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1 Introduction

One of the striking predictions of string theory is the existence of a vast energy land-

scape with a multitude of vacuum states [1, 2]. The landscape can be described by a

multi-dimensional scalar potential U(φ); then the vacua correspond to local minima of this

potential. In the cosmological context, positive-energy vacua drive the inflationary expan-

sion of the universe, and transitions between different vacua occur by quantum tunneling

through bubble nucleation. The same kind of scenario is suggested by other particle physics

models with compact extra dimensions. For a review of this multiverse picture see, e.g.,
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ref. [3]. The expected number of vacua in the landscape is enormous, so predictions in this

kind of theory must necessarily be statistical.

The details of the high-energy vacuum landscape are not well understood, and it is

often modeled as a random Gaussian field. The statistics of vacuum energy densities and of

slow-roll inflation in such a landscape have been extensively studied in the literature [4–18].

Another well studied model is the axionic landscape, which can also be approximated by a

random Gaussian field in a certain limit [11, 19–23]. One of the key mathematical problems

to be addressed in these models is to find the eigenvalue distribution of the Hessian matrix

ζij = ∂2U/∂φi∂φj . The potential minima correspond to the points where ∂U/∂φi = 0

and all Hessian eigenvalues are positive, and the stability of the vacuum depends on small

eigenvalue end of the Hessian spectrum. The dynamics of slow-roll inflation also depends

on the smallest eigenvalues, which determine whether or not inflation is multi-field, with

more than one field being dynamically important.

The Hessian eigenvalue distribution in a random Gaussian field has been found in

ref. [24] using the saddle point approximation in the leading order in the large-N ex-

pansion, where N is the dimensionality of the landscape. This approximation, however,

becomes inaccurate for very small eigenvalues, where sub-leading terms play a significant

role. In the present paper we extend the method of ref. [24] to account for the sub-leading

contributions.1 We also develop a new method, based on a version of Dyson Browninan

motion [27], which can be applied in cases where the other method fails. In this new

approach, the eigenvalue distribution is obtained as an equilibrium distribution of the

Brownian stochastic process. The results of the two approaches agree in cases where both

methods are applicable. We use our results to estimate the typical magnitude of the small-

est Hessian eigenvalue at a local minimum of the potential and discuss its implications

for the vacuum stability and for the dynamics of slow-roll inflation. We also calculate the

density of minima in a random Gaussian landscape. The result is consistent with earlier

numerical calculations for N . 100 and extends them to larger values of N .

The paper is organized as follows. In the next section we specify the model of a random

Gaussian landscape, review the probability distribution of the Hessian in this model, and

clarify its relation to Wigner’s random matrix model. In section 3, we use the saddle

point approximation to calculate the Hessian eigenvalue distribution at a generic point in

the landscape, under the condition that all eigenvalues are larger than a given threshold.

In section 4, we extend the analysis to stationary points of the landscape. We find the

probability for a stationary point to be a minimum and estimate the smallest Hessian

eigenvalue at a minimum. Then in section 5 we develop a new method, based on Dyson

Brownian motion, and use it to find the eigenvalue distribution at stationary points. Some

cosmological implications of our results are discussed in section 6. Our conclusions are

summarized in section 7. In appendix A we discuss axionic landscapes and show that

under certain conditions they can be approximated by random Gaussian fields. We use the

reduced Planck units (Mpl ' 2.4× 1018 GeV ≡ 1) throughout the paper.

1Alternative ways of going beyond the standard saddle point approximation have been discussed, in a

different context, in refs. [25, 26].
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2 Random Gaussian fields

2.1 Correlators

We consider a random Gaussian landscape U(φ), defined in an N -dimensional field space

φ, which is characterized by the average value Ū ≡ 〈U(φ)〉 and the correlation function

〈U(φ1)U(φ2)〉 − Ū2 = F (|φ1 − φ2|) =
1

(2π)N

∫
dNkP (k)eik·(φ1−φ2) . (2.1)

Here, k ≡ |k| and angular brackets indicate ensemble averages. We assume that the

correlation function rapidly decays at |φ1−φ2| � Λ and the potential has a characteristic

scale U0. We define different moments of the spectral function P (k) as

σ2
n =

1

(2π)N

∫
dNkk2nP (k) . (2.2)

In appendix A, we show that under certain conditions this type of random fields can be

used to approximate axionic landscapes.

As an illustration, we may use the following correlation function:

F (φ) = U2
0 e
−φ2/2Λ2

, (2.3)

with Λ playing the role of the correlation length in the landscape. In this case, the moments

are given by

σ2
n =

2nΓ
(
n+ N

2

)
Γ
(
N
2

) U2
0

Λ2n
. (2.4)

In the large-N limit the moments are of the order

σ2
n ∼ U2

0

(
N

Λ2

)n
. (2.5)

In the rest of this paper, we do not use the above explicit form of the correlation function,

but generically assume only the dependence of eq. (2.5).

Let us consider the potential around a given point in the field space and expand it in

a Taylor series. Since the values of the potential at nearby points are correlated with one

another, the coefficients of the Taylor expansion should also be correlated. In particular

we have

〈U(φ)〉 ≡ Ū (2.6)〈
(U(φ)− Ū)2

〉
= E (2.7)

〈U(φ)ζij(φ)〉 = Bδij (2.8)

〈ζij(φ)ζkl(φ)〉 = A (δijδkl + δikδjl + δilδjk) (2.9)

〈ηi(φ)U(φ)〉 = 〈ηi(φ)ζij(φ)〉 = 0, (2.10)

where ηi = ∂U/∂φi and ζij ≡ ∂2U/∂φi∂φj is the Hessian matrix. The parameters E,B,A

are related to the moments (2.2) as

E = σ2
0 , A =

σ2
2

N(N + 2)
, B = − 1

N
σ2

1 . (2.11)

From eq. (2.5), we expect that A,B,E are O(N0) in the large N limit.

– 3 –
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2.2 Probability distribution

The probability distribution for U and ζij can be found by taking the inverse of the corre-

lation matrix. The resulting distribution is [14, 24]

P (U, ζ) ∝ e−QU,ζ , (2.12)

where

QU,ζ =
(N + 2)A

(N + 2)AE −NB2

(
1

2

(
U − Ū

)2 − B

(N + 2)A

(
U − Ū

)
Trζ

− AE −B2

4(N + 2)A2
(Trζ)2

)
+

1

4A
Trζ2 . (2.13)

Note that the combination AE −B2 must be positive (or zero), since otherwise the distri-

bution cannot be normalized.

The cross term in eq. (2.13) can be absorbed by a constant shift of the eigenvalues of

the Hessian using the relations

[Tr (ζ − λ∗I)]2 = (Trζ)2 − 2Nλ∗Trζ +N2λ2
∗ (2.14)

Tr
[
(ζ − λ∗I)2

]
= Tr

(
ζ2
)
− 2λ∗Trζ +Nλ2

∗, (2.15)

and setting

λ∗(U) =
B

E

(
U − Ū

)
, (2.16)

where I is the identity matrix. This implies that the eigenvalues of the Hessian are shifted

by amount of the order −U/Λ2 for a given U , where we have used B < 0.

The Hessian matrix can be diagonalized and the distribution can be written in terms

of its eigenvalues λi. Changing the variables from ζij to λi, the probability distribution for

the eigenvalues is given by [27]

P (λ) = C
∏
i<j

|λi − λj |e−QU,ζ (2.17)

where
∏
|λi − λj | comes from the Jacobian and C is a normalization factor.

We denote the average eigenvalue as λ̄ and deviations from the average as δλi:

λi = λ̄+ δλi (2.18)∑
i

δλi = 0. (2.19)

Then QU,ζ can be written as

QU,ζ '
1

4A

∑
i

δλ2
i +

E

2(AE −B2)

(
λ̄− λ∗(U)

)2
+ const (2.20)

– 4 –
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for a fixed U , where we have used

− 1

(N + 2)AE −NB2

AE −B2

4A
' − 1

4AN
+

E

2N2(AE −B2)
+O(N−3)× 1

A
, (2.21)

in the large N limit.2 Note that the Jacobian that appears in eq. (2.17) is independent of λ̄.

One may be interested in the probability distribution for the Hessian eigenvalues with-

out any condition on U . In this case, U can be integrated out and the distribution takes

the form [28]

Qζ =
1

4A

[
Trζ2 − 1

N + 2
(Trζ)2

]
, (2.22)

or

Qζ '
1

4A

(∑
i

δλ2
i +

2N

N + 2
λ̄2

)
. (2.23)

Here we comment on the difference from the random matrix theory (RMT), where the

probability distribution for the elements of a real symmetric matrix ζij is given by [29]

Pζ =
1(√

2πσRMT

)N(N+1)/2
e−QRMT (2.24)

QRMT =
1

2σ2
RMT

Trζ2, (2.25)

with a certain constant σRMT. This distribution is usually referred to as the Gaussian

Orthogonal Ensemble (GOE). When we express the eigenvalues of ζ in terms of the average

value λ̄ and displacements from the average δλi, the exponent QRMT is rewritten as

QRMT =
1

2σ2
RMT

(∑
i

δλ2
i +Nλ̄2

)
. (2.26)

To compare QU,ζ (or Qζ) and QRMT we may take σ2
RMT = 2A (∼ U/Λ2). We then see that

the cost of a nonzero λ̄ in the GOE is larger than that for a random Gaussian field by a

factor of N . Thus, for the GOE, the averaged value λ̄ is strongly prohibited from being

away from zero in the large-N limit.

Let us emphasize that the Gaussian correlation function (2.3) is a rather special ex-

ample of a random Gaussian model. It has a specific property because the coefficient of

(Trζ)2 in (2.13) vanishes (AE−B2 = 0). As a result, for a fixed U the Hessian distribution

is just given by the GOE with a constant shift of the diagonal terms:

ζij = mij −
B

E
(U − Ū)δij , (2.27)

where mij is a GOE matrix. However, this is not a generic property of random Gaussian

models. In what follows, we do not consider this special case, but consider a generic random

Gaussian landscape, which is specified by moments of the correlation function.

2This expansion is not a good approximation for the Gaussian correlation function (2.3) because AE −
B2 = 0 in that case. We do not focus on this particular case but consider a generic situation where

AE −B2 = O(1). However, eq. (2.22) is still correct for any correlation functions.

– 5 –
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3 Saddle point approximaion

In this section we use the saddle point approximation to calculate the probability distri-

bution of Hessian eigenvalues in a random Gaussian landscape under the condition that

all eigenvalues are greater than a given threshold. We follow and extend the calculation of

refs. [30, 31], where the eigenvalue distribution was found for the case of the GOE. In sec-

tion 3.1, we calculate the distribution at a generic point in the landscape. The distribution

at local minima of the potential cannot be found with this method. However, the result of

this calculation can be used to find the probability for a stationary point of the potential

to be a minimum and to estimate the smallest Hessian eigenvalue at a minimum, as we

will see in section 4.1. The calculation of the Hessian eigenvalue distribution at potential

minima should await the introduction of our new method in section 5.

Hereafter, we generically consider the case where

Qζ =
1

2

[
Trζ2 − a

N
(Trζ)2

]
, (3.1)

which can be obtained from eq. (2.22) by rescaling λi →
√

2Aλi with a = N/(N + 2). It

can also represent (2.20) with a = 1 − 2AE/N(AE − B2) and the same rescaling, after a

shift λi → λi + λ∗. The latter case will be discussed in detail in section 4.2. In both cases,

we expect 1− a = O(N−1).

3.1 Conditional probability distribution

The probability distribution for the Hessian eigenvalues can be written as

p(λ) = A exp (−H(λ)) (3.2)

H(λ) =
1

2

∑
i

λ2
i −

a

N

[∑
i

λi

]2

−
∑
i 6=j

ln (|λi − λj |)

 , (3.3)

where A is a normalization constant and the logarithmic term comes from the Jacobian

factor in eq. (2.17). The conditional probability P (λcr) that all eigenvalues are greater

than some value λcr can then be calculated from

P (λcr) =
Z(λcr)

Z(−∞)
(3.4)

Z(λcr) =

∫ ∞
λcr

dNλ exp (−H(λ)) . (3.5)

We shall further rescale the eigenvalues as µ = λ/
√
N and introduce a density function

of µ as

ρ(µ) =
1

N

∑
i

δ (µ− µi) . (3.6)

In terms of this density function, we can rewrite H(λ) as

H[ρ]/N2 =
1

2

∫
dµµ2ρ(µ)− 1

2
a

∫
dµdµ′ρ(µ)ρ(µ′)µµ′

−1

2

∫
dµdµ′ρ(µ)ρ(µ′) ln

(
|µ− µ′|

)
. (3.7)

– 6 –
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The partition function Z(λcr) can also be rewritten in terms of ρ(µ). The Jacobian

involved in changing from µi to ρ(µ) was calculated in refs. [30, 31] by saddle point ap-

proximation in the large N limit. It is given by

J [ρ] = A′
∫ ∏

i=1

dµiδ

[
Nρ(µ)−

∑
i

δ(µ− µi)

]
(3.8)

' A′′δ

(∫
dµρ(µ)− 1

)
exp

[
−N

∫
dµρ(µ) ln ρ

]
, (3.9)

where A′ and A′′ are normalization constants. Thus we obtain

Z(λcr) = A′′′
∫

dCd[ρ]e−N
2Σ[ρ] (3.10)

Σ0[ρ] =
1

2

∫
dµµ2ρ(µ)− 1

2

∫
dµdµ′ρ(µ)ρ(µ′)µµ′

−1

2

∫
dµdµ′ρ(µ)ρ(µ′) ln

(
|µ− µ′|

)
+ C

[∫
dµρ(µ)− 1

]
(3.11)

Σ1[ρ] =
1

2
N(1− a)

∫
dµdµ′ρ(µ)ρ(µ′)µµ′ +

∫
dµρ(µ) ln [ρ(µ)] , (3.12)

where

Σ[ρ] = Σ0[ρ] + Σ1[ρ]/N +O(1/N2), (3.13)

A′′′ is a normalization constant, and we include a Lagrange multiplier C to set the normal-

ization of ρ(µ) coming from the delta function in eq. (3.9). Note that N(1 − a) = O(1).

The functional integration in (3.10) is over functions ρ(µ) satisfying ρ(µ) = 0 for µ < µcr,

where µcr = λcr/
√
N .

3.1.1 Eigenvalue density function

We shall now use the saddle point approximation to find the most probable density func-

tion ρ(µ).3

We first note that the leading term Σ0[ρ] in eq. (3.13) is independent of λ̄. We there-

fore include the subleading contribution due to the first term in Σ1[ρ], which breaks this

degeneracy. The second term in Σ1[ρ] is also independent of λ̄, and we shall neglect it here.

This term only gives O(N−7/4) corrections to ∆Σ (≡ Σ(µcr)−Σ(−∞)), as we will discuss

later in this section.

Varying the functional Σ[ρ] with respect to ρ(µ), we determine the critical distribution

ρc(µ) at the saddle point,

µ2

2
− aµ

∫ ∞
µcr

dµ′ρc(µ
′)µ′ + C =

∫ ∞
µcr

dµ′ρc(µ
′) ln

(
|µ− µ′|

)
. (3.14)

Taking a derivative with respect to µ, we obtain

µ− a
∫ ∞
µcr

dµ′ρc(µ
′)µ′ = P

∫ ∞
µcr

dµ′
ρc(µ

′)

µ− µ′
, (3.15)

3An exact analytic formula for ρ(µ) in the case of an unrestricted random matrix ensemble (µcr = −∞)

was derived in ref. [32].
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where P indicates the Cauchy principal part. Shifting µ as µ = x + µcr, this can be

rewritten as

x+ x0 = P
∫ ∞

0
dx′

ρc(x
′ + µcr)

x− x′
, (3.16)

where we have defined

x0(µcr) ≡ µcr − a
∫ ∞

0
dx′ρc(x

′ + µcr)(x
′ + µcr). (3.17)

The integral in the last equation is just the average eigenvalue µ̄; hence this equation can

also be written as

x0 = µcr − aµ̄. (3.18)

The solution of the integral equation (3.16) has been found in refs. [30, 31]. Here we

quote the result:

ρc(x+ µcr) =
1

2π
√
x

√
L(x0)− x [L(x0) + 2x+ 2x0] . (3.19)

This solution applies in the range x ∈ [0, L(x0)]. Otherwise ρc(x+ µcr) = 0. The function

L(x0) is determined by the normalization∫ L

0
ρcdx = 1. (3.20)

Then we obtain

L(x0) =
2

3

[√
x2

0 + 6− x0

]
. (3.21)

In the special case when µcr = −
√

2, we have x0 = −
√

2, L(x0) = 2
√

2 and

ρW (x+ µcr) = π−1
(

2
√

2x− x2
)1/2

(3.22)

or

ρW (µ) = π−1
(
2− µ2

)1/2
. (3.23)

This is the celebrated Wigner semi-circle distribution. It has support at −
√

2 < µ <
√

2,

and thus the requirement µ > µcr with µcr = −
√

2 does not impose any constraint on ρ(µ).

For the same reason the Wigner distribution is unperturbed when µcr < −
√

2.

The Gaussian orthogonal ensemble (GOE), which was studied in refs. [30, 31], corre-

sponds to a = 0; then eq. (3.24) gives x0 = 0 for µcr = 0. The eigenvalue distribution for

this case is shown by a green curve in figure 1.

The integral in eq. (3.17) can be done by using the explicit forms of ρc and L(x0). As

a result we obtain

F (x0) = (1− a) (µcr + F (x0)− x0) ,

(3.24)

– 8 –



J
H
E
P
0
3
(
2
0
1
8
)
0
2
9

-1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

μ

ρ
c(
μ
)

Figure 1. Eigenvalue distribution ρ(µ) restricted to µ > 0 in the random matrix theory (green

curve) and for the Hessian in a random Gaussian landscape (orange curve) with N = 100. The

blue curve is the distribution without any restrictions, which is given by the Wigner semi-circle.

where

F (x) ≡ 1

27

[
−x(x2 + 9) +

(
6 + x2

)3/2]
. (3.25)

We can numerically solve eq. (3.24) in terms of x0 for given values of a and µcr. One is

often interested in the case when µcr = 0, so that all eigenvalues are positive. In figure 2

we show x0 as a function of (1 − a) for µcr = 0. We see that −x0 asymptotes to
√

2 (as

indicated by the red dashed line) for 1 − a → 0. To clarify the asymptotic behavior, we

Taylor expand the function F (x) about x = −
√

2. This gives

F (x) =
1

2
√

2

(
x+
√

2
)2

+ . . . . (3.26)

Now, to the leading order in (1 − a), eq. (3.24) becomes

1

2
√

2

(
x0 +

√
2
)2

= (1− a)(µcr +
√

2), (3.27)

where we have used that F (−
√

2) = 0. Hence we find

x0 = −
√

2 + 23/4(1− a)1/2
(
µcr +

√
2
)1/2

. (3.28)

For µcr = 0 this gives

x0 = −
√

2 + 2
√

1− a. (3.29)

It is interesting to note that x0 = −
√

2 for 1− a = 0 and any value of µcr. In this case

eq. (3.18) gives µ̄ =
√

2 + µcr. This means that the distribution ρc(µ) is just given by a

– 9 –
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1-a

-
x 0
(0
)

Figure 2. −x0(µcr = 0) as a function of (1 − a). The red dashed line represents the asymptotic

value −x0 =
√

2 in the limit of 1− a→ 0.

-1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

μ

ρ
c(
μ
)

10-4 0.001 0.010 0.100 1
10-4

0.001

0.010

0.100

1

1-a

Δ
∑
(0
)

Figure 3. Left: ρc(µ) as a function of µ with a = N/(N + 2) and N = 100, where we take

µcr = −
√

2, −
√

2/2, 0,
√

2/2,
√

2 from left to right. The case of µcr = −
√

2 is filled in blue color

and is given by the Wigner semi-circle. Right: ∆Σ[ρ] as a function of 1 − a with µcr = 0. The

asymptotic form is shown by a dashed red line.

shifted Wigner semi-circle (3.23) when we neglect the next-leading order correction Σ1[ρ] in

the large N limit [24]. Deviations from the Wigner semi-circle come from the next-leading

order effect.

In the left panel of figure 3, we plot the eigenvalue distribution ρc(µ) with µcr =

−
√

2,−
√

2/2, 0,
√

2/2,
√

2 for the case of a = N/(N +2) (which corresponds to the Hessian

distribution (2.22) and N = 100. We also plot the distribution for µcr = 0 as an orange

curve in figure 1, to compare it with the GOE distribution (plotted as a green curve). We

see that the GOE distribution is much more concentrated near the origin, reflecting the

high cost of a nonzero average eigenvalue µ̄ in that case.

The Hessian distributions in figure 3 look like the Wigner semi-circle with an overall

shift and a slight modification at the left edge. From eqs. (3.18) and (3.29), the amount of

the shift can be estimated as

µ̄ ≈
√

2− 2
√

1− a (3.30)

for µcr = 0 and in the limit of (1− a)� 1. The form of the distribution near the left edge,

0 < µ . 2
√

1− a, where it significantly deviates from the Wigner semi-circle, can be found

from eqs. (3.19) and (3.29):

ρc(µ) ' 5

3π
√
µ

√
2
√

2(1− a). (3.31)
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The number of eigenvalues in this range is

N

∫ 2
√

1−a

0
ρc(µ)dµ ∼ 20 · 21/4

3π
N(1− a)3/4 ∼ N1/4. (3.32)

3.1.2 Probability of µ > µcr

The partition function Z(µcr) can be approximated by its value at the saddle point:

Z(µcr) ∼ exp
[
−N2Σ(µcr)

]
. (3.33)

Using eq. (3.14), Σ(µcr) is given by

Σ(µcr) =
1

4

∫ L(x0)

0
dx(x+ µcr)

2ρc(x+ µcr)−
1

2
C. (3.34)

Here, the Lagrange multiplier C can be determined from eq. (3.14) by setting µ = µcr,

−1

2
C =

1

4
µ2

cr −
a

2
µcr

∫ L(x0)

0
dx(x+ µcr)ρc(x+ µcr)

−1

2

∫ L(x0)

0
dx lnxρc(x+ µcr). (3.35)

These integrals can be done explicitly by using eq. (3.19). The result is

Σ(µcr) =
1

864

(
−x0 +

√
6 + x2

0

)3(
x0 + 3

√
6 + x2

0

)
+

1− a
2a

µcr(µcr − x0)

+
1

12

[
3 + x0

(
−x0 +

√
6 + x2

0

)
+ 3 ln 36− 6 ln

(
−x0 +

√
6 + x2

0

)]
, (3.36)

where we have used eq. (3.17).

Since we are interested in the case where (1 − a) � 1, we can simplify eq. (3.36) by

using eq. (3.28). The result is

Σ(µcr) =
1

8
(3 + ln 4) +

1

2

(
µcr +

√
2
)2

(1− a) +O((1− a)3/2). (3.37)

The probability for all eigenvalues to be greater than µcr is given by P>(µcr) =

exp[−N2∆Σ(µcr)], where ∆Σ(µcr) ≡ Σ(µcr) − Σ(−∞) and Σ(−∞) = (3 + ln 4)/8. This

probability can be found numerically using eqs. (3.17) and (3.36). In the right panel of fig-

ure 3, we plot ∆Σ(0) as a function of (1−a). We also plot the asymptote ∆Σ(0) = (1−a) in

the limit of (1−a)→ 0 as a dashed red line. In the case of the Hessian distribution (2.22),

(1− a) = 2/(N + 2), we obtain P>(0) ∼ e−2N2/(N+2).4

Now we can justify that the second term of Σ1 in eq. (3.12) gives a negligible contribu-

tion to ∆Σ in the large N limit. As we already mentioned, this term is independent of the

average eigenvalue µ̄. Furthermore, from eq. (3.32) we see that the change in Σ1 due to the

4This can be derived from the result of ref. [24] if we take a limit of α → 0, where α is defined as a

fraction of eigenvalues which are negative. However, their analysis is inaccurate in that limit. See also

discussion below eq. (4.22).
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modified distribution near µ = 0 is of the order N1/4/N . It follows that the contribution

of the second term of Σ1 to ∆Σ is O(N−7/4), which is much smaller than the other terms

in the large N limit. We checked that it is indeed O(N−7/4) by numerically calculating

N−1
∫
dµρ ln ρ as a function of N with ρ given by eq. (3.19). Therefore, our result for

∆Σ is accurate with an uncertainty of O(N−7/4). Additional support for neglecting the

second term of Σ1 comes from the fact that the distribution (3.19) obtained without this

term agrees very well with the result of the dynamical method, which takes all terms into

account (see section 5).

4 Probability of µ > µcr at stationary points of the potential

We shall now calculate the probability for all Hessian eigenvalues to be greater than a

given value µcr at stationary points, where ∂iU = 0. For µcr = 0, this is the same as the

probability for a stationary point to be a local minimum. We insert a delta function in

eq. (3.5) for the partition function to enforce the condition ∂iU = 0 in the landscape:∫ ∏
i

dφiδ(∂iU)|detζ|. (4.1)

The Jacobian |detζ| (=
∏
i|λi|) gives an additional factor for the probability distribution

of the Hessian. Hence eq. (3.3) should be replaced by

H(λ) =
1

2

(∑
i

λ2
i −

a

N

[∑
i

λi

]2

−
∑
i 6=j

ln (|λi − λj |)

)
−
∑
i

ln|λi|. (4.2)

As we did in section 3.1, we rescale the eigenvalues as µ = λ/
√
N and consider a

density function of µ. In terms of this density function, we can rewrite H(λ) as

H[ρ]/N2 =
1

2

∫
dµµ2ρ(µ)− 1

2
a

∫
dµdµ′ρ(µ)ρ(µ′)µµ′

−1

2

∫
dµdµ′ρ(µ)ρ(µ′) ln

(
|µ− µ′|

)
− 1

N

∫
dµρ(µ) ln|µ|. (4.3)

The partition function Z(λcr) can also be expressed in terms of ρ(µ), as in eq. (3.10), where

Σ0[ρ] is given by eq. (3.11), while Σ1[ρ] is now given by

Σ1[ρ] =
1

2
N(1− a)

∫
dµdµ′ρ(µ)ρ(µ′)µµ′ +

∫
dµρ(µ) ln [ρ(µ)]−

∫
dµρ(µ) ln|µ|.

(4.4)

We can absorb the third term in (4.4) into the first term in the following way. To

the leading order in N , the distribution ρc(µ) at the saddle point is the shifted Wigner

semi-circle

ρW (µ, µ̄) = π−1
√

2− (µ− µ̄)2. (4.5)
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Since Σ1[ρ] is the next-leading order term, we can approximate it as Σ1[ρW(µ; µ̄)]. Then

we can calculate the third term in (4.4):∫
dµρW(µ; µ̄) ln|µ| = µ̄2

2
− 1

2
(1 + log 2) , (4.6)

for |µ̄| ≤
√

2. Using the definition

µ̄ =

∫
dµρ(µ)µ, (4.7)

we can rewrite Σ1 as

Σ1[ρ] ' 1

2
[N(1− a)− 1]

∫
dµdµ′ρ(µ)ρ(µ′)µµ′ +

∫
dµρ(µ) ln [ρ(µ)] + (const.),

(4.8)

in the large N limit. Therefore, we can use the result of the previous subsection, (3.24)

and (3.36), with a replaced by a+ 1/N .

4.1 Probability of minima and the smallest eigenvalue

An important characteristic of a landscape is the density of potential minima in the field

space. If the correlation length of the landscape is Λ, the density of stationary points,

where ∂iU = 0 is ∼ Λ−N — that is O(1) points per correlation volume. The density of

minima can be obtained by multiplying this by the probability for a stationary point to be

a local minimum. This is the same as the probability for all Hessian eigenvalues at that

point to be positive,

Pmin = exp(−N2∆Σ(0)), (4.9)

where ∆Σ(0) = Σ(µcr = 0)− Σ(µcr = −∞).

The left panel of figure 4 shows N∆Σ(0) as a function of N for the Hessian ensemble

of eq. (2.22), where a = N/(N + 2) is replaced by a+ 1/N ' 1− 1/N . It gets close to the

asymptotic value (−1) for N & 104, but significantly deviates from that value at smaller

values of N . The result can be well fitted by the following function, which is shown as the

green dash-dotted line in the figure:

N∆Σ(0) ' 1− 0.70 exp
[
−0.18 (lnN)1.36

]
. (4.10)

The probability Pmin has been studied earlier in the literature. Bray and Dean used the

saddle point approximation in the large N limit and found the asymptotic value N∆Σ(0) =

1 [24]. Easther et al. [13] noted that Pmin can significantly deviate from this value for

moderately large values of N . They calculated the probability using efficient numerical

codes for several values of N up to 100. Their results, shown by grey dots in the left panel

of figure 4, are in a very good agreement with ours. However, their fitting formula is not

consistent with ours at larger values of N . It is clear from the left panel of figure 4 that

the asymptotic behavior cannot be correctly obtained by the extrapolation from N ≤ 100.
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Figure 4. Left: N∆Σ(0) as a function of N for the Hessian distribution at stationary points of

the potential (solid blue line). The green dash-dotted line, which is completely overlapped with the

result, is a fitting function given by eq. (4.10). The red dashed line marks the asymptotic value of

N∆Σ(0) in the limit of N →∞. Right: Nd∆Σ(µcr)/dµcr at µcr = 0 as a function of N . We used

a = 1− 1/N .

For some applications it is important to estimate the smallest eigenvalue of the Hessian

at potential minima (see, e.g., section 6.2). The probability that this eigenvalue is greater

than a given value µmin can be found from

P>(µmin) = exp(−N2∆Σ), (4.11)

where now ∆Σ = Σ(µmin)− Σ(0). For small values of µmin we can approximate this as

P>(µmin) = exp

(
−N2dΣ(µcr)

dµcr

∣∣∣∣
µcr=0

µmin

)
. (4.12)

The probability distribution for the smallest eigenvalue can then be estimated as

P(µmin) = −dP>(µmin)

dµmin
. (4.13)

We plot Nd∆Σ(µcr)/dµcr at µcr = 0 for the case of a = 1 − 1/N in the right panel

of figure 4. We see that it is ∼ 1 for N ∼ 100 and is asymptotic to
√

2 at N → ∞, as

shown by the red dashed line, in agreement with the analytic formula (3.37). The typical

magnitude of the smallest eigenvalue can now be estimated as

µmin ∼
1

N2 dΣ(µcr)
dµcr

∣∣∣
µcr=0

∼ 1

N
. (4.14)

4.2 Probability of µ > µcr for a fixed U

We shall now use the distribution (2.20) to calculate the probability for all Hessian eigen-

values to be greater than λcr at a given value of U . Eq. (2.20) can be rewritten as

QU,λ '
1

4A

(∑
i

(λi − λ∗)2 − 1

N

(
1− 2AE

N(AE −B2)

)[∑
i

(λi − λ∗)

]2)
, (4.15)
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Figure 5. N∆Σ(µ̃cr) as a function of µ̃cr. We take N = 10, 50, 100, 1000 from top to bottom.

The dashed red line shows the asymptotic behavior at N →∞.

where λ∗ = (B/E)(U − Ū) and we disregard terms that are independent of λi. We define

shifted and rescaled eigenvalues λ̃i and the parameter a as

λ̃i =
1√
2A

(λi − λ∗) (4.16)

a = 1− 2AE

N(AE −B2)
, (4.17)

Then the resulting distribution for λ̃i has the same form as eq. (3.1).

The condition λi > λcr is equivalent to λ̃i > λ̃cr, where λ̃cr = (1/
√

2A)(λcr − λ∗).

Defining µ̃a = λ̃a/
√
N (a = i, cr), we obtain the relation between µ̃cr and the original

threshold value λcr:

µ̃cr =
1√

2AN
(λcr − λ∗) . (4.18)

Thus we can use the same calculations and results as in section 3 for the conditional

probability at generic points in the landscape, with the replacements (4.17) and (4.18).

In particular, when we are interested in the case where all eigenvalues are positive, we

should set λcr = 0 or µ̃cr = −λ∗(U)/
√

2AN . We plot ∆Σ(µ̃cr) as a function of µ̃cr for

N = 10, 50, 100, 1000 and (1 − a) = 1/N in figure 5. The plots asymptote to the analytic

formula (3.37) or

N∆Σ(µ̃cr) =
1

2

(
µ̃cr +

√
2
)2
N(1− a), (4.19)

in the limit of (1− a)→ 0, which is plotted as a red dashed line.

To calculate the probability for a stationary point at a given value of U to have

all Hessian eigenvalues greater than λcr, we need to add a term −
∑

i ln|λi| in eq. (3.3).

– 15 –



J
H
E
P
0
3
(
2
0
1
8
)
0
2
9

Neglecting a constant term, the additional term can be written as −
∑

i ln|λ̃i + λ∗|. So

we should replace λi → λ̃i and −
∑

i ln|λi| → −
∑

i ln|λ̃i + λ∗| in eq. (4.2). By using the

argument around eq. (4.5), we can replace the extra term by

−
∫

dµ̃ρW(µ̃; µ̄) ln|µ̃+ µ∗| = −(µ̄+ µ∗)
2

2
+

1

2
(1 + log 2)

= −1

2

∫
dµ̃dµ̃′ρ̃(µ̃)ρ̃(µ̃′)µ̃µ̃′ − µ∗

∫
dµ̃ρ̃(µ̃)µ̃+ (const.),

(4.20)

in the leading order in the large N limit, where µ∗ ≡ λ∗/
√

2AN and ρ̃(µ̃) = ρ(µ). As a

result, we can rewrite Σ1 as

Σ1[ρ̃] ' 1

2
[N(1− a)− 1]

∫
dµ̃dµ̃′ρ̃(µ̃)ρ̃(µ̃′)

(
µ̃− µ∗

N(1− a)− 1

)(
µ̃′ − µ∗

N(1− a)− 1

)
+

∫
dµ̃ρ̃(µ̃) ln [ρ̃(µ̃)] + (const.). (4.21)

If we redefine µ̃ by shifting µ̃ → µ̃ + µ∗/[N(1 − a) − 1], this is the same as eq. (4.8) and

we can use the same calculation and result. Therefore, the term −
∑

i ln|λi + λ∗|, which

comes from the Jacobian for the stationary condition, gives two corrections: a→ a+ 1/N

(as we discussed below eq. (4.8)) and µ̃→ µ̃+ µ∗/[N(1− a)− 1].

In summary, the probability for a stationary point at a given value of U to have all Hes-

sian eigenvalues greater than λcr can be found from eq. (4.19) with the above replacements:

N2∆Σ(λcr) = N
AE +B2

2(AE −B2)

[
1√

2AN

(
λcr −

2B2

AE +B2
λ∗

)
+
√

2

]2

. (4.22)

A similar result has been derived by Bray and Dean in their eq. (23) of ref. [24], where

their f(0), f ′(0), f ′′(0), ε, are our E/N , −B, AN , U/N , respectively. There is, however, a

significant difference. Bray and Dean found the probability for a stationary point at a given

value of U to have a given index α, where the index is defined as a fraction of eigenvalues

which are negative. The average eigenvalue λ̄ in their eq. (23) has to be expressed in terms

of α through the relation ∫ 0

−∞
dλρ(λ, λ̄) = α. (4.23)

Their λ̄ can be identified with our (λcr + 2
√
AN) in the leading order approximation. We

note, however, that Bray and Dean calculated ρ(λ, λ̄) only in the leading order in 1/N ,

which becomes rather inaccurate near the left edge of the distribution. Hence their result

is not accurate for small values of α. We do not have this problem in our calculation, so

our result can be used for arbitrary values of λcr.

We note also that even though the approximations we used here are sufficient for

calculating ∆Σ(λcr), they are not accurate enough to find the distribution ρc(µ) at small

values of µ, because the distribution strongly deviates from the Wigner semi-circle near

µ = 0. In section 5 we shall develop a new method which is sufficiently accurate in

that regime.
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5 Dynamical method

As we already noted, the approximations we used in sections 4 and 4.1 are not sufficiently

accurate for finding the eigenvalue distribution at small values of µ. In this section we

develop a numerical method, using a version of the Dyson Brownian motion [27], to dy-

namically derive the distribution of Hessian eigenvalues. This method accounts for all

terms in Σ0 and Σ1 without any approximations, apart from the limitations of numerical

resolution and computer runtime. We shall first apply the Dyson Brownian motion method

to the random matrix theory with GOE.

5.1 Random matrix theory

5.1.1 Dyson Brownian motion and Fokker-Planck equation

The Dyson Brownian motion model was introduced in ref. [27] to describe stochastic evo-

lution of random matrices. The eigenvalues λi of a random matrix are assumed to undergo

a stochastic process described by the Langevin equation

dλi(t)

dt
= −∂W

∂λi
+ ξi(t), (5.1)

where ξi(t) is a stochastic variable,〈
ξi(t)ξj(t

′)
〉

= 2δijδ(t− t′). (5.2)

The potential W is given by

W =
1

2

∑
i

λ2
i −

1

2

∑
i 6=j

ln|λi − λj |. (5.3)

The eigenvalues are subject to a potential force ∂W/∂λi and a stochastic force ξi. Note

that the potential W is equal to the ‘Hamiltonian’ (3.3).

The probability density P (λ, t) satisfies the Fokker-Planck equation, which can be

obtained by taking the ensemble average over ξi [27]:

∂

∂t
P (λ, t) = −

∑
i

∂

∂λi
ji(λ, t) (5.4)

ji(λ, t) = −T ′ ∂P
∂λi

+ EiP, (5.5)

where T ′ = 1 and the potential force Ei is given by

Ei ≡ −
∂W

∂λi
. (5.6)

The equilibrium solution of eq. (5.4) is given by the Boltzmann distribution,

P ∝ exp[−W/T ′]. (5.7)

– 17 –



J
H
E
P
0
3
(
2
0
1
8
)
0
2
9

Thus we can interpret W and T ′ as the potential and the temperature, respectively. We

note that the distribution (5.7) is the same as the eigenvalue distribution (3.2), (3.3) with

a = 0 for the GOE ensemble.

Since we are interested not in the individual variables λi, but in the distribution of

eigenvalues, we define a time-dependent probability density ρ(λ, t) as

ρ(λ, t) =

∫ ∏
i

dλi

(
1

N

∑
i

δ (λ− λi)

)
P (λ1, λ2, . . . , λN , t). (5.8)

We can easily check that
∫

dλρ = 1. We also rescale the variable as µ = λ/
√
N to compare

the results with those in section 3. We set the normalization condition
∫

dµρ(µ, t) = 1 so

we rescale the density ρ(λ, t)→ ρ(µ, t)/
√
N . Then it obeys the following equation:

∂ρ(µ, t)

∂t
= −∂j(µ, t)

∂µ
(5.9)

j(µ, t) = −T ∂ρ
∂µ

+ Eρ, (5.10)

where T = 1/N is the temperature. The potential force E is given by

E(µ, t) = −µ+

∫
dµ′

ρ(µ′, t)

µ− µ′
. (5.11)

where we have replaced the summation
∑

j by the integral
∫

dµ′ρ(µ′) in the second term.

In what follows we shall use the Fokker-Planck equation for ρ(µ, t), without referring

to the Langevin equation.

5.1.2 Dynamical evolution

We are interested in the equilibrium distribution under the condition that all eigenvalues

are positive. This can be realized by evolving ρ(µ, t) by eq. (5.9) for a sufficiently long

time5 with a reflecting boundary condition at µ = 0,

j(µ = 0, t) = 0. (5.12)

The equilibrium solution is stationary, ∂ρ/∂t = 0, and it follows from eq. (5.9) that

j(µ) = const. Then the boundary condition (5.12) requires that

j(µ) = − 1

N

∂ρ

∂µ
+ Eρ = 0 (5.13)

This condition is similar to the one that we used to determine the saddle point solution

(see eq. (3.15)):

− 1

Nρ(µ)

dρc(µ)

dµ
− µ+ P

∫ ∞
µcr

dµ′
ρc(µ

′)

µ− µ′
= 0, (5.14)

5We note that the equilibrium eigenvalue distribution in a different class of models has been studied

in ref. [8], where they calculated the distribution by sampling the canonical ensemble with the Metropolis

algorithm.
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Figure 6. Left: equilibrium solution of Fokker-Planck equation for the GOE model (red curve).

We also plot the Wigner semi-circle (dashed shaded blue line) and the analytic solution for the

GOE model (dashed green line). Right: time-evolution of the distribution. We plot distributions

at t = 0.25n with n = 0, 1, 2, . . . , 10. The initial distribution is shown by a bell-shaped blue line.

where we set a = 0. The first term in eq. (5.14) comes from the term
∫

dµρ ln[ρ] in Σ1[ρ],

which we neglected in section 3. Thus eq. (5.9) provides a useful check for the results of

saddle point approximation.

We solve the Fokker-Planck equation numerically by discretizing the differential equa-

tion. Numerical methods for solving the Fokker-Planck equation with the boundary condi-

tion (5.12) have been extensively studied [33–35]. The grid size ∆µ, the volume of µ-space

Lµ, and the step size ∆t are taken to be 0.02, 5, and 0.005, respectively. We checked that

our results are not affected by these parameters by varying their values. The results are

presented in figure 6, where we take N = 1/T = 100. The initial condition is taken to be a

Gaussian function with a peak at µ = 2 and a width of 0.5, as indicated by a blue line. We

see that the evolution converges to a stationary distribution, which agrees very well with

the semi-analytic solution of section 3, with only a slight deviation at the right edge.

Here we comment on this slight deviation. It comes from the fact that we neglected the

second term of Σ1[ρ] in eq. (3.12) to calculate the semi-analytic solution while we do not use

any approximation to calculate ρ in the dynamical method. To check that this deviation is

physical and is consistent with the results in the literature, we calculated the distribution

for the case of µcr � −
√

2 (i.e., for the case without the boundary) using the dynamical

method. We found that the tails of the distribution at the right and left edges agree very

well with the well-known Tracy-Widom distribution [36, 37] Therefore, the smooth tail of

the distribution at the right edge in figure 6 can be attributed to the spread of the largest

eigenvalues à la Tracy-Widom beyond the edge of the semi-analytic distribution.

5.2 Hessian eigenvalue distribution in RGF model

The same method can be applied to find the Hessian eigenvalue distribution in a random

Gaussian field, except in this case we should use a = N/(N + 2) in eq. (3.3). Then the

potential (5.3) is replaced by

W =
1

2

∑
i

λ2
i −

a

2N

(∑
i

λi

)2

− 1

2

∑
i 6=j

ln|λi − λj |, (5.15)
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Figure 7. Left: equilibrium solution of Fokker-Planck equation for Hessian eigenvalue distribution

at a generic point in RGF (shaded solid red line). We plot also the Wigner semi-circle and the

analytic solutions for the GOE and RGF models (dashed green and orange lines, respectively).

Right: time-evolution of the distribution. We plot distributions at t = 5n with n = 0, 1, 2, . . . , 10.

and the potential force in the Fokker-Planck equation becomes

E(µ, t) = −µ+ a

∫
dµ′ρ(µ′, t)µ′ +

∫
dµ′

ρ(µ′, t)

µ− µ′
(5.16)

The equilibrium distribution ρc(µ) is again equivalent to the saddle point solution of (3.15)

with the term coming from
∫

dµρ ln[ρ] included. We find this distribution by evolving

ρ(µ, t) via the Fokker-Planck equation.

We solve the Fokker-Planck equation numerically and show the result in figure 7. We

take N = 1/T = 100 and a = N/(N+2). The initial condition and other parameters are the

same as we used in section 5.1.2 for the case of GOE. Once again, we see that the endpoint

of the evolution is very close to the analytic solution. This justifies the approximation of

neglecting the term
∫

dµρ ln[ρ] in Σ1[ρ] that we made in section 4.

5.3 Hessian eigenvalue distribution at stationary points of the potential

We finally consider the Hessian eigenvalue distribution at stationary points, where ∂iU = 0,

under the condition that all eigenvalues are positive. We found in section 4 that in this

case Σ1[ρ] has an additional term, −
∫
ρ(µ) ln |µ|. This adds an extra term 1/Nµ to the

potential force (5.16) in the Fokker-Planck equation,

E(µ, t) = −µ+ a

∫
dµ′ρ(µ′, t)µ′ +

∫
dµ′

ρ(µ′, t)

µ− µ′
+

1

Nµ
. (5.17)

We solve the equation numerically using the same parameter values and initial condi-

tion as before. The results are presented in figure 8. The equilibrium distribution is shown

by the solid shaded red line. For comparison we also show, by a dashed orange line, the

semi-analytic distribution calculated in section 4 for Hessian eigenvalues at generic points

(not necessarily potential minima). We see that the two distributions are very close to

one another, except near µ = 0. The semi-analytic solution diverges as µ−1/2, while our

equilibrium distribution drops sharply to zero. This is the effect of the strong repulsive

force due to the last term in eq. (5.17).
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To illustrate the behavior of the distribution at small values of µ, we plot ρc(µ) near

µ = 0 for the cases of N = 20 (blue line) and 100 (yellow line) in figure 9. For µ � 1/N ,

we can approximate E(µ) ≈ 1/Nµ, and eq. (5.13) gives

ρc(µ) ≈ Cµ (µ� 1/N) (5.18)

with C = const. This is in agreement with the plots in figure 9. We find that C is about

0.5N from our numerical results.

It should be noted, however, that our method may not be accurate in the range 0 <

µ . 1/N . The average number of eigenvalues in this range is N
∫ 1/N

0 ρc(µ)dµ ∼ 1, and thus

replacing discrete eigenvalues by a continuous distribution is not justified.6 One can expect

nevertheless that this approximation gives correct order-of-magnitude results near the limit

of its applicability, µ ∼ 1/N . We can then use it to estimate the typical magnitude of the

smallest eigenvalue of the Hessian, µmin:∫ µmin

0
ρc(µ)dµ ∼ 1

N
. (5.19)

The plots in figure 9 suggests that ρc(µ) ' 0.3 for µ & 1/N . Hence we find

µmin ∼
1

N
. (5.20)

The same estimate is obtained by numerically integrating the distribution in eq. (5.19). It

is in agreement with a more accurate estimate (4.14) in section 4.1.

6 Some applications in cosmology

In this section we consider some applications of our result to the landscape models.

6.1 Vacuum stability

Vacuum stability in landscape models has been studied numerically in refs. [12, 39]. A

simple analytic treatment was given by Dine and Paban in ref. [40]. They assume (i) that

the most probable decay channels are typically in the directions of the smallest Hessian

eigenvalues and (ii) that the vacuum decay rate is controlled mainly by the quadratic and

cubic terms in the expansion of U(φ) about the potential minimum. Then the tunneling

(bounce) action in the direction of the Hessian eigenvalue λi can be estimated as

Bi ∼ K
λi
γ2
, (6.1)

where γ ∼ U0/Λ
3 is the typical coefficient of a cubic expansion term and K ∼ 50 is a

numerical coefficient. The highest rate corresponds to the smallest Hessian eigenvalue λmin.

Dine and Paban considered a quartic potential with a random distribution of coefficients

6We believe, however, that the sharp drop of the distribution to zero at µ = 0 is a real feature. A similar

feature was found in refs. [38] and [8], where the eigenvalue distribution was calculated for different models

without using the continuous approximation.
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Figure 8. Left: equilibrium solution of Fokker-Planck equation for Hessian eigenvalue distribution

in RGF at local minima of the potential (solid red shaded line). We plot also the Wigner semi-circle

and analytic solutions for the GOE and RGF model (dashed green and orange lines, respectively).

Right: time-evolution of the distribution. We plot distributions at t = 10n with n = 0, 1, 2, . . . , 10.

0.00 0.05 0.10 0.15 0.20
0.0

0.1

0.2

0.3

0.4

0.5

μ

ρ
(μ
)

N=20

N=100

Figure 9. Hessian eigenvalue distribution for small values of µ in RGF at local minima of the

potential. We plot the cases of N = 20 (blue line) and 100 (yellow line).

and found that in this case λmin ∼ (1/N)(U0/Λ
2) and B ∼ (K/N)(Λ4/U0). With U0/Λ

4 ∼
0.1 − 1 and N ∼ 100, this can be rather small, B ∼ 1, suggesting that most of the vacua

in the landscape are very unstable.

For a random Gaussian landscape the situation is different. In this landscape, an

accurate estimate of λmin can be obtained from eq. (4.14) or eq. (5.20),

µmin ∼
1

N
. (6.2)

This corresponds to

λmin ∼
U0

√
N

Λ2
µmin ∼

U0

Λ2
√
N
, (6.3)
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and thus the tunneling action is

B ∼ K√
N

Λ4

U0
. (6.4)

This is
√
N times larger than the estimate of ref. [40], so the vacuum stability is significantly

enhanced. (We note that if we used eq. (5.19) with the GOE eigenvalue distribution

(eq. (3.19) with x0 = 0), we would have µmin ∼ 1/N2, which would suggest a much

lower stability.)

6.2 Multi-field inflation

In this section we assume that the landscape is small-field, which means that the correlation

length is Λ� 1 in Planck units. Slow-roll inflation in such a landscape occurs in rare flat

regions, where the first and second derivatives of the potential in some direction are much

smaller than their typical values. It was argued in refs. [14–16, 18] that inflation in such

regions tends to be single-field, with the inflaton field rolling in a nearly straight line along

the flat direction. Other fields (corresponding to orthogonal directions) can be excited and

significant deviations from a straight trajectory can occur only if some of the fields have

masses smaller than the Hubble parameter during inflation, m .
√
U0 in Planck units.

This is much smaller than the typical mass m0 ∼
√
U0/Λ. However, with a large number

of fields N some of the masses may be � m0 and may get as small as
√
U0. We shall now

investigate this possibility.

Flat inflationary tracks are likely to be found in the vicinity of inflection points, where

one of the Hessian eigenvalues vanishes (this corresponds to the flat direction), the rest of

the eigenvalues are positive, and the potential gradient vanishes in the directions orthogonal

to the flat direction. Let us choose the φ1 axis in the flat direction. Then we have λ1 = 0

and λi > 0, ∂U/∂φi = 0 for i = 2, . . . , N . The mass spectrum in the directions orthogonal

to the flat direction is determined by the Hessian eigenvalues, m2
i = λi (i > 1). We now

want to estimate the smallest of these eigenvalues.

The probability distribution for Hessian eigenvalues λ = (λ2, λ3, . . . , λN ) at inflection

points can be derived along the same lines as we derived eq. (4.2). It is given by

P = A exp(−H(λ) (6.5)

H(λ) =
1

2

(∑
i≥2

λ2
i −

a

N

[∑
i≥2

λi

]2

− 2
∑
i>j≥2

ln (|λi − λj |)

)
− 2

∑
i≥2

ln|λi|. (6.6)

This is similar to eq. (4.2), but with a few differences. First, the coefficient of the last

term is not unity but is 2. An additional −
∑

ln |λi| term comes from the last term in

parentheses of eq. (4.2) with i = 1 or j = 1. Second, the number of eigenvalues is N − 1.

We can now use the method of section 4.1 to find the probability distribution for the

second smallest Hessian eigenvalue µ2 at inflection points (the first smallest being µ1 = 0).

We note that the number of eigenvalues is now N − 1 and rewrite the coefficient of the

second term in the parenthesis of (6.6) as a/N = a′/(N − 1), where a′ = a(N − 1)/N , so
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this term becomes

− a′

N − 1

[∑
i≥2

λi

]2

. (6.7)

As we explained in section 4, the last term of eq. (6.6) can be absorbed into a′ by the

replacement of a′ → a′ + 2/N , where the factor of 2 comes from the coefficient of the

last term. As a result, we should replace a with a(N − 1)/N + 2/N in the calculation of

section 3.1. Since a(N − 1)/N + 2/N ' a + 1/N , the result should be the same with the

one obtained in section 4 in the large N limit. Therefore the distribution of eigenvalues at

an inflection point is given by ρc(µ) with 1 − a ' 1/N and µcr = 0. The probability for

all eigenvalues to be positive is given by exp[−N2∆Σ], and the typical value of µ2 can be

estimated as in eq. (4.14),

µ2 ∼
1

N2 dΣ(µcr)
dµcr

∣∣∣
µcr=0

∼ 1

N
. (6.8)

The asymptotic value of NdΣ(µcr)/dµcr|µcr=0 is
√

2 in the limit N →∞.

The distribution of eigenvalues at inflection points can be found using the dynamical

method of section 5. The Fokker-Planck equation has the same form as before, but with

slightly different parameters and coefficients. The temperature T in eq. (5.10) is given by

1/(N − 1) and the potential force E(µ, t) is given by

E(µ, t) = −µ+
a(N − 1)

N

∫
dµ′ρ(µ′, t)µ′ +

∫
dµ′

ρ(µ′, t)

µ− µ′
+

2

(N − 1)µ
, (6.9)

where µ ≡ λ/
√
N − 1. The change in the last term of E(µ, t) modifies the form of the

distribution at µ→ 0. In this limit, the Fokker-Planck equation reduces to dρ/dµ = 2ρ/µ,

with the solution

ρc(µ) ≈ Cµ2 (µ� 1/N) (6.10)

where C = const.

The distribution obtained by numerically evolving the Fokker-Planck equation is shown

in figure 10. We find that the constant C in eq. (6.10) is ∼ 0.1N2 from our numerical results.

As in section 5.3, the average number of eigenvalues in the range 0 < µ . 1/N is O(1), so

we cannot expect our distribution to be accurate in this range.

As before, the second smallest eigenvalue of the Hessian, µ2, can also be estimated

from ∫ µ2

0
ρc(µ)dµ ∼ 1

N − 1
, (6.11)

which gives

µ2 ∼
1

N
, (6.12)

in agreement with (6.8).

The rescaled eigenvalue (6.12) corresponds to λ2 ∼ U0/(
√
NΛ2). If this is smaller than

about H2 ∼ U0, then the associated field φ2 will undergo significant fluctuations and may

play a dynamical role during inflation. This is unlikely if
√
NΛ2 � 1. Thus we conclude

that multifield inflation is not likely for Λ� N−1/4 ∼ 0.3 (for N = 100).
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Figure 10. Equilibrium solution of Fokker-Planck equation for Hessian eigenvalue distribution in

RGF at inflection points of the potential (solid red shaded line). We plot also the Wigner semi-circle

(dashed blue shaded line) and analytic solutions for the GOE and RGF model (dashed green and

orange lines, respectively).

7 Conclusions

The main focus of this paper was to investigate the Hessian eigenvalue distribution at local

minima of a random Gaussian landscape. Bray and Dean used the saddle point approxi-

mation to calculate this distribution and the density of local minima in the leading order

of the large N expansion. We found, however, that the next-to-leading order corrections

modify the distribution at the lower edge of the domain. This is particularly important

for the smallest Hessian eigenvalues, which we need to estimate for assessing the vacuum

stability and the multi-field nature of inflation in the landscape.

We extended the saddle point method to account for the sub-leading in 1/N contri-

butions and used it to calculate the density of local minima in the landscape and the

probability distribution for the smallest eigenvalue. This method can also be used to de-

termine the Hessian eigenvalue distribution at a generic point in the landscape, but it fails

to find the distribution at potential minima with the desired accuracy. For that we had to

develop a completely new approach.

In our new approach, the Hessian eigenvalue distribution is calculated as the asymp-

totic endpoint of a stochastic process, called Dyson Brownian motion. The distribution is

evolved via a suitable Fokker-Planck equation, and the equilibrium distribution is obtained

after a sufficiently large number of iterations. We have verified that this method agrees

with the saddle point method in cases where the latter method is applicable.

We discussed some implications of our results for vacuum stability and slow-roll in-

flation in the landscape. We found that metastable vacua in a Gaussian landscape are

more stable than a naive estimate would suggest. Slow-roll inflation at inflection points in
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the landscape is likely to be single-field when the smallest nonzero Hessian eigenvalue at

a typical inflection point is greater than the energy scale of the landscape U0. We found

that this condition is satisfied if the correlation length in the landscape is Λ . N−1/4. For

N ∼ 100, this means that inflation is essentially single-field in a landscape with Λ . 0.3 in

Planck units.

In appendix A we discussed the relation between a random Gaussian landscape and

an axionic landscape. We specified the conditions under which an axionic landscape can

be approximated by an isotropic random Gaussian field. We expect that our results should

be applicable to such axion models.

We note finally that the problem of Hessian eigenvalue distribution in a random field

arises in many areas of condensed matter physics (see, e.g., [41–43] and references therein).

Our methods and results may be useful in these areas as well.
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A Axion landscape

In this appendix we extend the argument of ref. [23] to show that under certain conditions

the axion landscape can be approximately described by an isotropic random Gaussian

field model.

Axions develop a periodic potential due to non-perturbative effects. (For a review of

axions see, e.g., [44].) In general the potential has the form

U(θ) =

P∑
a=1

Λ4
afa(Xa + δa), (A.1)

where

Xa = qa · θ, (A.2)

Λa are the energy scales of non-perturbative effects, θ is an N -component vector, its

components θi being the axion fields, qa is a vector with integer components qai, and

fa(X) are periodic functions with a period 2π,

fa(X + 2π) = fa(X). (A.3)

The phase constants δa are assumed to be random parameters with a flat distribution in the

range from 0 to 2π, and qai are independent random variables with a specified distribution

Pa(qai). Following ref. [23], we shall assume for simplicity that all these distributions are

identical: Pa(q) = P (q) (although this can be easily generalized).
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Since the functions fa(X) are periodic, they can be represented as

fa(X) =

∞∑
n=−∞

fane
inX , (A.4)

with fa,−n = f∗an. In ref. [23], they assume fa(X) = [1 − cosX], in which case fa0 = 1,

fa,±1 = 1/2, and fan = 0 for all |n| > 1. In what follows, we consider a generic periodic

function fa(X). For example, the strong dynamics of QCD results in a complicated periodic

function for the QCD axion [46] (see also ref. [47] for a recent work).

String theory predicts the existence of a large number of axions, N & 100 (e.g., [45]).

In ref. [23] it was shown that interesting alignment effects can arise in the axionic landscape

if the number of terms in the potential (A.1) is N < P < 2N . They also noted that for

P � N the potential approaches that for a random Gaussian field, as a consequence of the

central limit theorem. The statistical properties of this field depend on the choice of the

distribution P (q).

The integers qai define a lattice in the q-space with a spacing ∆q = 1. We shall assume

that the variance of the distribution P (q) is q̄2 � 1, which means that the correlation

length of U(θ) is small compared to the periodicity length 2π. Then the distribution P (q)

can be approximated as continuous.

We will be interested in the two-point correlation function for the potential U(θ).

After averaging over the random phases, this function should depend only on the difference

θ1 − θ2. Then, without loss of generality, we can choose one of the points to be at θ = 0.

Thus, we consider

〈U(θ)U(0)〉 =
∑
a,a′

∑
n,n′

Λ4
aΛ

4
a′fanfa′n′

〈
einXa

〉
q

〈
einδaein

′δa′
〉
δ
, (A.5)

where 〈· · ·〉α (α = q, δ) represents the ensemble average over random variables α. We use〈
einδaein

′δa′
〉
δ

= δaa′δn+n′ (A.6)

and 〈
einXa

〉
q

=
∏
i

F (nθi), (A.7)

where

F (θ) ≡
∞∑

q=−∞
P (q)eiqθ. (A.8)

Substituting this in (A.5), we have

〈U(θ)U(0)〉 − Ū2 =
∑
a,n 6=0

Λ8
a|fan|2

∏
i

F (nθi). (A.9)

Now we consider some possible forms of P (q). The first is

P (q) ∝ exp

(
− q2

2q̄2

)
. (A.10)
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In this case, the combined distribution for all qai components is

P (qa) ∝ exp

(
− q

2
a

2q̄2

)
. (A.11)

This depends only on q2
a =

∑
i q

2
ai and thus is rotationally invariant in the q-space. Note

that eq. (A.11) is the only factorized distribution, P (qa) =
∏
i Pi(qai), that has this prop-

erty. We can expect the two-point function to also be rotationally invariant in the θ-space.

Indeed, from eq. (A.8) we have

F (θ) ∝
∞∑

q=−∞
exp

(
− q2

2q̄2
+ iqθ

)
. (A.12)

Since we assume that q̄ � 1, the sum over q can be approximated by an integral, so

we obtain

F (θ) ∝ exp

(
−1

2
q̄2θ2

)
(A.13)

and

〈U(θ)U(0)〉 − Ū2 ∝
∑
a,n

Λ8
a|fan|2 exp

(
−1

2
q̄2n2θ2

)
. (A.14)

Note that if q̄ depends on the index a, q̄ in this equation should simply be replaced by q̄a.

Now let us consider the form of P (q), which was adopted in ref. [23]: P (q) = const for

|q| < qm and P (q) = 0 otherwise. In this case,

F (θ) ∝ sin(qmθ)

θ
. (A.15)

Hence,

〈U(θ)U(0)〉 − Ū2 ∝
∏
i

sin(qmnθi)

θi
. (A.16)

Unlike eq. (A.14), this correlation function is not rotationally invariant. The reason is that

rotational invariance is violated by the probability distribution for q.

It may be instructive to compare the correlators of the potential U(θ) and its deriva-

tives for different choices of P (q). We find

Ū ≡ 〈U(θ)〉q,δ =
∑
a

Λ4
a 〈fa〉δ , (A.17)

〈
(U(θ)− Ū)2

〉
q,δ

=
∑
a

Λ8
a

〈
(fa − 〈fa〉)2

〉
δ
, (A.18)

〈U(θ)ζij(θ)〉q,δ =
∑
a

Λ8
a 〈qaiqaj〉q

〈
faf
′′
a

〉
δ
, (A.19)

〈ζij(θ)ζkl(θ)〉q,δ =
∑
a

Λ8
a 〈qaiqajqakqal〉q

〈
f ′′2a
〉
δ
, (A.20)
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where primes denote derivatives with respect to X. The gradient ηi = ∂U/∂θi is not

correlated with the potential nor the Hessian. The ensemble average over qai gives

〈qaiqaj〉q = δij q̄
2
a (A.21)

〈qaiqajqakqal〉q = q̄4
a (δijδkl + δikδjl + δilδjk − raδijδjkδkl) (A.22)

ra ≡
3q̄4
a −

〈
q4
ai

〉
q

q̄4
a

, (A.23)

where q̄2
a is the variance of random variable qai.

If we identify

E =
∑
a

Λ8
a

〈
(fa − 〈fa〉)2

〉
δ

(A.24)

B =
∑
a

Λ8
aq̄

2
a

〈
faf
′′
a

〉
δ

(A.25)

A =
∑
a

Λ8
aq̄

4
a

〈
f ′′2a
〉
δ
, (A.26)

we see that the resulting correlation functions have the same form as eqs. (2.6)–(2.10),

except for the additional term (rδijδjkδkl) in (A.22). This additional term breaks the

rotational invariance of the model and vanishes when the random variables qai have a rota-

tionally invariant distribution (A.11). In ref. [23], the authors assumed a flat distribution

for qai as an example (which breaks rotational invariance) and obtained r = 6/5.

The extra term in (A.22) also indicates a deviation from Gaussian statistics. However,

it affects only the statistics of the diagonal components of the Hessian. There are only N

diagonal components and N(N − 1)/2 non-diagonal ones, so we can expect this term to

be unimportant at large N . The same discussion applies to correlators for higher-order

derivatives. Thus we expect that Gaussian random fields give a good approximation for

this type of landscape in the limit of N � 1 and P � N .

Finally, we comment that the cancellation for the coefficient of (Trζ)2 (AE − B2 =

0) occurs when fa(X) = [1 − cosX], which was adopted in ref. [23]. In this case, the

Hessian distribution is just given by the GOE with a constant shift of the diagonal terms

as eq. (2.27). However, this is not a generic property of axion landscape with a generic

choice of functions fa(X).
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