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Abstract: Epicardial adipose tissue (EAT) as a source of pro-inflammatory cytokines tightly linked to
metabolic abnormalities. Data regarding the associations of EAT with adipocyte fatty acid-binding
protein (A-FABP), a cytokine implicated in the cardiometabolic syndrome, might play an important
part in mediating the association between EAT and cardiac structure/function in preserved ejection
fraction heart failure (HFpEF). We conducted a prospective cohort study comprising 252 prospectively
enrolled study participants classified as healthy (n = 40), high-risk (n = 161), or HFpEF (n = 51). EAT
was assessed using echocardiography and compared between the three groups and related to A-FABP,
cardiac structural/functional assessment utilizing myocardial deformations (strain/strain rates) and HF
outcomes. EAT thickness was highest in participants with HFpEF (9.7 ± 1.7 mm) and those at high-risk
(8.2 ± 1.5 mm) and lowest in healthy controls (6.4 ± 1.9 mm, p < 0.001). Higher EAT correlated with
the presence of cardiometabolic syndrome, diabetes and renal insufficiency independent of BMI and
waist circumference (pinteraction for all > 0.1), and was associated with reduced LV global longitudinal
strain (GLS) and LV mass-independent systolic/diastolic strain rates (SRs/SRe) (all p < 0.05). Higher
A-FABP levels were associated with greater EAT thickness (pinteraction > 0.1). Importantly, in the combined
control cohort, A-FABP levels mediated the association between EAT and new onset HF. Excessive EAT
is independently associated with the metabolic syndrome, renal insufficiency, and higher A-FABP levels.
The association between EAT and new onset HF is mediated by A-FABP, suggesting a metabolic link
between EAT and HF.

Keywords: epicardial adipose tissue (EAT); pro-inflammatory cytokines; metabolic syndrome; adipocyte
fatty acid-binding protein (A-FABP); heart failure (HF); preserved ejection fraction heart failure (HFpEF);
strain; strain rate
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1. Introduction

Owing to excessive adiposity, obesity is an important key clinical risk in the patho-
physiology of heart failure with preserved ejection fraction (HFpEF), an emerging HF
phenotype worldwide in both Western and Asian populations [1,2]. Conventional use
of body mass index (BMI) fails to differentiate true body fat fractionation and therefore
is neither specific nor accurate as an ideal marker for quantifying the total burden of
adiposity [3]. Accumulating data proposed that excessive visceral adiposity, rather than
BMI, is a central pathological player mediating metabolic derangements and may serve as
a major source of pro-inflammatory cytokines, leading to cardiovascular disorders [3–5].
Epicardial adipose tissue (EAT), as visceral adiposity confined within the pericardial sac
that tightly regulates myocardial structural and functional homeostasis [6], has recently
emerged as an attractive research topic in the pathogenetic mechanisms of HFpEF.

Recently, the Asia-Pacific region has been facing a metabolic syndrome (MetS) epi-
demic [7]. It is now evident that patients with HFpEF have a high prevalence of multimor-
bidity tightly associated with MetS components [1,8]. In particular, a large, prospectively
enrolled multi-ethnic Asian HFpEF registry further illustrated multi-metabolic abnormality
as a geography-specific Asian HFpEF phenotype [9]. A-FABP (also known as FABP4 or
aP2) is a member of the intracellular FABP family predominantly expressed in mature
adipocytes, and it has been shown to display higher expression levels in human EAT and
central aortic vasculature in overweight/obese subjects or those with severe MetS [10] and
associated with unfavorable LV remodeling in obese women [11]. Moreover, emerging
evidence reveals that adipocyte fatty acid-binding protein (A-FABP), a circulating marker
enriched in and released from visceral adipose tissue, increases correspondingly with
incident MetS [12] and may suppress cardiomyocyte contractility and contribute to HF
development [13]. While EAT has been demonstrated to provoke a systemic inflammatory
cascade [14] as the main hypothetical pathophysiology in the development of HFpEF, the
possible mediating role of A-FABP between EAT, cardiac structure, and function, along with
its correlation with HFpEF, has never been thoroughly explored. To investigate whether
EAT may distribute differently in concert with the degree of cardiometabolic myocardial
dysfunction, we aimed to compare EAT across a broad spectrum of cardiovascular disease
(CVD) categories comprising healthy and high metabolic risk subjects.

2. Methods
2.1. Study Subjects

From December 2011 to September 2014, patients from the outpatient clinics of
a tertiary medical center (Mackay Memorial Hospital, Taipei, Taiwan) were prospec-
tively enrolled. All study participants gave written informed consent, and the institu-
tional review board at Mackay Memorial Hospital approved the study (11MMHIS127;
15MMHIS031e) (21 March 2015). All research was performed in accordance with relevant
guidelines/regulations. The primary goal of this study was to explore the clinical signifi-
cance and relevance of epicardial adiposity with circulating pro-inflammatory (hs-CRP)
and HF biomarkers (plasma B-type natriuretic peptide (BNP), galectin-3, PIIINP, and A-
FABP) and adverse cardiovascular endpoints across a broader spectrum of cardiovascular
including those with known cardiometabolic risk factors and HFpEF, defined by subjects
with prior admission for HF with an LV ejection fraction of ≥50%. According to the Adult
Treatment Panel (ATP) III and modified Taiwanese guideline by ethnic Asian population,
cardiometabolic risk was defined as the presence of any of the following conditions: (1) Cen-
tral obesity: Waist circumference ≥90 cm in men or ≥80 cm for women; (2) abnormal blood
pressure: Systolic blood pressure ≥130 mmHg, diastolic blood pressure ≥85 mmHg, or
history of diagnosed hypertension; (3) abnormally high triglycerides ≥150 mg/dL; (4) low
high-density lipoprotein (HDL) <40 in men and <50 mg/dL in women; (5) dysglycemia:
Fasting plasma glucose ≥100 mg/dL or prior known diabetes history. Subjects with at
least three cardiometabolic risk factors were defined as having metabolic syndrome (MetS).
Patients with atrial fibrillation, moderate-to-severe valvular heart disease, or prior hospital-
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ization for systolic heart failure were excluded (n = 9). The study flowchart is illustrated as
Supplementary Figure S1.

Original study participants included three groups: (1) Healthy controls (n = 40)
without known cardiovascular risk factors or systemic diseases; (2) high-risk (n = 161),
those who exhibited ≥1 cardiometabolic component using the Adult Treatment Panel III
and modified guideline for ethnic Asians [15]; and (3) HFpEF (n = 51).

In this study, a history of hypertension was defined as systolic blood pressure >140 mmHg,
diastolic blood pressure >90 mmHg, or previously diagnosed hypertension under pharma-
ceutical control. Diabetes mellitus (DM) was defined as a fasting glucose level >126 mg/dL or
previously diagnosed DM under pharmaceutical control. Dyslipidemia medication history
was defined as current usage of lipid-lowering drugs of any kind, such as statins or fibrates.
CVD was defined as prior history of myocardial infarction, coronary artery post angioplasty,
or history of cerebrovascular events. The study setting and design have been published
previously [16].

2.2. Anthropometric Measurements

All baseline characteristics and information regarding anthropometric measures were
collected, including age, height, weight, waist circumference, and blood pressure. BMI
was calculated as weight (kg) divided by the square of the body height (m) (i.e., kg/m2).
To measure the waist circumference (in centimeters), the waist-tape was placed horizon-
tally around the midpoint between the lower rib margin and iliac crest. We used waist
circumference cut-offs of 80 cm in women and 90 cm in men as the threshold of abnormal
central obesity reflecting excessive abdominal fat accumulation [5]. A standardized cuff
sphygmomanometer was used to obtain resting blood pressures, which were measured by
medical staff members blinded to other clinical information or laboratory test results.

2.3. Biochemical Analysis of Pro-Inflammatory and HF Markers

A Hitachi 7170 Automatic Analyzer (Hitachi Corporation, Hitachinaka Ibaraki, Japan)
was used to measure levels of fasting glucose (hexokinase method), creatinine (kinetic col-
orimetric assay), total cholesterol and triglyceride, and alanine aminotransferase (enzymatic
method). Lipid profiles including low-density and high-density lipoprotein-cholesterol
were obtained using homogenous enzymatic colorimetric assay. High-sensitivity C-reactive
protein (hs-CRP) levels were determined using a highly sensitive, latex particle-enhanced
immunoassay (Elecsys 2010; Roche Diagnostics GmbH, Mannheim, Germany). BNP
(Biosite Inc, Alere, France), galectin-3 (R&D Systems, Minneapolis, MN, USA), N-terminal
pro-peptide of type III procollagen (PIIINP) (Orion Diagnostics, Fountain Hills, AZ, USA)
and adipocyte FABP (A-FABP) (BioVendor, Inc., Brno, Czech Republic) concentrations were
determined using commercially available enzyme-linked immunosorbent assay kits.

2.4. Measures of EAT, and Cardiac Structure and Function

Each subject underwent two-dimensional (2D) and M-mode transthoracic echocar-
diography using Vivid 7 (GE Vingmed Ultrasound, Horten, Norway) equipped with a
2.5-MHz to 4.5-MHz transducer, with images stored as Digital Imaging and Communica-
tions in Medicine format. Standard parasternal and apical views were obtained in the left
lateral decubitus position. EAT is generally identified as the echocardiographic free space
between the outer wall of the myocardium and the visceral layer of the pericardium, and
its thickness was obtained at end-systole (Supplementary Figure S2). The comparison and
validation of echocardiography-derived EAT with multiplanar reconstructions of multi-
detector computed tomography (CT) data was performed by Lai et al [17] and showed
excellent correlations in our imaging lab (n = 178, including comparisons of EAT with
corresponding planes using contrast CT (n = 58) and 120 non-contrast CT, R2 = 0.78 and
0.79 for long- and short-axis data) with good reproducibility (intra-observer/inter-observer
coefficients of variation (COV) for long-axis and short-axis EAT: 5.4% and 6.2%; 5.8% and
6.9%, respectively).
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LV end-diastolic and systolic diameters, LV posterior wall thickness, interventricular
septum thickness, peak early diastolic mitral flow velocity (E), peak late diastolic mitral flow
velocity (A), E/A ratio, and deceleration time of early diastolic mitral flow were all obtained
according to the American Society of Echocardiography guidelines. LV mass index was
calculated from the LV end-diastolic diameter and septal and LV posterior wall thickness
using the validated Devereux formula. Tissue-Doppler imaging (TDI) determined peak
myocardial systolic (TDI-s’) and early diastolic relaxation velocity (TDI-e’) were determined
from septal and lateral basal myocardial segments. Myocardial deformational indices were
measured using novel offline proprietary analysis system (EchoPAC PC, Version 110.0.2; GE
Medical Systems, Horten, Norway) from baseline 2D images obtained from three short-axis
views (including mitral, papillary muscle, and apical levels) for LV circumferential strain;
three LV apical views (including 2-chamber, 4-chamber, and 3-chamber views) for longitudinal
LV strain and strain rate components including systolic (SRs), early (SRe), and late diastolic
(SRa), with twist analysis quantified by subtracting rotation from LV mitral annulus (minus in
data presentation) to LV apical level (positive in data presentation) as net angle differences
as detailed in our previous work [18]. Representative global LV longitudinal (GLS) and
circumferential (GCS) strain, together with strain rate components including SRs, SRe, and
SRa, were averaged from three LV apical views in each study participant.

2.5. Validating EAT with CT-Based PCF Measurement

Among 45 subjects with paired CT-based three-dimensional (3D) construction for PCF
(16-slice multi-detector CT scanner, Sensation 16; Siemens Medical Solutions, Forchheim,
Germany), using novel offline proprietary software (Aquarius 3D Workstation, TeraRecon,
San Mateo, CA, USA) and EAT available (Supplementary Figure S1), we showed fair
correlation between EAT and 3D CT-based PCF (r = 0.73, +19.5 [95% confidence interval:
13.9–25.1] ml PCT per 1 mm increment of EAT) [19].

2.6. Statistical Analysis

Data for continuous variables are expressed as mean ± standard deviation (SD) and
categorical variables as frequencies and proportions of occurrence. Differences of base-
line demographics and anthropometric and cardiometabolic parameters among the three
groups were tested using analysis of variance (ANOVA), with categorical data analyzed
using the χ2 test or Fisher’s exact tests as appropriate. Post-hoc comparisons between
each group were further performed using the Bonferroni multiple-comparison test. The
relationship among EAT, echo-derived parameters, and pro-inflammatory/HF biomarkers
were determined using Pearson’s correlation analysis. A multivariate logistic regression
model was used to determine the significance of covariate-adjusted relations between
epicardial fat, clinical co-morbidities, and HFpEF with individual odds ratios, p values,
and 95% confidence intervals. From our previous work, EAT based on echocardiographic
measurements in subjects with higher cardiovascular risk or MetS were similar to those
used for the currently defined “high-risk group” and had a mean value of 8.2 mm (SD: 1.0).
In addition, Parisi et al. presented a EAT mean value of 8.6 mm (SD: 2.55) in subjects with
systolic HF [20]. While HFpEF subjects are more likely to be obese and predominantly
elderly women, we expected a mean EAT of nearly 8.5–9.5 mm for HFpEF in the present
study. To identify an EAT mean difference of nearly 1 mm with a SD of 2.4–2.5 mm (effect
size: 0.4 by [Cohen’s d]) with greater than 90% power and an α error (p value) of 0.05 based
on a 3:1 proportion between “high-risk” and HFpEF individuals, a sample size of 150:50
was required for study participants. For associations with EAT as outcome measures, we
explored anthropometric and clinical determinants of EAT by using backward stepwise
regression models, with systolic blood pressure and diastolic blood pressure entered sepa-
rately due to co-linearity. By using multi-variate linear regression models adjusted for age,
sex, body mass, and LV mass in multivariable models, we further examined the mechanistic
effects of greater EAT on a variety of echocardiography-defined cardiac structural and
functional measures including TDI and myocardial speckle-tracking parameters.
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In the present study, mediator analysis was constructed to identify a potential interme-
diary role of several key cardiometabolic pro-inflammatory/HF biomarkers (e.g., hs-CRP,
BNP, gelactin-3, PIIINP, and A-FABP) in mediating the association of EAT with clinical
HFpEF by constructing a causal model based on the hypothesis that HF severity may be
partly modulated by EAT via these circulating markers. Bootstrapping analysis was also
applied to ensure the role of these biomarkers as potential mediators.

The p values were two-tailed, with p < 0.05 considered statistically significant. All
statistical analyses were performed using Stata version 12.0 (StataCorp LP, College Station,
TX, USA).

3. Results
3.1. Clinical Demographical and Metabolic Relevance of EAT

Clinical demographic and echocardiographic characteristics of the study groups at
enrollment are summarized in Supplementary Table S1. Among 264 study participants, 252
(mean age: 65.8 ± 9.9 years; 64.7% female) met our final inclusion/exclusion criteria for
comprehensive echocardiography analysis (Supplementary Figure S2). EAT measurement
was highest in participants with HFpEF (9.7 ± 1.7 mm), higher in high-risk participants
(8.2 ± 1.5 mm) and lowest in healthy controls (6.4 ± 1.9 mm, p < 0.001). By categorizing
study participants into EAT tertiles, those with greater EAT in tertile groups had more
advanced age; were more likely to be female; have higher blood pressure, greater waist
circumference, body mass index (BMI), body fat, fasting glucose, uric acid, and triglyceride;
and lower HDL-C and poor renal function in terms of a lower eGFR (all trend p: <0.05)
(Table 1). Abnormal phenotypic obesity, either defined by abnormal BMI (>27.5 kg/m2)
or waist circumference (sex-specified cut-offs), had a consistently higher prevalence of
metabolic syndrome (MetS) across EAT tertiles (p < 0.05). Notably, subjects in the second
EAT tertile group (7.6–9.0 mm) without phenotypic obesity almost doubled and tripled
the risk of having MetS compared to first EAT tertile despite having a lower BMI (60%
vs. 31%) and normal waist circumference (28% vs. 9%), respectively. More advanced age,
female sex, greater BMI, higher blood pressure, lower HDL-C, poor renal function, presence
of diabetes, and presence of HFpEF all were independent determinants for higher EAT
(all p < 0.05) in multivariate regression models (with systolic blood pressure and diastolic
blood pressure into models separately) (Table 2). Significant associations (p < 0.005) were
found between abundant EAT (per 1 mm increment) with HFpEF (OR: 1.61, 95% CI: 1.22
to 2.12), chronic kidney disease (OR: 1.51, 95% CI: 1.16 to 1.96), and diabetes (OR: 1.48,
95% CI: 1.17 to 1.87), but not CVD (OR: 1.23, 95% CI: 0.92 to 1.66; p = 0.15) or hypertension
(p = 0.15) (Supplementary Figure S3).

3.2. Associations of EAT with Pro-Inflammatory/HF Markers

Higher EAT was associated with higher hs-CRP, galectin-3, PIIINP, and A-FABP and
marginally higher BNP (all trend p < 0.05) (Supplementary Figure S4). Among five pro-
inflammatory and HF biomarkers, EAT showed positive linear associations with hs-CRP
(r = 0.26), BNP (r = 21), gelactin-3 (r = 0.26), PIIINP (r = 0.37), and A-FABP (r = 0.41)
(all p < 0.001). A significant, graded increase of A-FABP across quartiles of EAT was observed
(p for trend < 0.001). Based on multivariate regression, increased EAT (per 1-mm EAT incre-
ment) was an independent predictor for higher A-FABP level, but not other pro-inflammatory
and HF markers; the trend persisted after adjustment for age, sex, BMI, total cholesterol,
high-density lipoprotein cholesterol, and past medical history including hypertension, CVD,
DM, and HFpEF (Coefficient: 2.00, 95% CI: 0.44 to 3.53, p = 0.012).
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Table 1. Clinical demographics and echocardiographic measures of participants categorized by EAT tertile groups.

Metabolic Score Categories All Subjects
(N = 252)

Epicardial Adipose Tissue (EAT)
p for Trend

R Value
(All Variable

Correlated with EAT)

p Value
(Pearson Correlation) ANOVA/χ2Q1 (n = 84)

≤7.5 mm
Q2 (n = 84)
7.6–9.0 mm

Q3 (n = 84)
≥9.1 mm

Baseline Demographics

Age, y 65.8 ± 9.87 61.7 ± 7.79 65.8 ± 10.1 * 69.7 ± 10.0 *,# <0.001 0.381 <0.001 <0.001

Female sex, n (%) 165 (65.5%) 47 (56.0%) 53 (63.1%) 65 (77.4%) 0.004 0.153 0.02 0.01

Systolic blood pressure, mm Hg 140.3 ± 20.0 133.4 ± 19.1 140.3 ± 19.3 * 147.2 ± 19.3 * <0.001 0.303 <0.001 <0.001

Diastolic blood pressure, mm Hg 80.8 ± 12.3 78.6 ± 11.6 80.1 ± 12.1 83.6 ± 12.6 * 0.01 0.169 0.01 0.03

Heart rate, min−1 75.7 ± 11.3 73.3 ± 11.0 76.9 ± 12.1 77.1 ± 10.3 0.03 0.170 0.01 0.049

Waist circumference, cm 89.7 ± 11.8 85.0 ± 10.6 91.1 ± 11.4 * 92.9 ± 12.0 * <0.001 0.361 <0.001 <0.001

Weight, kg 66.3 ± 13.0 63.0 ± 11.8 68.0 ± 13.2 * 68.0 ± 13.6 * 0.01 0.213 0.001 0.02

BMI, kg/m2 26.5 ± 4.24 24.6 ± 3.88 26.7 ± 4.04 * 28.1 ± 4.06 * <0.001 0.400 <0.001 <0.001

Body fat, % 34.3 ± 9.29 29.3 ± 8.68 34.9 ± 8.43 * 38.9 ± 8.13 *,# <0.001 0.465 <0.001 <0.001

Laboratory Data

Fasting glucose, mg/dL 113.7 ± 2.39 105.3 ± 37.6 116.4 ± 34.0 119.2 ± 40.6 0.01 0.237 <0.001 0.04

Total cholesterol, mg/dL 198.8 ± 42.9 202.1 ± 42.6 199.5 ± 39.7 194.9 ± 46.3 0.27 0.037 0.55 0.54

Triglyceride, mg/dL 115.0 ± 86.4 88.4 ± 55.3 132.6 ± 114.8 * 123.9 ± 72.4 * 0.01 0.227 <0.001 0.002

HDL, mg/dL 54.9 ± 19.3 61.1 ± 23.1 53.6 ± 18.2 * 49.9 ± 13.8 * <0.001 0.229 <0.001 0.001

LDL, mg/dL 119.9 ± 35.8 120.6 ± 35.0 120.5 ± 35.5 118.5 ± 37.2 0.71 0.018 0.78 0.91

Uric acid, mg/dL 6.04 ± 1.51 5.58 ± 1.40 5.99 ± 1.41 * 6.45 ± 1.58 * 0.001 0.301 <0.001 0.003

e-GFR, mL/min/1.73 m2 79.1 ± 25.9 87.3 ± 23.0 81.8 ± 22.4 68.2 ± 28.1 *,# <0.001 0.342 <0.001 <0.001

Biomarkers

hs-CRP (median, 25th–75th), mg/L 0.22 ± 0.24 0.17 ± 0.19 0.21 ± 0.26 0.27 ± 0.26 * 0.01 0.255 <0.001 0.03

BNP (median, 25th–75th), pg/mL 62.2 ± 125.0 34.7 ± 80.0 55.5 ± 99.0 95.4 ± 169.8 * 0.002 0.207 0.001 0.01

Galectin-3, ng/mL 2.74 ± 2.36 2.16 ± 1.96 2.74 ± 2.16 3.32 ± 2.77 * 0.001 0.248 <0.001 0.001

PIIINP, ng/mL 0.98 ± 0.39 0.84 ± 0.26 0.98 ± 0.36 * 1.13 ± 0.46 *,# <0.001 0.363 <0.001 <0.001

A-FABP, ng/mL 26.1 ± 21.4 17.4 ± 8.31 25.4 ± 14.7 * 35.7 ± 30.4 *,# <0.001 0.392 <0.001 <0.001

Medical Histories
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Table 1. Cont.

Metabolic Score Categories All Subjects
(N = 252)

Epicardial Adipose Tissue (EAT)
p for Trend

R Value
(All Variable

Correlated with EAT)

p Value
(Pearson Correlation) ANOVA/χ2Q1 (n = 84)

≤7.5 mm
Q2 (n = 84)
7.6–9.0 mm

Q3 (n = 84)
≥9.1 mm

Hypertension, n (%) 179 (71%) 47 (56.0%) 59 (70.2%) 73 (86.9%) <0.001 — — <0.001

Diabetes, n (%) 75 (29.8%) 12 (14.3%) 25 (29.8%) 38 (45.2%) <0.001 — — <0.001

Cardiovascular diseases, n (%) 34 (13.5%) 6 (7.1%) 10 (11.9%) 18 (21.4%) 0.01 — — 0.02

Heart failure, n (%) 51 (20.2%) 5 (6.0%) 14 (16.7%) 32 (38.1%) <0.001 — — <0.001

Metabolic score (median, 25th–75th) 3 (2–4) 2 (1–4) 3 (2–4) * 4 (3–5) *,# <0.001 — — <0.001

Cardiac Structure and Function

IVS, mm 9.20 ± 1.46 8.84 ± 1.29 9.15 ± 1.33 9.60 ± 1.65 * <0.001 0.292 <0.001 <0.001

LVPW, mm 9.19 ± 1.29 8.81 ± 1.12 9.33 ± 1.38 * 9.42 ± 1.30 * 0.002 0.302 0 0.004

LVIDd, mm 46.3 ± 3.93 46.3 ± 4.20 46.6 ± 3.89 45.9 ± 3.71 0.56 0.001 0.98 0.55

LV mass, g 144.6 ± 37.0 137.3 ± 34.4 147.5 ± 37.0 149.0 ± 38.8 0.04 0.214 0.001 0.08

LV mass index, gm/m2 79.3 ± 18.8 76.9 ± 17.0 79.9 ± 20.6 81.2 ± 18.7 0.14 0.145 0.02 0.32

Stroke volume, mL 66.5 ± 12.4 67.0 ± 13.5 65.9 ± 11.4 66.5 ± 12.3 0.78 0.015 0.81 0.85

LVEF, % 67.1 ± 6.43 67.3 ± 6.20 65.8 ± 6.73 * 68.2 ± 6.19 * 0.38 0.040 0.52 0.05

LVH, n (%) 27 (10.7%) 6 (7.1%) 9 (10.7%) 12 (14.3%) 0.17 0.094 0.14 0.35

E/A ratio 0.92 ± 0.36 1.02 ± 0.394 0.89 ± 0.31 0.84 ± 0.34 * 0.001 0.281 <0.001 0.01

TDI-e’ (average), cm/s 7.71 ± 1.92 8.55 ± 1.98 7.76 ± 1.78 * 6.82 ± 1.60 *,# <0.001 0.441 <0.001 <0.001

E/e’ (average) 9.84 ± 3.60 8.15 ± 2.71 9.90 ± 3.40 * 11.5 ± 3.85 *,# <0.001 0.371 <0.001 <0.001

LV SRe, s−1 1.08 ± 0.30 1.23 ± 0.31 1.07 ± 0.29 * 0.96 ± 0.26 *# <0.001 0.447 <0.001 <0.001

LV SRa, s−1 1.19 ± 0.24 1.17 ± 0.25 1.21 ± 0.22 1.19 ± 0.25 0.61 0.062 0.33 0.63

TDI-s’ (average), cm/s 7.62 ± 1.45 7.99 ± 1.42 7.80 ± 1.55 7.07 ± 1.20 *,# <0.001 0.285 <0.001 <0.001

GCS, % −20.6 ± 2.92 −20.7 ± 2.84 −20.9 ± 2.94 −20.3 ± 3.00 0.41 0.104 0.11 0.48

GLS, % −19.5 ± 2.59 −20.5 ± 2.37 −19.4 ± 2.61 * −18.5 ± 2.38 * <0.001 0.408 <0.001 <0.001

LV SRs, s−1 −1.12 ± 0.15 −1.19 ± 0.155 −1.12 ± 0.13 * −1.05 ± 0.13 *,# <0.001 0.436 <0.001 <0.001

A, late diastolic filling velocity; BMI, body mass index; BNP, brain natriuretic peptide; CRP, C-reactive protein; DM, diabetes mellitus; EAT, epicardial adipose tissue; E/E’, relationship between maximal values of
passive mitral inflow (E, PW-Doppler) and lateral early diastolic mitral annular velocities (E’, TDI); e-GFR, estimated glomerular filtration rate; FABP, fatty acid–binding protein; GCS, global circumferential strain;
GLS, global longitudinal strain; HDL-c, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; IVS, inter-ventricular septum; LA, left atrium; LDL-c, low-density lipoprotein cholesterol;
LV, left ventricle/left ventricular; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end- systolic volume; LVIDd, left ventricular internal diameter end diastole; LVPW, left ventricular posterior
wall; PIIINP, procollagen type III N-terminal peptide; S’, peak systolic mitral annular velocity; SR, strain rate; SVi, stroke volume index; Tau (T), time constant of LV isovolumic pressure decline; TDI, tissue
Doppler imaging. p-value < 0.05 for comparisons against * Q1 and # Q2.
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Table 2. Association of EAT (as outcome measure) with baseline demographics on Pearson Correlation Test and Linear
Regression Analysis

Variables
EAT (mm) (Multi-Variate Regression Model)

Adjusted Coefficient p Value Adjusted Coefficient p Value

Age, years 0.03 (0.01, 0.05) 0.004 0.04 (0.01, 0.06) 0.001
Female sex, n (%) 0.5 (0.07, 0.93) 0.022 0.55 (0.12, 0.97) 0.012

Systolic blood pressure, mm Hg 0.01 (−0.0003, 0.02) 0.058 N/A N/A
Diastolic blood pressure, mm Hg N/A N/A 0.02 (0.003, 0.03) 0.02

BMI, kg/m2 0.11 (0.06, 0.16) <0.001 0.10 (0.06, 0.15) <0.001
Fasting glucose, mg/dL - - - -

HDL-c, mg/dL −0.012 (−0.023, −0.0003) 0.044 −0.012 (−0.02, −0.0006) 0.038
e-GFR, mL/min/1.73 m2 −0.012 (−0.02, −0.004) 0.003 −0.012 (−0.02, −0.004) 0.003

Hypertension, n (%) - - - -
Diabetes, n (%) 0.78 (0.35–1.22) <0.001 0.81 (0.37–1.24) <0.001
HFpEF, n (%) 0.81 (0.30–1.33) 0.002 0.83 (0.32–1.34) 0.002

CI: Confidence interval. Other abbreviations are as shown in Table 1.

3.3. Associations of EAT with Cardiac Structure and Function

Subjects with greater EAT are also more likely to have co-morbid hypertension, dia-
betes, known cardiovascular diseases, and HFpEF (all p < 0.05) (Table 1); in addition, they
exhibited larger ventricular wall thickness, LV mass, and reversed E/A ratio and markedly
lower myocardial relaxation e’, attenuated myocardial systolic velocity s’, higher E/e’,
global ventricular systolic function (GLS), and LV myocardial systolic/diastolic strain rates
(SRs/SRe) (all trend p: <0.05) (Table 1); global LV ejection fraction (LVEF) and global circum-
ferential strain (GCS) were relatively unchanged. In general, greater EAT was associated
with more unfavorable LV structural remodeling, including greater wall thickness, larger
LA volume, lower E/A ratio, poor myocardial TDI-s’/TDI-e’, higher LV filling E/e’, and
poor systolic myocardial deformations GLS and LV SRs/SRe (all linear p trend p < 0.05)
and with a slightly increased SRa (Table 1). Further adjustment for clinical variables did
not attenuate the significance level between greater EAT burden with poor LV GLS and
reduced LV strain rates SRs and SRe (Figure 1, all p < 0.05).

3.4. Association of EAT with Incident HF: Mediator Analysis

During follow-up (median: 3.8 years, IQR: 3.5–4.6 years), 63 of 252 study participants
had hospitalization for HF. Increased EAT (per 1 mm EAT increment) was associated
with higher HF events (Table 3) (adjusted HR: 1.36 [1.14–1.64], p = 0.001) and composite
HF/death events (adjusted HR: 1.35 [1.14–1.60], p = 0.001) based on multivariate Cox
regression analysis. Using EAT and A-FABP from the receiver operating characteristic
analysis for identifying the baseline presence of HFpEF yielded optimal clinical cut-offs of
8.7 mm and 24.8 ng/mL for EAT and HFpEF, respectively. Those classified with abnormally
high EAT (≥8.7 mm) experienced seven-fold more HF events (HR: 7.79 [95% CI: 3.94 to
15.43]), p < 0.001. Adding FABP strata (<, ≥24.8 ng/mL) further successfully discriminated
HF re-hospitalization from the original EAT cut-off (<, ≥8.7 mm) in the multivariate Cox
models (Figure 2, adjusted HR: 12.7, [95% CI: 1.8 to 96.0], adjusted HR: 31.3 [95% CI: 4.3 to
228.8] for EAT ≥ 8.7 mm/FABP < 24.8 ng/mL and EAT ≥ 8.7 mm/FABP ≥ 24.8 ng/mL,
respectively, using EAT < 8.7 mm as a reference value).
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Figure 1. Associations of EAT burden with myocardial mechanics based on speckle-tracking. Model
was adjusted for age, sex, BMI, hypertension, diabetes, lipid profile of cholesterol and HDL-C,
prior CVD, HFpEF, eGFR, and LV mass. CVD, cardiovascular disease; eGFR, estimated glomerular
filtration rate; HDL-C, high density lipoprotein cholesterol; HFpEF, heart failure with preserved
ejection fraction; LV, left ventricle; MetS, metabolic syndrome. All strain and strain rate values are
reported as absolute values |x| and further standardized.

Table 3. Multivariate cox regression models in predicting hospitalization for HF events.

Cox Regression Models
EAT (per 1 mm Increment)

HR (95% CI) p-Value

Hospitalization for HF

Crude Model 1.66 (1.45–1.91) <0.001

Multivariate model 1.36 (1.14–1.64) 0.001

Composite HF/Death

Crude Model 1.60 (1.41–1.83) <0.001

Multivariate model 1.35 (1.14–1.60) 0.001
Multivariate model was adjusting for age, sex, BMI, blood pressure, DM, hypertension, cardiovascular disease,
heart failure history, eGFR, and LV mass. BMI, body mass index; DM, diabetes mellitus; EAT, epicardial adipose
tissue; eGFR, estimated glomerular filtration rate; LV, left ventricle/ventricular.

Mediator analysis was further constructed to examine potential effects of several
key pro-inflammatory/HF markers in the association of EAT with HF endpoint, under
the hypothesis that these markers can play biological intermediary roles in mediating
EAT and HF outcomes. After adjustment for age, sex, and BMI, the mediator analysis
showed that BNP, PIIINP, and FABP appear to be active markers mediating effects in the
relationship of EAT with incident HF. After a more detailed adjustment for baseline medical
histories, FABP was found to be the only mediator, explaining 8.95% mediating effects in
the relationship between EAT and incident HF.
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4. Discussion

This study defines several key ideas regarding the clinical presentation, associated
comorbidities, and cardiac structure/function associated with utilizing echocardiography-
based EAT. Firstly, greater EAT thickness was tightly associated with several clinical
cardiometabolic factors and was markedly greater in subjects with type 2 DM, HFpEF,
and renal insufficiency, independent of BMI. Secondly, excessive EAT was positively cor-
related with unfavorable cardiac remodeling and was inversely correlated with diastolic
and subclinical systolic function. Third, greater EAT was associated with higher circulating
pro-inflammatory/HF markers including hs-CRP, galectin-3, BNP, and PIIINP and was in-
dependently associated with A-FABP. Fourth, an EAT cut-off of 8.7 mm was independently
associated with higher HF events, with higher EAT accompanied by DM or elevated FABP
demonstrating worse outcomes.

4.1. Functional and Prognostic Significance of EAT as a Surrogate of Visceral Obesity

EAT, as part of the pericardial fat, features anatomical and functional contiguity to
epicardial coronary arteries and the myocardium [21]. Echocardiography defined EAT may
be better characterized by MRI-defined visceral fat than the conventional surrogates of
central obesity as a key pathophysiological determinant for metabolic syndrome (MetS),
insulin resistance, and type 2 diabetes [22–24]. As a greater EAT is associated with diastolic
dysfunction in morbid obesity and DM [25,26], we demonstrated that greater EAT was
independent predictor systolic/diastolic mechanical myocardial indices using deforma-
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tions (e.g., GLS, LV SRs, and SRe) beyond BMI information, indicating negative effects of
excessive EAT on myocardial contractile mechanics despite preserved LVEF. Except for its
relevance with diastolic dysfunction, HF with LVEF >40% reportedly had larger EAT than
normal controls despite having similar BMI [27]; conversely, HFrEF patients appeared to
have diminished EAT [28].

Due to the anatomical and functional contiguity to the myocardium, EAT may locally
affect the heart to a greater extent when compared to visceral adiposity from other regions [6].
For example, the possible physical constriction effect limiting myocardial relaxation during the
diastolic phase caused by EAT [25], local paracrine signaling/cytokines from oxidative stress
and lipotoxicity (FFA hyper-influx) [29] in a dysglycemic status, together with elicited down-
stream pro-inflammatory cascades, have all been proposed as part of the pathophysiology
of “visceral adiposity syndrome” [5]. Additional mechanisms by which excessive EAT may
contribute to HFpEF pathogenesis include its deleterious effects on microvascular/endothelial
function accompanied by diverse metabolic disorders and systemic pro-inflammatory sig-
naling, leading to excessive extracellular matrix turnover/fibrosis, structural remodeling,
impaired cardiac lusitropic/contractile properties with increased myocardial stiffness predis-
posing to HFpEF, and co-morbid renovascular dysfunction [30–33]. Herein, we demonstrated
that larger EAT measure may confer greater cardiovascular events for HF (HR: 7.43, 95% CI:
3.87 to 14.26, p < 0.001) with a cut-off of 8.7 mm. To our knowledge, this is the first study
to display evidence that echocardiography-based EAT assessment is a surrogate of visceral
adiposity for predicting HF.

4.2. Associations of EAT with Circulating A-FABP

As aforementioned, elicited myocardial fibrosis and excessive extracellular matrix
turnover/degradation through chronic pro-inflammatory signaling are considered ma-
jor pathophysiological culprits from diastolic dysfunction to HFpEF [14,31,32]. Indeed,
greater EAT showed positive correlations with several circulating HF markers, reflect-
ing up-regulated pro-inflammatory or extracellular matrix turnover/degradation; this
has demonstrable prognostic implications, including hs-CRP, gelactin-3, PIIINP, and A-
FABP [34–37]. Local paracrine signaling mediates cardiomyocyte dysfunction through
A-FABP by adjacent EAT in a dose-dependent manner via intracellular Ca2+ regulation
in experimental models [13], supporting its inhibitory role in cardiomyocyte excitation–
contraction. High plasma FABP4 levels as a predictor of HF development has also been
shown in a large-scale prospective study with 10.7 years of follow-up [38].

Consistent with the above finding, we demonstrated an association between greater
EAT and higher FABP independent of BMI, though FABP was not associated with DM when
BMI was considered. Given these associations, we speculated that A-FABP correlates with
greater BMI and may directly reflect the burden of visceral adiposity (e.g., EAT) as a marker
of excessive EAT, and higher A-FABP likely plays an adjunctive pathophysiological role
in mediating EAT-related “cardiomyopathy” (Figure 3). Herein, we further demonstrated
that A-FABP was the most predominant mediator in the association of EAT with HFpEF
endpoint with a specific threshold proposed (A-FABP more or less than 24.8 ng/mL). Our
findings highlight the pathophysiological intermediary role of A-FABP in the molecular
signaling linking EAT, development of HFpEF, and further adverse clinical outcomes.
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Figure 3. Diagram illustrating hypothetical pathological link between excecssive EAT, A-FABP,
and HFpEF. In HFpEF, myocardial remodeling and diastolic dysfunction are driven by endothelial
inflammation, a physical constriction effect limiting myocardial relaxation during diastolic phase
caused by EAT, and EAT-related paracrine signaling/cytokines from oxidative stress and lipotoxi-
city (FFA hyper-influx). A-FABP, a main mediator enriched in and released from visceral adipose
tissue, is believed to elicit downstream pro-inflammatory cascades, has been proposed as part of
the “visceral adiposity syndrome”. Deteriorating microvascular/endothelial function accompany-
ing diverse metabolic syndrome-related comorbidities and systemic pro-inflammatory signaling,
leading to excessive extracellular matrix turnover/fibrosis, structural remodeling, impaired cardiac
lusitropic/contractile properties with increased myocardial stiffness predisposing to HFpEF, and
co-morbid renovascular dysfunction. A-FABP, adipocyte fatty acid-binding protein; HFpEF, heart
failure with preserved ejection fraction.

4.3. Limitations

Despite our comprehensive analysis of cardiac structure, function, and several pro-
inflammatory or HF markers with EAT expansion, the sample size in this cohort observa-
tional study was relatively small; thus, a larger population may help replicate our findings.
As part of the total body visceral adiposity measure, the use of EAT as a surrogate in
determining the relations with circulating biomarkers may not accurately characterize the
true biological influence of visceral fat in these associations. Secondly, quantification of EAT
using echocardiography method can be challenging and may not accurately reflect total
epicardial fat burden in certain situations (e.g., in obese subjects) when compared to MRI
or CT measures. In fact, visceral adiposity can be highly heterogeneous in components and
bioactivity [39] over whole body distribution; therefore, the use of EAT as a pathological
marker of body visceral adiposity can lead to over-simplified systemic and remote effects
from whole body visceral fat burden in any individual. Notably, data comparing EAT with
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abdominal fat on these outcome measures were not feasible due to the lack of abdominal
visceral fat in study design. Besides, more precise myocardial pathological changes at
the cellular level, including diffuse or focal fibrosis, underlying cardiac structural and
functional changes and HFpEF accompanying excessive EAT were not assessed in this
study. Further detailed tissue disarrangements (e.g., either by upregulated extracellular
fibrotic deposition/turnover or scar formation) detected using cardiac magnetic resonance
imaging may provide more in-depth insights in future studies. Finally, whether the strong
associations of EAT with DM regardless of body mass and circulating A-FABP were unique
and limited to ethnic Asians may warrant large-scale, multi-ethnic study designs to validate
our findings.

5. Conclusions

Prevalent DM, HFpEF, and renal insufficiency in a high cardiometabolic risk patient
population was associated with greater EAT, which is tightly linked to adverse ventricular
structural remodeling and poor myocardial functions. As a predictor of greater EAT burden,
A-FABP, a novel pro-inflammatory mediator closely linked to EAT burden, is capable of
further discriminating HF outcomes adjunctive to EAT. To the best of our knowledge, this
is the first study to explore the associations of EAT and DM phenotypes in ethnic Asians as
well as HF outcomes indicating that EAT serves as key player for HF, rather than BMI, in
ethnic Asians.
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