainfall intensities of 3 in/hr (see Figures 4-2 

and 4-3). Even though rainfall intensity of 3 in/hr can create hazardous driving conditions 

for virtually all vehicles traveling at the speed limit regardless of tire pressure, previous 

studies have shown that driving visibility is difficult when rainfall intensity exceeds 2 in/hr, 

and becomes extremely poor when intensity exceeds 3 in/hr. Thus, there is an expectation 

that vehicle operators will avoid driving or drive very slowly during such heavy rainfall 

periods (8). Based on this expectation, the American Association of State Highway and 

Transportation Officials (AASHTO) recommended minimum cross slope of 1.5% is a safe 

standard even in heavy rainfall events of 2 in/hr (13). 

https://www.transportation.org/
https://www.transportation.org/
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Accelerating, braking, or cornering forces may cause the driver to lose control due 

to lost contact between the tire and the pavement surface when hydroplaning occurs (8). 

The wheel spin down (SD) is used to detect hydroplaning and the influencing variables tire 

tread depth, tire inflation pressure, water depth, and wheel load (21). The spin down 

(reduction in wheel speed) of a wheel is an indication of a loss in the tire-ground frictional 

force and is regarded as a manifestation of hydroplaning (21). Spin down occurs when the 

hydrodynamic lift effects combine to cause a moment which opposes the regular rolling 

action of the tire caused by the drag forces (20).   Equation 4-7 defines an approximate 

"spin down" water depth (WDs) at or above which hydroplaning occurs for a range of 

vehicle speeds, tire pressures, tire tread depths and pavement texture depths. Using a 

critical value of 10 for the spin down percent (8) resulted in equation 4-6. 

SD = 100 ×  
(Wd− Ww)

Wd
      (4-5) 

As =  V [SD0.04P0.3(TD + 1)0.06]⁄ , when SD = 10                                                  (4-6)

WDs =

The smaller of [10.409 (As − 3.507)⁄ ]16.67 or [28.952 (As TXD0.14 + 7.817)⁄⁄ ]16.67     (4 −7)

Where, 

V = Vehicle speed (mph) 

SD = Spin down (%) 

Wd = Rotational velocity of a rolling wheel on a dry pavement 
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Ww = Rotational velocity of a rolling wheel after spinning down due to contact with a 

flooded pavement 

P = Tire pressure (psi) 

TD = Tire tread depth (units of 1/32 inch) 

WDs = Spin down Water Depth (inches) 

TXD = Pavement texture depth (inches) 

The variation of the critical water depth for nearly bald tire vehicle (TD=2/32”) and 

vehicle speed for two different pavement texture depths (TXD = 0.02 and 0.04 inch), and 

tire pressures (P = 24 and 32 psi) is shown in Figure 4-4. A lower tire pressure provides 

larger contact area between the tire and road, thus making fast acceleration and braking 

possible. On the other hand, rolling resistance reduces by increasing tire pressure which 

reduces the probability of spin down (and hydroplaning) (22). Typical air pressure in 

passenger car tires is about 32 psi (220 kPa) (22) and the design value is 24 psi (8). 
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Figure 4-12 Variation of critical water depth as a function of vehicle speed (TD = 2/32”) 

Figure 4-4 shows that when vehicle speed is high (V>50 mph), the texture depth 

has little effect on critical water depth. Also, any water above the pavement asperities may 

cause hydroplaning because the critical water depth is close to zero. It may also be seen 

that hydroplaning may occur at lower spin down water depth due to lower tire pressure. 

Based on equations 4-1 to 4-4, vehicles traveling at 60 mph or less should not hydroplane 

with a water depth of 0.06 inches if their tires are fully inflated and have remaining tread 

life.  For vehicles with nearly bald tires and low tire pressure (e.g., 24 psi), hydroplaning 

can occur at speeds as low as 48 mph if the water depth is 0.06 inches.  
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Results 

Accumulated water at or above the spin down water depth (critical water depth) 

may result to hydroplaning (8). Figure 4-5 represents the variation of spin down water 

depth as a function of vehicle speed, tire tread and tire pressure.  

Figure 4-13 Critical water depth as a function of speed, tire tread, and tire pressure (TXD = 0.02”) 

Due to the lower spin down water depth, drivers are more vulnerable to 

hydroplaning related crashes at speeds greater than 50 mph. However, the higher tire 

pressure and the tire tread increases the spin down water depth, which translates to 

improved safety for vehicles on the roadway. Hence, drivers should be aware of the safety 

benefits of having sufficient tire tread and tire pressure according to manufacturer 

recommendations. The typical minimum tire tread is about 0.06 inch (2/32 inch) (23), 
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however, most manufacturers recommend replacing tires when the tread depth reaches 4/32 

inch. The average tread depth for new tires typically exceeds 8 mm (10/32 inch) (24).  

For the minimum pavement texture depth (TXD = 0.02”), the comparison between 

the critical water depth and the accumulated water above the pavement is shown in Table 

4-3 for low tire pressure. When the water above the pavement flows along one travel lane,

the comparison shows for vehicles with nearly bare tires combined with low tire pressure, 

hydroplaning will not occur up to a speed of 45 mph. However, when rainfall intensity 

reaches 1 in/hr, hydroplaning can occur at speeds as low as 50 mph for vehicles with poor 

tire tread depth (<=4/32 inch) if there is insufficient cross slope. 

 When the flow path is two travel lanes (approximately 24 ft) for vehicles with poor 

tires and low tire pressure, hydroplaning will not occur up to speeds of 45 mph. If rain 

intensity reaches 2 in/hr, under these conditions even vehicles with good tire tread but poor 

tire pressure can hydroplane if cross slopes are not greater than 2.2%. In most low tire 

pressure scenarios, vehicle speeds of 55 mph or greater can result in hydroplaning unless 

the rainfall intensity is as low as 0.5 in/hr.  
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Table 4-3 Potential of Hydroplaning for Low Tire Pressure Vehicles (P=24 psi; TXD=0.02”) 

Speed (mph) 

NO. lane = 1 NO. lane = 2 

Tire Tread Depth (1/32 inch) 

TD = 2 TD = 6 TD = 10 TD = 2 TD = 6 TD = 10 

 Rain Intensity = 0.5 in/hr 

V <50 OK OK OK OK OK OK 

V = 55 1.7% OK OK 3.5% 1.9% OK 

V = 60 2.4% 2.1% 1.9% NO NO 3.7% 

V = 65 2.5% 2.5% 2.4% NO NO NO 

V = 70 2.5% 2.5% 2.5% NO NO NO 

 Rain Intensity = 1 in/hr 

V  <45 OK OK OK OK OK OK 

V = 50 OK OK OK 2.2% OK OK 

V = 55 NO 2.5% OK NO NO 2.9% 

V = 60 NO NO NO NO NO NO 

V >65 NO NO NO NO NO NO 

 Rain Intensity = 1.5 in/hr 

V <45 OK OK OK OK OK OK 

V = 50 1.9% OK OK 3.8% OK OK 

V = 55 NO NO 2.6% NO NO NO 

V >60 NO NO NO NO NO NO 

 Rain Intensity = 2 in/hr 

V <45 OK OK OK OK OK OK 

V = 50 2.8% OK OK NO 2.2% OK 

V = 55 NO NO 3.8% NO NO NO 

V >60 NO NO NO NO NO NO 

 Rain Intensity = 3 in/hr 

V <45 OK OK OK OK OK OK 

V = 50 NO 1.9% OK NO 3.8% 2.1% 

V = 55 NO NO NO NO NO NO 

V >60 NO NO NO NO NO NO 

Note: Cross slope 1.5% - 4% 
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Typical tire pressure for passenger cars is 32 psi, however, the recommended tire 

pressure is usually between 30 and 35 psi (22). Table 4-4 represents the comparison 

between the critical water depth and the accumulated water above the pavement for 

passenger cars with a tire pressure of 32 psi and texture depth of 0.02 inch. When the water 

above the pavement flows along one travel lane, the comparison shows for vehicles with 

nearly bare tires, hydroplaning would not occur up to the speed of 50 mph. For rain 

intensities up to 1.5 in/hr, hydroplaning will not occur for vehicle speeds up to 55 mph if 

the cross slope is greater than 2.2%. When the flow path is two travel lanes, vehicles with 

nearly bald tires will not hydroplane when traveling at speeds up to 55 mph for rain 

intensities as low as 1 in/hr if the cross slope is higher than 2.5%. There is a risk of 

hydroplaning for rain intensities at 1.5 in/hr or greater for speeds of 55 mph or greater if 

vehicle tires are nearly bald.   
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Table 4-04 Potential of Hydroplaning for Typical Tire Pressure Vehicles (P=32 psi; TXD=0.02”) 

Speed(mph) 

Tire Tread Depth (1/32 inch) 

NO. lane = 1 NO. lane = 2 

TD = 2 TD = 6 TD = 10 TD = 2 TD = 6 TD = 10 

 Rain Intensity = 0.5 in/hr 

V <50 OK OK OK OK OK OK 

V = 55 OK OK OK OK OK OK 

V = 60 1.8% OK OK 3.5% 2.0% OK 

V = 65 2.4% 2.1% 1.8% NO NO >3.5%

V = 70 2.5% 2.4% 2.3% NO NO NO 

 Rain Intensity = 1 in/hr 

V <45 OK OK OK OK OK OK 

V = 50 OK OK OK OK OK OK 

 V = 55 OK OK OK 2.5% OK OK 

 V = 60 NO 2.5% OK NO NO 3.0% 

V >65 NO NO NO NO NO NO 

 Rain Intensity = 1.5 in/hr 

V <45 OK OK OK OK OK OK 

 V = 50 OK OK OK OK OK OK 

 V = 55 2.2% OK OK NO 1.8% OK 

 V >60 NO NO * NO NO NO 

 Rain Intensity = 2 in/hr 

V <45 OK OK OK OK OK OK 

 V = 50 OK OK OK OK OK OK 

 V = 55 3.3% OK OK NO 2.6% OK 

 V >60 NO NO ** NO NO NO 

 Rain Intensity = 3 in/hr 

V <45 OK OK OK OK OK OK 

 V = 50 OK OK OK 1.7 OK OK 

 V = 55 NO 2.3% OK NO NO 2.6% 

V >60 NO NO NO NO NO NO 

Note: Cross slope 1.5% - 4% 

* No hydroplaning if V = 60 and cross slope greater or equal to 2.6%

** No hydroplaning if V = 60 and cross slope greater or equal to 3.9%
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Pavement Surface Influences on Hydroplaning 

Pavement macro-texture is a significant contributor to wet-pavement safety (25,18) 

and among the critical factors affecting hydroplaning, transportation departments have 

most control over the texture of the pavement surface, whereas the other factors identified 

fall under the domain of the user (i.e., speed, tire tread depth, and tire pressure). Pavements 

with greater macro-texture generally exhibit greater friction and also facilitate improved 

drainage, which helps to minimize hydroplaning. Pavement texture is largely defined by 

the aggregate gradation and construction quality of the wearing course.  Dense graded 

mixtures exhibit lower texture levels and more open graded mixtures possess higher texture 

levels. A typical dense fine-graded asphalt mix will possess a texture depth in the range of 

0.015 to 0.025 inches and a dense coarse graded mix can have a texture depth up to 0.05 

inches. Gap graded mixes such as Stone Matrix Asphalt (SMA) typically have a texture 

depth greater than 0.4 inches and open graded mixtures, such as Open Graded Friction 

Courses (OGFC) that are designed to be porous to promote water drainage, have texture 

depths ranging from 0.06 to 0.14 inches (26). In addition to safety benefits, the macro-

texture of OGFC has also been reported to increase fuel economy and reduce tire wear 

(27). 

Given this information and an understanding of how mixture proportions influence 

macro-texture and overall performance, pavement mixtures can be engineered to optimize 

safety and durability. Additionally, with proper pavement management techniques, 

pavements can be preserved to maintain texture and, therefore, wet weather safety. Several 

highway departments have implemented asphalt mix selection and design guidelines to 
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maximize texture appropriate to the design speed and traffic of the roadway (26). Many 

states, utilize OGFC on high speed roadways primarily for the safety benefits resulting 

from the open texture and porous nature. 

Table 4-5 provides a comparison of the hydroplaning potential of pavement 

surfaces having different texture depths (TXD) ranging from 0.02 inches (dense fine graded 

asphalt) to 0.14 inches (OGFC). In this scenario, the tire tread depth (TD) was low (4/32”) 

and the tire pressure was typical at 32 psi. The results clearly demonstrate the benefits of 

macro-texture on the pavement safety with respect to hydroplaning, especially for high 

speed, multi-lane roadways. Even at the highest rainfall intensity of 3 in/hr, the OGFC 

having average TXD of 0.1 inches would have little chance of hydroplaning with 

appropriate cross slope at typical interstate speeds. 
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Table 4-5 Hydroplaning Potential of Pavement Surfaces for Different Texture Depths 

Cross Slope 1.5% - 4.0%   Tire Tread (TD) = 4/32"  Tire Pressure = 32psi 

Flow path = 12 ft ( 1 lane) Flow path = 24 ft ( 2 lanes) 

Rainfall intensity (in/hr) Rainfall intensity (in/hr) 

I=0.5 I=1 I=1.5 I=2 I=3 I=0.5 I=1 I=1.5 I=2 I=3 

Speed (mph) TXD = 0.02 inch (e.g. Minimum Pavement Texture Depth) 

V = 45 OK OK OK OK OK OK OK OK OK OK 

V = 50 OK OK OK OK OK OK OK OK OK OK 

V = 55 OK OK OK 1.9% 3.4% OK OK 2.6% 3.9% NO 

V = 60 OK 3.4% NO NO NO 2.6% NO NO NO NO 

V = 65 2.2% NO NO NO NO NO NO NO NO NO 

V = 70 2.5% NO NO NO NO NO NO NO NO NO 

Speed (mph) TXD = 0.04 inch ( e.g. Typicall non-OGFC Pavement Texture Depth) 

V = 45 OK OK OK OK OK OK OK OK OK OK 

V = 50 OK OK OK OK OK OK OK OK OK OK 

V = 55 OK OK OK OK OK OK OK OK 1.6% 2.7% 

V = 60 OK OK 1.9% 2.8% NO OK 2.2% 3.9% NO NO 

V = 65 OK OK 2.6% 3.8% NO OK 2.9% NO NO NO 

V = 70 OK 1.6% 2.7% 4.0% NO OK 3.1% NO NO NO 

Speed (mph) TXD = 0.06 inch (e.g. Minimum OGFC Pavement Texture Depth) 

V = 45 OK OK OK OK OK OK OK OK OK OK 

V = 50 OK OK OK OK OK OK OK OK OK OK 

V = 55 OK OK OK OK OK OK OK OK OK 1.8% 

V = 60 OK OK OK OK 2.4% OK OK 1.9% 2.8% NO 

V = 65 OK OK OK 1.7% 2.9% OK OK 2.3% 3.4% NO 

V = 70 OK OK OK 1.7% 3.0% OK OK 2.3% 3.5% NO 
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Speed (mph) TXD = 0.1 inch (e.g. Average OGFC Pavement Texture Depth) 

V = 45 OK OK OK OK OK OK OK OK OK OK 

V = 50 OK OK OK OK OK OK OK OK OK OK 

V = 55 OK OK OK OK OK OK OK OK OK OK 

V = 60 OK OK OK OK OK OK OK OK OK 1.8% 

V = 65 OK OK OK OK OK OK OK OK OK 2.1% 

V = 70 OK OK OK OK OK OK OK OK OK 2.1% 

Speed (mph) TXD = 0.14 inch (e.g. Maximum OGFC Pavement Texture Depth) 

V = 45 OK OK OK OK OK OK OK OK OK OK 

V = 50 OK OK OK OK OK OK OK OK OK OK 

V = 55 OK OK OK OK OK OK OK OK OK OK 

V = 60 OK OK OK OK OK OK OK OK OK OK 

V = 65 OK OK OK OK OK OK OK OK OK OK 

V = 70 OK OK OK OK OK OK OK OK OK OK 

Conclusion 

In the absence of adequate cross slope on a roadway surface, especially during 

severe rainfall and associated inclement weather, the likelihood of ponding will increase 

(11). However, practical pavement cross slope provides a means to drain water from the 

surface laterally, minimizing ponding, reducing the potential of hydroplaning, and 

decreasing the likelihood of wet-pavement crashes (11). There is considerable agreement 

that a water depth equal to 0.06 inches is the acceptable upper limit of water depth above 

the pavement (8,13), however, this value remains debatable given an absence of evidence- 

based analytical support. For any given pavement surface, the hydroplaning potential 
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depends on the operating vehicle speed, tire characteristics, pavement surface 

characteristics, and environmental factors (20). 

This research evaluated different scenarios with variation of vehicle operating 

condition and geometric characteristics including pavement width and pavement cross 

slope to define the critical water depth at which hydroplaning occurs and the potential of 

hydroplaning. Due to lower critical water depth at higher speed (especially for vehicle 

speeds greater than 50 mph), drivers are more vulnerable to hydroplaning related crashes. 

Maintaining appropriate tire pressure and tire tread increases the critical water depth and 

consequently improves the safety of vehicles traveling on the roadways.  

Also, maintaining a comprehensive, an updated geometric characteristics (e.g. 

cross slope) dataset helps transportation agencies to identify problematic sections and 

address the problem promptly. Mobile LiDAR provides an efficient, high resolution, 

reliable cross slope measurement, which is capable to measuring and monitoring pavement 

along the roadway at highway speed; and it is practical solution to addressing this 

problematic challenge. 

The typical cross slope of South Carolina highways is 2.08%, therefore, according 

to the SCDOT’s maximum construction tolerance of ± 0.348% (14); an allowable 

minimum cross slope would be 1.73%.  Using average Mobile Terrestrial LiDAR Scanning 

(MTLS) measurement error of ± 0.19% found in previous research (11) a cross slope of 

1.54% corresponds to a water depth 0.035 and 0.055 inches near the edge of pavement for 

a rainfall intensity equal to 2 in/hr, when the travel lane is one and two lanes, respectively. 

This resulted in the low potential of hydroplaning for vehicles traveling at speeds of 45 
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mph for rainy/wet conditions with the rain intensity less than 2 in/hr. While, due to lack of 

sight vision there is an expectation for drivers to avoid driving, or to drive very slowly, 

during such heavy rainfall periods (8). 

Although most traffic crashes result from drivers’ errors (behavioral factors), with 

a better understanding of non-behavioral factors, such as geometric design parameters of 

the road, transportation engineers will be able to design and maintain  roadways with higher 

safety standards (28). The pavement properties and the roadway geometry including 

pavement cross slope, number of the travel lanes, and width of pavement, longitudinal 

grade, pavement texture, design speed and stated speed limits are the parameters that can 

be controlled by states highway agencies. Therefore, the state DOTs are able to design and 

maintain roadway safety by minimizing the potential of hydroplaning and utilizing efficient 

methods such as MTLS to identify problematic sections and promptly address problems as 

they arise. It important for all transportation stakeholders to understand that regardless of 

how safe a road is designed, hydroplaning is possible, especially if vehicles are poorly 

maintained.  As a result, driver education is crucial ensuring drivers understand the dangers 

of hydroplaning and how keeping adequate tire pressure and maintaining safe speeds is 

critical for their safety. 
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CHAPTER FIVE 

CONCLUSION 

As stated in Chapter One, the primary goal for conducting this research was to 

investigate if MTLS and ALS can be efficient, effective, and safe methods for collecting a 

system-wide, reliable, continuous, and comprehensive cross slope dataset which can serve 

multiple users in SCDOT and other state highway agencies across the country. There were 

four objectives established and achieved over the three research papers in this dissertation 

that help to reach the goal.  They are restated here: 

1. Develop an efficient work flow for extracting cross slope data from MTLS and ALS

point clouds

2. Evaluating the accuracy of MTLS and ALS technologies for system-wide

verification of highway cross slope.

3. Include both mapping grade and survey grade MTLS in the accuracy evaluation.

4. Defined the critical water depth at which hydroplaning occurs with regard to the

range of vehicle speed, tire tread depth, tire pressure, pavement surface texture,

pavement width, and highway cross slope.

 Papers I and II found the LiDAR technology could be an effective and reliable 

method for cross slope verification (objectives 1 and 2). Paper I also showed that 

unadjusted MTLS can be used to collect accurate cross slope data (objective 3).  This is a 

significant finding because the cost of a control survey is typically more than the cost of 
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MTLS.  Thus, eliminating extensive control surveys can make collecting cross slope data 

much more affordable for state highway agencies.  It is noteworthy that control surveys are 

important when positional accuracy of the LiDAR point cloud is paramount such as for 

roadway design applications.  The relative accuracy which does not require control survey 

data is sufficient for accurate cross slope measurements.    Paper III focused on the critical 

water depth at which hydroplaning occurs based on various roadway and vehicle 

parameters (objective 4).  The paper clearly indicates that adequate cross slope is of greatest 

importance to minimize the potential for hydroplaning however other factors are important 

as well.  In fact, hydroplaning can occur regardless of cross slope which makes these other 

factors important considerations for state highway agencies.  Developing a deeper 

understanding of the relationship between cross slope and these other factors can help state 

agencies to implement measures to minimize hydroplaning on their roads.  

In the first paper, the use of MTLS to extract cross slope was evaluated on 20 

stations along US-123 in Easley, SC, I-85 business loop in Spartanburg, SC, and East West  

Parkway in Anderson, SC. Since the cross slope is uniform on each travel lane, the interest 

area (travel lane) was identified using difference in intensity of the return laser from the 

roadway surface. The higher intensity of the return pulse from the white and yellow 

pavement markings at two ends of the travel lane defines the interest area. The MTLS 

provides the roadway information in the form of a dense point cloud which includes the 

easting, northing, elevation, and the intensity of all points within the point cloud. The cross 

slope was calculated at each travel lane by dividing the difference in elevation by the 

horizontal width of the travel lane and multiplying by 100 to determine cross slope in 
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percent. The comparison was conducted between both the adjusted and unadjusted MTLS 

point cloud extracted cross slopes and field survey measurements. The unadjusted LiDAR 

data did incorporate corrections from an integrated inertial measurement unit, and high 

accuracy real-time kinematic GPS, however, was not post-processed adjusted with ground 

control points. The results of a t-test statistical analysis indicated the average deviation 

between LiDAR data and field surveying measurements was less than the minimum 

acceptable accuracy value (±0.2% specified by SCDOT and SHRP 2) at the 5 % confidence 

level. This level of accuracy and the workflow used to extract cross slope data from the 

LiDAR point cloud demonstrates that MTLS is a reliable method for cross slope 

verification (Objectives 1 and 2).  It is noteworthy that both adjusted and unadjusted 

LiDAR data met the SCDOT standard achieving the third objective of the dissertation.  

The second paper compared the use of airborne and mobile LiDAR to extract the 

cross slope on five test stations corresponding to specific panel points along I-85 business 

loop in Spartanburg, SC. At each test station, the cross-section line was drawn across the 

travel lanes at the panel point coordinates located on the side of the roadway. In this study 

the elevation of the two ends of the travel lane along the reference line was acquired along 

with the width of each travel lane. Elevation data were extracted along the cross-sectional 

line every 0.2 feet (2.4 inches). Results of this research showed the feasibility of both 

MTLS and ALS to collect cross slope data efficiently, accurately, and reliably. The t-test 

statistical analysis proved that by fitting a regression line to the extracted points at 0.2 feet 

intervals the deviation between both mobile and aerial LiDAR-derived cross slopes and 

field surveying measurements was less than 0.2% at 5 % level. While the MTLS data 
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collection using the elevation of the two sides of the travel lane met the acceptable accuracy 

of the cross-sectional calculation, the difference between the ALS derived cross slopes, and 

the field surveying is over the ±0.2%, and this was statistically significant at the 5% level. 

Therefore, these results indicate that the slope of the fitted regression line is the better 

representation of the cross slope at each travel lane. Also, MTLS data collection could 

result in more accurate data for survey grade applications over ALS data collection.  

Adverse rainy weather along with inadequate highway cross slope increase the 

likelihood of water sheeting and ponding and reduce the pavement friction and could result 

in hydroplaning. Although, there is considerable agreement that a water depth equal to 0.06 

inches is the acceptable water depth above the pavement; there are situations where 

hydroplaning can occur at water depths less than 0.06 inches depending on road, vehicle, 

and environmental characteristics. Therefore, the third paper estimated the critical water 

depth and presented the potential of hydroplaning with regard to a range of vehicle speed, 

tire tread depth, tire pressure, pavement surface texture, and cross slope. 

Due to the lower critical water depth at higher speeds greater than 50 mph, drivers 

are vulnerable to hydroplaning related crashes. Higher tire pressure and tire tread depth 

increase the critical water depth and consequently improves safety.  

Maintaining a comprehensive and updated geometric characteristics (e.g. cross 

slope) dataset can help the transportation agencies to identify problematic sections and 

address problems proactively. Mobile LiDAR provides an efficient and reliable method to 

measure pavement cross slopes at highway speeds and is a practical solution to addressing 

this problematic challenge.  
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Sources of Error and Methods to Reduce Error  

This research provided a technical evaluation of ALS and multiple MTLS systems 

with respect to accuracy and precision of collected cross slope data and procedures to 

calibrate, collect, and process data. The LiDAR scanning systems have different levels of 

positional accuracy due to error sources in the sensors including GPS, IMU, DMI, the 

LiDAR scanning device, time synchronization error, and boresight error which is the 

misplacements between the LiDAR scanner and IMU measurement axes (1,2).  Cross slope 

measurement accuracy can be improved with the following:  

 GPS mission planning should be performed to ensure good satellite availability

during data collection.

 High accuracy VRS differential correction or GPS post/real-time processing using

base stations occupying Primary Survey Control (PSC) points throughout the

project area should be used.

 LiDAR scanning systems should be carefully calibrated prior to data collection.

 For MTLS, making a pass in every travel lane can result in a denser point cloud and

will improve measurement angles which will enhance overall accuracy. Note that

point density is greatest in the MTLS travel lane and diminishes in adjacent travel

lanes due to the distance.

 Least squares adjustment of the point cloud using available survey ground control

points will improve accuracy.  This adjustment increases absolute accuracy

however our research indicated that relative accuracy is still very high without post-

process.
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Benefits and Drawbacks 

LiDAR technology benefits can be divided into two categories safety benefits and 

product benefits.  

Safety Benefits 

Use of LiDAR scanning systems can improve safety by considerably reducing the 

time surveyors and other personnel are exposed to risks associated with working in close 

proximity to the traveling public. While ground control surveys are required for highest 

accuracy, the extent of exposure is far less than traditional surveying to acquire cross-

sectional measurements. Also, LiDAR scanning measurement minimizes the need for work 

zones associated with surveying operations. Work zones may include survey vehicles that 

can impair diver visibility for clear zones, shoulders, or even travel lanes.   

Product Benefits  

ALS platform is capable of measuring and monitoring large area, however, based 

on the accuracy and the density of the points the area could range up to 20,000 acres (3,4).  

For MTLS data collection up of 150 miles of highway or more per day is achievable (5). 

Also, dense point cloud allows for a nearly continuous surface modeling in the direction of 

travel and significant point coverage transversely within the line of sight of the LiDAR 

scanning device(s). The density of the point cloud virtually eliminates the need to 

interpolate between points (6).  

Additionally, a point cloud can be used for multiple purposes by multiple users and 

there are opportunities to share various applications (7). There are numerous other 
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applications within states DOTs that can benefit from MTLS and ALS including clear zone 

and roadside safety audits, asset management, cross sectional measurements (e.g., lane and 

median width, fore slope, back slope, and ditch parameters), flood plain delineation, 

transverse profiling, pavement monitoring and maintenance, surface analysis, cost 

estimating and volume extraction, and numerous others.  

Challenges and Drawbacks 

LiDAR scanning technologies have an expensive up-front cost (7); but in the long 

term will result in a cost savings with extensive use. For example, purchasing and operating 

a survey grade mobile LiDAR system and using it over a 6 year lifecycle, can produce a 

savings ranging from $1.3 million to $6.1 million (8).  

LiDAR scanning devices can only collect data within line of sight (7).  This is why 

most vehicles used in an MTLS are trucks, vans, or SUVs that allow for higher LiDAR 

mounting heights.  The higher vantage point allows for increased data collection beyond 

low lying objects such as guard rail, barriers, vegetation, or even the crown of a median.    

The point density (and accuracy) diminishes as distance increases from the MTLS travel 

path in any direction.  However, improved accuracy can be achieved by traveling in every 

lane (6).   

While a dense point cloud can provide a highly accurate data set, it can be 

challenging and time consuming to process and interpret the large dataset (9). Also, it is 

time consuming unless some or most processes are automated. The programming 
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languages and available software products that automate several processes helps to 

overcome this challenge.  

Finally, the results of this research verify and support the feasibility of LiDAR 

technology in comparison to conventional surveying techniques as an efficient, accurate, 

safe, and reliable method for cross slope verification. The use of LiDAR can increase data 

collection productivity, minimize road crew exposure to traffic concerns, and create robust, 

3D, and continuous datasets which can serve multiple users in state DOTs across the 

country. 
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Appendix A 

Survey of States 
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Appendix B 

Tukey HSD ALL Pairwise Comparisons 

End to End data acquisition 

Tukey HSD ALL Pairwise Comparisons 

Quantile = 3.36674              Adjusted df = 11.8          Adjustment = Tukey-Kramer 

Method Method Difference Std Error t ratio p-value

ALS Vendor A 0.0800 0.0450 1.79 0.5080 

ALS Vendor B 0.0499 0.0414 1.20 0.8260 

ALS Vendor C 0.0436 0.0421 1.03 0.8970 

ALS Vendor D 0.0373 0.0500 0.75 0.9718 

ALS Vendor E 0.0650 0.0569 1.14 0.8545 

Vendor A Vendor B -0.0305 0.0450 -0.68 0.9812 

Vendor A Vendor C -0.0368 0.0458 -0.80 0.9613 

Vendor A Vendor D -0.0431 0.0509 -0.85 0.9523 

Vendor A Vendor E -0.0154 0.0576 -0.27 0.9998 

Vendor B Vendor C -0.0063 0.0421 -0.15 1.0000 

Vendor B Vendor D -0.0126 0.0501 -0.25 0.9998 

Vendor B Vendor E 0.0151 0.0569 0.27 0.9998 

Vendor C Vendor D -0.0063 0.0509 -0.12 1.0000 

Vendor C Vendor E 0.0214 0.0571 0.37 0.9989 

Vendor D Vendor E 0.0277 0.0611 0.45 0.9969 
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0.2 feet interval point extraction 

Tukey HSD ALL Pairwise Comparisons 

Quantile = 3.32417         Adjusted df = 12.8        Adjustment = Tukey-Kramer 

Method Method Difference Std Error t ratio p-value

ALS Vendor A -0.0144 0.0264 -0.54 0.9938 

ALS Vendor B -0.0102 0.0246 -0.42 0.9980 

ALS Vendor C -0.0313 0.0253 -1.24 0.8116 

ALS Vendor D 0.0253 0.0289 0.87 0.9466 

ALS Vendor E -0.0154 0.0323 -0.47 0.9964 

Vendor A Vendor B 0.0041 0.0264 0.16 1.0000 

Vendor A Vendor C -0.0169 0.0272 -0.62 0.9872 

Vendor A Vendor D 0.0396 0.0297 1.33 0.7624 

Vendor A Vendor E -0.0010 0.0333 -0.03 1.0000 

Vendor B Vendor C -0.0211 0.0253 -0.83 0.9558 

Vendor B Vendor D 0.0355 0.0289 1.23 0.8167 

Vendor B Vendor E -0.0052 0.0327 -0.16 1.0000 

Vendor C Vendor D 0.0565 0.0295 1.91 0.4367 

Vendor C Vendor E 0.0159 0.0333 0.48 0.9962 

Vendor D Vendor E -0.0407 0.0348 -1.17 0.8445 
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