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SUMMARY

Habenaria radiata (Orchidaceae) has two whorls of perianth, comprising three greenish 

sepals, two white petals, and one lip (labellum). By contrast, the pseudopeloric (decreasing of 

the degree of zygomorphy) mutant cultivar of H. radiata, ‘Hishou’, has a shift in the identity 

of the dorsal sepal by a petaloid organ and the two ventral sepals by lip-like organs. Here, we 

isolated four DEFICIENS-like and two AGL6-like genes from H. radiata, and characterized 

their expression. Most of these genes revealed similar expression patterns in the wild type 

and in the ‘Hishou’ cultivar, except HrDEF-C3. The HrDEF-C3 gene was expressed in petals 

and lip in the wild type but ectopically expressed in sepal, petals, lip, leaf, root, and bulb in 

‘Hishou’. Sequence analysis of the HrDEF-C3 loci revealed that the ‘Hishou’ genome 

harbored two types of HrDEF-C3 genes, one identical to wild type HrDEF-C3, and the other 

carrying a retrotransposon insertion in its promoter. Genetic linkage analysis of the progeny 

derived from an intraspecific cross between ‘Hishou’ and the wild type demonstrated that the 

mutant pseudopeloric trait was dominantly inherited and was linked to the HrDEF-C3 gene 

carrying the retrotransposon. These results indicate that the pseudopeloric phenotype is 

caused by retrotransposon insertion in the HrDEF-C3 promoter, resulting in ectopic 

expression of HrDEF-C3. Since the expression of HrAGL6-C2 was limited to lateral sepals 

and lip, overlapping expression of HrDEF-C3 and HrAGL6-C2 are likely responsible for the 

sepal to lip-like identity in the lateral sepals in ‘Hishou’ cultivar.

SIGNIFICANCE STATEMENT

Unlike wild type Habenaria radiata flowers which have a single modified medial petal into a 

lip, the mutant cultivar ‘Hishou’ flowers exhibit two additional lip-like organs replacing the 

lateral sepals. Here, we identified Hret2 retrotransposon insertion in the HrDEF-C3 gene 

promoter as the cause of the pseudopeloric phenotype of ‘Hishou’. Based on DEF- and 
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AGL6-like genes expression patterns in wild type and ‘Hishou’, the differential dorsoventral 

expression of HrAGL6-C2 gene is correlated with the lateral sepals to lip-like structures.

Keywords: DEFICIENS-like gene, floral homeotic mutant, Orchidaceae, pseudopeloric 

mutation, retrotransposon. 
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INTRODUCTION

In the past two decades, molecular mechanisms of flower development have been extensively 

investigated in Arabidopsis thaliana and Antirrhinum majus (Coen and Meyerowitz, 1991; 

Weigel and Meyerowitz, 1994; Schwarz-Sommer et al., 1990 ; Theissen et al., 2000). Studies 

have shown that MADS-box transcription factors are key regulators of floral organ 

specification and development. According to the well-known ‘ABCE model’ of flower 

development (Theissen and Saedler, 2001; Bowman et al., 1991a; Soltis et al., 2007), four 

classes of MADS-box genes specify the formation of distinct floral organs in four whorls: the 

A- and E-class genes specify sepals formation in whorl 1; A-, B-, and E-class genes specify 

petals formation in whorl 2; B-, C-, and E-class genes determine stamen formation in whorl 3; 

and C- and E-class genes specify carpel development in whorl 4. The expression of A-class 

genes is required for the establishment of floral meristem and for specifying sepals and petals 

identity (Irish and Sussex 1990; Mandel et al., 1992; Bowman et al., 1993). The B-class floral 

homeotic genes comprise two major clades, APETALA3 (AP3)/DEFICIENS (DEF)-like and 

PISTILLATA (PI)/GLOBOSA (GLO)-like genes (Zahn et al., 2005), and are responsible for 

specifying petals and stamen identity. The loss of expression of B-class genes in Arabidopsis 

results in the conversion of petals to sepals and stamens to carpels (Goto and Meyerowitz 1994; 

Jack et al., 1992). Ectopic expression of AP3 in Arabidopsis causes a partial conversion of 

carpels to stamens, whereas ectopic expression of PI causes a partial transformation of first-

whorl sepals to petals (Jack et al., 1994). The C-class gene AGAMOUS (AG) is important for 

the proper development of stamens and carpels (Bowman et al., 1991b).

Orchidaceae is the largest family of flowering plants, and contains more than 25,000 

species in approximately 880 genera. Orchid flowers exhibit zygomorphy of perianth organs: 

three sepals in whorl 1, three petals with the ventral one being strongly modified into a lip in 

whorl 2, a column is a compound structure formed by the fusion of one functional stamen 

with the three stigmas in whorl 3 and 4. The sepals and petals in an orchid flower show 
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almost similar phenotype; however, the lip has a different size and more complex shape than 

the remaining perianth segments (Rudall and Bateman, 2002). 

To date, genes in the ABCE model have been characterized in several orchid genera, 

including Phalaenopsis (Tsai et al., 2004, 2005, 2008; Chen et al., 2007; Su et al., 2013; Pan 

et al., 2014), Oncidium (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009, 2010), 

Dendrobium (Yu and Goh, 2000; Skipper et al., 2005; Xu et al., 2006), and Erycina (Lin et 

al., 2016). To explain distinct tepal formation in orchids, two hypotheses have been 

proposed: a revised ‘orchid code’ and ‘P code’. According to the revised ‘orchid code’, 

combinatorial expression patterns of duplicated DEF-like genes determine orchid perianth 

development (Mondragón-Palomino and Theißen, 2011). The expression of clade-1 and -2 

genes and lack of expression of clade-3 and -4 genes leads to the development of sepals. 

Higher expression of clade-1 and -2 genes and lower expression of clade-3 and -4 genes is 

associated with the development of petals. By contrast, lower expression of clade-1 and -2 

and higher expression of clade-3 and -4 genes specifies the development of the lip. According 

to the ‘P-code’ model, conserved competitive expression patterns of different 

AP3(DEF)/AGL6 homologs are associated with the formation of sepals, petals and lip in 

orchids (Hsu et al., 2015); higher-order heterotetrameric SP complex (OAP3-1/OAGL6-

1/OAGL6-1/OPI) specifies sepals and petals formation, whereas the L complex (OAP3-

2/OAGL6-2/OAGL6-2/OPI) is required exclusively for lip formation (Hsu et al., 2015).

The genus Habenaria contains approximately 800 species and is one of the largest 

genera in orchids (Yokota, 1990). Habenaria radiata grows in wetlands in East Asia and is 

one of the popular orchids in Japan. Flowers of H. radiata are consisted of three greenish 

sepals (whorl 1), two white petals and a lip (whorl 2), and a column (whorls 3 and 4). In H. 

radiata, several mutant cultivars are known, such as ‘Ryokusei’ and ‘Hishou’. Cultivar 

‘Ryokusei’ has greenish flowers. The petals and lip are greenish and the column changed to 

greenish sepal-like organs. Recently, we isolated and characterized C- and E-class genes in 
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the wild type and ‘Ryokusei’ (Mitoma and Kanno, 2018). Our results showed that the 

expression of HrSEP-1 gene, which is one of E-class genes, was reduced in ‘Ryokusei’. 

Furthermore, analysis of the genomic structure of HrSEP-1 in the wild type and ‘Ryokusei’ 

shows that exon 1 of HrSEP-1 in ‘Ryokusei’ harbors a retrotransposon Hret1, which suggests 

that the greenish mutant cultivar is caused by the insertion of retrotransposon in the HrSEP-1 

coding sequence (Mitoma and Kanno, 2018). Thus, our data show that HrSEP-1 plays a key 

role in tepal and column development in H. radiata. Another mutant cultivar ‘Hishou’ has a 

white petaloid sepal and two white lip-like sepals instead of green sepals (Figure 1a). In 

orchid, there are peloric (actinomorphic mutant) and pseudopeloric (decreasing of the degree 

of zygomorphy) mutant (Bateman and Rudall, 2006). The flower of ‘Hishou’ looks like that 

of ‘Hua-Guang-Die’ which is a pseudopeloric mutant in Cymbidium sinense (Su et al., 2018). 

Among the pseudopeloric mutants, ‘Hishou’ seems to belong to Type D pseudopeloric 

although half of lateral sepals change to lip-like structures (Mondragón-Palomino and 

Theißen, 2009). Previously, we isolated and characterized the expression of a DEF-like gene 

(HrDEF) and two GLO genes (HrGLO-1 and HrGLO-2), all of which are B-class genes (Kim 

et al., 2007). Our results showed that HrGLO-1 and HrGLO-2 exhibit similar expression 

patterns in the wild type and ‘Hishou’. However, the expression pattern of HrDEF differs 

between the wild type and ‘Hishou’; in the wild type, HrDEF is expressed in petals and lip, 

whereas in ‘Hishou’, HrDEF is expressed not only in petals and lip, but also in sepals. These 

results suggest that the floral phenotype of ‘Hishou’ is related to the wider range of HrDEF 

gene expression (Kim et al., 2007). However, there is no direct evidence of the relationship 

between HrDEF gene expression and the pseudopeloric phenotype of ‘Hishou’ flowers.

According to ‘orchid code’ and ‘P code’ mentioned above, DEF-like and AGL6-like 

genes regulate the development of distinct tepals in orchid flowers. Thus, we isolated these 

genes from H. radiata and characterized their expression in the wild type and ‘Hishou’ 

mutant cultivar. We also analyzed the genetic inheritance of the pseudopeloric phenotype 
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among the progeny of an intraspecific cross between the wild type and ‘Hishou’. Genetic 

linkage analysis revealed that a mutation in the DEF-like gene of ‘Hishou’ causes the 

pseudopeloric phenotype. We also investigated the molecular mechanism of the homeotic 

conversion of lateral greenish sepals to lip-like structures in ‘Hishou’.

RESULTS

Isolation of DEF-like genes from H. radiata

In general, orchid genomes sequenced so far harbors four DEF-like genes. We isolated these 

four DEF-like genes from H. radiata by rapid amplification of cDNA ends (RACE) using 

gene-specific primers. Phylogenetic analysis using maximum-likelihood method showed that 

these genes clustered into four phylogenetic clades of orchid DEF-like genes, clade-1, -2, -3 

and -4, and were named HrDEF-C1, HrDEF-C2, HrDEF-C3 and HrDEF-C4, respectively 

(Figure 1b). HrDEF-C1, HrDEF-C2, HrDEF-C3 and HrDEF-C4 encode four putative 

MADS proteins with 227, 220, 223 and 233 amino acids, respectively (Fig. 2). Amino acid 

sequence alignments of HrDEF-like proteins with other MADS-box proteins showed that 

three HrDEF proteins, HrDEF-C1, HrDEF-C3 and HrDEF-C4, harbored the conserved 

MADS, K and C domains with the conserved PI-derived and paleo AP3 motifs. Although 

HrDEF-C2 harbored the conserved MADS and K domains, the end of C domain was not 

conserved among Orchid DEF-clade2 genes because many of them do not have PI-derived 

motif and paleoAP3 motif (Figure S1).

Expression analysis of B-class genes in H. radiata

We examined the expression of four HrDEF-like genes in the floral organs of the wild type 

and ‘Hishou’ using real time polymerase chain reaction (qRT-PCR) (Figure 1c). In the wild 

type, HrDEF-C1 and -C2 transcripts were detected in all floral organs, and these genes were 
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highly expressed in petals. HrDEF-C3 was expressed in petals, lip, and column, but not in 

sepals. Expression of HrDEF-C4 was detected only in the petals and column. 

In ‘Hishou’, HrDEF-C1 was expressed in all floral organs, and its expression level in 

the petaloid sepal was higher than that in lip-like sepals. The HrDEF-C2 gene was 

predominantly expressed in petals, and its expression level in the petaloid sepal was similar 

to that in lip-like sepals. The HrDEF-C3 transcripts were detected in all floral organs, and 

HrDEF-C4 was expressed in the petals and column. Expression patterns of HrDEF-C1, -C2, 

and -C4 were similar between wild type and ‘Hishou’ flowers, whereas the expression of 

HrDEF-C3 in ‘Hishou’ was also detected in whorl 1. These results indicate that differential 

expression of HrDEF-C3 may be responsible for the homeotic conversion of sepals into 

petaloid sepal and lip-like sepals in ‘Hishou’.

Inheritance of the pseudopeloric mutation in H. radiata

To investigate the inheritance of the pseudopeloric flower trait of ‘Hishou’, we performed 

intraspecific crosses between the wild type and ‘Hishou’ (Figure 2a). Since the female 

reproductive organ is sterile in ‘Hishou’ because the stigma is underdeveloped, crosses were 

made using the wild type plant ([WT] phenotype) as the female parent and ‘Hishou’ ([H] 

phenotype) as the male parent. A total of 230 F1 hybrids were obtained from the intraspecific 

cross. In the F1 generation, 186 plants produced flowers, of which 102 plants produced 

flowers with the mutant phenotype (F1 [H]), and 84 plants produced flowers with the wild 

type phenotype (F1 [WT]). Since F1 [H] of the ‘Hishou’ type flower was female-sterile, like 

the ‘Hishou’ cultivar, we used F1 plants with ‘Hishou’ type flower phenotype as the male 

parent and backcrossed them with the wild type as the female parent to produce the BC1 

progeny. The BC1 progeny comprised 208 plants, of which 134 plants produced flowers. Of 

these, 70 plants produced ‘Hishou’ type flowers, and 64 plants produced wild type flowers. 

Additionally, F1 plants with wild type flower phenotype were self-pollinated, which produced 
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268 F2 plants. Of the 268 F2 plants, 94 plants produced flowers, all of which were wild type. 

These results suggest that the pseudopeloric mutation of ‘Hishou’ is a dominant gain-of-

function mutation. Moreover, both F1 and BC1 populations showed 1:1 segregation for the 

‘Hishou’ type and wild type flower phenotype. This suggests that the mutant allele is 

heterozygous.

PCR-restriction fragment length polymorphism (RFLP) analyses 

Our results showed that the pseudopeloric trait of ‘Hishou’ was correlated with ectopic 

expression of HrDEF-C3 and ‘Hishou’ character was inherited dominantly. To verify the 

relation between genetic inheritance of the pseudopeloric trait and HrDEF-C3 gene 

expression, we performed PCR-restriction fragment length polymorphism (RFLP) analyses. 

In a previous study (Kim et al., 2010), we identified seven sequences in the C-terminal region 

of HrDEF-C3 cDNA that were polymorphic between the wild type and ‘Hishou’; these 

sequences likely represent cultivar-specific polymorphisms. Therefore, we used the C-

terminal region of HrDEF-C3 for PCR-RFLP analyses with Hin1II restriction enzyme 

(Figure S2), which cleaves homozygous wild type (WT/WT) DNA into two fragments (123 

and 258 bp), homozygous ‘Hishou’ (H/H*) DNA into four fragments (102, 21, 180, and 78 

bp), although the 21 and 78 bp fragments could not be detected in 2% agarose gel (Figure 

2b), and heterozygous F1 (WT/H) DNA into four fragments (102, 123, 180, and 258 bp). H* 

shows allele which cause ‘Hishou’ character. Genotyping the BC1 progeny revealed that 

plants with ‘Hishou’ flowers were heterozygous at the HrDEF-C3 locus (WT/H*), whereas 

plants with WT flowers carried the WT allele of HrDEF-C3 in the homozygous state 

(WT/WT). The F2 progeny showed three genotypes at the HrDEF-C3 locus: WT/WT, WT/H, 

and H/H (Figure 2a, b). These data suggest that HrDEF-C3 is associated with the ‘Hishou’ 

flower phenotype.
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Structural analysis of the HrDEF-C3 gene

To identify the cause of ectopic expression of HrDEF-C3 in ‘Hishou’, we compared the 

promoter sequences of HrDEF-C3 between the wild type and ‘Hishou’. Approximately 2,500 

bp sequence upstream of the start codon (ATG) of HrDEF-C3 was isolated with Genome 

Walker using HrDEF-C3 promoter-specific primers. PCRs using these primers produced one 

band of approximately 400 bp in the wild type, but two bands of approximately 400 bp and 

5.4 kb in ‘Hishou’ (Figure 3a). Sequences of the 400 bp fragments in ‘Hishou’ and the wild 

type were identical. However, the 5.4 kb fragment carried an insertion (Figure 3b and S1). 

The sequence of this insertion showed the typical features of Ty1/Copia-like retrotransposon, 

and we named this insertion Habenaria retrotransposon 2 (Hret2). The Hret2 retrotransposon 

was 5,052 bp long, and included a target site duplication (TSD; 6 bp, AGAGAT), followed 

by a long terminal repeat (LTR; 306 bp), group-specific antigen (GAG; 419 bp), integrase 

(IN; 284 bp), reverse transcriptase (RT; 728 bp), ribonuclease H (RH; 446 bp), LTR (306 bp), 

and TSD (6 bp). Since two types of HrDEF-C3 promoters were identified in ‘Hishou’, 

HrDEF-C3 with the wild type promoter and HrDEF-C3 with Hret2-containing promoter are 

hereafter referred to as HrDEF-C3W and HrDEF-C3P, respectively.

To analyze the relationship between Hret2 insertion in the HrDEF-C3 promoter and 

‘Hishou’ type flower phenotype, we investigated the association between the flower 

phenotypes and HrDEF-C3 genotypes among F1 (72 individuals), F2 (76), and BC1 (128) 

populations by PCR using HrDEF-C3 promoter-specific primers (F1 and R1) (Figure 3c). 

Both HrDEF-C3P and HrDEF-C3W promoters were amplified from progeny with ‘Hishou’ 

type flowers, but only HrDEF-C3W promoter was amplified from progeny with wild type 

flowers (Figure 3c). Since all progeny harboring the HrDEF-C3P gene produced ‘Hishou’ 

type flowers, we conclude that the pseudopeloric mutation is caused by the insertion of 

retrotransposon in the HrDEF-C3 promoter. 
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Expression of HrDEF-C3P in ‘Hishou’

We investigated the expression of HrDEF-C3W and HrDEF-C3P in floral organs, leaf, root, 

and bulb of the wild type and ‘Hishou’ using semi-quantitative reverse-transcription PCR 

(RT-PCR). In the wild type, expression of HrDEF-C3W was detected in the petals, lip, and 

column, but not in other organs (Figure 4). By contrast, HrDEF-C3W expression in ‘Hishou’ 

was detected in all floral organs but not in other organs. Interestingly, HrDEF-C3P transcripts 

were detected in all floral organs as well as in leaf, root, and bulb (Figure 4). These results 

showed that HrDEF-C3W was expressed not only in whorls 2, 3, and 4, but also in whorl 1 in 

‘Hishou’, and HrDEF-C3P was expressed in all organs of ‘Hishou’. 

Isolation and characterization of AGL6 genes in H. radiata

Although the HrDEF-C3 gene was expressed in all floral organs and some vegetative organs 

in ‘Hishou’, only two lateral sepals were changed to lip-like structures in this cultivar. Since 

AGL6-like genes play an important role in the distinctive tepal morphology (Hsu et al., 

2015), we isolated two AGL6-like genes, HrAGL6-C1 (LC424959) and HrAGL6-C2 

(LC424960), from wild type H. radiata (Figure 5a). Full-length cDNAs of HrAGL6-C1 (953 

bp) and HrAGL6-C2 (912 bp) encoded 243 and 240 aa proteins. These genes contain the 

MADS-, I-, K- and C-domains. In addition, both HrAGL6-C1 and HrAGL6-C2 harbored the 

AGL6-I and -II motifs at the C-terminal ends (Fig. S4, Ohmori et al., 2009). Amino acid 

sequences of HrAGL6-C1 and HrAGL6-C2 share 66% identity.

Next, we analyzed the expression patterns of HrAGL6-C1 and HrAGL6-C2 genes in 

floral organs of the wild type and ‘Hishou’ using qRT-PCR. In the wild type, HrAGL6-C1 

showed a strong expression in dorsal and lateral sepals but weak expression in the petals, lip, 

and column, whereas HrAGL6-C2 was expressed in the lateral sepals, lip, and column (Figure 

5b). In ‘Hishou’, the expression of HrAGL6-C1 was detected in dorsal sepal, lateral sepals, 

petals, and column, with higher expression in the column than in other organs, whereas 
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HrAGL6-C2 expression was detected in lateral sepals, lip, and column, with higher 

expression in lateral sepals than in other organs. 

DISCUSSION

Expression patterns of HrDEF-like and HrAGL6-like genes were consistent with 

‘orchid-code’ and ‘P-code’ models

According to the ‘orchid code’ and ‘P code’, DEF- and AGL6-like genes play important roles 

in the morphological differentiation of tepals in orchids (Mondragón-Palomino and Theißen, 

2011; Hsu et al., 2015). Among orchid species, the expression pattern of four DEF-like genes 

is almost conserved. The DEF-like genes in clade-1 and -2 are expressed in all floral organs 

(Tsai et al., 2004; Mondragón-Palomino and Theißen, 2011). The clade-3 DEF-like genes are 

expressed in petals, lip, and column, but not in sepals (Tsai et al., 2004; Xu et al., 2006; 

Mondragón-Palomino and Theißen, 2011; Hsu et al., 2015; Kim et al., 2007), whereas clade-

4 DEF-like genes are specifically expressed in the lip (Mondragón-Palomino and Theißen, 

2011; Xiang et al., 2017). In this study, we isolated four DEF-like genes (HrDEF-C1, -C2, -

C3, and -C4) from H. radiata and investigated their expression pattern in wild type H. 

radiata and mutant cultivar ‘Hishou’. The expression of HrDEF-C1 was predominantly in 

petals than in sepals and lip in wild type and ‘Hishou’, these results suggest that HrDEF-C1 

is important for the development of petaloid organs. The expression of the HrDEF-C2 gene 

was detected in all floral organs in the wild type and ‘Hishou’, suggesting that HrDEF-C2 

gene has pleiotropic roles in tepal development. The HrDEF-C3 was not expressed in sepals 

in wild type, whereas HrDEF-C3 was expressed in petaloid sepal and lip-like sepals in 

‘Hishou’. This expression pattern of the HrDEF-C3 gene is consistent with our previous 

report (Kim et al., 2007). Expression patterns of HrDEF-C1, -C2, and -C3 in the wild type 

were consistent with those in other orchid species, and these expression data almost fit the 

‘orchid code’ (Mondragón-Palomino andTheißen, 2011). The expression of HrDEF-C4 was 
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detected in petals and column in the wild type and ‘Hishou’, indicating that HrDEF-C4 is not 

required for the establishment of lip identity in H. radiata. Among the four HrDEF-like 

genes, the most remarkable difference in the expression pattern was observed in HrDEF-C3, 

which showed ectopic expression in ‘Hishou’; HrDEF-C3 is most likely associated with the 

pseudopeloric mutation. 

On the other hand, according to the ‘P-code’ hypothesis, the identity of perianth 

organs depends on the expression levels and interactions among B- and E-class genes (Hsu et 

al., 2015). The L quartet (OAP3-2/OAGL6-2/OAGL6-2/OPI) specifies lip formation, 

whereas the SP quartet (OAP3-1/OAGL6-1/OAGL6-1/OPI) determines sepals/petals 

formation. Expression patterns of HrAGL6-C1 and -C2 genes in wild type H. radiata were 

similar to those of their orthologs in H. ciliolaris and H. rhodocheila (Hsu et al., 2015). 

Additionally, expression patterns of HrAGL6-C1 and HrAGL6-C2 in wild type H. radiata 

were consistent with those in other orchid species, and almost fit the ‘P-code’ model. 

Comparative expression analyses of HrAGL6-C1 and HrAGL6-C2 suggested that HrAGL6-

C1 is important for the establishment of greenish sepals but not of petals and lip, whereas 

HrAGL6-C2 gene is important for the formation of lip-like structures.

Pseudopeloric mutation is caused by the retrotransposon insertion in the HrDEF-C3 

promoter 

Intraspecific cross between the wild type and ‘Hishou’ demonstrated that the pseudopeloric 

mutation was inherited dominantly, and the locus responsible for the pseudopeloric mutation 

was most likely heterozygous in ‘Hishou’ (Figure 2). In our previous study (Kim et al. 2010), 

we obtained intraspecific hybrids between wild-type and ‘Hishou’ in order to investigate the 

inheritance of pseudopeloric phenotype (‘Hishou’ characters). Since F1 progeny had two 

types of flower with ‘Hishou’ type and wild-type plants, we suggested that pseudopeloric 

phenotype inherited dominantly (Kim et al., 2010). In this study, we investigated the 
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inheritance of pseudopeloric phenotype and we obtained F2 and BC1 generations. Since the 

half of the BC1 had wild-type flowers and the other half had pseudopeloric phenotype, and all 

F2 plants performed by self-pollination of F1 [WT] plants had wild type flower, the locus of 

pseudopeloric mutation was considered to be heterozygous in ‘Hishou’. As shown in Fig. 2, 

PCR-RFLP analyses revealed that HrDEF-C3 is linked to the pseudopeloric phenotype. 

Comparative sequence analysis of the HrDEF-C3 gene in the wild type and ‘Hishou’ 

revealed the insertion of Hret2 retrotransposon in the HrDEF-C3 promoter in ‘Hishou’. 

Hret2 is a Ty1/Copia-like retrotransposon, similar to the Hret1 retrotransposon isolated from 

the greenish flower mutant cultivar ‘Ryokusei’ (Mitoma and Kanno, 2018). Hret2 (5,052 bp) 

is longer than Hret1 (4,534 bp), and PCR analysis showed that both retrotransposons exist in 

the wild type genome (Figure S3). Our results showed that the ‘Hishou’ genome harbors two 

types of allelic HrDEF-C3 genes: HrDEF-C3W, which is identical to the wild type gene, and 

HrDEF-C3P, which carries Hret2 in its promoter (Figure 3a and 3b). Genotyping the wild 

type, ‘Hishou’ and their progeny using promoter-specific primers revealed that ‘Hishou’ and 

all progeny exhibiting ‘Hishou’ flowers were heterozygous at the HrDEF-C3 locus (HrDEF-

C3W/HrDEF-C3P), whereas the wild type and all progeny with wild type flowers were 

homozygous for the wild type allele of HrDEF-C3 (HrDEF-C3W/HrDEF-C3W) (Figure 3c). 

These results suggest that the pseudopeloric mutation is linked to HrDEF-C3P, indicating that 

pseudopeloric mutation is caused by Hret2 insertion in the promoter region of HrDEF-C3.

Molecular mechanism of pseudopeloria in ‘Hishou’ cultivar

The expression of HrDEF-C3 in whorl 1, in addition to other whorls, in ‘Hishou’ implied that 

Hret2 insertion might affect the expression of the HrDEF-C3 gene. To explore the 

relationship between retrotransposon insertion and the expression pattern of HrDEF-C3, we 

performed RT-PCR with HrDEF-C3W- and HrDEF-C3P-specific primers to examine the 

expression of these genes in the wild type and ‘Hishou’ (Figure 4). Transcripts of HrDEF-
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C3W were detected in petals, lip, and column in the wild type, whereas in ‘Hishou’, HrDEF-

C3P transcripts were detected in all floral organs as well as in leaf, root, and bulb. These 

results suggest that a part of the Hret2 sequence might work as a promoter of HrDEF-C3, 

resulting in the ectopic expression of HrDEF-C3. Notably, HrDEF-C3W in ‘Hishou’ was 

expressed in whorl 1, whorl 2, and column but not in vegetative organs. This expression 

pattern of HrDEF-C3W in ‘Hishou’ might be related to the autoregulation of GLO and DEF 

proteins (Saedler and Huijser, 1993). The GLO and DEF proteins heterodimerize and bind to 

CArG sequences in the promoter regions of GLO and DEF genes, thus upregulating their 

own expression. In H. radiata, two GLO-like genes, HrGLO-1 and HrGLO-2, are expressed 

in all floral organs (Kim et al., 2007). Since the expression of HrDEF-C3P was expanded to 

whorl 1 in ‘Hishou’, it is possible that HrDEF-C3P forms a heterodimer with HrGLO proteins 

and induces the expression of the HrDEF-C3W gene in sepals.

Although HrDEF-C3 expression was expressed in all floral organs and in some 

vegetative organs in ‘Hishou’, only two lateral sepals and dorsal sepal were transformed into 

lip-like and petal-like structures, respectively. The effect of the ectopic expression of HrDEF-

C3 in ‘Hishou’ on the homeotic conversion of three sepals is intriguing. According to the ‘P-

code’ model, the higher-order heterotetrameric SP complex (OAP3-1/OAGL6-1/OAGL6-

1/OPI) specifies sepals/petals formation, whereas the L complex (OAP3-2/OAGL6-

2/OAGL6-2/OPI) is exclusively required for lip formation (Hsu et al., 2015). Here, we 

isolated and characterized two AGL6-like genes, HrAGL6-C1 and -C2, from H. radiata, and 

showed that HrAGL6-C2 was expressed in lateral sepals and lip but not in the petals and 

dorsal sepal (Figures 5 and 6). These expression patterns suggest that HrAGL6-C2 forms the 

L complex with HrDEF-C3 in lateral sepals, resulting in homeotic change from lateral sepals 

to lip-like structure in ‘Hishou’, whereas HrDEF-C1, HrAGL6-C1, and HrDEF-C3 likely 

form the SP complex in dorsal sepal, resulting in homeotic change from greenish dorsal sepal 

to petaloid sepal in ‘Hishou’.
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It is generally assumed that extant orchids originate from a recent common ancestor 

that lived in the Late Cretaceous (76–84 million years ago) and fast increase in diversity 

occurred at around 65 million years ago (Ramírez et al., 2007). The number of orchid DEF-

like genes are generally four members (Mondragón-Palomino and Theißen, 2011). In 

contrast, analysis of Asparagales species showed that there are two DEF-like genes (Miura et 

al., 2019). It is possible that the four DEF-like genes in Orchidaceae were increased by a 

result of the whole-genome duplication and gene duplications via 62 million years ago 

(Mondragón-Palomino et al., 2009), after that four DEF-like genes caused the sub- and neo-

functionalization in Orchidaceae. In this study, we clarified that DEF-clade3-like HrDEF-C3 

gene involved with development of lip. In addition, we suggested L complex (HrDEF-

C3/HrAGL6-C2/HrAGL6-C2/HrGLO) is necessary for lip formation. Our results strongly 

support the four DEF-like genes have acquired different functions in the course of evolution. 

In conclusion, we showed that the pseudopeloric trait in H. radiata is caused by the 

insertion of Hret2 retrotransposon in the HrDEF-C3 promoter. This insertion altered the 

spatial expression pattern of HrDEF-C3, causing it to be expressed in some vegetative organs 

as well as in the floral organs. Since HrAGL6-C2 expression was limited to lateral sepals and 

lip, homeotic conversion to lip-like structure occurred only in lateral sepals. We proved that 

pseudopeloric mutation occurs as a result of ectopic expression of HrDEF-C3. 

EXPERIMENTAL PROCEDURES

Plant materials

Habenaria radiata ‘Aoba’ and ‘Ginga’ (wild type cultivars) and ‘Hishou’ (pseudopeloric 

mutant cultivar) were used in this study. These cultivars were grown in a greenhouse at the 

Graduate School of Life Sciences, Tohoku University, Japan. Tissues were collected from 

flower buds (0.7–1.0 cm) and stored at -80 °C, until needed for RNA extraction. For gene 
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expression analysis, sepals, lip-like sepals, petaloid sepals, petals, lip, and column were 

dissected from 5–10 flowers of the wild type and ‘Hishou’.

Cloning and characterization of DEF and AGL6-like genes from H. radiata

Total RNA was isolated from the entire flower buds of wild type cultivars using RNeasy 

Plant Mini Kit (QIAGEN). Poly (A)+ mRNA was extracted from the total RNA using 

Dynabeads mRNA Purification Kit (Life Technologies). First strand cDNA was synthesized 

from mRNA by AMV Reverse Transcriptase (Roche) using oligo dT primers (P019HA and 

P019HH) for the wild type and ‘Hishou’, respectively. The HrDEF and HrAGL6 cDNAs 

were isolated by 3RACE using degenerate primers specifically targeting the MADS domain. 

The amplification products were checked by agarose gels and purified using QIAquick Gel 

Extraction Kit (QIAGEN). Purified PCR products were then cloned into the pGEM-T Easy 

Vector (Promega). The 5' region of transcripts was obtained by 5' RACE method using 

5’/3’RACE Kit, 2nd Generation (Roche). Primers used for the isolation of MADS-box genes 

are listed in Table S1.

Phylogenetic analysis 

Predicted amino acid sequences of known MADS-box genes were downloaded from the 

EMBL/DDBJ/GenBank DNA database (Table S2 and S3). Full-length amino acid sequences 

were aligned using the ClustalW method. The phylogenetic analysis of DEF- and AGL6-like 

genes nucleotide sequences was constructed by maximum likelihood tree under 500 of 

bootstrap replicates with MEGA v7.0.26 software (Kumar et al., 2016).

Expression analysis of HrDEF and HrAGL6 genes

Total RNA was isolated from sepals, petals, lips, and columns of wild type cultivars, and 

from the petaloid sepals, lip-like sepals, petals, lips, and columns of ‘Hishou’, and used for 
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cDNA synthesis, as described above. The expression patterns of HrDEF-C1, HrDEF-C2, 

HrDEF-C3, HrDEF-C4, HrAGL6-C1, and HrAGL6-C2 were examined by qRT-PCR using a 

MiniOpticon Real-time PCR Detection System with CFX Manager software (Bio-Rad) and 

gene-specific primers (Table S1). The cycling program was as follows: preheating at 95 °C 

for 3 min, followed by 40 cycles of 95 °C for 10 s and 64 °C for 1 min, and lastly melt curve 

analysis (60–90 °C). All qRT-PCR experiments were performed in triplicate. Eukaryotic 

translation elongation factor 1A (eEF1A) was used as an internal control for standardization.

Isolation of the HrDEF-C3 promoter from the wild type and ‘Hishou’ by genome 

walking

The modified hexadecyl trimethylammonium bromide (CTAB) method was used to obtain 

genomic DNA from H. radiata leaves. Genomic DNA was digested with four blunt-end 

restriction enzymes (DraI, EcoRV, PvuII, and StuI) at 37 °C overnight. The digested DNA 

was ligated to a custom-designed adaptor from Genome Walker Kit (Clontech) at 16 °C 

overnight to generate genomic DNA libraries. The primary PCR amplification was conducted 

with each constructed genomic DNA libraries using the outer adaptor primer (AP1) provided 

in the kit and a HrDEF-C3-specific primer (GSP1). The nested adaptor primer (AP2) and a 

nested HrDEF-C3-specific primer (GSP2) were used for the secondary PCR with the primary 

PCR products. The secondary PCR products were cloned into the pGEM-T Easy Vector and 

sequenced. Primers used for sequencing the HrDEF-C3 promoter are listed in Table S1.

For sequence analysis of retrotransposon-like structure in HrDEF-C3 promoter, we 

performed genomic PCR. Genomic PCR was performed on genomic DNA from the leaves of 

wild type and ‘Hishou’ after adjusting the concentration as 100ng/µl. For genomic PCR, we 

used Tks Gflex DNA Polymerase (TaKaRa Bio Inc.) in a 25 µL reaction mixture containing 

50 ng total DNA and P1-P4 primers (Table S1, 50 pmol of each primer) with a TaKaRa PCR 

Thermal Cycler Dice (TaKaRa Bio Inc.). The PCR consisted of an initial incubation step for 
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1 min at 94°C, followed by 35 cycles at 98°C for 10 sec, 67°C for 15 seconds, and 68°C for 3 

min.

Expression analysis of HrDEF-C3W and HrDEF-C3P

Total RNA was extracted from floral organs, leaf, root, and bulb, and cDNAs were 

synthesized as described above. HrDEF-C3W gene specific primer pair was designed between 

the promoter and exon 1. The specific primer pair for HrDEF-C3P was designed between 

Hret2 and exon 1. PCR was performed in a 25 µl reaction containing an adjusted amount of 

first-strand cDNA, 10 pmol each of forward and reverse gene-specific primers, 0.5 mM 

dNTPs, 2.5 ml of 10× PCR buffer, and 0.5 units of ExTaq DNA polymerase (Takara). The 

PCR conditions were as follows: preheating at 96 °C for 2 min, followed by 32 cycles of 

denaturation at 96 °C for 30 s, annealing at 60 °C for 30 s, and extension at 72 °C for 1 min, 

and a final extension at 72 °C for 10 min. The eEF1A gene was used as a control for the 

internal standardization.

PCR-RFLP analyses of intraspecific hybrids

Genomic DNA was extracted from leaves of the wild type, ‘Hishou’, and their progeny, as 

described by Honda and Hirai (1990). PCR was performed using ExTaq and gene-specific 

primers designed in the C-terminal region of HrDEF-C3 (Kim et al., 2010). The PCR 

conditions were as follows: denaturation at 96 °C for 2 min, followed by 30 cycles of 

denaturation at 96 °C for 30 s, annealing at 58 °C for 30 s, and extension at 72 °C for 1 min, 

and a final extension at 72 °C for 10 min. The PCR products were digested with 5 units of 

Hin1II at 37 °C for 1 h. The digested samples were separated by electrophoresis on a 2% 

agarose gel to visualize DNA fragments.
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The DEF- and AGL6-like genes, HrDEF-C1, C2, C4, HrAGL6-C1 and C2 sequences have 

been deposited in the GenBank database with accession numbers LC424956, LC424957, 

LC424958, LC424959 and LC424960, respectively. 
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SUPPORTING INFORMATION

Figure S1. Alignment of the deduced amino acid sequence of clade 2 DEF-like genes.

Positions with strictly conserved amino acids are highlighted in black and similar residues is 

denoted by gray. Boxes indicate the MADS domain, I region and K domain.

Figure S2. Structure of the HrDEF-C3 gene in the wild type and ‘Hishou’ showing the 

location of Hin1II restriction sites in the C-terminal region and the insertion of 

retrotransposon (Hret2) in the promoter region. Dark gray boxes represent the HrDEF-C3 

gene. The Hret2 retrotransposon is shown in a white box. Black triangles indicate PCR 

primers used in PCR-RFLP analyses. The sizes of Hin1II digestion products are indicated for 

WT/WT genotypes (one Hin1II recognition site; 123 and 258 bp products) and H/H* 

genotypes (three Hin1II recognition sites; 102, 21, 180, and 78 bp products).

Figure S3. PCR detection of the Hret2 retrotransposon in the HrDEF-C3 promoter. 
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(a)  Schematic diagrams of the structure of HrDEF-C3 promoter from the wild type and 

‘Hishou’. White boxes indicate exon 1 of HrDEF-C3; the ATG start codon is also shown. 

‘Hishou’ has a Hret2 retrotransposon in the promoter of HrDEF-C3. 

(b) PCR analysis of HrDEF-C3 from the wild type and ‘Hishou’. PCR was performed using 

primer sets which are specific for the promoter region (P1), the first exon of HrDEF-C3 gene 

(P2) and retrotransposon (P3 and P4), as shown in Fig. S3(a). Lane M; DNA MW Standard 

Marker; Lane 1, ‘Ginga’; Lane 2, ‘Aoba’; Lane 3, ‘Hishou’.

Figure S4. Alignment of the deduced amino acid sequence of AGL6-like genes.

Positions with strictly conserved amino acids are highlighted in black and similar residues is 

denoted by gray. Boxes indicate the MADS domain, I region, K domain, AGL6-I motif and 

AGL6-II motif.

Table S1. List of primers used in this study

Table S2. Accession numbers for the DEF-like genes used in the phylogenetic analysis

Table S3. Accession numbers for the AGL6-like genes used in the phylogenetic analysis
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Figure Legends 

Figure 1. Floral phenotype and gene expression of HrDEF-like genes in wild type cultivar 

‘Aoba’ and pseudopeloric mutant cultivar ‘Hishou’ of Habenaria radiata. (a) Flowers of the 

wild type (‘Aoba’), The wild type flower shows three greenish sepals, two white lateral 

petals, and a lip. (b) ‘Hishou’ (pseudopeloric mutant cultivar). The mutant ‘Hishou’ flower 

has a white petaloid organ, instead of a green dorsal sepal, and two green lateral sepals are 

replaced by white lip-like organs. Scale bars: 1 cm. (c) Phylogenetic analysis of DEF-like 

genes. The phylogenetic tree was constructed using the maximum-likelihood method. Genes 
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isolated from H. radiata are outlined in rectangles. Bootstrap values greater than 50% from 

500 replicates are shown on the nodes. (d) qRT-PCR analysis of DEF-like gene expression in 

sepals (Se), petaloid sepal (W1P), lip-like sepals (W1L), petals (Pe), lip (Li), and column 

(Co) of the wild type and ‘Hishou’. Data represent mean ± standard error (SEM) (n = 3). 

Arrows indicates HrDEF-C3 expression in whorl 1.

Figure 2. Genetic linkage analysis of HrDEF-C3 in the wild type and ‘Hishou’. (a) 

Phenotypes and genotypes of the wild type and ‘Hishou’ (parents) and their progeny are 

shown. The F1 showed 1:1 ([WT]:[H]) ratio. The F2 progeny of self-fertilizing F1 [WT] plants 

showed wild type phenotype only. The BC1 progeny derived from the F1 [H] × wild type 

cross showed 1:1 ([WT]:[H]) segregation ratio. The number of each progeny and their 

genotypes is indicated. The H* indicated allele that has ‘Hishou’ character. (b) PCR-

restriction fragment length polymorphism (RFLP) analyses of intraspecific hybrids. PCR 

fragments of the wild type contained one Hin1II recognition site, whereas PCR fragments of 

‘Hishou’ contained three Hin1II recognition sites. 

Figure 3. Genomic structure and genetic linkage analysis of the HrDEF-C3 gene in the wild 

type, ‘Hishou’, and their progeny. (a) PCR analysis of the HrDEF-C3 promoter in the wild 

type and ‘Hishou’. The HrDEF-C3 promoter-specific primers (F1, R1) are indicated below. 

Multiplex amplification of wild type HrDEF-C3 promoter (400 bp) and HrDEF-C3 promoter 

carrying the retrotransposon insertion (ca. 5.4 kb) were separated by electrophoresis on a 1% 

agarose gel. (b) Structure of the HrDEF-C3 promoter in the wild type and ‘Hishou’. The 

genome of ‘Hishou’ harbors two types of HrDEF-C3 promoters: wild type promoter 

(HrDEF-C3W) and promoter harboring a retrotransposon (HrDEF-C3P). The retrotransposon 

identified in the HrDEF-C3 promoter was 5,052 bp long and contained 8 bp target site 

duplications (AGAGAT) and long terminal repeats (LTR, hatched) at both 5 and 3 ends. (c) 
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Genetic linkage analysis of retrotransposon insertion in the HrDEF-C3 gene promoter in the 

wild type, ‘Hishou’ and their progeny. A total of 72, 76, and 128 plants in the F1, F2, and BC1 

populations, respectively, were genotyped by PCR using HrDEF-C3 promoter-specific 

primers (F1 and R1). All plants with ‘Hishou’ phenotype were heterozygous (HrDEF-

C3W/HrDEF-C3P), and all plants with wild type phenotype were homozygous for the wild 

type allele (HrDEF-C3W/HrDEF-C3W).

 

Figure 4. Retrotransposon insertion is associated with ectopic expression of HrDEF-C3. (a) 

Amplification of HrDEF-C3W and HrDEF-C3P cDNAs in sepals (Se), petaloid sepals (W1P), 

lip-like sepals (W1L), petals (Pe), lip (Lip), column (Co), flower (F), leaf (L), root (R), and 

bulb (Bu) of the wild type and ‘Hishou’ using HrDEF-C3W-specific primers (F1, R1) and 

retrotransposon-specific primers (F2, R1), as indicated. (b) Schematic representation of the 

expression pattern of HrDEF-C3W and HrDEF-C3P in the wild type and ‘Hishou’. Organs in 

which HrDEF-C3W or HrDEF-C3P was expressed are indicated in yellow.

Figure 5. Phylogenetic and expression analyses of AGL6-like genes. (a) A phylogenetic tree 

was constructed using the maximum-likelihood method. Genes isolated from H. radiata are 

outlined in black. Bootstrap values greater than 50% are indicated on the nodes. (b) qRT-PCR 

analysis of AGL6-like genes in the wild type and ‘Hishou’. Total RNAs were isolated from 

dorsal sepal (Ds), lateral sepals (Ls), petaloid sepals (W1P), lip-like sepals (W1L), petals 

(Pe), lip (Lip), and column (Co). Data represent mean ± standard error (SEM) (n = 3).

Figure 6. Schematic representation of the expression pattern of HrDEF-C3 and HrAGL6-C2 

in wild type and ‘Hishou’. The expression of HrDEF-C3 and HrAGL6-2 is shown in yellow 

and pink, respectively. Floral organs expressing both genes are shown in red.
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PeMADS5    LQKEIRQRKGENLEGLGVKELRGLEQKLEESVKIVRQRKYHVIATQTDTCRKKLKSSRQIYRALTHELQKLDEENQPCSFLVEDLSCIYDSSISMANRLH  

OMADS3     LQMEIRQRKGENLEGLDVKELRGLEQKLEESIKIVRERKYHVIATQTDTYKKKLRSTREMYPALLNELQEVDDENQQRSFIAEDLSGVYNSAISMANQRL  

EpMADS14   LQMEIRQRKGENLEGLDLKELRGLEQKLEESIKIVRERKYHVIATQTDTYKKKLRSTREIYTTLLNELQEVENENQQHNFMIQDLSCVYNNEISMANQSL  

SpodoDEF2  LRSEIRQRIGENLDELDIKELRGLEQNLEEAHRIVRRRKFHVIATQTDTYKKKLKSTREIYGALMHELELEGESRECNFDADDLLYNEDDRLGLVYESHD  

 

                   210       220  

           ....|....|....|....| 

HrDEF-C2   EQNHRGLVLHDHGYDWEAMR  

CgDEF2     EPIVQKVVYESHHLRFP     

GogalDEF2  VSQICRM               

PeMADS5    RSEPNVQKVVRECHEFGFD   

OMADS3     AHCL                  

EpMADS14   AHCL                  

SpodoDEF2  LNF                   

 

MADS domain K domainI domain

K domain

Supplementary Fig. S1
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Wild type

‘Hishou’

ATGWT : HrDEF-C3W

WT : HrDEF-C3W

123 bp 258 bp

Hin1II

ATG

ATGH : HrDEF-C3W

102 bp 21 180 bp 78 bp

123 bp 258 bp

ATGH* : HrDEF-C3P

102 bp 21 180 bp 78 bp
Hret2

Hin1II

Hin1IIHin1II Hin1II

Hin1IIHin1II Hin1II

Supplementary Fig. S2
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M        1       2       3  M       1       2       3  M       1       2       3  M       1       2       3  

‘Hishou’Wild type

P1 + P2

‘Hishou’Wild type

P1 + P4

‘Hishou’Wild type

P2 + P3

‘Hishou’Wild type

P3 + P4

Wild type

HrDEF-C3W

P2

ATG

P1

P2

ATG

P1

P4P3

Hret2  retrotransposon 

HrDEF-C3P

HrDEF-C3W

P2

ATG

P1
HrDEF-C3W

‘Hishou’

HrDEF-C3P

‘Hishou’

HrDEF-C3W
Wild type

HrDEF-C3W
P2

ATG

P1
HrDEF-C3W

a

b
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10        20        30        40        50        60        70        80        90       100                  
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

HrAGL6-C1 MGRGRVELKRIENKINRQVTFSKRRNGLLKKAYELSVLCDAEVALIVFSSRGKLYEFGSVGTCKTLERYQRSCYSSQTTNDIDRETQSWYQEVSKLKAKF 100 
CeAGL6   MGRGRVELKRIENKINRQVTFSKRRNGLLKKAYELSVLYDAEVALIIFSSRGKLYEFGSAGTCKTLERYQRSCLNSQATNSIDRETQSWYQEVSKLKSKF 100 
CfAGL6   MGRGRVELKRIENKINRQVTFSKRRNGLLKKAYELSVLCDAEVALIIFSSRGKLYEFGSAGTCKTLERYQRSCLNSQATNSIDRETQSWYQEVSKLKSKF 100 
CgAGL6-1 MGRGRVELKRIENKINRQVTFSKRRNGLLKKAYELSVLCDAEVALIIFSSRGKLYEFGSAGTCKTLERYQRSCLNSQATNSIDRETQSWYQEVSKLKSKF 100 
EpMADS3  MGRGRVELKRIENKINRQVTFSKRRNGLLKKAYELSVLCDAEVALIIFSSRGKLYEFGSAGTCKTLERYQHSCFSSQATNSIDRETQSWYQEVSKLKIKF 100 
OMADS7   MGRGRVELKRIENKINRQVTFSKRRNGLLKKAYELSVLCDAEVALIIFSSRGKLYEFGSAGTCKTLERYQHSCYSSQATNSIDRETQSWYQEVSKLKTKF 100 
HrAGL6-C2 MGRGRVELKRIENKINRQVTFSKRRNGIMKKAYELSVLCDAEIALIIFSNRGKLFEFGSPDITKTLERYQRCTFTPQSIDPTDHETLNWYQELSKLKAKY 100 
EpMADS5  MGRGRVELKRIENKINRQVTFSKRRNGIMKKAYELSVLCDAEIALIIFSSRGKLFEFGSPDITKTLERYQRCTFTPQTIHPNDHETLNWYQELSKLKAKY 100 
OMADS1   MGRGRVELKRIENKINRQVTFSKRRNGIMKKAYELSVLCDAEIALIIFSSRGKLFEFGSPDITKTLERYRRCTFTPQTIHPNDHETLNWYQELSKLKAKY 100 
CgAGL6-3 MGRGRVELKRIENKINRQVTFSKRRNGIMKKAYELSVLCDAEIALIIFSSRGKLFEFGSPDITKTLERYQRCTFTPQTIHPNDHETLNWYQELSKLKAKY 100 

110       120       130       140       150       160       170       180       190       200         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

HrAGL6-C1 ESLQRSHRNLLGEDLGPLNVKELQQLERQLESALSQARQRKTQIMMDQMEELRKKERQLGEINKQLKMKLEAGGSSMRLIQNS-WDSDPVVDVNAFQMHH 199 
CeAGL6   ESLQRSHRNLLGEDLGPLNVKELQQLERQLETALSQARQRKTQIMLDQMEELRKKERQLGEINKQLKMKLEAGGGSLRLMQGS-WESDAVVEGNAFQMHP 199 
CfAGL6   ESLQRSHRNLLGEDLGPLNVKELQQLERQPETALSQARQRKTQIMLDQMEELRKKERQLGEINKQLKMKLEAGGGSLRLMQGS-WESDAVVEGNAFQMHP 199 
CgAGL6-1 ESLQRSHRNLLGEDLGPLNVKELQQLERQLETALSQARQRKTQMMLDQMEELRKKERQLGEINKQLKMKLEAGGGSLRLMQGS-WESDAVVEGNAFQMHP 199 
EpMADS3  ETLQRSHRNLLGEDLGPLNVKELQQLERQLETALSQARQRKTQIMLDQMEELRKKERQLGELNKQLKMKLEAGGSSLRLMQGS-WESDAVVDGNSFQMHP 199 
OMADS7   ETLQRSHRNLLGEDLGPLNVKELQQLERQLETALSQARQRKTQIMLDQMEELRKKERQLGELNKQLKMKLEAGGSSLRLMQGS-WESDTVVDGNAFQMHP 199 
HrAGL6-C2 ESLQRSQRHLLGEDLDMLSLKELQQLERQLESSLSQARQKRTQIMLDQMDELKKKERHLGDINKQLKHKLGADGGSIRVLQGS-WRPDVGVNTDAFTTH- 198 
EpMADS5  ESLQRSQRHLLGEDLDMLSLKELQQLERQLESSLSQARQKRTQIMLHQMEELKKKERHLGDINKQLKHKLGANGGSLRAIQGSNWQPDGGAAIETFRNH- 199 
OMADS1   ESLQRSQRHLLGEDLDMLSLKELQQLERQLESSLSQARQKRTQIMLHQMDELKKKERHLGDINKQLKHKLGANGGSSRALQGSNWQPDGGAGMETFRNH- 199 
CgAGL6-3 ESLQRSQRHLLGEDLDMLSLKELQHLERQLESSLSQARQKRTQLMLDQMEELKKKERHLGDINKQLKHKLGADGGSMRALQGS-WRPEAGTSNDTFRNH- 198 

210       220       230       240         
....|....|....|....|....|....|....|....|....|

HrAGL6-C1 LQSNAMECDPTLHIG-YHHFVSPQESVIPRTPSVENNNFMLGWML 243 
CeAGL6   YQSSSLECEPTLHIG-YHHFVPP-ETVIPRTPGVENNNFMLGWML 242 
CfAGL6   YQSSSLECEPTLHIG-YHHYVPP-ETVIPRTPGVENNNFMLGWML 242 
CgAGL6-1 YQSSSLECEPTLHIG-YHHYVPP-ETVIPRTPGVENNNFMLGWML 242 
EpMADS3  FPSSSLECEPTLHIG-YHQFVPP-ETVIARTTGVENNNFMLGWML 242 
OMADS7   FPSSSLECEPALHIG-YHQFVPP-ETVIARTPGVENSNFMLGWML 242 
HrAGL6-C2 --SRAMDTEPTLQIGRYHQYVPS-EAANSRNAGINGNNFMPGWAV 240 
EpMADS5  --SSNMDTEPTLQIGRYNQYVSS-DATISRNGGA-GNSFMSGWAV 240 
OMADS1   --SNNMDTEPTLQIGRYNQYVSS-EATISRNGGA-GNSFMSGWAV 240 
CgAGL6-3 --SINLDAEPTLQIGRYQQYVPS-EATIPRNGGA-GNGFISGWAV 239 

MADS domain K domain

K domain

I domain

AGL6-I motif AGL6-II motif

Supplementary Fig. S4
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Supplementary Table S1. List of primers used in this study.
Primer name Sequence (5' −> 3') Application

S-HrDEF/Fw AACTGCGYGGTCTTGAGCAAA DEF-specific primer
S-HrDEF/Rv AYYADGCRAGRCKDAGATCCTG DEF-specific primer
OrchidAGL6-1/Fw CTGAAGAGGATTGAGAAC AGL6-1-specific primer
OrchidAGL6-1/Rv GCATCCACCCAAGCATAA AGL6-1-specific primer
OrchidAGL6-2/Fw CTCAAGAGGATTGAGAAC AGL6-2-specific primer
OrchidAGL6-2/Rv GCATCCATCCAAGCATAA AGL6-2-specific primer
P018HA GACTCGTGACGACATCG Anchor primer for wild type
P019HA GACTCGTGACGACATCGATTTTTTTTTTTTTTTTT Anchor primer for wild type
P018HH GACTCGAGACGTCATCG Anchor primer for ‘Hishou’
P019HH GACTCGAGACGTCATCGATTTTTTTTTTTTTTTTT Anchor primer for ‘Hishou’
HrDEF-C1-full/fw CAGGGTAAAGAGAGAGAAGG Full length cloning
HrDEF-C1-full/Rv CTATCAACCAGACACGCATC Full length cloning
HrDEF-C2-full/fw AAAGGAAAGTGCTCGGTGAA Full length cloning
HrDEF-C2-full/Rv TGCCTGTCATCATCTACAGAAGT Full length cloning
HrDEF-C3-full/fw GCTCTTCCGCTTCTTTTGC Full length cloning
HrDEF-C3-full/Rv CAAGACAACTCAAGTGATC Full length cloning
HrDEF-C4-full/fw GTCTTTGCTTTCTCTCGG Full length cloning
HrDEF-C4-full/Rv GTTTATCCGAAGAAGAAATAAACATTGG Full length cloning
HrAGL6-1/Fw GAGAGAGAAGAGTGTGGG Full length cloning
HrAGL6-1/Rv CTTGCCATACAGATAGTG Full length cloning
HrAGL6-2/Fw GATAAGGAGAGGTTGTGC Full length cloning
HrAGL6-2/Rv CAATCAGGGAATGAGAGT Full length cloning
eEF1A-4/Fw TAAGTCTGTTGAGATGCACC Reference gene primer
eEF1A/Rv CTGGCCAGGGTGGTTCATGAT Reference gene primer
qrHrDEF-C1/Fw GGCATACAGAGCTCTAATGCACG Real time PCR
qrHrDEF-C1/Rv GGCTGGCTTGGCTGAACAAC Real time PCR
qrHrDEF-C2/Fw CGCTACTCAAACTGACACGTACA Real time PCR
qtHrDEF-C2/Rv CTCGAGTTCCAGTTCATGC Real time PCR
qrHrDEF-C3/Fw GAGCTTAATCCGTGAGCTG Real time PCR
qrHrDEF-C3/Rv GTAGGCTGAGTGCGGAAGTAGAG Real time PCR
qrHrDEF-C4/Fw GAGCAGCCGGTGTTTG Real time PCR
qrHrDEF-C4/Rv GCGTACATCTGATGAGGAG Real time PCR
rtHrAGL6-1/Fw CGCCAGCTTGGAGAGATA Real time PCR
rtHrAGL6-1/Rv CCATTGCATTTGACTGCA Real time PCR
rtHrAGL6-2/Fw CACAAGCTTGGGGCAGAT Real time PCR
qHrAGL6-2/Rv CCATGGCCCTTGAGTGAG Real time PCR
HrDEF-C3-hybrid/Fw ATGTGGACGAAGATCCAGCAG Genetic inheritance of pseudopeloric mutation
HrDEF-C3-hybrid/Rv CAAGACAACTCAAGTGATC Genetic inheritance of pseudopeloric mutation
HrDEF-C3P-hybrid/Fw TCTTGTAGCCATTCTACATTAGCC Genetic inheritance of HrDEF-C3P

HrDEF-C3P-hybrid/Rv CTCTTCGAGTACGTCACTTGCCTGTTC Genetic inheritance of HrDEF-C3P

AP1 GTAATACGACTCACTATAGGGC Adapter primer for Genome Walker
AP2 ACTATAGGGCACGCGTGGT Adapter primer for Genome Walker
HrDEF-C3-GSP1 TGAGCTCACTAGCCTTCTTCATGATCC Isolation of HrDEF-C3 promoter
HrDEF-C3-GSP2 CTCTTCGAGTACGTCACTTGCCTGTTC Isolation of HrDEF-C3 promoter
HrDEF-C3W/Fw TCTCTTCCGCTTCTTTTGC Semi-quantitative RT-PCR for HrDEF-C3W

HrDEF-C3P/Fw TCTTGTAGCCATTCTACATTAGCC Semi-quantitative RT-PCR for HrDEF-C3P

HrDEF-C3W and P/Rv CAAGACAACTCAAGTGACC Semi-quantitative RT-PCR for HrDEF-C3W and HrDEF-C3P

P1 GCAGCAGTGTACCACAGTCAA Mutant gene analysis in wild type and 'Hishou' 
P2 CTCTTCGAGTACGTCACTTGCCTGTTC Mutant gene analysis in wild type and 'Hishou' 
P3 TCCCAATCACACAGCCAATA Mutant gene analysis in wild type and 'Hishou' 
P4 GGTTGAATGTCCCCTTCAGA Mutant gene analysis in wild type and 'Hishou' 

Page 38 of 40

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CONFIDENTIAL

Supplementary Table S2. Accession numbers for the DEF-like genes used in the phylogenetic analysis.
Gene Spesies Accession number
DEF Antirrhinum majus AB516402
AP3 Arabidopsis thaliana D21125
AODEF Asparagus officinalis AB094964
CeAP3-1 Cymbidium ensifolium JQ326261
CeAP3-3 Cymbidium ensifolium JQ326260
CfAP3 Cymbidium faberi HM208536
CfDEF Cymbidium faberi HM208535
CgDEF1 Cymbidium goeringii HM106983
CgDEF2 Cymbidium goeringii KX347446
CgDEF3 Cymbidium goeringii HM106982
CgDEF4 Cymbidium goeringii KU058678
CMADS1 Cymbidium hybrid cultivar DQ683575
DcAP3B Dendrobium crumenatum DQ119839
DmAP3A Dendrobium moniliforme EU056327
DmAP3-4 Dendrobium moniliforme GU132995
EpMADS15 Erycina pusilla KJ002740
EpMADS14 Erycina pusilla KJ002739
EpMADS13 Erycina pusilla KJ002738
GogalDEF1 Gongora galeata FJ804097
GogalDEF2 Gongora galeata FJ804098
GogalDEF3 Gongora galeata FJ804099
HrDEF-C1 Habenaria radiata LC424956
HrDEF-C2 Habenaria radiata LC424957
HrDEF-C3 Habenaria radiata AB232663
HrDEF-C4 Habenaria radiata LC424958
LMADS1 Lilium longiflorum AF503913
LRDEF Lilium regale AB071378
OMADS5 Oncidium Gower Ramsey HM140840
OMADS3 Oncidium Gower Ramsey AY196350
OMADS9 Oncidium Gower Ramsey HM140841
PtAP3-2 Phaius tancarvilleae EU444051
PtAP3-3 Phaius tancarvilleae EU444052
PeMADS2 Phalaenopsis equestris AY378149
PeMADS5 Phalaenopsis equestris AY378148
PeMADS3 Phalaenopsis equestris AY378150
PeMADS4 Phalaenopsis equestris AY378147
SpodoDEF2 Spiranthes odorata FJ804111
SpodoDEF1 Spiranthes odorata FJ804110
SpodoDEF3 Spiranthes odorata FJ804112
TGDEFA Tulipa gesneriana AB094965
TGDEFB Tulipa gesneriana AB094966
VaplaDEF2 Vanilla planifolia FJ804115
VaplaDEF3 Vanilla planifolia FJ804117
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Supplementary Table S3. Accession numbers for the AGL6-like genes used in the phylogenetic analysis.

Gene Spesies Accession number
AtAGL6 Arabidopsis thaliana NM_130127
AoM3 Asparagus officinalis AY383559
BoMADS Bambusa oldhamii EF517293
BnAGL6 Brassica napus XM_022719094
BoAGL6 Brassica oleracea KC984301
CjAGL6 Camellia japonica JX657333
CsAGL6 Camellia sinensis KU862281
CaAGL6 Coffea arabica KJ483245
CsAGL6 Crocus sativus EF041505
CeAGL6 Cymbidium ensifolium JN613148
CfAGL6 Cymbidium faberi HM208534
CgAGL6-1 Cymbidium goeringii HM208533
CgAGL6-2 Cymbidium goeringii KX347450
CgAGL6-3 Cymbidium goeringii KU058679
DAGL6 Dendrobium hybrid cultivar KF550139
EpMADS3 Erycina pusilla KJ002728
EpMADS5 Erycina pusilla KJ002730
EpMADS4 Erycina pusilla KJ002729
GGM9 Gnetum gnemon AJ132215
GpMADS3 Gnetum parvifolium AB022665
HrAGL6-C1 Habenaria radiata LC424959
HrAGL6-C2 Habenaria radiata LC424960
HoAGL6 Hyacinthus orientalis AY591333
LeAP1 Lycopersicon esculentum AY306154
NtAGL6A Narcissus tazetta EU081900
NtAGL6B Narcissus tazetta EF517294
OMADS7 Oncidium Gower Ramsey HM140845
OMADS1 Oncidium Gower Ramsey HM140843
FBP29 Petunia x hybrida AF335245
FBP26 Petunia x hybrida AF176783
PaDAL14 Picea abies KC347012
PrMADS3 Pinus radiata U76726
PrMADS2 Pinus radiata U42400
PtDAL1 Pinus tabuliformis KJ711020
PmAGL6 Prunus mume XM_016794441
PpAGL6 Prunus persica XM_020557124
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