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Abstract 

Stereochemical active lone pairs of electrons in plays an important role in diverse range of 

physical phenomena in a plethora of materials, ranging from semiconducting halide perovskites to 

thermochromic inorganic-organic hybrids. In this paper, we demonstrate the importance of the 6s2 

lone pair on the reversible thermochromic transition in the mixed-anion inorganic compound, 

PbVO3Cl. This 6s2 stereochemically active lone pair results in subtle structural distortions upon heating 

while maintaining its overall orthorhombic structure. These distortions result in competing 

interactions with the Pb 6s2 lone pair and ultimately, a pronounced change between yellow and red at 

~200 °C.  X-ray diffraction analyses of PbVO3Cl demonstrates two-dimensional features in contrast 

to the three-dimensional network in isostructural BaVO3Cl. X-ray and neutron pair distribution 

function experiments reveal that Pb-O interatomic distances decrease upon heating, while Pb-Cl 

distances are only affected by thermal motion. X-ray photoelectron spectroscopy measurements 

provide experimental evidence of the presence of the 6s2 lone pair at the valence band maximum, 

which are corroborated by first-principles calculations. The results demonstrate a broadly 

generalizable mechanism for using repulsions between lone-pair electrons of p-block cations to drive 

discontinuous changes of local symmetry and electronic structure. 
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Introduction 

Mixed-anion systems, e.g., oxynitrides, oxysulfides and oxyhalides, stand out as a class of 

materials because of the tunability of atomic and electronic structure and therefore, semiconducting 

band gaps.1-4 Mixed-anion systems containing stereochemically active lone pairs are particularly 

interesting because structural distortions associated with the lone pairs contribute to magnetic,5 

photocatalytic,3 and nonlinear optical behavior.6-8 Comparing PbBi2OX (X = Cl, Br, I) to AEBi2OCl 

(AE = Sr, Ba) demonstrated that the hybridization between the 6s2 lone pair and O 2p resulted in an 

upward shift of the valence band  (VB) in PbBi2OX (X = Cl, Br, I), thereby making it a potential 

visible light-induced water splitting catalyst.3 Thermochromic transitions due to disorder associated 

with 5s2 lone pairs have been recently described for the organic-inorganic hybrid (2-MIm)SbI4 (MIm 

– methylimidiazolium).9 However, lone-pair-driven electronic instabilities bringing about a 

pronounced modulation of electronic structure are much less explored in all-inorganic systems. 

Stereochemically active lone pairs derived from p-block cations have long been understood to 

affect structural distortions.10 It is important to point out that in inorganic solids, stability of structural 

distortions associated with stereochemically active lone pairs are closely connected to lone pair-anion 

interactions.11 For example, in the halide perovskite, CsSnBr3, small, localized distortions invoked by 

the Sn 5s-Br 4p interactions play an important role in dielectric and optical behavior.12 The unusual 

band gap widening with temperature of PbS, PbSe and PbTe semiconductors has also been attributed 

to the emphanisis effect, in which the Pb2+ lone pairs become stereochemically active upon warming, 

leading to local distortions at elevated temperatures.13-15  The link between lone pair-anion interactions 

to structural distortion is strongly justified by the combination of experimental spectroscopic evidence 

and theoretical revised lone pair model,10, 16 leading to promising predictive abilities in the area of 

catalysis. For instance, the hybridization of Pb 6s2 or Sn 5s2 states with O 2p states in β-PbxV2O5 and 

β-SnxV2O5 yields a combination of occupied bonding and anti-bonding lone-pair—anion states. The 

latter is further stabilized by mixing with unoccupied cation 5 and 6 p-states, yielding an occupied 

hybrid “mid-gap” state above the O 2p valence band2, 17, 18 with a distinctive spectroscopic signature 

distinguishable by hard X-ray photoemission spectroscopy. Such lone-pair-derived mid-gap states 

have been utilized to extract holes from photoexcited II-VI quantum dots, enabling the design of 

heterostructures for water splitting and mitigating the longstanding challenge of photo-anodic 

corrosion of chalcogenide quantum dots that has limited their use in photocatalysis. 
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This paper establishes the unique effect of thermally induced structural distortions derived 

from a stereochemically active lone pair on a thermochromic transition in the mixed-anion inorganic 

compound, PbVO3Cl. Previous work on this material was motivated by the Pb 6s2 lone pairs.19 Unlike 

other mixed anion compounds containing lone pairs where the harder cation interacts with the oxide 

while the softer metal interacts with the softer anion, e.g., chalcogenide or halide, the 6s2 lone pairs in 

PbVO3Cl simultaneously interact with O and Cl, and thus PbVO3Cl presents a special opportunity to 

evaluate structural stability of lone pair interactions with anions of very different electronegativities. 

We show that thermally driven electrostatic repulsions between stereochemically active lone pairs on 

PbCl4 units and the concomitant lattice distortion alters the hybridization of Pb 6s2 lone pair states 

with O 2p states, resulting in a thermochromic transition at ~200°C, which brings about a reversible 

color change between yellow and red because of local distortions of the atomic structure strongly 

coupled with modulation of the electronic structure. BaVO3Cl, which does not contain a 

stereochemically active lone pair of electrons, was also prepared as a control for the comparison of 

the local structure of the two compounds. Total X-ray and neutron scattering were used to elucidate 

long and short-range crystal structures as a function of temperature.  Density functional theory (DFT) 

calculations in conjunction with X-ray absorption near-edge structure (XANES) and hard X-ray 

spectroscopies (HAXPES) provide theoretical and experimental evidence of the key involvement of 

the Pb 6s2 lone pair in the electronic structure of PbVO3Cl. 

Materials and methods 

Synthesis. 

Powder samples of PbVO3Cl were prepared in a manner similar to procedures described 

elsewhere.19 A mixture of PbO, PbCl2, and V2O5 in a 1:1:1 molar ratio was ground in an agate mortar 

and pestle. The powders were pressed into a pellet and placed inside a fused silica ampoule. The 

ampoule was subsequently sealed under vacuum, heated at 3 °C/min to 450 °C, where it dwelled for 

12 hours, and then cooled to 25 °C at 3 °C/min. The product was visibly yellow with a typical yield 

of ~86%. The impurity was found to be PbCl2 which could be removed by washing the sample with 

DI water.  

The synthesis of BaVO3Cl was based on a previously reported two-step procedure.20 First, 

V2O5 and BaCO3 were ground in an agate mortar and pestle and placed in a platinum crucible. The 

mixture was heated at 5.6 °C/min to 700 °C, where it dwelled for 6 hours, and then cooled to 25 °C 
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at 5.6 °C/min to yield BaV2O6. In the second step, a mixture of BaCl2 and BaV2O6 in a 1:1 molar ratio 

was ground, pressed into pellet, placed in a fused silica ampoule and sealed under vacuum. The sample 

was heated at 30 °C/h to 480 °C, where it dwelled for 24 hours and then cooled at 8 °C/h down to 

300 °C. The ampoule was removed from the furnace and quenched in an ice bath. The powder product 

was visible yellow with typical yields determined by X-ray powder diffraction of ~91% to ~94%.  

Structural Characterization  

Powder X-ray Diffraction 

Powder X-ray diffraction (XRD) data were collected using a PANalytical Empyrean 

diffractometer equipped with a PIXcel3D detector and Cu (λ = 1.5405980 Å) tube, which was operated 

at 45 kV and 40 mA. Data were collected over the angular range 10° ≤ 2θ ≤ 90° with a step width of 

0.008° and step rate of 0.0557 °/s at room temperature. The background was estimated by a 

polynomial function varying four coefficients. Atomic coordinates, scale factor, peak shape function 

(U, V, W), and isotropic displacement parameters were refined.  

Total Scattering Measurements 

Time-of-flight (TOF) neutron scattering data were collected at 100, 300, and 500 K on the 

nanoscale ordered materials diffractometer (NOMAD) diffractometer at the Spallation Neutron 

Source (SNS), Oak Ridge National Laboratory (ORNL) with a collection time of approximately 2 to 

4 h per sample.21 The samples were loaded into quartz capillaries and an empty capillary was subtracted 

as background. The pair distribution functions (PDF), G(r), were obtained by the transformation of 

the normalized total scattering function, S(Q), with a Qmax = 28.0 Å−1.  

Synchrotron X-ray total scattering measurements were collected on the 11-ID-B beamline at 

the Advanced Photon Source (APS) located at Argonne National Laboratory (ANL) with a photon 

wavelength of 0.1432 Å from 300 to 575 K. Samples of fine powder were transferred into a Kapton 

capillary (1.1 mm OD, 1.0 mm ID) tightly compacted by glass wool to ensure the maximum packing 

fraction. The two samples were separated in the capillary by glass wool. Data were collected every 2 

min upon warming at a rate of 5 K min−1. Corrections to obtain the S(Q) and subsequent Fourier 

transform with a Qmax of 27.55 Å−1 to obtain the G(r) was performed using the program PDFgetX2.22 

The local structure was investigated via analysis of the real-space PDF using the PDFgui software 

suite.23 Crystal structures were visualized using the VESTA suite of programs.24 
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Density Functional Theory 

First-principles calculations were performed using density functional theory, as implemented 

within the Vienna ab initio simulation package (VASP). The projector augmented wave (PAW) 

formalism was used to model electron−ion interactions.28-30 A kinetic energy cutoff of 520 eV was 

used for plane-wave basis restriction. Electronic exchange and correlation effects were included using 

the generalized gradient approximation based on the Perdew−Burke−Ernzerhof functional (GGA-

PBE).31 The strong electronic correlation of the V 3d electrons was accounted for using a Hubbard 

correction Ueff = 3.25 eV.32 Supercells with dimensions 2×2×1 were used to relax the PbVO3Cl and 

BaVO3Cl structures.  A uniform Γ-centered 4 × 4 × 4 Monkhorst−Pack k-point grid was used for 

structure relaxations. For geometry optimization, the supercells were relaxed until the cartesian 

components of the forces were below ±0.01 eV∙Å−1. 

Hard X-ray Photoelectron Spectroscopy 

Valence band HAXPES measurements were performed at the National Institute of Standards 

and Technology beamline 7-ID-2 of the National Synchrotron Light Source II at the Brookhaven 

National Laboratory. Measurements at an incident photon energy of 2 keV were performed with a 

pass energy of 200 eV, whereas the measurements at the incident photon energy of 5 keV were 

collected at a pass energy of 500 eV. The data was collected with a step size of 0.85 eV and the analyzer 

axis oriented parallel with the photoelectron polarization vector. The higher excitation of HAXPES 

circumvents deleterious charging issues that are common to ultraviolet and soft X-ray photoelectron 

spectroscopy.  Photon energy selection was accomplished using a double Si (111) crystal 

monochromator. No evidence of charging was observed during our measurements. The beam energy 

was aligned to the Fermi level of a silver foil before measurements. 

X-ray Absorption Near-Edge Structure Spectroscopy 

V L-edge and O K-edge measurements were performed at beamline 7-ID-1 of the National 

Synchrotron Light Source II of Brookhaven National Laboratory device beamline operated by the 

National Institute of Standards and Technology.  A horizontally polarized x-ray beam with a spot size 

of 10 μm was used for data collection. A grid bias of -300 V was used to reduce the low-energy 

electrons and improve surface sensitivity. A charge compensation gun was used to avert the charging 

of the samples. The data was collected with a resolution of 0.5 eV for all plotted spectra. The partial 

electron yield signals were normalized to the incident beam intensity from a freshly evaporated gold 

mesh. The spectra were energy calibrated to O K-edge for a standard TiO2 sample.  
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Results and Discussion 

Average crystal structure 

Both PbVO3Cl and BaVO3Cl adopt the orthorhombic Pnma space group, in agreement with 

previous structural reports.19 Results from powder X-ray diffraction analyses of both compounds are 

provided in Tables S1 and S2. X-ray fluorescence results (Table S3) indicate 1 mol Pb:1 mol V ratio, 

in agreement with powder XRD. 

Since PbVO3Cl and BaVO3Cl share the same space group and atomic positions, similarities in 

their crystal structures are to be expected. Their crystal structures are compared in Figures 1a and 1b. 

Both compounds include chains of edge-sharing VO5 square pyramids running in the b direction. 

Square pyramids within a chain are in a trans-configuration in which the apical oxygen points alternately 

in the ac plane as shown in Figure 1a. The VO5 square pyramids in both compounds are similarly 

distorted. The vanadium atom is slightly off-center in the VO5 square pyramid with a short doubly 

bonded apical V-O bond (1.599 - 1.611 Å) and four long bonds of 1.824 - 1.920 Å and of 1.805 - 

1.956 Å for Pb and Ba, respectively. These results agree with previous structural reports.25 

In both compounds, the chains are connected by the divalent cation (Pb2+ or Ba2+); however, 

the connectivity of Pb2+ is distinct from its Ba2+ counterpart. Each BaO5Cl4 polyhedron in BaVO3Cl 

connects to the oxygen atoms of three unique VO5 square pyramids to form a three-dimensional 

network as shown in Figure 1b. In PbVO3Cl, on the other hand, each PbO3Cl3 polyhedron connects 

two VO5 square pyramids from two neighboring chains, resulting in two-dimensional sheets in the bc 

plane, with a clear separation between layers of ~3.3 Å. This interlayer separation and coordinate 

undersaturation of the main-group cation is diagnostic of the role of stereoactive lone pairs, which 

have an approximate volume of an oxide or fluoride ion 

Coordination environments around the divalent cations in PbVO3Cl and BaVO3Cl are 

depicted in Figures 1c and 1d, respectively. The Pb2+ cation is coordinated by three oxygen atoms and 

three chlorine atoms while Ba2+ is linked to five oxygen atoms and four chlorine atoms. Two of the 

oxygen atoms also form one edge of the VO5 square pyramid base. Their interatomic distances – Pb-

O and Pb-Cl and to that of Ba-O and Ba-Cl –are slightly shorter than bond distances calculated by 

summing their radii, Pb2+ (1.19 Å), Ba2+(1.47 Å), O2- (1.40 Å) and Cl- (1.80 Å).26  
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Total Scattering 

To better understand the local structure of the two samples, analysis of the X-ray Pair 

Distribution Function (XPDF) was performed. The PDF is a histogram of all atom-atom correlations 

in  material and incorporates both Bragg and diffuse scattering from a sample, representing the local 

bonding and atom-atom interactions. Therefore, by analysing how well (or how poorly) the XPDF 

data is fit by the crystallographic Pnma structure, we can understand deficiencies in the model in the 

form of structural disorder. Fits of XPDF data, provided in Figure 2, against the structural model 

based on conventional laboratory X-ray diffraction for PbVO3Cl and BaVO3Cl illustrate that the 

average Pnma structure more accurately describes the local structure for BaVO3Cl. Although the XPDF 

data agree well with the average structural model for all temperatures (all Rw values are between 7-10% 

for the fits over and r-range of 1-6Å), the peaks at ~2.5 – 2.8 Å, which arise from Pb-O and Pb-Cl pair 

correlations, are poorly described by the average structural model for PbVO3Cl at all temperatures, 

indicating that there is more disorder in the local coordination of Pb than the average structure can 

describe. In BaVO3Cl, the analogous peaks (at ~2.9 – 3.0 Å) peak shifts towards larger r as the 

temperature increases due to thermal expansion, yet the peak remains well fit. Pair correlations were 

Figure 1: Average crystal structures of (a) PbVO3Cl and b) BaVO3Cl. Local coordination environments and interatomic 
distances of the divalent cation environment in (c) PbO3Cl3 and (d) BaO5Cl4 at room temperature. 
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determined from the partial neutron and X-ray pair distribution functions (Figure S1). Additional fitting 

of the XPDF data over various length scales can be seen in Figures S2 and S3. 

Atomic displacement parameters (ADP) provide insight into structural disorder. The 

unrealistically low Uiso of O1 obtained in our Rietveld refinements of powder X-ray diffraction data 

for PbVO3Cl (Table S2) may be attributed to the relatively low scattering power of O (compared to 

Pb) or local disorder. Hence, we were motivated to investigate ADPs using pair distribution function 

using X-ray and neutron total scattering. Isotropic ADPs (Uiso) of Pb and Ba as a function of 

temperature are shown in the right panel of Figure 2. The Uiso values increase with temperature as 

expected with increasing thermal motion. Three additional trends in Figure 2b indicate the presence 

of the lone pair:  consistently higher Uiso values, larger error and faster rate of increase of Uiso for 

PbVO3Cl with temperature. Because Pb (Z = 82) possesses more electron density than Ba (Z = 56), 

it would be reasonable to anticipate that Uiso of Pb to be smaller than Uiso of Ba; however, we observe 

the opposite trends at all temperatures, posited to arise from additional disorder from the 

stereochemically active lone pair of Pb2+. Figure 3 provides a closer view of evolution of the XPDF 

data upon warming. The peak at ~3.0 Å indicates the Pb/Ba--Cl bond (see Supplemental Figure S1 

for partials), which remains relatively unchanged in shape upon warming. A large difference in peak 

Figure 2: Left: Fits of XPDF data against the average Pnma structures for PbVO3Cl [(a) 300 K and (b) 573 K and 
BaVOCl3 [(c) 300 K and (d) 573 K]. Peaks highlighted in the dashed box indicate regions where the data 
is poorly fit in the Pb-analogue.  Right: Isotropic atomic displacement parameters (Uiso) of Pb and Ba from 
XPDF data Isotropic atomic displacement parameters (Uiso) of Pb and Ba from XPDF data 
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shape are the Pb-Pb and Ba-Ba correlations at ~5.5 Å. The Pb-Pb correlation develops a notable 

asymmetry in comparison to Ba-Ba correlations, indicating that the Pb displacements lack long-range 

correlation. This asymmetry becomes more pronounced at higher temperatures. 

 

Because oxygen is in the presence of lead with much higher scattering lengths via X-ray 

analysis, neutron pair distribution function (NPDF) data were collected to probe the oxygen 

environment. Fits of the neutron data against the Pnma structure can be found in Figure S4. 

Interestingly, the positive temperature dependence of the Pb Uiso (Figure 4) agrees with the trends 

observed in the XPDF data (Figure 2b); however, the temperature dependence of the O Uiso and Cl 

Uiso remain consistent across the temperature range (Figure 4). The right panel of Figure 4 provides 

intriguing insight into the dynamics of the crystal structure with temperature. We observe that while 

the VO5 square pyramids expand with increasing temperature as expected, the Pb-O distance decreases 

with temperature and result in an overall smaller PbO3Cl3 polyhedra at higher temperatures. The Pb-

Cl distance, however, is maintained at all temperatures, indicating that the primary structural effects 

on orbital overlap and thus observed physical properties are due to the changing Pb-O bond length. 

Therefore, the lone pair shifts towards oxygen are very subtle and that pair distribution function is 

essential to identifying the structural changes resulting from the presence of the 6s2 lone pair. The 

displacement of Pb is also temperature-dependent, and the Pb atoms shifts towards the 2D layer in 

which it already resides. While small-box modeling does provide insight into the presence of disorder 

Figure 3: XPDF data for (a) PbVO3Cl and (b) BaVO3Cl indicate that the Pb-Cl and Ba-Cl peak shape (indicated 
by a dashed line) remains relatively unchanged with temperatures, whereas the Pb-Pb correlation 
(indicated by a dashed line) develop a distinct asymmetry upon warming, in contrast to the same Ba-
Ba correlation in BaVO3Cl. 
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(observed as a poor fit by the crystallographic structure), it is noted that PDFgui applies a harmonic 

approximation and thus generates Gaussian peak shapes.23 Therefore, as the lattice becomes more 

anharmonic as a result of the lone pair stereochemistry, a Gaussian peak becomes a less accurate 

model of the data, resulting in larger error in the fit parameters. The anisotropy of the disorder will be 

further investigated with temperature-dependent single crystal X-ray diffraction studies. 

 

 

To probe the electronic structure origins of the differences in the local atomic structure of 

PbVO3Cl and BaVO3Cl, HAXPES measurements have been performed at incident photon energies 

of 2.0 and 5.0 keV. In contrast to XPS, which primarily probes surface electronic structure, the high 

excitation energies accessible in HAXPES enable interrogation of the bulk electronic structure.  

HAXPES further serves as an excellent, and indeed, quantitative probe of orbital contributions at the 

valence band.10, 18, 27 In general, photoionization cross-sections decay rapidly with an increase in 

incident photon energy; however, this effect is much more pronounced for subshells with higher 

orbital angular momentum.33-35 Therefore, by varying the incident photon energy in photoemission 

experiments, the relative energy positioning and orbital contributions of states with s, p, and d character 

can be disentangled. Photoemission profiles obtained for both PbVO3Cl and BaVO3Cl at incident 

photon energies of 2.0 and 5.0 keV are plotted in Figures 5a and 5b.10, 18, 27 A direct comparison of the 

photoemission spectra of PbVO3Cl and BaVO3Cl shows two major distinctions. First, a strong band 

centered at a binding energy of ~10.5 eV is observed for PbVO3Cl with no similar band for its s-block 

counterpart; the intensity of this feature increases with increasing incident photon energy, indicating 

the presence of electronic states with considerable Pb 6s2 character. Second, the valence band 

maximum of PbVO3Cl exhibits states higher up in energy that are not observed for BaVO3Cl. These 

Figure 4: (a) Isotropic ADPs of Pb, Cl, and O and (b) V-O, Pb-O, and Pb-Cl distances with temperature 
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states become more pronounced with an incident photon energy of 5.0 keV, again indicating their 

pronounced s character. The presence of these two features can be explained considering the revised 

lone pair model. The hybridization of the Pb 6s2 stereoactive lone pairs with O 2p and Cl 3p states 

leads to the formation of hybrid Pb 6s – O 2p and Pb 6s – Cl 3p bonding (B) and antibonding states 

(AB). The Pb 6s – O 2p and Pb 6s – Cl 3p bonding states collectively give rise to the feature observed 

at 10.5 eV in the valence band HAXPES spectra. The Pb 6s – O 2p and Pb 6s – Cl 3p antibonding 

states are further stabilized by an overlap with empty Pb 6p states in the conduction band wherein this 

energetic stabilization drives a second-order Jahn—Teller distortion. The resulting hybrid states have 

considerable s-character, are situated at the valence band maximum, and have been represented as the 

shaded lone pair states in Figures 5a and 5b. Since O 2p states are closer in energy to Pb 6s states, 

greater mixing is expected in comparison to Cl 3p states, which induces a substantially greater splitting 

of B and AB states resulting in the Pb 6s2—O 2p states being positioned at the valence band maximum. 

 Electronic structure calculations were performed for both BaVO3Cl and PbVO3Cl to further 

understand the role of Pb 6s2 lone pair states in mediating the thermochromic transition. DFT is 

constrained in the treatment of strongly correlated systems because of band gap and localization 

errors, but the results nevertheless provide a guide to interpreting the origins and relative energy 

positioning of states observed in X-ray emission and absorption spectra. The projected density of 

states (PDOS) and total density of states (TDOS) for the ground state electronic structures of 

BaVO3Cl and PbVO3Cl are plotted in Figure 6. The PDOS of BaVO3Cl and PbVO3Cl indicates that 

in both compounds the valence band maximum primarily comprises contributions from Cl 3p and O 

Figure 5: (a) HAXPES of PbVO3Cl and BaVO3Cl at an incident photon energy of 2.0 keV. (b) HAXPES of PbVO3Cl 
and BaVO3Cl at an incident photon energy of 5.0 keV. (c) XANES spectroscopy plots for α-V2O5, BaVO3Cl 
and PbVO3Cl at the V L-edge and O K-edge. 
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2p states, whereas the conduction band is derived primarily from V 3d states. In addition to Cl and O 

p-states, substantial contributions from Pb states, specifically Pb 6s and 6pz states can also be observed 

at the top of the valence band maximum in PbVO3Cl; no comparable contributions are discernible 

for the Ba analog. In other words, the DFT results corroborate the assignment of the HAXPES 

features at the top of the valence band as arising from states with considerable Pb 6s2 character. 

 

XANES measurements were also performed at the V L-edge and O K-edge to map the 

conduction band of BaVO3Cl and PbVO3Cl. XANES data for BaVO3Cl and PbVO3Cl are plotted in 

Figure 5c and compared with α-V2O5 where reliable assignments of the spectral features are available 

from excited state time-dependent DFT calculations.28 The V LIII-edge is characterized by sharp 

Figure 6: (a) GGA+U calculated ground state total density of states (TDOS) for BaVO3Cl. (b) TDOS for PbVO3Cl, Pb 
states are shaded in brown. (c) Calculated PDOS of Ba 6s in BaVO3Cl. (d) PDOS of Pb 6s and 6p showing 
the presence of lone pair states at the VBM.  
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features corresponding to transitions from V 2p core states to V 3d states split by crystal field splitting 

in the square pyramidal coordination geometry.29, 30 The V LII-edge cannot be interpreted in terms of 

electronic structure as a result of spectral broadening derived from Coster-Kronig Auger decay 

processes. The O K-edge comprises transitions from O 1s core states to O 2p states hybridized with 

V 3d states that are split by crystal-field splitting. In accordance with our calculated PDOS for V in 

Figures S1a and S1b, the V L-edge XANES plots for BaVO3Cl and PbVO3Cl exhibit similar spectral 

features. Despite the similar VO5 square pyramids observed in both PbVO3Cl and BaVO3Cl, several 

finely structured features are observed in O K-edge spectra for the former that are not observed for 

the latter. Based on the DFT calculations, strong Pb 6s and 6p hybridization with O 2p states is 

expected (Figure 6d) and indeed these lone-pair hybridized states are clearly discernible in O K-edge 

spectra.  

Lone pair states and concomitant structural distortions have been previously observed for lead 

oxides and chalcogenides as a result of the hybridization of unoccupied Pb 6p states with the 

antibonding states originating from the interaction of Pb 6s states with anion p states (Figure 7).36, 37 

However, in mixed-anion PbVO3Cl, in addition to the Pb-O hybridization, the stereoactive lone pair 

states are also amenable to mixing with Cl states. Based on photoemission measurements, the Cl 3p 

(~6 eV) atomic states are higher in the valence band as compared to O 2p (~ 9eV) atomic states. The 

closer proximity of Pb 6s states with O 2p states facilitates improved hybridization and substantial s-

character in hybrid B and AB states, which in turns promotes hybridization with Pb 6p states as 

sketched in Figure 7. Electronic structure calculations indicate Pb-O and Pb-Cl lone pair states are 

present at the valence band maximum (Figure 6b). 

Conclusion 

The change in color from yellow to red observed for PbVO3Cl above 200°C has no parallels 

in the alkaline-earth or rare-earth counterparts and suggests a thermally driven diminution of the 

bandgap. To understand the role of Pb 6s2 lone pairs in inducing a thermochromic transition in 

PbVO3Cl, the coupling between geometric and electronic structure needs to be understood. The 

XPDF and NPDF analyses show that warming the PbVO3Cl sample leads to off-centering of the Pb 

atoms, likely because of lone-pair repulsions. The lattice anharmonicity arising from the Pb 

displacement brings the Pb and O atoms closer, whereas, the Pb—Cl distances remain essentially 

unchanged. The stronger Pb—O interactions suggest improved mixing of Pb 6s2 and O 2p states, 

resulting in greater splitting of the B and AB states sketched in Figure 7.  As a result, the occupied AB 
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state will be positioned higher in energy, decreasing the effective bandgap of the system. A distinctive 

feature of V—O bonds in oxides is their highly tunable covalency/ionicity, which is manifested in the 

vast available array of binary vanadium oxide polymorphs.31 The decreased bond length and increased 

hybridization of Pb—O states is furthermore compensated by an increase in V—O bond lengths and 

expansion of the VO5 square pyramids, which is directly observed in the NPDF measurements. In 

other words, the lattice anharmonicity invoked by the anisotropic movement of Pb atoms because of 

lone pair repulsions strengthens Pb—O interactions and weakens V—O interactions. The diminished 

V 3d—O 2p hybridization furthermore reduces the splitting of the O 2p-derived valence band and 

the V 3d-derived conduction band. As sketched in Figure 10, the effective bandgap shrinks because 

of the shifting of Pb 6s2—O 2p hybrid anti-bonding states to higher energies and the accompanying 

shift of the V 3d—O2p hybridized conduction band edge to lower energies. The lone-pair driven 

structural distortions resulting in hybridization between a lone pair and O 2p and the covalency 

between the transition metal and O 2p are reminiscent of BiMnO3.32, 33 The strongly correlated changes 

Figure 7: Pictorial representation of changes in the local geometric structure of Pb upon warming and its 
effects on the bandgap which enables the thermochromic transition in PbVO3Cl. The Pb-O lone pair states 
constitute the HOMO (valence band maximum), whereas the empty V 3d – O 2p molecular states represent the 
LUMO (conduction band minimum.) The bandgap before and after the thermochromic transition is highlighted. 
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in lattice and electronic structure thus synergistically drive a decrease of the effective bandgap of 

PbVO3Cl resulting in a thermochromic transition from yellow to red at 200 oC. 
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