東北大学機関リポジト

Ūniv

ersity Repository

Investigation of magnetism and magnetic structure of anti-ThCr2Si2-type Tb202Bi by magnetization and neutron diffraction measurements

著者	Hideyuki Kawasoko, Kenji Ohoyama, Ryosuke Sei, Kota Matsumoto, Daichi Oka, Akinori Hoshikawa, Toru Ishigaki, Tomoteru Fukumura
journal or	AIP Advances
publication title	
volume	9
page range	115301
year	2019-11-08
URL	http://hdl.handle.net/10097/00130719

doi: 10.1063/1.5126399

Investigation of magnetism and magnetic structure of anti-ThCr₂Si₂-type Tb₂O₂Bi by magnetization and neutron diffraction measurements

Cite as: AIP Advances **9**, 115301 (2019); https://doi.org/10.1063/1.5126399 Submitted: 02 September 2019 . Accepted: 16 October 2019 . Published Online: 08 November 2019

Ibideyuki Kawasoko, Kenji Ohoyama, Ryosuke Sei, Kota Matsumoto,
Daichi Oka, Akinori Hoshikawa, Toru Ishigaki, and
Tomoteru Fukumura

COLLECTIONS

Paper published as part of the special topic on Chemical Physics, Energy, Fluids and Plasmas, Materials Science and Mathematical Physics

ARTICLES YOU MAY BE INTERESTED IN

Magnetic and magnetotransport properties of ThCr₂Si₂-type Ce₂O₂Bi composed of

conducting Bi²⁻ square net and magnetic Ce-O layer Applied Physics Letters **110**, 192410 (2017); https://doi.org/10.1063/1.4983280

Increased electrical conduction with high hole mobility in anti-ThCr₂Si₂-type La₂O₂Bi via oxygen intercalation adjacent to Bi square net

Applied Physics Letters 116, 191901 (2020); https://doi.org/10.1063/5.0005300

High electron mobility with significant spin-orbit coupling in rock-salt YbO epitaxial thin film

Applied Physics Letters 114, 162104 (2019); https://doi.org/10.1063/1.5085938

AIP Advances **9**, 115301 (2019); https://doi.org/10.1063/1.5126399 © 2019 Author(s).

View Online

Export Citation

ARTICLE

Investigation of magnetism and magnetic structure of anti-ThCr₂Si₂-type Tb₂O₂Bi by magnetization and neutron diffraction measurements

Cite as: AIP Advances 9, 115301 (2019); doi: 10.1063/1.5126399
Submitted: 2 September 2019 • Accepted: 16 October 2019 •
Published Online: 8 November 2019

Hideyuki Kawasoko,¹ 🕕 Kenji Ohoyama,² Ryosuke Sei,^{1,3} Kota Matsumoto,¹ Daichi Oka,¹ 🝺 Akinori Hoshikawa,⁴ Toru Ishigaki,⁴ and Tomoteru Fukumura^{1,5}

AFFILIATIONS

¹ Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

²Graduate School of Science and Engineering, Ibaraki University, Tokai 319-1106, Japan

³Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan

⁴Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai 319-1106, Japan

⁵Advanced Institute for Materials Research and Core Research Cluster, Tohoku University, Sendai 980-8577, Japan

ABSTRACT

In this study, magnetization and neutron diffraction of anti-ThCr₂Si₂-type Tb₂O₂Bi polycrystals were measured at various temperatures. The magnetization cusp at 11.1 K was confirmed to correspond to antiferromagnetic ordering with a propagation vector of [0.5 0.5 0]. In addition, a metamagnetic behavior was observed below 5.0 K. The metamagnetic behavior could be attributed to the incommensurate magnetic structure with an anomaly at 5.0 K.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5126399

ThCr₂Si₂-type compounds composed of an alternative stack of Cr₂Si₂ block layer and Th monatomic square net have been investigated to explore their magnetic properties,^{1–4} because both the transition metal at the Cr site and a rare earth metal at the Th site are responsible for the magnetic properties, resulting in complex magnetic phases.^{5,6} On the other hand, anti-ThCr₂Si₂-type RE₂O₂Bi (RE = rare earth) is composed of an alternative stack of RE_2O_2 block layers and Bi square net, in which the former and the latter are responsible for electrical and magnetic properties, respectively.^{7–9} Recently, RE2O2Bi has attracted attention because of its electrical properties such as metal-insulator transition and superconductivity.¹⁰⁻¹⁵ However, the magnetic properties of RE2O2Bi were investigated by only magnetic susceptibility measurements, suggesting antiferromagnetic transition in RE_2O_2Bi (RE = Pr, Gd, Er).¹

In this study, we elucidated magnetism and magnetic structure of Tb₂O₂Bi, whose crystal structure has only been reported,⁹ by measuring magnetic properties and neutron diffraction. Tb₂O₂Bi was

found to undergo an antiferromagnetic transition at 11.1 K with a propagation vector of [0.5 0.5 0]. In addition, metamagnetic behavior was observed below 5.0 K, probably associated with anomalies at 5.0 K of the magnetic susceptibility and the incommensurate peak of neutron diffraction.

Tb₂O₂Bi polycrystals were synthesized by the conventional solid-state reaction. Tb₄O₇ (99.9%) powder was heated at 1000 °C in a furnace for 10 h to remove moisture. Tb (99.9%), Tb₄O₇ (99.9%), and Bi (99.9%) powders were pelletized under 20 MPa in a nitrogen-filled glove box after mixing, where the nominal compositions were Tb₂O_{1.6}Bi_{1.4} and Tb₂O_{1.5}Bi_{1.5} for magnetization measurement and powder neutron diffraction, respectively. The pellets covered with Ta foil were sintered in evacuated quartz tubes at 500 °C for 7.5 h, followed by sintering at 1000 °C for 20 h. The sintered products were ground and pelletized under 30 MPa again in the glove box, and then the pellets covered with Ta foil were sintered in evacuated quartz tubes at 1000 °C for 10 h. The

nominal composition was compensated to form the stoichiometric composition (Tb₂O₂Bi) by the evaporation of excess Bi and the additional oxidation during sintering, similar to the case of Y₂O₂Bi and Er₂O₂Bi.^{11,12} Crystal and magnetic structures were evaluated by powder X-ray diffraction (D8 DISCOVER, Bruker AXS, Cu Ka radiation) and powder neutron diffraction at different temperatures (J-PARC, BL20, iMATERIA diffractometer). Rietveld analysis was performed by using RIETAN-FP (Ref. 16) and FullProf software (Ref. 17) to identify the crystal phases and the magnetic structure. Magnetization was evaluated by the magnetic property measurement system (MPMS, Quantum Design) at different temperatures and magnetic fields. The crystal structure was drawn with the VESTA.¹⁸

Figure 1(a) shows the temperature dependence of magnetic susceptibility in field cooling at 0.01 T. From the powder X-ray diffraction (Fig. S1) and its Rietveld analysis (Table S1), the sample was confirmed to be pure phase anti-ThCr₂Si₂-type Tb₂O₂Bi. The lattice constants of Tb₂O₂Bi were calculated as a = 3.8997(2) Å and

FIG. 1. (a) Temperature dependence of magnetic susceptibility for Tb_2O_2Bi . Black curve indicates the fitting result of the Curie-Weiss law. Inset shows the magnified plot. (b) Magnetization curves of Tb_2O_2Bi at various temperatures. Inset shows the full range of magnetization curves.

FIG. 2. Neutron diffraction pattern of Tb₂O₂Bi at 40 K. Inset shows the crystal structure of Tb₂O₂Bi. Black, red, and blue lines indicate measurement pattern, simulation pattern, and their difference, respectively. Green and purple bars indicate the nuclear reflection positions of Tb₂O₂Bi and Tb₂O₃ phases, respectively. Gray areas (*d*-spacing = 1.99–2.04 and 2.31–2.36 Å) with only Al peaks from sample cells were excluded in the process of Rietveld analysis.

c = 13.3261(7) Å, similar to the previous study at 298 K (*a* = 3.896 Å and *c* = 13.317 Å).⁹ The magnetic susceptibility increased with decreasing temperature with a clear kink at $T_{\rm N}$ = 11.1 K originating from antiferromagnetic ordering of Tb₂O₂Bi, as described below. Such a kink structure was also observed in Pr₂O₂Bi, Gd₂O₂Bi, and Er₂O₂Bi polycrystals at $T_{\rm N}$ =15.0 K, 10.1 K, and 3.0 K, respectively, being attributed to antiferromagnetic transition from the magnetization measurements.¹⁰ Below the antiferromagnetic transition temperature of Tb₂O₂Bi, an additional anomaly was observed at $T_{\rm m}$ = 5.0 K. From the Curie-Weiss fitting at high temperatures, the effective Bohr magneton value $P_{\rm eff}$ was 9.86 μ_B close to theoretical value 9.72 μ_B for Tb³⁺ (4f⁸), confirming the trivalent state of Tb cation like other *RE* cations in *RE*₂O₂Bi (*RE* = Pr, Gd, Er).¹⁰

Figure 1(b) shows the magnetization curves of Tb_2O_2Bi at low temperatures. The linear magnetic field dependence was observed at 10 K and 15 K, while the nonlinear increases were observed around 1.5 T at 2.0 K and 5.0 K, indicating metamagnetic behaviors. These nonlinear behaviors below 5.0 K could be related to the anomaly at

TABLE I. Results of Rietveld analysis for the neuron diffraction pattern of Tb₂O₂Bi at 40 K (R_{wp} : *R*-factor; R_{exp} : expected *R*-factor; and χ^2 : Chi-squared value).

(iip) oxp 1	· // 1 //
Sample	Tb ₂ O ₂ Bi
Space group	I4/mmm
<i>a</i> (Å)	3.892 55(2)
<i>c</i> (Å)	13.292 37(13)
V (Å ³)	201.405(2)
Tb z	0.334 02(7)
Fraction (mol%)	79.64
$R_{ m wp}$	5.39
$R_{ m exp}$	1.52
χ^2	12.5

 $T_{\rm m}=5.0$ K in the magnetic susceptibility curve [Fig. 1(a)]. Interestingly, these two kinds of magnetic transitions were observed in ThCr₂Si₂-type Tb compounds such as TbNi₂Si₂ ($T_{\rm N}=14.6$ K and $T_{\rm m}=7.6$ K), TbNi₂Ge₂ ($T_{\rm N}=16.7$ K and $T_{\rm m}=9.6$ K), and TbCu₂Si₂ ($T_{\rm N}=11.9$ K and $T_{\rm m}=9.1$ K) despite different crystallographic positions of Tb. $^{19-22}$

In order to confirm the magnetic structure of Tb_2O_2Bi , the neutron diffraction was measured at 3.6 K and 40 K around those magnetic transition temperatures. Figure 2 shows the neutron diffraction pattern at 40 K. From the Rietveld analysis (Table I),

FIG. 3. Neutron diffraction patterns of Tb₂O₂Bi at 3.6 K and the Rietveld refinements for basis vectors of (a) [1 - 1 0], [-1 1 0]; (b) [1 1 0], [-1 - 1 0]; and (c) [0 0 1], [0 0 - 1]. Plot style is the same as that of Fig. 1. Light blue bars denote the magnetic reflection positions of the Tb₂O₂Bi phase. Gray areas (*d*-spacing = 2.00–2.03 and 2.31–2.36 Å) with only Al peaks from sample cells were excluded in the process of Rietveld analysis.

anti-ThCr₂Si₂-type Tb₂O₂Bi was confirmed as the main phase (79.64 mol%), in addition to the Tb₂O₃ secondary phase (20.46 mol%). The lattice constants of Tb₂O₂Bi were calculated as a = 3.89255(2) Å and c = 13.29237(13) Å. All peaks were generated by the nuclear reflection of Tb₂O₂Bi and Tb₂O₃, indicating no magnetic ordering at 40 K.

Figure 3(a) shows the neutron diffraction pattern at 3.6 K. Lattice constants of Tb₂O₂Bi were calculated to be a = 3.89198(11)Å and c = 13.29121(61) Å, suggesting thermal contraction without structural transition from 40 K. In addition to the nuclear reflection of Tb₂O₂Bi, magnetic components were observed at 3.6 K, in which all sharp peaks of the magnetic reflections can be attributed to antiferromagnetic ordering with a propagation vector, $k = [0.5 \ 0.5 \ 0]$. Hence, $T_{\rm N}$ = 11.1 K corresponds to the Néel temperature, at which a kink was observed in magnetic susceptibility in Fig. 1(a). The broad peaks around *d*-spacing of 4.5 Å and 6.0 Å were not explained by the propagation vector [0.5 0.5 0], suggesting the development of unknown incommensurate magnetic structures. It is noted that these magnetic reflections are not related to the antiferromagnetic transition of Tb₂O₃ at 2 K.²³ Representational analysis of space group I4/mmm with this propagation vector suggests three candidates of the magnetic structure of Tb₂O₂Bi, as illustrated in the insets of Figs. 3(a)-3(c), whose basis vectors are [1 -1 0], [-1 1 0]; [1 1 0], [-1 - 1 0]; and [0 0 1], [0 0 - 1], respectively.²⁴⁻²⁸ Among them, the magnetic structure with [1 - 1 0] and [-1 1 0] in Fig. 3(a) was best fitted by refining the parameters of the magnetic structure at 3.6 K using the Rietveld analysis (Table II).

Figure 4 shows the temperature dependence of the peak intensity of magnetic reflections below $T_N = 11.1$ K. The peak intensities of (0.5 0.5 1) and (0.5 0.5 2) monotonically increased with decreasing temperature below $T_N = 11.1$ K, indicating the development of antiferromagnetic ordering in Tb₂O₂Bi. On the other hand, the peak intensity of the incommensurate magnetic structure around *d*-spacing = 4.5 Å as described in Fig. 4 showed a discontinuity around 5 K. This behavior could be related to anomaly at 5.0 K in magnetic susceptibility, suggesting that the metamagnetic behavior was caused by the incommensurate magnetic structure in Tb₂O₂Bi, as was observed in TbNi₂Si₂, TbNi₂Ge₂, and TbCu₂Si₂.²⁰⁻²²

TABLE II. Results of Rietveld analysis for the neuron diffraction pattern of Tb₂O₂Bi at 3.6 K (R_{wp} : *R*-factor; R_{exp} : expected *R*-factor; and χ^2 : Chi-squared value).

Basis vectors	[1 - 1 0], [-1 1 0]	$[1\ 1\ 0],\ [-1\ -1\ 0]$	[0 0 1], [0 0 -1]
Sample	Tb ₂ O ₂ Bi	Tb ₂ O ₂ Bi	Tb ₂ O ₂ Bi
Space group	I4/mmm	I4/mmm	I4/mmm
a (Å)	3.891 98(11)	3.891 80(20)	3.892 03(14)
c (Å)	13.291 21(61)	13.293 53(105)	13.292 25(79)
V (Å ³)	201.329(8)	201.345(14)	201.350(11)
Tb z	0.337 49(27)	0.33376(54)	0.335 92(41)
Fraction (mol%)	76.56	75.82	75.67
R _{wp}	24.2	42.2	31.6
R _{exp}	1.18	1.18	1.18
χ^2	418	1270	713

FIG. 4. Temperature dependence of integrated intensity of (0.5 0.5 1), (0.5 0.5 2) and incommensurate peaks around *d*-spacing = 4.5 Å. Temperature dependence of magnetic susceptibility in Fig. 2(a) (dotted line) is also shown.

In summary, anti-ThCr₂Si₂-type Tb₂O₂Bi was found to show antiferromagnetic ordering and metamagnetic behavior below T_N = 11.1 K and $T_{\rm m}$ = 5.0 K, respectively. Neutron diffraction measurements indicated that a propagation vector of antiferromagnetic ordering was $[0.5 \ 0.5 \ 0]$ where basis vectors corresponded to $[1 - 1 \ 0]$ and [-1 1 0]. The incommensurate magnetic structure with an anomaly at 5.0 K was also observed below $T_{\rm N}$, being the possible origin of metamagnetic behavior in Tb₂O₂Bi.

See the supplementary material for the X-ray diffraction pattern of Tb₂O₂Bi used for the magnetization measurement.

This study was in part supported by JSPS KAKENHI (Grant Nos. 26105002 and 16H06441), JST-CREST, and Yazaki Memorial Foundation for Science and Technology. The neutron experiments at the Materials and Life Science Experimental Facility of the J-PARC were performed under a user program (Proposal No. 2017A0117).

REFERENCES

¹I. Felner and I. Mayer, "Magnetic ordering in rare earth iron silicides and germanides of the RFe₂X₂ Type," Solid State Commun. **16**, 1005 (1975). ²A. Szytuta and I. Szott, "Magnetic properties of ternary RMn₂Si₂ and RMn₂Ge₂

compounds," Solid State Commun. 40, 199 (1981).

³I. Felner and I. Nowik, "Local and itinerant magnetism and crystal structure of RRh₂Ge₂ and RRu₂Ge₂ (R = rare earth)," J. Phys. Chem. Solids 46, 681 (1985).

⁴M. Reehuis and W. Jeitschko, "Structure and magnetic properties of the phosphide $CaCo_2P_2$ and LnT_2P_2 with $ThCr_2Si_2$ structure and LnTP with PbFCl structure (Ln = lanthanoids, T = Fe, Co, Ni)," J. Phys. Chem. Solids 51, 961 (1990).

⁵J. L. Wang, S. J. Kennedy, S. J. Campbell, M. Hofmann, and S. X. Dou, "Phase gap in pseudoternary $R_{1-y}R'_yMn_2X_{2-x}X'_x$ compounds," Phys. Rev. B 87, 104401 (2013).

⁶X. Tan, Z. P. Tener, and M. Shatruk, "Correlating itinerant magnetism in RCo₂Pn₂ pnictides (R = La, Ce, Pr, Nd, Eu, Ca; Pn = P, As) to their crystal and electronic structures," Acc. Chem. Res. 51, 230 (2018).

⁷R. Benz, "Ce₂O₂Sb and Ce₂O₂Bi crystal structure," Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 27, 853 (1971).

⁸J. Nuss and M. Jansen, "Syntheses, structures and properties of the pnictide oxides R₂PnO₂ (R = Ce, Pr; Pn = Sb, Bi)," J. Alloys Compd. 480, 57 (2009).

 $^{\rm 9}$ J. Nuss and M. Jansen, "On the rare earth metal bismuthide oxides $RE_2{\rm BiO}_2~(RE$ = Nd, Tb, Dy, Ho)," Z. Anorg. Allg. Chem. 638, 611 (2012).

 $^{10}\mbox{H}.$ Mizoguchi and H. Hosono, "A metal-insulator transition in $R_2\mbox{O}_2\mbox{Bi}$ with an unusual Bi²⁻ square net (R = rare earth or Y)," J. Am. Chem. Soc. 133, 2394 (2011). ¹¹R. Sei, S. Kitani, T. Fukumura, H. Kawaji, and T. Hasegawa, "Two-dimensional superconductivity emerged at monatomic Bi²⁻ square net in layered Y₂O₂Bi via oxygen incorporation," J. Am. Chem. Soc. 138, 1085 (2016).

12 K. Terakado, R. Sei, H. Kawasoko, T. Koretsune, D. Oka, T. Hasegawa, and T. Fukumura, "Superconductivity in anti-ThCr₂Si₂-type Er₂O₂Bi induced by incorporation of excess oxygen with CaO oxidant," Inorg. Chem. 57, 10587 (2018).

¹³R. Sei, T. Fukumura, and T. Hasegawa, "Reductive solid phase epitaxy of layered Y2O2Bi with Bi2- square net from (Y, Bi) powders and Y2O3 amorphous thin film," Cryst. Growth Des. 14, 4227 (2014).

¹⁴R. Sei, T. Fukumura, and T. Hasegawa, "2D electronic transport with strong spin–orbit coupling in Bi^{2-} square net of $\mathrm{Y}_2\mathrm{O}_2\mathrm{Bi}$ thin film grown by multilayer solid-phase epitaxy," ACS Appl. Mater. Interfaces 7, 24998 (2015).

15 S. Shibata, R. Sei, T. Fukumura, and T. Hasegawa, "Magnetic and magnetotransport properties of ThCr₂Si₂-type Ce₂O₂Bi composed of conducting Bi²⁻ square net and magnetic Ce-O layer," Appl. Phys. Lett. 110, 192410 (2017).

¹⁶F. Izumi and K. Momma, "Three-dimensional visualization in powder diffraction," Solid State Phenom. 130, 15 (2007).

¹⁷J. Rodríguez-Carvajal, "Recent advances in magnetic structure determination by neutron powder diffraction," Physica B 192, 55 (1993).

¹⁸K. Momma and F. Izumi, "VESTA 3 for Three-dimensional visualization of crystal, volumetric and morphology data," J. Appl. Crystallogr. 44, 1272 (2011).

¹⁹J. M. Barandiaran, D. Gignoux, D. Schmitt, J. C. Gomezsal, and J. Rodriguez Fernandez, "Magnetic properties of RNi₂Si₂ compounds (R= rare earth)," J. Magn. Magn. Mater. 69, 61 (1987).

²⁰ T. Shigeoka, H. Fujii, M. Nishi, Y. Uwatoko, T. Takabatake, I. Oguro, K. Motoya, N. Iwata, and Y. Ito, "Metamagnetism in TbNi2Si2 single crystal," J. Phys. Soc. Jpn. 61, 4559 (1992).

²¹Z. Islam, C. Detlefs, A. I. Goldman, S. L. Bud'ko, P. C. Canfield, J. P. Hill, D. Gibbs, T. Vogt, and A. Zheludev, "Neutron diffraction and X-ray resonant exchange-scattering studies of the zero-field magnetic structures of TbNi2Ge2," Phys. Rev. B 58, 8522 (1998).

22 T. Shigeoka, M. Tanaka, T. Fujiwara, and Y. Uwatoko, "Complex magnetic phase diagrams of TbCu₂Si₂ single crystal," J. Phys.: Conf. Ser. **200**, 032065 (2010). ²³ J. B. MacChesney, H. J. Williams, R. C. Sherwood, and J. F. Potter, "Preparation and low temperature magnetic properties of the terbium oxides," J. Chem. Phys. 44, 596 (1966).

²⁴E. F. Bertaut, "Lattice theory of spin configuration," J. Appl. Phys. 33, 1138 (1962).

²⁵E. F. Bertaut, "Representation analysis of magnetic structures Acta," Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A24, 217 (1968). ²⁶E. F. Bertaut, "Magnetic structure analysis and group theory," J. Phys. Colloq. C1, 462 (1971).

²⁷E. F. Bertaut, "On group theoretical techniques in magnetic structure analysis," J. Magn. Magn. Mater. 24, 267 (1981).

²⁸A. S. Wills, "A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh)," Physica B 276, 680 (2000).