

Molecular mechanism underlying pseudopeloria in?Habenaria radiata?(Orchidaceae)

著者	Mai Mitoma, Yumi Kajino, Risa Hayashi, Miyako
	Endo, Shosei Kubota, Akira Kanno
journal or	The Plant Journal
publication title	
volume	99
number	3
page range	439-451
year	2019-03-29
URL	http://hdl.handle.net/10097/00130655

doi: 10.1111/tpj.14334

the plant journal

Molecular mechanism underlying pseudopeloria in Habenaria radiata (Orchidaceae)

Journal:	The Plant Journal
Manuscript ID	TPJ-01192-2018.R1
Manuscript Type:	Original Article
Key Words:	DEFICIENS-like gene, floral homeotic mutant, Orchidaceae, pseudopeloric mutation, retrotransposon

Molecular mechanism underlying pseudopeloria in Habenaria radiata (Orchidaceae)

Mai Mitoma¹, Yumi Kajino¹, Risa Hayashi¹, Miyako Endo¹, Shosei Kubota^{1,2}, and Akira Kanno^{1,}

¹Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; ²Present address: Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan

Author for correspondence:

Akira Kanno

Tel: +81 (0)22 217 5725

Email: kanno@ige.tohoku.ac.jp

SUMMARY

Habenaria radiata (Orchidaceae) has two whorls of perianth, comprising three greenish sepals, two white petals, and one lip (labellum). By contrast, the pseudopeloric (decreasing of the degree of zygomorphy) mutant cultivar of *H. radiata*, 'Hishou', has a shift in the identity of the dorsal sepal by a petaloid organ and the two ventral sepals by lip-like organs. Here, we isolated four DEFICIENS-like and two AGL6-like genes from H. radiata, and characterized their expression. Most of these genes revealed similar expression patterns in the wild type and in the 'Hishou' cultivar, except *HrDEF-C3*. The *HrDEF-C3* gene was expressed in petals and lip in the wild type but ectopically expressed in sepal, petals, lip, leaf, root, and bulb in 'Hishou'. Sequence analysis of the *HrDEF-C3* loci revealed that the 'Hishou' genome harbored two types of *HrDEF-C3* genes, one identical to wild type *HrDEF-C3*, and the other carrying a retrotransposon insertion in its promoter. Genetic linkage analysis of the progeny derived from an intraspecific cross between 'Hishou' and the wild type demonstrated that the mutant pseudopeloric trait was dominantly inherited and was linked to the HrDEF-C3 gene carrying the retrotransposon. These results indicate that the pseudopeloric phenotype is caused by retrotransposon insertion in the *HrDEF-C3* promoter, resulting in ectopic expression of *HrDEF-C3*. Since the expression of *HrAGL6-C2* was limited to lateral sepals and lip, overlapping expression of *HrDEF-C3* and *HrAGL6-C2* are likely responsible for the sepal to lip-like identity in the lateral sepals in 'Hishou' cultivar.

SIGNIFICANCE STATEMENT

Unlike wild type *Habenaria radiata* flowers which have a single modified medial petal into a lip, the mutant cultivar 'Hishou' flowers exhibit two additional lip-like organs replacing the lateral sepals. Here, we identified *Hret2* retrotransposon insertion in the *HrDEF-C3* gene promoter as the cause of the pseudopeloric phenotype of 'Hishou'. Based on *DEF*- and

AGL6-like genes expression patterns in wild type and 'Hishou', the differential dorsoventral expression of *HrAGL6-C2* gene is correlated with the lateral sepals to lip-like structures. **Keywords:** *DEFICIENS*-like gene, floral homeotic mutant, Orchidaceae, pseudopeloric mutation, retrotransposon.

INTRODUCTION

In the past two decades, molecular mechanisms of flower development have been extensively investigated in Arabidopsis thaliana and Antirrhinum majus (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Schwarz-Sommer et al., 1990; Theissen et al., 2000). Studies have shown that MADS-box transcription factors are key regulators of floral organ specification and development. According to the well-known 'ABCE model' of flower development (Theissen and Saedler, 2001; Bowman et al., 1991a; Soltis et al., 2007), four classes of MADS-box genes specify the formation of distinct floral organs in four whorls: the A- and E-class genes specify sepals formation in whorl 1; A-, B-, and E-class genes specify petals formation in whorl 2; B-, C-, and E-class genes determine stamen formation in whorl 3; and C- and E-class genes specify carpel development in whorl 4. The expression of A-class genes is required for the establishment of floral meristem and for specifying sepals and petals identity (Irish and Sussex 1990; Mandel et al., 1992; Bowman et al., 1993). The B-class floral homeotic genes comprise two major clades, APETALA3 (AP3)/DEFICIENS (DEF)-like and PISTILLATA (PI)/GLOBOSA (GLO)-like genes (Zahn et al., 2005), and are responsible for specifying petals and stamen identity. The loss of expression of B-class genes in Arabidopsis results in the conversion of petals to sepals and stamens to carpels (Goto and Meyerowitz 1994; Jack et al., 1992). Ectopic expression of AP3 in Arabidopsis causes a partial conversion of carpels to stamens, whereas ectopic expression of *PI* causes a partial transformation of firstwhorl sepals to petals (Jack et al., 1994). The C-class gene AGAMOUS (AG) is important for the proper development of stamens and carpels (Bowman et al., 1991b).

Orchidaceae is the largest family of flowering plants, and contains more than 25,000 species in approximately 880 genera. Orchid flowers exhibit zygomorphy of perianth organs: three sepals in whorl 1, three petals with the ventral one being strongly modified into a lip in whorl 2, a column is a compound structure formed by the fusion of one functional stamen with the three stigmas in whorl 3 and 4. The sepals and petals in an orchid flower show

The Plant Journal

almost similar phenotype; however, the lip has a different size and more complex shape than the remaining perianth segments (Rudall and Bateman, 2002).

To date, genes in the ABCE model have been characterized in several orchid genera, including *Phalaenopsis* (Tsai et al., 2004, 2005, 2008; Chen et al., 2007; Su et al., 2013; Pan et al., 2014), Oncidium (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009, 2010), Dendrobium (Yu and Goh, 2000; Skipper et al., 2005; Xu et al., 2006), and Erycina (Lin et al., 2016). To explain distinct tepal formation in orchids, two hypotheses have been proposed: a revised 'orchid code' and 'P code'. According to the revised 'orchid code', combinatorial expression patterns of duplicated *DEF*-like genes determine orchid perianth development (Mondragón-Palomino and Theißen, 2011). The expression of clade-1 and -2 genes and lack of expression of clade-3 and -4 genes leads to the development of sepals. Higher expression of clade-1 and -2 genes and lower expression of clade-3 and -4 genes is associated with the development of petals. By contrast, lower expression of clade-1 and -2 and higher expression of clade-3 and -4 genes specifies the development of the lip. According to the 'P-code' model, conserved competitive expression patterns of different AP3(DEF)/AGL6 homologs are associated with the formation of sepals, petals and lip in orchids (Hsu et al., 2015); higher-order heterotetrameric SP complex (OAP3-1/OAGL6-1/OAGL6-1/OPI) specifies sepals and petals formation, whereas the L complex (OAP3-2/OAGL6-2/OAGL6-2/OPI) is required exclusively for lip formation (Hsu *et al.*, 2015).

The genus *Habenaria* contains approximately 800 species and is one of the largest genera in orchids (Yokota, 1990). *Habenaria radiata* grows in wetlands in East Asia and is one of the popular orchids in Japan. Flowers of *H. radiata* are consisted of three greenish sepals (whorl 1), two white petals and a lip (whorl 2), and a column (whorls 3 and 4). In *H. radiata*, several mutant cultivars are known, such as 'Ryokusei' and 'Hishou'. Cultivar 'Ryokusei' has greenish flowers. The petals and lip are greenish and the column changed to greenish sepal-like organs. Recently, we isolated and characterized C- and E-class genes in

the wild type and 'Ryokusei' (Mitoma and Kanno, 2018). Our results showed that the expression of HrSEP-1 gene, which is one of E-class genes, was reduced in 'Ryokusei'. Furthermore, analysis of the genomic structure of *HrSEP-1* in the wild type and 'Ryokusei' shows that exon 1 of *HrSEP-1* in 'Ryokusei' harbors a retrotransposon *Hret1*, which suggests that the greenish mutant cultivar is caused by the insertion of retrotransposon in the HrSEP-1 coding sequence (Mitoma and Kanno, 2018). Thus, our data show that *HrSEP-1* plays a key role in tepal and column development in *H. radiata*. Another mutant cultivar 'Hishou' has a white petaloid sepal and two white lip-like sepals instead of green sepals (Figure 1a). In orchid, there are peloric (actinomorphic mutant) and pseudopeloric (decreasing of the degree of zygomorphy) mutant (Bateman and Rudall, 2006). The flower of 'Hishou' looks like that of 'Hua-Guang-Die' which is a pseudopeloric mutant in *Cymbidium sinense* (Su et al., 2018). Among the pseudopeloric mutants, 'Hishou' seems to belong to Type D pseudopeloric although half of lateral sepals change to lip-like structures (Mondragón-Palomino and Theißen, 2009). Previously, we isolated and characterized the expression of a DEF-like gene (HrDEF) and two GLO genes (HrGLO-1 and HrGLO-2), all of which are B-class genes (Kim et al., 2007). Our results showed that HrGLO-1 and HrGLO-2 exhibit similar expression patterns in the wild type and 'Hishou'. However, the expression pattern of HrDEF differs between the wild type and 'Hishou'; in the wild type, *HrDEF* is expressed in petals and lip, whereas in 'Hishou', *HrDEF* is expressed not only in petals and lip, but also in sepals. These results suggest that the floral phenotype of 'Hishou' is related to the wider range of HrDEF gene expression (Kim et al., 2007). However, there is no direct evidence of the relationship between *HrDEF* gene expression and the pseudopeloric phenotype of 'Hishou' flowers.

According to 'orchid code' and 'P code' mentioned above, *DEF*-like and *AGL6*-like genes regulate the development of distinct tepals in orchid flowers. Thus, we isolated these genes from *H. radiata* and characterized their expression in the wild type and 'Hishou' mutant cultivar. We also analyzed the genetic inheritance of the pseudopeloric phenotype Page 7 of 40

The Plant Journal

among the progeny of an intraspecific cross between the wild type and 'Hishou'. Genetic linkage analysis revealed that a mutation in the *DEF*-like gene of 'Hishou' causes the pseudopeloric phenotype. We also investigated the molecular mechanism of the homeotic conversion of lateral greenish sepals to lip-like structures in 'Hishou'.

RESULTS

Isolation of DEF-like genes from H. radiata

In general, orchid genomes sequenced so far harbors four *DEF*-like genes. We isolated these four *DEF*-like genes from *H. radiata* by rapid amplification of cDNA ends (RACE) using gene-specific primers. Phylogenetic analysis using maximum-likelihood method showed that these genes clustered into four phylogenetic clades of orchid *DEF*-like genes, clade-1, -2, -3 and -4, and were named *HrDEF-C1*, *HrDEF-C2*, *HrDEF-C3* and *HrDEF-C4*, respectively (Figure 1b). *HrDEF-C1*, *HrDEF-C2*, *HrDEF-C3* and *HrDEF-C4*, respectively (Figure 1b). *HrDEF-C1*, *HrDEF-C2*, *HrDEF-C3* and *HrDEF-C4* encode four putative MADS proteins with 227, 220, 223 and 233 amino acids, respectively (Fig. 2). Amino acid sequence alignments of *HrDEF-C1*, *HrDEF-C3* and *HrDEF-C4*, harbored the conserved MADS, K and C domains with the conserved PI-derived and paleo AP3 motifs. Although HrDEF-C2 harbored the conserved MADS and K domains, the end of C domain was not conserved among Orchid *DEF*-clade2 genes because many of them do not have PI-derived motif and paleoAP3 motif (Figure S1).

Expression analysis of B-class genes in H. radiata

We examined the expression of four *HrDEF*-like genes in the floral organs of the wild type and 'Hishou' using real time polymerase chain reaction (qRT-PCR) (Figure 1c). In the wild type, *HrDEF-C1* and *-C2* transcripts were detected in all floral organs, and these genes were highly expressed in petals. *HrDEF-C3* was expressed in petals, lip, and column, but not in sepals. Expression of *HrDEF-C4* was detected only in the petals and column.

In 'Hishou', *HrDEF-C1* was expressed in all floral organs, and its expression level in the petaloid sepal was higher than that in lip-like sepals. The *HrDEF-C2* gene was predominantly expressed in petals, and its expression level in the petaloid sepal was similar to that in lip-like sepals. The *HrDEF-C3* transcripts were detected in all floral organs, and *HrDEF-C4* was expressed in the petals and column. Expression patterns of *HrDEF-C1*, *-C2*, and *-C4* were similar between wild type and 'Hishou' flowers, whereas the expression of *HrDEF-C3* in 'Hishou' was also detected in whorl 1. These results indicate that differential expression of *HrDEF-C3* may be responsible for the homeotic conversion of sepals into petaloid sepal and lip-like sepals in 'Hishou'.

Inheritance of the pseudopeloric mutation in *H. radiata*

To investigate the inheritance of the pseudopeloric flower trait of 'Hishou', we performed intraspecific crosses between the wild type and 'Hishou' (Figure 2a). Since the female reproductive organ is sterile in 'Hishou' because the stigma is underdeveloped, crosses were made using the wild type plant ([WT] phenotype) as the female parent and 'Hishou' ([H] phenotype) as the male parent. A total of 230 F_1 hybrids were obtained from the intraspecific cross. In the F_1 generation, 186 plants produced flowers, of which 102 plants produced flowers with the mutant phenotype (F_1 [H]), and 84 plants produced flowers with the wild type phenotype (F_1 [WT]). Since F_1 [H] of the 'Hishou' type flower was female-sterile, like the 'Hishou' cultivar, we used F_1 plants with 'Hishou' type flower phenotype as the male parent and backcrossed them with the wild type as the female parent to produce the BC₁ progeny. The BC₁ progeny comprised 208 plants, of which 134 plants produced flowers. Of these, 70 plants produced 'Hishou' type flower phenotype flowers. Additionally, F_1 plants with wild type flower phenotype were self-pollinated, which produced

The Plant Journal

 F_2 plants. Of the 268 F_2 plants, 94 plants produced flowers, all of which were wild type. These results suggest that the pseudopeloric mutation of 'Hishou' is a dominant gain-offunction mutation. Moreover, both F_1 and BC₁ populations showed 1:1 segregation for the 'Hishou' type and wild type flower phenotype. This suggests that the mutant allele is heterozygous.

PCR-restriction fragment length polymorphism (RFLP) analyses

Our results showed that the pseudopeloric trait of 'Hishou' was correlated with ectopic expression of *HrDEF-C3* and 'Hishou' character was inherited dominantly. To verify the relation between genetic inheritance of the pseudopeloric trait and HrDEF-C3 gene expression, we performed PCR-restriction fragment length polymorphism (RFLP) analyses. In a previous study (Kim et al., 2010), we identified seven sequences in the C-terminal region of *HrDEF-C3* cDNA that were polymorphic between the wild type and 'Hishou'; these sequences likely represent cultivar-specific polymorphisms. Therefore, we used the Cterminal region of *HrDEF-C3* for PCR-RFLP analyses with *Hin*1II restriction enzyme (Figure S2), which cleaves homozygous wild type (WT/WT) DNA into two fragments (123) and 258 bp), homozygous 'Hishou' (H/H*) DNA into four fragments (102, 21, 180, and 78 bp), although the 21 and 78 bp fragments could not be detected in 2% agarose gel (Figure 2b), and heterozygous F_1 (WT/H) DNA into four fragments (102, 123, 180, and 258 bp). H* shows allele which cause 'Hishou' character. Genotyping the BC₁ progeny revealed that plants with 'Hishou' flowers were heterozygous at the *HrDEF-C3* locus (WT/H*), whereas plants with WT flowers carried the WT allele of *HrDEF-C3* in the homozygous state (WT/WT). The F_2 progeny showed three genotypes at the *HrDEF-C3* locus: WT/WT, WT/H, and H/H (Figure 2a, b). These data suggest that *HrDEF-C3* is associated with the 'Hishou' flower phenotype.

Structural analysis of the HrDEF-C3 gene

To identify the cause of ectopic expression of *HrDEF-C3* in 'Hishou', we compared the promoter sequences of *HrDEF-C3* between the wild type and 'Hishou'. Approximately 2,500 bp sequence upstream of the start codon (ATG) of *HrDEF-C3* was isolated with Genome Walker using *HrDEF-C3* promoter-specific primers. PCRs using these primers produced one band of approximately 400 bp in the wild type, but two bands of approximately 400 bp and 5.4 kb in 'Hishou' (Figure 3a). Sequences of the 400 bp fragments in 'Hishou' and the wild type were identical. However, the 5.4 kb fragment carried an insertion (Figure 3b and S1). The sequence of this insertion showed the typical features of *Ty1/Copia*-like retrotransposon, and we named this insertion *Habenaria* retrotransposon 2 (*Hret2*). The *Hret2* retrotransposon was 5,052 bp long, and included a target site duplication (TSD; 6 bp, AGAGAT), followed by a long terminal repeat (LTR; 306 bp), group-specific antigen (GAG; 419 bp), integrase (IN; 284 bp), reverse transcriptase (RT; 728 bp), ribonuclease H (RH; 446 bp), LTR (306 bp), and TSD (6 bp). Since two types of *HrDEF-C3* promoters were identified in 'Hishou', *HrDEF-C3* with the wild type promoter and *HrDEF-C3* with *Hret2*-containing promoter are hereafter referred to as *HrDEF-C3^W* and *HrDEF-C3^P*, respectively.

To analyze the relationship between *Hret2* insertion in the *HrDEF-C3* promoter and 'Hishou' type flower phenotype, we investigated the association between the flower phenotypes and *HrDEF-C3* genotypes among F_1 (72 individuals), F_2 (76), and BC₁ (128) populations by PCR using *HrDEF-C3* promoter-specific primers (F1 and R1) (Figure 3c). Both *HrDEF-C3^p* and *HrDEF-C3^w* promoters were amplified from progeny with 'Hishou' type flowers, but only *HrDEF-C3^w* promoter was amplified from progeny with wild type flowers (Figure 3c). Since all progeny harboring the *HrDEF-C3^p* gene produced 'Hishou' type flowers, we conclude that the pseudopeloric mutation is caused by the insertion of retrotransposon in the *HrDEF-C3* promoter.

Expression of *HrDEF-C3^P* in 'Hishou'

We investigated the expression of $HrDEF-C3^{W}$ and $HrDEF-C3^{P}$ in floral organs, leaf, root, and bulb of the wild type and 'Hishou' using semi-quantitative reverse-transcription PCR (RT-PCR). In the wild type, expression of $HrDEF-C3^{W}$ was detected in the petals, lip, and column, but not in other organs (Figure 4). By contrast, $HrDEF-C3^{W}$ expression in 'Hishou' was detected in all floral organs but not in other organs. Interestingly, $HrDEF-C3^{P}$ transcripts were detected in all floral organs as well as in leaf, root, and bulb (Figure 4). These results showed that $HrDEF-C3^{W}$ was expressed not only in whorls 2, 3, and 4, but also in whorl 1 in 'Hishou', and $HrDEF-C3^{P}$ was expressed in all organs of 'Hishou'.

Isolation and characterization of AGL6 genes in H. radiata

Although the *HrDEF-C3* gene was expressed in all floral organs and some vegetative organs in 'Hishou', only two lateral sepals were changed to lip-like structures in this cultivar. Since *AGL6*-like genes play an important role in the distinctive tepal morphology (Hsu *et al.*, 2015), we isolated two *AGL6*-like genes, *HrAGL6-C1* (LC424959) and *HrAGL6-C2* (LC424960), from wild type *H. radiata* (Figure 5a). Full-length cDNAs of *HrAGL6-C1* (953 bp) and *HrAGL6-C2* (912 bp) encoded 243 and 240 aa proteins. These genes contain the MADS-, I-, K- and C-domains. In addition, both HrAGL6-C1 and HrAGL6-C2 harbored the AGL6-I and -II motifs at the C-terminal ends (Fig. S4, Ohmori et al., 2009). Amino acid sequences of HrAGL6-C1 and HrAGL6-C2 share 66% identity.

Next, we analyzed the expression patterns of *HrAGL6-C1* and *HrAGL6-C2* genes in floral organs of the wild type and 'Hishou' using qRT-PCR. In the wild type, *HrAGL6-C1* showed a strong expression in dorsal and lateral sepals but weak expression in the petals, lip, and column, whereas *HrAGL6-C2* was expressed in the lateral sepals, lip, and column (Figure 5b). In 'Hishou', the expression of *HrAGL6-C1* was detected in dorsal sepal, lateral sepals, petals, and column, with higher expression in the column than in other organs, whereas

HrAGL6-C2 expression was detected in lateral sepals, lip, and column, with higher expression in lateral sepals than in other organs.

DISCUSSION

Expression patterns of *HrDEF*-like and *HrAGL6*-like genes were consistent with 'orchid-code' and 'P-code' models

According to the 'orchid code' and 'P code', DEF- and AGL6-like genes play important roles in the morphological differentiation of tepals in orchids (Mondragón-Palomino and Theißen, 2011; Hsu *et al.*, 2015). Among orchid species, the expression pattern of four *DEF*-like genes is almost conserved. The *DEF*-like genes in clade-1 and -2 are expressed in all floral organs (Tsai et al., 2004; Mondragón-Palomino and Theißen, 2011). The clade-3 DEF-like genes are expressed in petals, lip, and column, but not in sepals (Tsai et al., 2004; Xu et al., 2006; Mondragón-Palomino and Theißen, 2011; Hsu et al., 2015; Kim et al., 2007), whereas clade-4 DEF-like genes are specifically expressed in the lip (Mondragón-Palomino and Theißen, 2011; Xiang et al., 2017). In this study, we isolated four DEF-like genes (HrDEF-C1, -C2, -C3, and -C4) from H. radiata and investigated their expression pattern in wild type H. radiata and mutant cultivar 'Hishou'. The expression of HrDEF-Cl was predominantly in petals than in sepals and lip in wild type and 'Hishou', these results suggest that HrDEF-C1 is important for the development of petaloid organs. The expression of the *HrDEF-C2* gene was detected in all floral organs in the wild type and 'Hishou', suggesting that HrDEF-C2 gene has pleiotropic roles in tepal development. The HrDEF-C3 was not expressed in sepals in wild type, whereas *HrDEF-C3* was expressed in petaloid sepal and lip-like sepals in 'Hishou'. This expression pattern of the *HrDEF-C3* gene is consistent with our previous report (Kim et al., 2007). Expression patterns of *HrDEF-C1*, -*C2*, and -*C3* in the wild type were consistent with those in other orchid species, and these expression data almost fit the 'orchid code' (Mondragón-Palomino and Theißen, 2011). The expression of HrDEF-C4 was

Page 13 of 40

The Plant Journal

detected in petals and column in the wild type and 'Hishou', indicating that *HrDEF-C4* is not required for the establishment of lip identity in *H. radiata*. Among the four *HrDEF*-like genes, the most remarkable difference in the expression pattern was observed in *HrDEF-C3*, which showed ectopic expression in 'Hishou'; *HrDEF-C3* is most likely associated with the pseudopeloric mutation.

On the other hand, according to the 'P-code' hypothesis, the identity of perianth organs depends on the expression levels and interactions among B- and E-class genes (Hsu *et al.*, 2015). The L quartet (OAP3-2/OAGL6-2/OAGL6-2/OPI) specifies lip formation, whereas the SP quartet (OAP3-1/OAGL6-1/OAGL6-1/OPI) determines sepals/petals formation. Expression patterns of *HrAGL6-C1* and *-C2* genes in wild type *H. radiata* were similar to those of their orthologs in *H. ciliolaris* and *H. rhodocheila* (Hsu *et al.*, 2015). Additionally, expression patterns of *HrAGL6-C1* and *HrAGL6-C2* in wild type *H. radiata* were consistent with those in other orchid species, and almost fit the 'P-code' model. Comparative expression analyses of *HrAGL6-C1* and *HrAGL6-C2* suggested that *HrAGL6-C1* is important for the establishment of greenish sepals but not of petals and lip, whereas *HrAGL6-C2* gene is important for the formation of lip-like structures.

Pseudopeloric mutation is caused by the retrotransposon insertion in the *HrDEF-C3* promoter

Intraspecific cross between the wild type and 'Hishou' demonstrated that the pseudopeloric mutation was inherited dominantly, and the locus responsible for the pseudopeloric mutation was most likely heterozygous in 'Hishou' (Figure 2). In our previous study (Kim et al. 2010), we obtained intraspecific hybrids between wild-type and 'Hishou' in order to investigate the inheritance of pseudopeloric phenotype ('Hishou' characters). Since F_1 progeny had two types of flower with 'Hishou' type and wild-type plants, we suggested that pseudopeloric phenotype inherited dominantly (Kim et al., 2010). In this study, we investigated the

inheritance of pseudopeloric phenotype and we obtained F_2 and BC_1 generations. Since the half of the BC₁ had wild-type flowers and the other half had pseudopeloric phenotype, and all F_2 plants performed by self-pollination of F_1 [WT] plants had wild type flower, the locus of pseudopeloric mutation was considered to be heterozygous in 'Hishou'. As shown in Fig. 2, PCR-RFLP analyses revealed that *HrDEF-C3* is linked to the pseudopeloric phenotype.

Comparative sequence analysis of the *HrDEF-C3* gene in the wild type and 'Hishou' revealed the insertion of *Hret2* retrotransposon in the *HrDEF-C3* promoter in 'Hishou'. *Hret2* is a *Ty1/Copia*-like retrotransposon, similar to the *Hret1* retrotransposon isolated from the greenish flower mutant cultivar 'Ryokusei' (Mitoma and Kanno, 2018). *Hret2* (5,052 bp) is longer than *Hret1* (4,534 bp), and PCR analysis showed that both retrotransposons exist in the wild type genome (Figure S3). Our results showed that the 'Hishou' genome harbors two types of allelic *HrDEF-C3* genes: *HrDEF-C3^w*, which is identical to the wild type gene, and *HrDEF-C3^p*, which carries *Hret2* in its promoter (Figure 3a and 3b). Genotyping the wild type, 'Hishou' and their progeny using promoter-specific primers revealed that 'Hishou' and all progeny exhibiting 'Hishou' flowers were heterozygous at the *HrDEF-C3^p* (or *G3^w/HrDEF-C3^p*), whereas the wild type and all progeny with wild type flowers were homozygous for the wild type allele of *HrDEF-C3 (HrDEF-C3^w/HrDEF-C3^p*, indicating that pseudopeloric mutation is caused by *Hret2* insertion in the promoter region of *HrDEF-C3^p*.

Molecular mechanism of pseudopeloria in 'Hishou' cultivar

The expression of *HrDEF-C3* in whorl 1, in addition to other whorls, in 'Hishou' implied that *Hret2* insertion might affect the expression of the *HrDEF-C3* gene. To explore the relationship between retrotransposon insertion and the expression pattern of *HrDEF-C3*, we performed RT-PCR with *HrDEF-C3^w*- and *HrDEF-C3^p*-specific primers to examine the expression of these genes in the wild type and 'Hishou' (Figure 4). Transcripts of *HrDEF*-

The Plant Journal

 $C3^{W}$ were detected in petals, lip, and column in the wild type, whereas in 'Hishou', *HrDEF*-*C3^P* transcripts were detected in all floral organs as well as in leaf, root, and bulb. These results suggest that a part of the *Hret2* sequence might work as a promoter of *HrDEF-C3*, resulting in the ectopic expression of *HrDEF-C3*. Notably, *HrDEF-C3^W* in 'Hishou' was expressed in whorl 1, whorl 2, and column but not in vegetative organs. This expression pattern of *HrDEF-C3^W* in 'Hishou' might be related to the autoregulation of GLO and DEF proteins (Saedler and Huijser, 1993). The GLO and DEF proteins heterodimerize and bind to CArG sequences in the promoter regions of *GLO* and *DEF* genes, thus upregulating their own expression. In *H. radiata*, two *GLO*-like genes, *HrGLO-1* and *HrGLO-2*, are expressed in all floral organs (Kim *et al.*, 2007). Since the expression of *HrDEF-C3^P* was expanded to whorl 1 in 'Hishou', it is possible that HrDEF-C3^W forms a heterodimer with HrGLO proteins and induces the expression of the *HrDEF-C3^W* gene in sepals.

Although *HrDEF-C3* expression was expressed in all floral organs and in some vegetative organs in 'Hishou', only two lateral sepals and dorsal sepal were transformed into lip-like and petal-like structures, respectively. The effect of the ectopic expression of *HrDEF-C3* in 'Hishou' on the homeotic conversion of three sepals is intriguing. According to the 'P-code' model, the higher-order heterotetrameric SP complex (OAP3-1/OAGL6-1/OAGL6-1/OAGL6-1/OPI) specifies sepals/petals formation, whereas the L complex (OAP3-2/OAGL6-2/OPI) is exclusively required for lip formation (Hsu *et al.*, 2015). Here, we isolated and characterized two *AGL6*-like genes, *HrAGL6-C1* and *-C2*, from *H. radiata*, and showed that *HrAGL6-C2* was expressed in lateral sepals and lip but not in the petals and dorsal sepal (Figures 5 and 6). These expression patterns suggest that HrAGL6-C2 forms the L complex with HrDEF-C3 in lateral sepals, resulting in homeotic change from lateral sepals to lip-like structure in 'Hishou', whereas HrDEF-C1, HrAGL6-C1, and HrDEF-C3 likely form the SP complex in dorsal sepal, resulting in homeotic change from greenish dorsal sepal to petaloid sepal in 'Hishou'.

> It is generally assumed that extant orchids originate from a recent common ancestor that lived in the Late Cretaceous (76–84 million years ago) and fast increase in diversity occurred at around 65 million years ago (Ramírez et al., 2007). The number of orchid *DEF*like genes are generally four members (Mondragón-Palomino and Theißen, 2011). In contrast, analysis of Asparagales species showed that there are two *DEF*-like genes (Miura et al., 2019). It is possible that the four *DEF*-like genes in Orchidaceae were increased by a result of the whole-genome duplication and gene duplications via 62 million years ago (Mondragón-Palomino et al., 2009), after that four *DEF*-like genes caused the sub- and neofunctionalization in Orchidaceae. In this study, we clarified that *DEF*-clade3-like *HrDEF*-C3 gene involved with development of lip. In addition, we suggested L complex (HrDEF-C3/HrAGL6-C2/HrAGL6-C2/HrGLO) is necessary for lip formation. Our results strongly support the four *DEF*-like genes have acquired different functions in the course of evolution.

> In conclusion, we showed that the pseudopeloric trait in *H. radiata* is caused by the insertion of *Hret2* retrotransposon in the *HrDEF-C3* promoter. This insertion altered the spatial expression pattern of *HrDEF-C3*, causing it to be expressed in some vegetative organs as well as in the floral organs. Since *HrAGL6-C2* expression was limited to lateral sepals and lip, homeotic conversion to lip-like structure occurred only in lateral sepals. We proved that pseudopeloric mutation occurs as a result of ectopic expression of *HrDEF-C3*.

EXPERIMENTAL PROCEDURES

Plant materials

Habenaria radiata 'Aoba' and 'Ginga' (wild type cultivars) and 'Hishou' (pseudopeloric mutant cultivar) were used in this study. These cultivars were grown in a greenhouse at the Graduate School of Life Sciences, Tohoku University, Japan. Tissues were collected from flower buds (0.7–1.0 cm) and stored at -80 °C, until needed for RNA extraction. For gene

The Plant Journal

expression analysis, sepals, lip-like sepals, petaloid sepals, petals, lip, and column were dissected from 5–10 flowers of the wild type and 'Hishou'.

Cloning and characterization of DEF and AGL6-like genes from H. radiata

Total RNA was isolated from the entire flower buds of wild type cultivars using RNeasy Plant Mini Kit (QIAGEN). Poly (A)⁺ mRNA was extracted from the total RNA using Dynabeads mRNA Purification Kit (Life Technologies). First strand cDNA was synthesized from mRNA by AMV Reverse Transcriptase (Roche) using oligo dT primers (P019HA and P019HH) for the wild type and 'Hishou', respectively. The *HrDEF* and *HrAGL6* cDNAs were isolated by 3'RACE using degenerate primers specifically targeting the MADS domain. The amplification products were checked by agarose gels and purified using QIAquick Gel Extraction Kit (QIAGEN). Purified PCR products were then cloned into the pGEM-T Easy Vector (Promega). The 5' region of transcripts was obtained by 5' RACE method using 5'/3'RACE Kit, 2nd Generation (Roche). Primers used for the isolation of MADS-box genes are listed in Table S1.

Phylogenetic analysis

Predicted amino acid sequences of known MADS-box genes were downloaded from the EMBL/DDBJ/GenBank DNA database (Table S2 and S3). Full-length amino acid sequences were aligned using the ClustalW method. The phylogenetic analysis of *DEF*- and *AGL6*-like genes nucleotide sequences was constructed by maximum likelihood tree under 500 of bootstrap replicates with MEGA v7.0.26 software (Kumar et al., 2016).

Expression analysis of *HrDEF* and *HrAGL6* genes

Total RNA was isolated from sepals, petals, lips, and columns of wild type cultivars, and from the petaloid sepals, lip-like sepals, petals, lips, and columns of 'Hishou', and used for

cDNA synthesis, as described above. The expression patterns of *HrDEF-C1*, *HrDEF-C2*, *HrDEF-C3*, *HrDEF-C4*, *HrAGL6-C1*, and *HrAGL6-C2* were examined by qRT-PCR using a MiniOpticon Real-time PCR Detection System with CFX Manager software (Bio-Rad) and gene-specific primers (Table S1). The cycling program was as follows: preheating at 95 °C for 3 min, followed by 40 cycles of 95 °C for 10 s and 64 °C for 1 min, and lastly melt curve analysis (60–90 °C). All qRT-PCR experiments were performed in triplicate. *Eukaryotic translation elongation factor 1A* (*eEF1A*) was used as an internal control for standardization.

Isolation of the *HrDEF-C3* promoter from the wild type and 'Hishou' by genome walking

The modified hexadecyl trimethylammonium bromide (CTAB) method was used to obtain genomic DNA from *H. radiata* leaves. Genomic DNA was digested with four blunt-end restriction enzymes (*Dra*I, *Eco*RV, *Pvu*II, and *Stu*I) at 37 °C overnight. The digested DNA was ligated to a custom-designed adaptor from Genome Walker Kit (Clontech) at 16 °C overnight to generate genomic DNA libraries. The primary PCR amplification was conducted with each constructed genomic DNA libraries using the outer adaptor primer (AP1) provided in the kit and a *HrDEF-C3*-specific primer (GSP1). The nested adaptor primer (AP2) and a nested *HrDEF-C3*-specific primer (GSP2) were used for the secondary PCR with the primary PCR products. The secondary PCR products were cloned into the pGEM-T Easy Vector and sequenced. Primers used for sequencing the *HrDEF-C3* promoter are listed in Table S1.

For sequence analysis of retrotransposon-like structure in *HrDEF-C3* promoter, we performed genomic PCR. Genomic PCR was performed on genomic DNA from the leaves of wild type and 'Hishou' after adjusting the concentration as $100ng/\mu$ l. For genomic PCR, we used Tks Gflex DNA Polymerase (TaKaRa Bio Inc.) in a 25 µL reaction mixture containing 50 ng total DNA and P1-P4 primers (Table S1, 50 pmol of each primer) with a TaKaRa PCR Thermal Cycler Dice (TaKaRa Bio Inc.). The PCR consisted of an initial incubation step for

1 min at 94°C, followed by 35 cycles at 98°C for 10 sec, 67°C for 15 seconds, and 68°C for 3 min.

Expression analysis of HrDEF-C3^W and HrDEF-C3^P

Total RNA was extracted from floral organs, leaf, root, and bulb, and cDNAs were synthesized as described above. $HrDEF-C3^{W}$ gene specific primer pair was designed between the promoter and exon 1. The specific primer pair for $HrDEF-C3^{P}$ was designed between *Hret2* and exon 1. PCR was performed in a 25 µl reaction containing an adjusted amount of first-strand cDNA, 10 pmol each of forward and reverse gene-specific primers, 0.5 mM dNTPs, 2.5 ml of 10× PCR buffer, and 0.5 units of Ex*Taq* DNA polymerase (Takara). The PCR conditions were as follows: preheating at 96 °C for 2 min, followed by 32 cycles of denaturation at 96 °C for 30 s, annealing at 60 °C for 30 s, and extension at 72 °C for 1 min, and a final extension at 72 °C for 10 min. The *eEF1A* gene was used as a control for the Z internal standardization.

PCR-RFLP analyses of intraspecific hybrids

Genomic DNA was extracted from leaves of the wild type, 'Hishou', and their progeny, as described by Honda and Hirai (1990). PCR was performed using ExTag and gene-specific primers designed in the C-terminal region of *HrDEF-C3* (Kim et al., 2010). The PCR conditions were as follows: denaturation at 96 °C for 2 min, followed by 30 cycles of denaturation at 96 °C for 30 s, annealing at 58 °C for 30 s, and extension at 72 °C for 1 min, and a final extension at 72 °C for 10 min. The PCR products were digested with 5 units of Hin1II at 37 °C for 1 h. The digested samples were separated by electrophoresis on a 2% agarose gel to visualize DNA fragments.

ACCESSION NUMBERS

The *DEF*- and *AGL6*-like genes, *HrDEF-C1, C2, C4, HrAGL6-C1* and *C2* sequences have been deposited in the GenBank database with accession numbers LC424956, LC424957, LC424958, LC424959 and LC424960, respectively.

ACKNOWLEDGEMENTS

We thank Drs. Masahiro Mii, Tomohisa Yukawa, Takashi Handa, Akie Kobayashi, and So-Young Kim for their helpful discussions. We also thank Ms. Yoko Kakimoto for help with *Habenaria* orchid cultivation. This work was supported by JSPS KAKENHI Grant Numbers 17580020, 19380016, 22380018, and 25292018.

AUTHOR CONTRIBUTIONS

M.M. and A.K. designed the study; M.M., Y.K., R.H., M.E., S.K., and A.K. performed the experiments; M.M., Y.K., and S.K. analyzed the data; M.M. and A.K. wrote the paper.

SUPPORTING INFORMATION

Figure S1. Alignment of the deduced amino acid sequence of clade 2 *DEF*-like genes.
Positions with strictly conserved amino acids are highlighted in black and similar residues is denoted by gray. Boxes indicate the MADS domain, I region and K domain.
Figure S2. Structure of the *HrDEF-C3* gene in the wild type and 'Hishou' showing the location of *Hin*1II restriction sites in the C-terminal region and the insertion of retrotransposon (*Hret2*) in the promoter region. Dark gray boxes represent the *HrDEF-C3* gene. The *Hret2* retrotransposon is shown in a white box. Black triangles indicate PCR primers used in PCR-RFLP analyses. The sizes of *Hin*1II digestion products are indicated for WT/WT genotypes (one *Hin*1II recognition site; 123 and 258 bp products) and H/H* genotypes (three *Hin*1II recognition sites; 102, 21, 180, and 78 bp products).
Figure S3. PCR detection of the *Hret2* retrotransposon in the *HrDEF-C3* promoter.

The Plant Journal

(a) Schematic diagrams of the structure of *HrDEF-C3* promoter from the wild type and'Hishou'. White boxes indicate exon 1 of *HrDEF-C3*; the ATG start codon is also shown.

'Hishou' has a *Hret2* retrotransposon in the promoter of *HrDEF-C3*.

(b) PCR analysis of *HrDEF-C3* from the wild type and 'Hishou'. PCR was performed using primer sets which are specific for the promoter region (P1), the first exon of *HrDEF-C3* gene (P2) and retrotransposon (P3 and P4), as shown in Fig. S3(a). Lane M; DNA MW Standard Marker; Lane 1, 'Ginga'; Lane 2, 'Aoba'; Lane 3, 'Hishou'.

Figure S4. Alignment of the deduced amino acid sequence of AGL6-like genes.

Positions with strictly conserved amino acids are highlighted in black and similar residues is denoted by gray. Boxes indicate the MADS domain, I region, K domain, AGL6-I motif and AGL6-II motif.

Table S1. List of primers used in this study

Table S2. Accession numbers for the DEF-like genes used in the phylogenetic analysis

Table S3. Accession numbers for the AGL6-like genes used in the phylogenetic analysis

REFERENCES

- Bateman RM, Rudall PJ. (2006) The good, the bad and the ugly: using naturally occurring terata to distinguish the possible from the impossible in orchid floral evolution. *Aliso* 22: 481–496. https://doi.org/10.5642/aliso.20062201.38
- Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1991) Genetic interactions among floral homeotic genes of *Arabidopsis*. *Development* 112, 1-20.
- Bowman, J.L., Drews, G.N. and Meyerowitz, E.M. (1991) Expression of the *Arabidopsis* floral homeotic gene *AGAMOUS* is restricted to specific cell types late in flower development. *Plant Cell.* 3, 749-758. https://doi.org/10.1105/tpc.3.8.749
- Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. *Development*, 119, 721-743.
- Chang, Y.Y., Chiu, Y.F., Wu, J.W. and Yang, C.H. (2009) Four orchid (*Oncidium* Gower Ramsey) *AP1/AGL9*-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in *Arabidopsis thaliana*. *Plant Cell Physiol.* 50, 1425-1438. https://doi.org/10.1093/pcp/pcp087

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Chang, Y.Y., Kao, N.H., Li, J.Y., Hsu, W.H., Liang, Y.L., Wu, J.W. and Yang, C.H. (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. *Plant Physiol.* 152, 837-853. https://doi.org/10.1104/pp.109.147116

- Chen, D., Guo, B., Hexige, S., Zhang, T., Shen, D. and Ming, F. (2007) *SQUA*-like genes in the orchid *Phalaenopsis* are expressed in both vegetative and reproductive tissues. *Planta*. 226, 369-380. https://doi.org/10.1007/s00425-007-0488-0
- Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. *Nature*. 353, 31-37. https://doi.org/10.1038/353031a0
- Goto, K. and Meyerowitz, E.M. (1994) Function and regulation of the *Arabidopsis* floral homeotic gene *PISTILLATA*. *Genes Dev.* 8, 1548-1560. https://doi.org/10.1101/gad.8.13.1548
- Honda, H. and Hirai, A. (1990) A simple and efficient method for identification of hybrids using nonradioactive rDNA as probe. *Japan. J. Breed.* 40, 339-348. https://doi.org/10.1270/jsbbs1951.40.339
- Hsu, H.F. and Yang, C.H. (2002) An orchid (*Oncidium* Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. *Plant Cell Physiol.* 43, 1198-1209. https://doi.org/10.1093/pcp/pcf143
- Hsu, H.F., Huang, C.H., Chou, L.T. and Yang, C.H. (2003) Ectopic expression of an orchid (*Oncidium* Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44, 783-794. https://doi.org/10.1093/pcp/pcg099
- Hsu, H.F., Hsu, W.H., Lee, Y.I., Mao, W.T., Yang, J.Y., Li, J.Y. and Yang, C.H. (2015) Model for perianth formation in orchids. *Nat. Plants.* 1, 15046. https://doi.org/10.1038/NPLANTS.2015.46
- Irish, V.F. and Sussex, I.M. (1990) Function of the *apetala-1* gene during *Arabidopsis* floral development. *Plant Cell.* 2, 741-753. https://doi.org/10.1105/tpc.2.8.741
- Jack, T., Brockman, L.L. and Meyerowitz, E.M. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell. 68, 683-697. https://doi.org/10.1016/0092-8674(92)90144-2

Jack, T., Fox, G.L. and Meyerowitz, E.M. (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and post-transcriptional regulation determine floral organ identity. Cell. 76, 703-716. https://doi.org/10.1016/0092-8674(94)90509-6

Kim, S.Y., Yun, P.Y., Fukuda, T., Yokoyama, J., Kameya, T. and Kanno, A. (2007) Expression of a *DEFICIENS*-like gene correlates with the differentiation between

4

5 6

7

8 9

10

11 12

13

14 15

16

17 18

19

20 21

22 23

24

25

26 27

28 29

30

31

32 33

34

35 36

37

38 39

40

41 42

43

44 45

46

47 48

49

50 51

52

53 54

55

56 57

58

59 60

sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci. 172, 319-326. https://doi.org/10.1016/j.plantsci.2006.09.009 Kim, S.Y., Endo, M., Yun, P.Y. and Kanno, A. (2010) Production of intraspecific hybrids between wild-type and petaloid-sepal cultivars in Habenaria radiata. Scientia Hort. 124, 415-418. https://doi.org/10.1016/j.scienta.2010.01.022 Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054 Lin, C.S., Hsu, C.T., Liao, D.C., Chang, W.J., Chou, M.L., Huang, Y.T., Chen, J.J., Ko, S.S., Chan, M.T. and Shih, M.C. (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Ervcina pusilla. Plant Biotechnol J. 14, 284-298. https://doi.org/10.1111/pbi.12383 Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273-277. https://doi.org/10.1038/360273a0 Mitoma, M. and Kanno, A. (2018) The greenish flower phenotype of Habenaria radiata (Orchidaceae) is caused by a mutation in the SEPALLATA-like MADS-box gene HrSEP-1. Front Plant Sci. 9, 831. https://doi.org/10.3389/fpls.2018.00831 Miura, K., Nakada, M., Kubota, S., Sato, S., Nagano, S., Kobayashi, A., Teranishi, M., Nakano, M and Kanno, A. (2018) Expression and functional analyses of five Bclass genes in the grape hyacinth. Hort. J., https://doi.org/10.2503/hortj.UTD-036 Mondragón-Palomino, M., Hiese, L., Harter, A., Koch, M.A. and Theißen, G. (2009) Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evol Biol. 9, 81. https://doi.org/10.1186/1471-2148-9-81 Mondragón-Palomino, M. and Theißen, G. (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann. Bot. 104, 583-594. https://doi.org/10.1093/aob/mcn258 Mondragón-Palomino, M. and Theißen, G. (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'. Plant J. 66, 1008-1019. https://doi.org/10.1111/j.1365-313X.2011.04560.x Ohmori, S, Kimizu, M., Sugita, M., Miyao, A., Hirochika, H., Uchida, E., Nagato, Y. and Yoshida, H. (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS-box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21, 3008-3025. https://doi.org/10.1105/tpc.109.068742 Pan, Z.J., Chen, Y.Y., Du, J.S., Chen, Y.Y., Chung, M.C., Tsai, W.C., Wang, C.N. and Chen, H.H. (2014) Flower development of *Phalaenopsis* orchid involves

functionally divergent *SEPALLATA*-like genes. *New Phytol.* 202, 1024-1042. https://doi.org/10.1111/nph.12723

Porebski, S., Bailey, L.G. and Baum, B.R. (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components.

Plant Mol Biol Report. 15, 8-15. http://dx.doi.org/10.1007/BF02772108

- Ramírez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE (2007) Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. *Nature* 448: 1042-1045.
- Rudall, P.J. and Bateman, R.M. (2002) Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. *Biol Rev Camb Philos Soc.* 77, 403-441. https://doi.org/10.1017/S1464793102005936
- Saedler, H. and Huijser, P. (1993) Molecular biology of flower development in Antirrhinum majus (snapdragon). Gene 135, 239-243. https://doi.org/10.1016/0378-1119(93)90071-A
- Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., Sommer, H. (1990) Genetic control of flower development by homeotic genes in *Antirrhinum majus*. Science 250, 931-936.
- Skipper, M., Pedersen, K.B., Johansen, L.B., Frederiksen, S., Irish, V.F. and Johansen,
 B. (2005) Identification and quantification of expression levels of three
 FRUITFULL-like MADS-box genes from the orchid Dendrobium thyrsiflorum
 (Reichb.f.). Plant S. 169, 579-586. https://doi.org/10.1016/j.plantsci.2005.04.011
- Soltis, D.E., Chanderbali, A.S., Kim, S., Buzgo, M. and Soltis, P.S. (2007) The ABC model and its applicability to basal angiosperms. *Ann Bot.* 100, 155-163. https://doi.org/10.1093/aob/mcm117
- Su, C.L., Chen, W.C., Lee, A.Y., Chen, C.Y., Chang, Y.C., Chao, Y.T. and Shih, M.C. (2013) A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid *Phalaenopsis aphrodite*. *PLoS One* 8, e80462. https://doi.org/10.1371/journal.pone.0080462
- Su, S., Shao, X., Zhu, C., Xu, J., Lu, H., Tang, Y., Jiao, K., Guo, W., Xiao, W., Liu, Z., Luo, D., Huang, X. (2018) Transcriptome-wide analysis reveals the origin of peloria in Chinese *Cymbidium (Cymbidium sinense)*. *Plant Cell Physiol*. 59, 2064-2074. https://doi.org/10.1093/pcp/pcy130
- Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.U. and Saedler H. (2000) A short history of MADS-box genes in plants. *Plant Mol. Biol.* 42, 115-149.
- **Theissen, G. and Saedler, H.** (2001) Floral quartets. *Nature*. 409, 469-471. https://doi.org/10.1038/35054172

2
2
ر ۸
4
5
6
7
/
8
9
10
11
11
12
13
14
1
15
16
17
18
10
19
20
21
22
22
23
24
25
20
20
27
28
20
20
30
31
32
22
55
34
35
36
20
37
38
39
40
-TU 41
41
42
43
ΔΔ
45
45
46
47
10
40
49
50
51
51
52
53
54
55
55
56
57
58
50

60

Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H. and Chen, H.H. (2004) Four DEFlike MADS box genes displayed distinct floral morphogenetic roles in *Phalaenopsis* orchid. *Plant Cell Physiol.* 45, 831-844. https://doi.org/10.1093/pcp/pch095

Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., Chuang, M.H., Kuoh, C.S., Chen, W.H. and Chen, H.H. (2005) *PeMADS6*, a *GLOBOSA/PISTILLATA*-like gene in *Phalaenopsis equestris* involved in petaloid formation, and correlated with flower longevity and ovary development. *Plant Cell Physiol.* 46, 1125-1139. https://doi.org/10.1093/pcp/pci125

- Tsai, W.C., Pan, Z.J., Hsiao, Y.Y., Jeng, M.F., Wu, T.F., Chen, W.H. and Chen, H.H. (2008) Interactions of B-class complex proteins involved in tepal development in *Phalaenopsis* orchid. *Plant Cell Physiol.* 49, 814-824. https://doi.org/10.1093/pcp/pcn059
- Weigel, D. and Meyerowitz, E.M. (1994) The ABCs of floral homeotic genes. *Cell*. 78, 203-209. https://doi.org/10.1016/0092-8674(94)90291-7
- Xiang, L., Chen, Y., Chen, L., Fu, X., Zhao, K., Zhang, J. and Sun, C. (2017) B and E MADS-box genes determine the perianth formation in *Cymbidium goeringii* Rchb.f. *Physiol Plant.* 162, 353-369. https://doi.org/10.1111/ppl.12647
- **Yokota, M.** (1990) Karyomorphological studies of *Habenaria*, Orchidaceae, and allied 585 genera from Japan. *J. Sci. Hiroshima Univ. Series B, Division 2, Bot.* 23, 53-161.
- Yu, H. and Goh, C.J. (2000) Identification and characterization of three orchid MADS-box genes of the *AP1/AGL9* subfamily during floral transition. *Plant Physiol.* 123, 1325-1336. https://doi.org/10.1104/pp.123.4.1325
- Zahn, L.M., Leebens-Mack, J., DePamphilis, C.W., Ma, H. and Theißen, G. (2005) To B or not to B a flower, the role of *DEFICIENS* and *GLOBOSA* orthologs in the evolution of the angiosperms. *J Hered*. 96, 225-240. https://doi.org/10.1093/jhered/esi033

Figure Legends

Figure 1. Floral phenotype and gene expression of *HrDEF*-like genes in wild type cultivar 'Aoba' and pseudopeloric mutant cultivar 'Hishou' of *Habenaria radiata*. (a) Flowers of the wild type ('Aoba'), The wild type flower shows three greenish sepals, two white lateral petals, and a lip. (b) 'Hishou' (pseudopeloric mutant cultivar). The mutant 'Hishou' flower has a white petaloid organ, instead of a green dorsal sepal, and two green lateral sepals are replaced by white lip-like organs. Scale bars: 1 cm. (c) Phylogenetic analysis of *DEF*-like genes. The phylogenetic tree was constructed using the maximum-likelihood method. Genes

isolated from *H. radiata* are outlined in rectangles. Bootstrap values greater than 50% from 500 replicates are shown on the nodes. (d) qRT-PCR analysis of *DEF*-like gene expression in sepals (Se), petaloid sepal (W1P), lip-like sepals (W1L), petals (Pe), lip (Li), and column (Co) of the wild type and 'Hishou'. Data represent mean \pm standard error (SEM) (n = 3). Arrows indicates *HrDEF-C3* expression in whorl 1.

Figure 2. Genetic linkage analysis of *HrDEF-C3* in the wild type and 'Hishou'. (a) Phenotypes and genotypes of the wild type and 'Hishou' (parents) and their progeny are shown. The F_1 showed 1:1 ([WT]:[H]) ratio. The F_2 progeny of self-fertilizing F_1 [WT] plants showed wild type phenotype only. The BC₁ progeny derived from the F_1 [H] × wild type cross showed 1:1 ([WT]:[H]) segregation ratio. The number of each progeny and their genotypes is indicated. The H* indicated allele that has 'Hishou' character. (b) PCRrestriction fragment length polymorphism (RFLP) analyses of intraspecific hybrids. PCR fragments of the wild type contained one *Hin*1II recognition site, whereas PCR fragments of 'Hishou' contained three *Hin*1II recognition sites.

Figure 3. Genomic structure and genetic linkage analysis of the *HrDEF-C3* gene in the wild type, 'Hishou', and their progeny. (a) PCR analysis of the *HrDEF-C3* promoter in the wild type and 'Hishou'. The *HrDEF-C3* promoter-specific primers (F1, R1) are indicated below. Multiplex amplification of wild type *HrDEF-C3* promoter (400 bp) and *HrDEF-C3* promoter carrying the retrotransposon insertion (ca. 5.4 kb) were separated by electrophoresis on a 1% agarose gel. (b) Structure of the *HrDEF-C3* promoter in the wild type and 'Hishou'. The genome of 'Hishou' harbors two types of *HrDEF-C3* promoters: wild type promoter (*HrDEF-C3*^W) and promoter harboring a retrotransposon (*HrDEF-C3*^P). The retrotransposon identified in the *HrDEF-C3* promoter was 5,052 bp long and contained 8 bp target site duplications (AGAGAT) and long terminal repeats (LTR, hatched) at both 5' and 3' ends. (c)

Genetic linkage analysis of retrotransposon insertion in the *HrDEF-C3* gene promoter in the wild type, 'Hishou' and their progeny. A total of 72, 76, and 128 plants in the F_1 , F_2 , and BC_1 populations, respectively, were genotyped by PCR using *HrDEF-C3* promoter-specific primers (F1 and R1). All plants with 'Hishou' phenotype were heterozygous (*HrDEF-C3^P*), and all plants with wild type phenotype were homozygous for the wild type allele (*HrDEF-C3^W*/*HrDEF-C3^W*).

Figure 4. Retrotransposon insertion is associated with ectopic expression of HrDEF-C3. (a) Amplification of $HrDEF-C3^{W}$ and $HrDEF-C3^{P}$ cDNAs in sepals (Se), petaloid sepals (W1P), lip-like sepals (W1L), petals (Pe), lip (Lip), column (Co), flower (F), leaf (L), root (R), and bulb (Bu) of the wild type and 'Hishou' using $HrDEF-C3^{W}$ -specific primers (F1, R1) and retrotransposon-specific primers (F2, R1), as indicated. (b) Schematic representation of the expression pattern of $HrDEF-C3^{W}$ and $HrDEF-C3^{P}$ in the wild type and 'Hishou'. Organs in which $HrDEF-C3^{W}$ or $HrDEF-C3^{P}$ was expressed are indicated in yellow.

Figure 5. Phylogenetic and expression analyses of *AGL6*-like genes. (a) A phylogenetic tree was constructed using the maximum-likelihood method. Genes isolated from *H. radiata* are outlined in black. Bootstrap values greater than 50% are indicated on the nodes. (b) qRT-PCR analysis of *AGL6*-like genes in the wild type and 'Hishou'. Total RNAs were isolated from dorsal sepal (Ds), lateral sepals (Ls), petaloid sepals (W1P), lip-like sepals (W1L), petals (Pe), lip (Lip), and column (Co). Data represent mean \pm standard error (SEM) (n = 3).

Figure 6. Schematic representation of the expression pattern of *HrDEF-C3* and *HrAGL6-C2* in wild type and 'Hishou'. The expression of *HrDEF-C3* and *HrAGL6-2* is shown in yellow and pink, respectively. Floral organs expressing both genes are shown in red.

Page 28 of 40

Ре

Wild type

Lip Co

Lip Co

Lip Co

Lip Co

Se Pe

Se Pe

Pe

Se

Se Pe (W1P

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

Pe

'Hishou'

W1P W1L Pe Lip

W1P W1L Pe Lip Co

W1P W1L Pe Lip Co

W1P W1L Pe Lip Co

Со

Page 32 of 40

1	10	:	20	30	40	50	60	70	80	90	100
3 11											
4 HrDEF-C2		ENPISKQ VNDTNDO	VIISKKKLU VTVSVDDI	JIMAKAEELS SIMKKAMELT	VLCDAKVSLV. VLCDAOVSLU	I I SSSGKLAI			GUDIWNAQIE	KM QINTLINSLI DMONITLIVNI I	NE LINKIN DE TNILIN
5 CgDEF2		VNP INKQ ENDTSDO	VIISKKKLU VTVSKDDI	JIMKKAWEL I JIMKKAKEL T	VLCDAQVSLII VLCDAOVSLII	NEGGGOKI VI	VCSDSTEIKI			RMQINTLANLI RMODTLANLI	XE LINFIN ZE TNHN
7 DOMADSE		ENPTSRO	VTVSKPPI (TMKKAREL I		IFSSSCKLAT	DEC SESTEVIL			RMQUILINUI RMONTI RNI I	AD IINI IIN RETNIRM
	MOROKIEIKKI	ENITISINA ENIDTSPO	VTVSKDDI (TTKKAMELT	VLCDAQLSLI. VLCDAKVSLII	VEGGGOKLAI			GIDIWDAQIQ CEDIWDAOVO	RM QINT LIVINLI RM OS TI MNILI	
9 UMADSS 4 $E_{\rm p}$ MADS14		ENF ISKQ ENDTNRO	V I I SKKKLO VTVSK PRVO	JI I KKAMEL I DI TKKAMEL T		NESSSCKI MI	NC SDSTEIKI	VFORVOOVT	GFDIWDAQIQ CIDVWDAOVO	RM QO I LIMINLI RM ONTL MNILI	ND VINNK RETNIHK
115 modeDFF2		ENITININA ENIDTSRO	VTVSKPPI (TMKKAKELT	VLCDAQISLII VLCDAOVELII	VESSORENE VESSORENE			CIDIWHAEVE	RMONTL KDLI	VE TNOK
12											
13	110		120	130	140	150	160	1 domain 170	180	190	1 ain 200
14 15										150	200
16HrDEF-C2	RKETRORKGE	NLEELDT	K <mark>ELRGLEO</mark> I	VILEE THR TVR	FRKFHVTAΤΩ	TDTYKKKLKS	STREMYMAL VH	IEL ELEDENQ	ACSEGVEDLS	GAYGSSISM	/DLQHD
$^{17}C_{\text{gDEF}2}$	LOKETRORKGE	NLEGLDV	KALRGLEQI	KLEESIKLVR	ORKYHVIATO	TDTYKKKLRS	STTE TYA ALLH	IELKLEDDNQ	RSSEVAEDLS	GVYDCAISM	ANQQHS
18 1 Goga1DEF2	LOKEIRORKGE	NLEGLEI	KELRGLEQ	KLEESIKIVR	QRKYHVIATO	TDTYKKKLRS	STREIYTTLL	IELEVEDENQ	RRSIVAEDLI	GVYDSAILM/	ANQORT
20PeMADS5	LOKEIRORKGE	NLEGLGV	KELRGLEQ	KLEESVKIVR	QRKYHVIATQ	TDTCF KKLKS	SRQIYRALTH	IELQKLDEEN	QPCSFLVEDL	SCIYDSSIS	MANRLH
210MADS3	LQMEIRQRKGE	NLEGLDV	KELRGLEQI	KLEESIKIVR	ERKYHVIATQ	TDTYK KKLRS	STREMYPALLN	ELQEVDDEN	QQRSFIAEDL	SGVYNSAISM	MANQRL
²² EpMADS14	LQMEIRQRKGE	NLEGLDL	KELRGLEQ	KLEESIKIVR	ERKYHVIATQ	TDTYK KKLRS	STREIYTTLLN	ELQEVENEN	QQHNFMIQDL	SCVYNNEISM	MANQSL
23 - ₂ ,SpodoDEF2	LRSEIRQRIGE	NLDELDI	KELRGLEQI	VLEEAHRIVR	RRKFHVIATQ	TDTYK KKLKS	STREIYGALMH	IELELEGESRI	ECNFDADDLL	YNEDDRLGL	/YESHD
25			K dom	nain				_			
26	210		220								
27	.		.								
28 2dHrDEF-C2	EQNHRGLVLHD	HGYDWEA	MR								
30CgDEF2	EPIVQKVVYES	HHLRFP									
³ GogalDEF2	VSQICRM										
³² PeMADS5	RSEPNVQKVVR	ECHEFGF	D								
$_{34}^{33}$ OMADS3	AHCL										
3£pMADS14	AHCL										
³⁶ SpodoDEF2	LNF										
37 38											
39					SUBMITTE	D MANUSCR	IPT				
40				Sup	plement	tary Fig	. S1				
41				1-	•	, 0					

Page 35 of 40

Page 36 of 40

Supplementary Fig. S3

Supplementary Table S1. List of primers used in this study.

2	Primer name	Sequence $(5' \rightarrow 3')$	Application
3	S-HrDEF/Fw	AACTGCGYGGTCTTGAGCAAA	DEF-specific primer
4	S-HrDEF/Rv	AYYADGCRAGRCKDAGATCCTG	DEF-specific primer
5	OrchidAGL6-1/Fw	CTGAAGAGGATTGAGAAC	AGL6-1-specific primer
6 7	OrchidAGL6-1/Rv	GCATCCACCCAAGCATAA	AGL6-1-specific primer
/ 0	OrchidAGL6-2/Fw	CTCAAGAGGATTGAGAAC	AGL6-2-specific primer
0 0	OrchidAGL6-2/Rv	GCATCCATCCAAGCATAA	AGL6-2-specific primer
9 10	P018HA	GACTCGTGACGACATCG	Anchor primer for wild type
10	P019HA	GACTCGTGACGACATCGATTTTTTTTTTTTTTTTTTT	Anchor primer for wild type
12	P018HH	GACTCGAGACGTCATCG	Anchor primer for 'Hishou'
13	Р019НН	GACTCGAGACGTCATCGATTTTTTTTTTTTTTTTTT	Anchor primer for 'Hishou'
14	HrDEF-C1-full/fw	CAGGGTAAAGAGAGAGAAGG	Full length cloning
15	HrDEF-C1-full/Rv	CTATCAACCAGACACGCATC	Full length cloning
6	HrDEF-C2-full/fw	AAAGGAAAGTGCTCGGTGAA	Full length cloning
7	HrDEF-C2-full/Rv	TGCCTGTCATCATCTACAGAAGT	Full length cloning
8	HrDEF-C3-full/fw	GCTCTTCCGCTTCTTTTGC	Full length cloning
9	HrDEF-C3-full/Rv	CAAGACAACTCAAGTGATC	Full length cloning
0	HrDEF-C4-full/fw	GTCTTTGCTTTCTCTCGG	Full length cloning
1	HrDEF-C4-full/Rv	GTTTATCCGAAGAAGAAATAAACATTGG	Full length cloning
22	HrAGL6-1/Fw	GAGAGAGAAGAGTGTGGG	Full length cloning
23	HrAGL6-1/Rv	CTTGCCATACAGATAGTG	Full length cloning
24	HrAGL6-2/Fw	GATAAGGAGAGGTTGTGC	Full length cloning
25	HrAGL6-2/Rv	CAATCAGGGAATGAGAGT	Full length cloning
26	eEF1A-4/Fw	TAAGTCTGTTGAGATGCACC	Reference gene primer
27	eEF1A/Rv	CTGGCCAGGGTGGTTCATGAT	Reference gene primer
<u>28</u>	grHrDEF-C1/Fw	GGCATACAGAGCTCTAATGCACG	Real time PCR
29	qrHrDEF-C1/Rv	GGCTGGCTTGGCTGAACAAC	Real time PCR
80	qrHrDEF-C2/Fw	CGCTACTCAAACTGACACGTACA	Real time PCR
51	qtHrDEF-C2/Rv	CTCGAGTTCCAGTTCATGC	Real time PCR
0Z	qrHrDEF-C3/Fw	GAGCTTAATCCGTGAGCTG	Real time PCR
	qrHrDEF-C3/Rv	GTAGGCTGAGTGCGGAAGTAGAG	Real time PCR
94 25	qrHrDEF-C4/Fw	GAGCAGCCGGTGTTTG	Real time PCR
55 86	qrHrDEF-C4/Rv	GCGTACATCTGATGAGGAG	Real time PCR
87	rtHrAGL6-1/Fw	CGCCAGCTTGGAGAGATA	Real time PCR
38	rtHrAGL6-1/Rv	CCATTGCATTTGACTGCA	Real time PCR
39	rtHrAGL6-2/Fw	CACAAGCTTGGGGCAGAT	Real time PCR
40	qHrAGL6-2/Rv	CCATGGCCCTTGAGTGAG	Real time PCR
41	HrDEF-C3-hybrid/Fw	ATGTGGACGAAGATCCAGCAG	Genetic inheritance of pseudopeloric mutation
2	HrDEF-C3-hybrid/Rv	CAAGACAACTCAAGTGATC	Genetic inheritance of pseudopeloric mutation
3	HrDEF-C3P-hybrid/Fw	TCTTGTAGCCATTCTACATTAGCC	Genetic inheritance of <i>HrDEF-C3^P</i>
4	HrDEF-C3P-hybrid/Rv	CTCTTCGAGTACGTCACTTGCCTGTTC	Genetic inheritance of <i>HrDEF-C3^P</i>
15	AP1	GTAATACGACTCACTATAGGGC	Adapter primer for Genome Walker
16	AP2	ACTATAGGGCACGCGTGGT	Adapter primer for Genome Walker
17	HrDEF-C3-GSP1	TGAGCTCACTAGCCTTCTTCATGATCC	Isolation of HrDEF-C3 promoter
18	HrDEF-C3-GSP2	CTCTTCGAGTACGTCACTTGCCTGTTC	Isolation of HrDEF-C3 promoter
19	HrDEF-C3W/Fw	TCTCTTCCGCTTCTTTTGC	Semi-quantitative RT-PCR for <i>HrDEF-C3^W</i>
50	HrDEF-C3P/Fw	TCTTGTAGCCATTCTACATTAGCC	Semi-quantitative RT-PCR for <i>HrDEF-C3^P</i>
51	HrDEF-C3W and P/Rv	CAAGACAACTCAAGTGACC	Semi-quantitative RT-PCR for <i>HrDEF-C3^W</i> and <i>HrDEF-C3^P</i>
52	P1	GCAGCAGTGTACCACAGTCAA	Mutant gene analysis in wild type and 'Hishou'
53	P2	CTCTTCGAGTACGTCACTTGCCTGTTC	Mutant gene analysis in wild type and 'Hishou'
o4	P3	TCCCAATCACAGCCAATA	Mutant gene analysis in wild type and 'Hishou'
5	P4	GGTTGAATGTCCCCTTCAGA	Mutant gene analysis in wild type and 'Hishou'
56 57			

Gene	Spesies	Accession number	
DEF	Antirrhinum majus	AB516402	
AP3	Arabidopsis thaliana	Arabidopsis thaliana D21125	
AODEF	Asparagus officinalis	Asparagus officinalis AB094964	
CeAP3-1	Cymbidium ensifolium	Cymbidium ensifolium JQ326261	
CeAP3-3	Cymbidium ensifolium	Cymbidium ensifolium JQ326260	
CfAP3	Cymbidium faberi	HM208536	
CfDEF	Cymbidium faberi	HM208535	
CgDEF1	Cymbidium goeringii	HM106983	
CgDEF2	Cymbidium goeringii	KX347446	
CgDEF3	Cymbidium goeringii	HM106982	
CgDEF4	Cymbidium goeringii	KU058678	
CMADS1	<i>Cymbidium</i> hybrid cultivar	DQ683575	
DcAP3B	Dendrobium crumenatum	DQ119839	
DmAP3A	Dendrobium moniliforme	EU056327	
DmAP3-4	Dendrobium moniliforme	GU132995	
EnMADS15	Ervcina pusilla	KJ002740	
EpMADS14	Ervcina pusilla	KJ002739	
EpMADS13	Erycina pusilla	K 1002738	
GogalDEF1	Gongora galeata	F1804097	
GogalDEF2	Gongora galeata	F1804098	
GogalDEF3	Gongora galeata	F1804099	
HrDEF-C1	Habenaria radiata	Gongora galeata FJ804099 Habenaria radiata I C424056	
$HrDEF_C^2$	Habenaria radiata	Habenaria radiata	
HrDEF-C2 $HrDEE_C3$	Habenaria radiata	Habenaria radiata AB232663	
HrDEF-C4	Habenaria radiata	Habenaria radiata	
	Lilium longiflorum	Δ F 503913	
	Lilium regale	AB071378	
OM4DS5	Oncidium Gower Ramsey	Oncidium Gower Ramsey HM140840	
OMADS3	Oncidium Gower Ramsey	AV196350	
OMADSO	Oncidium Gower Ramsey	HM1/08/1	
$Pt \Delta P_{2}$	Phajus tancarvillage	$\frac{1101140041}{FU40051}$	
$Pt \Delta P_{2}^{2}$	Phains tancarvilleae	FUAA052	
$P_{0}MADS^{2}$	Phalaenonsis equestris	AV3781/0	
$P_{0}MADS2$	I nuivenopsis equestris	A 1 3 / 0149 A V 2701 A 0	
$I \in MADOJ$	I nuicenopsis equestris	A 1 2 / 0140 A V 270150	
$D_{0}MADS$	I nuivenopsis equestris	A 1 3 / 01 3 U A V 2701 A 7	
I EMADO4	r naidenopsis equesiris	A I J / 0 14 / E I 0 0 / 1 1 1	
SpouoDEF2	Spiranines odorata	ГЈОU4111 БЈОU4110	
SpouoDEF1	Spirantnes odorata	ГЈðU411U БІ904112	
SPOAODEF 3	spiranines odorata	FJ804112	
IGDEFA	Tulipa gesneriana	AB094965	
IGDEFB	Tulipa gesneriana	AB094966	
VaplaDEF2	Vanilla planifolia	FJ804115	
VaplaDEF3	Vanilla planifolia	FJ804117	

SUBMITTED MANUSCRIPT

Gene	Spesies	Accession number		
AtAGL6	Arabidopsis thaliana	NM_130127		
AoM3	Asparagus officinalis	AY383559		
BoMADS	Bambusa oldhamii	EF517293		
BnAGL6	Brassica napus	XM_022719094		
BoAGL6	Brassica oleracea	KC984301		
CjAGL6	Camellia japonica	JX657333		
CsAGL6	Camellia sinensis	KU862281		
CaAGL6	Coffea arabica	KJ483245		
CsAGL6	Crocus sativus	EF041505		
CeAGL6	Cymbidium ensifolium	JN613148		
CfAGL6	Cymbidium faberi	HM208534		
CgAGL6-1	Cymbidium goeringii	HM208533		
CgAGL6-2	Cymbidium goeringii	KX347450		
CgAGL6-3	Cymbidium goeringii	KU058679		
DAGL6	Dendrobium hybrid cultivar	KF550139		
EpMADS3	Erycina pusilla	KJ002728		
EpMADS5	Erycina pusilla	KJ002730		
EpMADS4	Erycina pusilla	KJ002729		
GGM9	Gnetum gnemon	AJ132215		
GpMADS3	Gnetum parvifolium	AB022665		
HrAGL6-C1	Habenaria radiata	LC424959		
HrAGL6-C2	Habenaria radiata	LC424960		
HoAGL6	Hyacinthus orientalis	AY591333		
LeAP1	Lycopersicon esculentum 🧹	AY306154		
NtAGL6A	Narcissus tazetta	EU081900		
NtAGL6B	Narcissus tazetta	EF517294		
OMADS7	Oncidium Gower Ramsey	HM140845		
OMADS1	Oncidium Gower Ramsey	HM140843		
FBP29	Petunia x hybrida	AF335245		
FBP26	Petunia x hybrida	AF176783		
PaDAL14	Picea abies	KC347012		
PrMADS3	Pinus radiata	U76726		
PrMADS2	Pinus radiata	U42400		
PtDAL1	Pinus tabuliformis	KJ711020		
PmAGL6	Prunus mume	XM_016794441		
PpAGL6	Prunus persica	XM_020557124		