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A B S T R A C T   

Objectives: It is important to subdivide Parkinson’s disease (PD) into subtypes, enabling potentially earlier disease 
recognition and tailored treatment strategies. We aimed to identify reproducible PD subtypes robust to variations 
in the number of patients and features. 
Methods: We applied multiple feature-reduction and cluster-analysis methods to cross-sectional and timeless data, 
extracted from longitudinal datasets (years 0, 1, 2 & 4; Parkinson’s Progressive Marker Initiative; 885 PD/163 
healthy-control visits; 35 datasets with combinations of non-imaging, conventional-imaging, and radiomics 
features from DAT-SPECT images). Hybrid machine-learning systems were constructed invoking 16 feature- 
reduction algorithms, 8 clustering algorithms, and 16 classifiers (C-index clustering evaluation used on each 
trajectory). We subsequently performed: i) identification of optimal subtypes, ii) multiple independent tests to 
assess reproducibility, iii) further confirmation by a statistical approach, iv) test of reproducibility to the size of 
the samples. 
Results: When using no radiomics features, the clusters were not robust to variations in features, whereas, uti-
lizing radiomics information enabled consistent generation of clusters through ensemble analysis of trajectories. 
We arrived at 3 distinct subtypes, confirmed using the training and testing process of k-means, as well as 
Hotelling’s T2 test. The 3 identified PD subtypes were 1) mild; 2) intermediate; and 3) severe, especially in terms 
of dopaminergic deficit (imaging), with some escalating motor and non-motor manifestations. 
Conclusion: Appropriate hybrid systems and independent statistical tests enable robust identification of 3 distinct 
PD subtypes. This was assisted by utilizing radiomics features from SPECT images (segmented using MRI). The 
PD subtypes provided were robust to the number of the subjects, and features.   

1. Introduction 

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative 
disease [1–3]. This disease more affects the population over 65 years of 
age [4,5]. PD is defined by widespread neuronal loss [6,7], resulting in a 
range of primary motor symptoms. Motor and non-motor symptoms 
significantly impact quality of life in PD patients [8–12]. A recent study 
shew that cognitive and psychiatric changes are directly linked with PD 
progression [13]. Although, there is currently no permanent therapy for 

PD, but temporary symptomatic therapies with levodopa [14] and 
dopaminergic agonists [15] can improve the quality of life through 
alleviation from early symptoms [16,17]. 

A multicenter study in 10 years following up [18] showed that PD is a 
heterogeneous disease so that 9 out of 126 patients needed a wheelchair 
unless aided, whereas 13 patients did not show any significant func-
tional restriction. Studies of disease progression can be broadly divided 
into two categories involving: i) individual symptoms/measures, or ii) 
collection of symptoms/measures. In first approach, some studies 
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focused on the prediction of outcomes in PD subjects [19–30]. Novel 
prognostic biomarkers of PD enable better implementation for 
disease-modifying trials [31]. For example, Prashos et al. [32], showed 
that motor symptoms are more reliable primary symptoms of disease 
progression. In another study by Noyce et al. [33], it was demonstrated 
that higher UPDRS III scores cause a lower quality of life in patients with 
PD. 

Imaging phenotypes, beyond pure usage of clinical measures, have 
the potential to add further value to the assessment of PD [21,21, 
34–37]. As an example, identification of patients that are symptomatic 
without evidence of dopamine deficit (SWEDD) as performed using 
dopamine transporter (DAT) SPECT imaging has already made a dif-
ference in the recruitment of patients in clinical trials [38,39]. 
Furthermore, beyond the usage of conventional imaging features, the 
field of radiomics has the potential to provide further analysis of im-
aging data [21,37,40,41]. In an effort of ours [21], we focused on pre-
diction of motor outcome, showing that radiomics features, when added 
to clinical features, can significantly improve prediction of outcome. We 
later showed that by using hybrid systems (predictive algorithms 
accompanied by feature subset selector algorithms), one can obtain 
excellent predictions of motor [26] and cognitive [27] outcomes. 
Furthermore, our recent ongoing efforts linked with deep learning-based 
prediction of outcome showed significant improvements through the 
discovery of patterns in images [28]. 

PD represents heterogeneity in various (not merely individual) 
phenotypes for PD subjects [42–45]. As such, definition of PD subtypes 
based on collective data could help provide a better understanding of 
underlying disease mechanisms, predict disease course, and design 
clinical trials [46]. Some studies based on clinical features have 
attempted to derive subtypes of PD as a clustering task, as listed in 
supplemental Table S1 [31,44,47–50]. Parkinson’s disease (PD) has 
been classically introduced as a progressive degenerative motor disease 
associated with the degeneration of striatal dopamine neurons [51–55]. 
Hoehn and Yahr (YH) [56] categorized disease severity into 5 stages. 
Since then, stage 0 has been added, and stages 1.5 and 2.5 have been 
proposed and are widely used [57]. Patients with H&Y stage 2 have 
lower levels of dopamine binding than stage 1 [58], while patients with 
H&Y stages 3 and 4 have significantly impaired language function, 
working memory and visuospatial function compared to those in stage 2 
[59]. In a study by Szewczyk-Krolikowski et al. [60], phenotypic het-
erogeneity was documented across age and gender in both motor and 
non-motor symptoms. As summarized in Supplemental Table S1, studies 
making use of clinical information in the past have categorized patients 
into 2 [49], 3 [31,46,61], 4 [44,48,50,62–65], 5 [47,66], 6 [67] or 7 
[56,57] sub-clusters. In a recent study [68], previously published 
data-driven PD subtype classification systems were re-assessed, 
demonstrating limited reproducibility and suggesting a need for the 
establishment of standards for validation and use of clustering systems 
[68]. 

However, clinical measurements based on visual examinations in 
different clinical centers are prone to errors for defining globally 
reproducible PD subtypes. In fact, in general, there have been significant 
challenges with the reproducibility of PD subtypes, and a desire for 
specific standards for the clustering of PD subjects [68]. There exists an 
emerging usage of automated processing invoking machine learning 
algorithms for improved task performance without the need for explicit 
programming [69]. Approaches based on machine learning aim to 
enable improved and automatic classification, prediction, or clustering 
by capturing statistically robust patterns present in the analyzed data. 

In the present work, we specifically aim to robustly identify subtypes 
of PD (an unsupervised clustering task). This is an important key to 
better understand underlying disease mechanisms, predict disease 
course, and design clinical trials. Furthermore, we incorporate and study 
the role of imaging in our analysis, as functional imaging enables spatial 
localization of molecular changes as well as accurate and consistent 
quantification of their distribution [70,71]. Many machine learning 

algorithms are not able to work with many input features, and thus it is 
necessary to reduce high feature dimensions into few dimensions to be 
used as inputs, as pursued in this work. Overall, in the present work, we 
select a range of hybrid algorithms amongst various families of learner 
algorithms, and also, various combinations of datasets based on timeless 
and cross-sectional approaches are considered, to select robust 
sub-clusters of PD which minimally depend on sample size and feature 
size. 

2. Materials and methods 

In what follows we outline our various data selection, image pro-
cessing, machine learning and analysis methods. Data and code are 
made publicly available (details at the end of this manuscript). In short, 
we generated multiple datasets (timeless and cross-sectional), per-
formed segmentation and feature extraction, and utilized hybrid ML 
systems. We also employed two methods to compare clusters as gener-
ated from different datasets. Finally, by dividing datasets on small 
groups, we evaluated our finding based on variations into sample size. 
Fig. 1 shows different steps of implementation in this study, as elabo-
rated next. 

2.1. Image processing and feature extraction from regions of interest 
(ROIs) 

We performed segmentation via two methods, as elaborated next. 

2.1.1. Segmentation of dorsal striatum (DS) on DAT SPECT images via T1 
weighted MRI 

As shown in Supplemental Figure S1 and elaborated in supplemental 
section II (part A, i), following few preprocessing steps, we employed the 
Free Surfer package to automatically segment T1 weighted-MRI images 
and to register SPECT images to MRI data. Fig. 2 shows images related to 
the segmentation registration steps. Subsequently, we utilized our 
standardized SERA software package [72] (publicly available at: 
https://qurit.ca/software/sera/) to extract radiomics features from the 
ROIs (left and right caudate and putamen). SERA has been extensively 
standardized in reference to the Image Biomarker Standardization 
Initiative (ISBI) [73] and studied in multi-center radiomics standardi-
zation publications by the IBSI [74] and the Quantitative Imaging 
Network (QIN) [75]. There are a total of 487 standardized radiomics 
features in SERA, including 79 first-order features (morphology, statis-
tical, histogram, and intensity-histogram features), 272 higher-order 2D 
features, and 136 3D features. We included all 79 first-order features and 
136 3D features [72,74,76]. 

2.1.2. Direct segmentation of dorsal striatum (DS) on DAT SPECT images 
As an alternative approach, we performed direct segmentation based 

on the SPECT image itself [77], for greater ease, given the lack of need 
for MRI images and computational speed. The multiple steps (x1-x10) 
are elaborated in Supplemental Figure S2 (in supplemental section II, 
part A.ii). The results of each step are shown in Fig. 3. 

2.2. Patient data 

As shown in Supplemental Figure S3, 35 datasets extracted from the 
PPMI database (www.ppmi-info.org/data) were analyzed. For consis-
tency, we only considered patients being off medication (e.g. Levodopa/ 
dopamine agonist) for >6 h before testing/imaging [78]. Two types of 
data-gathering frameworks were used, namely the use of timeless and 
cross-sectional datasets. In cross-sectional datasets, we separately 
collected information for patients based on each year. Subsequently, 
timeless datasets were constructed by appending cross-sectional data-
sets within a single set (885/1139 PD subject visits with/without im-
aging). This approach aims to gather data with a larger number of 
subjects and features. As such, we were able to select datasets with 
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different sample sizes and feature sizes (see Supplemental Table S2), to 
better study different combinations of features within clustering tasks. 
Additionally, we considered 163 healthy-control (HC) subject visits. 
Variables included non-imaging clinical features (NCF) and conven-
tional imaging features (CIF), as well as radiomics features extracted 
from SPECT (RFS) images as segmented via MRI (RFS-M) and SPECT 
itself (RFS-S), as elaborated in supplemental section II, part B. Tradi-
tionally, quantitative analysis, if performed at all, has been restricted to 
assessment of mean regional uptake in different ROIs [36]; by contrast, 
in the present work, we move beyond inclusion of conventional features, 
to study additional inclusion of radiomics features. To determine the 
effect of different categories, we employed combinations of the 
above-mentioned categories to study PD clustering:  

1. NCF only  
2. RFS-M only  
3. NCF + CIF  
4. NCF + CIF + RFS-M  

5. NCF + CIF + RFS-S  
6. NCF + RFS-S  
7. NCF + RFS-M 

2.3. Machine learning methods 

We constructed 3 types of hybrid machine learning systems (HMLSs) 
(Supplemental Figure S4): 

(1) First type employed 3 groups of algorithms: i) 16 Dimensionality 
Reduction Algorithms (DRA); ii) 8 Clustering Algorithms (CA); iii) 1 
Individual Clustering Evaluation Method (ICEM) for the assessment of 
cluster number for each sole trajectory. 

(2) Second and (3) Third HMLSs included the above-mentioned al-
gorithms in addition to Collective Clustering Evaluation Methods 
CCEM1 and CCEM2, respectively, for overall optimization of cluster 
number considering various trajectories. CCEM1 focused on correlation 
analysis between clusters formed from different trajectories, while 
CCEM2 additionally utilized 16 Classifiers (C) to assess classification 

Fig. 1. The workflow in our study. The 3 types of HMLS are discussed and depicted in subsection C and Supplemental Figure S4.  

Fig. 2. Segmentation and fusion process based on MRI segmentation: (top) 3D segmentation of DS; (bottom) (1) T1-weighted MRI image, (2) Segmented MRI, (3) 
Fusion of MRI, DAT SPECT, and MRI Segmentation, (4) DAT SPECT, (5) Fusion of DAT SPECT and Segmentation, and (6) Fusion of DAT SPECT and MRI. 
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accuracy, to arrive at optimal overall cluster number. 
These algorithms are elaborated in Supplement Section D and briefly 

mentioned next. 

2.3.1. Dimensionality reduction algorithms (DRA) 
Feature reduction methods are employed to reduce the number of 

features in high-dimensional data to a limited number of most relevant 
features, thus reducing overfitting. Supervised DRAs requires outcome 
for feature subset selection. Unsupervised DRAs need no label for feature 
reduction, thus relying on information based on patterns found among 
input features [79–81]. In this study, 16 DRAs (only unsupervised) were 
employed (as elaborated in Supplemental section II, part D, i): 1) PCA 
(Principle Component Analysis) [82], 2) Kernel PCA [83], 3) t-SNE 
(t-distributed Stochastic Neighbor Embedding) [84], 4) Factor analysis 
(FA) [85], 5) SMA (Sammon Mapping algorithm) [86,87], 6) IsoA 
(Isomap Algorithm) [88], 7) LMIsoA (LandMark Isomap Algorithm) 
[89], 8) LEA (Laplacian Eigenmaps Algorithm) [90,91], 9) LLEA (locally 
linear embedding algorithm) [92], 10) MDSA (multidimensional scaling 
Algorithm) [93], 11) DMA (Diffusion map Algorithm) [94,95], 12) SPEA 
(Stochastic Proximity Embedding Algorithm) [96], 13) GPLVM 
(Gaussian Process Latent Variable Model) [97,98], 14) SNEA (Stochastic 
Neighbor Embedding Algorithm) [99], 15), Sym_SNEA (symmetric 
Stochastic Neighbor Embedding Algorithm) [100], and 16) AA (Aut 
oencoders Algorithms) [101]. 

2.3.2. Clustering algorithms (CA) 
Clustering algorithms, as unsupervised machine learning methods, 

employ to identify natural groupings or clusters within multidimen-
sional data based on some similarity measure [102–104]. These are all 
listed in the Supplement (as elaborated in Supplemental section II, part 
D, ii). Our study includes multiple CAs including 1) SOMA (Self--
Organizing Map) [105], 2) APA (Affinity Propagation) [106], 3) HC-WM 
(Hierarchical clustering-Ward’s Method) [107], 4) HC-CLA (Hierarchi-
cal Clustering -Complete Linkage Algorithms) [108], 5) HC-WLA (Hi-
erarchical Clustering -Weighted Linkage Algorithm) [109], 6) KMA 
(K-Means Algorithm) [110,111], 7) KMeA (K-Mediods Algorithm) [112, 
113], and 8) CwGMMA (Clustering with Gaussian Mixture Model Al-
gorithms) [114]. 

2.3.3. Classifiers (C) 
Classifier algorithms are all listed in the Supplement (as elaborated 

in Supplemental section II, part D, iii). Specifically, we selected 16 
classifiers: 1) DTC (Decision Tree Classification) [115–117], 2) Lib_SVM 
(Library for Support Vector Machines) [118–120], 3) NBC (Naïve Bayes 
Classifier) [121,122], 4) KNNC (K Nearest Neighborhood Classifier) 
[123,124], 5) ELC (Ensemble Leaner Classifier) [125,126], 6) LDAC 
(Linear Discriminant Analysis Classifier) [127,128], 7) New PNNC (New 
probabilistic neural network Classifier) [129,130], 8) ECOCMC 
(Error-Correcting Output Codes Model Classifier) [131,132], 9 MLP_BP 
(Multilayer Perceptron_ Back Propagation) [133,134], 10)RFC (Random 
Forest Classifier) [135,136], 11) RNNC (Recurrent Neural Network 
Classifier) [137,138], 12), RBFA (Radial Basis Function Algorithm) 
[139], 13) LOLIMOT (Local Linear Model Trees Algorithm) [140,141], 
and 14, 15, 16) GLMCs (Gaussian Maximum likelihood Classifiers) types 
I, II and III (as described in supplemental file) [142–144]. 

In this work, automated machine learning hyperparameter tuning 
was employed to automatically adjust intrinsic parameters such as the 
number of neurons, and the number of layers in the classification al-
gorithms. We applied this approach to various algorithms such as 
LOLIMOT, RBF, RNN, MLP-BP, RFA to automatically tune the parame-
ters. Automated tuning, which was implemented with our in-house 
code, executes an error minimization search scheme to optimize the 
hyperparameters starting with the random initialization. Employing this 
approach enables us to pursue a systematic trial-and-error search 
scheme for tuning the parameters [26]. 

2.3.4. Individual Clustering Evaluation Method (ICEM) 
To evaluate clustering solutions, the so-called C-index was utilized 

(Supplemental section II, part D, iv). A small value for the C-index in-
dicates good clustering [145,146]. We utilized this C-index criterion to 
evaluate a range of cluster numbers spanning 2 to 10. 

2.3.5. Collective Clustering Evaluation Methods (CCEM 1 and 2) 
Because of the variety of optimal cluster solutions in different tra-

jectories of the first HMLS (as shown in Supplemental Figure S4), we 
considered 2 collective cluster evaluations for final overall cluster 
number selection. They utilized 1) Average of Correlation Factors 
(AOCF), and 2) Average of Classifier Performances (AOCP; classification 
accuracy), constituting final steps in 2nd and 3rd HMLSs, respectively 
(Supplemental Figure S4). For a given number of clusters, AOCF 
assessed how well results from different clustering methods correlate 
with one another, while AOCP assesses accuracies in ultimate 

Fig. 3. Segmentation process based on SPECT: (Left) Steps in segmentation (described in supplemental section II, Part A,ii); and (right) showing (1) 3D segmentation 
of DS, (2) DAT SPECT, and (3) superposition of DAT SPECT and Segmentation. 
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classification. Overall, given various ML trajectories, AOCF quantifies 
and optimizes the overall reproducibility of clusters, while AOCP eval-
uates overall reliability (for ultimate classification). 

2.4. Analysis procedure 

As shown in Fig. 1, we first generated 35 datasets that included 
different combinations as listed in section B. All the datasets were 
normalized based on the minimum and maximum of each feature. In the 
first HMLSs, we employed different hybrid trajectories and determined 
the optimal number of clusters for each trajectory (using ICEM). The 
optimal numbers of clusters were close to one another (often around 3 
clusters), but not always consistent. We then performed ensemble 
analysis of trajectories, utilizing CCEM1 as well as CCEM2 (the latter 
accompanied by a range of classifiers), to arrive at a collective selection 
of optimal cluster number (see Supplemental Figure S4). 

For the rest of our analysis, we utilized principal component analysis 
(PCA) for feature reduction and k-means algorithm (KMA) for clus-
tering, as they each arrived at most consistent number of clusters 
(explained later). To assess robustness of our clusters, we pursued 4 
approaches: (i) in cross-sectional analysis, for sub-groups obtained via 
the hybrid system, we assessed similarity between subtypes (see Sup-
plemental Figure S5). To do this we utilized a training and testing pro-
cess: following training of KMA using a specific year, the subjects of 
another year were processed using the trained model, and the results 
were compared with training based on the new set itself (testing). This 
enables assessment of the robustness of clusters between datasets. (ii) 
We employed High Dimensional Hoteling’s T Squared Test [147] as a 
statistical approach (Supplemental section II, part E) for re-confirming 
findings. (iii) Furthermore, we made comparisons between clusters 
from cross-sectional vs. timeless datasets (see Supplemental Figure S6), 
and (iv) finally, by dividing our large timeless datasets into smaller 
groups, and then apply the clustering algorithm, to each group, we 
evaluated the dependency of our subtype identification on variations in 
sample sizes. All algorithms were implemented in the Matlab R 2020 b 
platform. 

3. Results 

3.1. First stage analysis including optimal cluster selection 

First, we applied our 35 datasets to the first category of HMLS. 
Initially selected numbers of disease subtypes selected via ICEM were 
not consistent across different trajectories and datasets. Subsequently, 
we applied all datasets to the second and the third HMLSs enabling 
ensemble, collective selection of an optimal number of clusters. Tables 1 
and 2 show the resulting AOCF and AOCP methods applied to timeless 
data respectively. It is seen that for different datasets and methods, the 
optimal number of PD sub-clusters is consistently found to be 3. More-
over, we also applied these methods to cross-sectional datasets as shown 

in Supplemental Tables S4 and S5, showing again that the most common 
optimal number of clusters is 3. For the rest of our work (below), the 
PCA + KMA trajectory was considered for generation and analysis of 
disease subtypes, because PCA and KMA were each seen (via ICEM) to 
result in the most consistent number of identified clusters when couple 
with other methods. 

3.2. Second stage analysis including cross-linking different sub-groups 
across years 

To discover similarity between sub-groups, we performed different 
tests as mentioned in section II.D. As shown in Supplemental Figure S5, 
after arranging two comparing datasets based on common features, we 
re-clustered our datasets with common features. Datasets without 
radiomics features were not able to reach consistent results in compar-
ison to when we used all features (see Supplemental Tables S6 and S7). 
Meanwhile, datasets including radiomics features were able to reach 
consistent subtypes (Supplemental Table S8). This comparison shows a 
lack of the reproducibility of results based on the usage of clinical fea-
tures alone, as also seen elsewhere [148]. Subsequently, we focused on 
the additional usage of radiomics features. First, we applied a dataset in 
a specific year to KMA. After training the algorithm via a specific year, 
we compared subjects of another year as clustered using the trained 
model with direct training based on the new year (testing process), to 
assess robustness of the identified subtype. Among various datasets, 
datasets including RFS-M reached more robust performance (Table 3) 
compared to datasets with RFS-S (see Supplemental Tables S9 and S10). 
Furthermore, we saw that datasets including RFS-M (e.g. without and 
with clinical features) resulted in exactly similar performances. As such, 
we concluded that radiomics featured, derived properly using MRI 
segmentation, are very important in the clustering of PD. 

As an example, cell (2,1) in the top left Table 3 shows how many 
patients in G12” (year 1, sub-cluster 2) were associated with G01 (year 
0, cluster 1) when we applied test data in year 1 to the network trained 
via specific data in year 0. Fig. 4 shows a consistent relationship between 
the various sub-clusters as identified in different years (i.e. that they are 
effectively similar). 

Analysis of both cross-sectional and timeless data arrived at 3 
optimal numbers of clusters. As shown in Table 3, the cluster groups 
obtained in datasets including RFS-M were more robust compared to 
cluster groups obtained by other datasets (see Supplemental Tables S9 
and S10), when performing training and testing processes. Moreover, 
High Dimensional Hoteling T Squared Test re-confirmed our findings (p- 
value<<0.001). 

3.3. Third stage analysis including comparison of timeless sub-groups and 
cross-sectional sub-groups 

Additional tests aimed to further assess the reproducibility of our 
results, and sensitivity to the number of samples. After clustering 

Table 1 
Clustering scores are based on the AOCF method for timeless data. The maximum score in each dataset (column) is shown in bold. The last column is created by 
summing the previous columns.  

Cluster number NCF + CIF NCF + CIF+ NCF + CIF + NCF NCF + RFS-S NCF + RFS-M RFS-M Overall score 

RFS-S RFS-M 

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3.00 0.26 0.27 0.43 0.27 0.36 0.41 0.49 2.50 
4.00 0.20 0.19 0.32 0.20 0.27 0.31 0.37 1.85 
5.00 0.16 0.16 0.29 0.19 0.18 0.31 0.30 1.59 
6.00 0.12 0.00 0.30 0.12 0.20 0.28 0.25 1.26 
7.00 0.10 0.13 0.20 0.13 0.23 0.18 0.21 1.18 
8.00 0.11 0.00 0.15 0.13 0.00 0.00 0.24 0.63 
9.00 0.08 0.00 0.16 0.00 0.08 0.11 0.00 0.42 
10.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.14  
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patients in the timeless dataset, we then split the clustered timeless 
dataset into 4 parts based on the original year of each study (i.e. years 0, 
1, 2, and 4). As we had also independently clustered cross-sectional data, 
this approach allows further investigation of the robustness of our 
framework, by comparing the two datasets. We denote patients in a 
cluster Y as determined from the timeless dataset, who were originally 
from year X, as GTXY. We also denote patients clustered into a cluster Y 
directly from the cross-sectional dataset of year X as GCXY. Thus, we 
compare subtype in each split category obtained from timeless versus 
cross-sectional datasets, as depicted in Table 4. 

As an additional investigation, in reverse, we concatenated patients 
with similar subtype in cross-sectional datasets of different years into a 
clustered timeless set, referred to as GCY for a given sub-type Y. We then 
compared this set to GTY, as directly obtained for different subtype Y 
from the timeless data. The comparisons are shown in Table 5. 

As shown in Tables 4 and 5, results reached from RFS-M datasets are 
relatively consistent. These results are in fact more robust compared to 
when using NCF + CIF + RFS-S datasets (See Supplemental Tables S11 
and S12). At the same time, result of NCF + RFS-S shown in Supple-
mental Tables S13 and S14 also depicted good performance, but usage of 
this dataset did not enable one to reach as a high cross-linking perfor-
mance compared to datasets with RMS-M. As a result, RFS-M performs 
well in the clustering task, while other datasets result in less robust 
findings. Furthermore, we showed that conventional imaging features 
were not effective on their own towards robust clustering (unlike 

radiomics using RFS-M). 

3.4. The identified subtypes 

We had 3 categories of features, namely motor, non-motor, and 
imaging information. We considered 163 HC subject visits for additional 
comparison with the identified PD subtypes (images for 40 HC subjects 
were analyzed). After normalizing the features based on the minimum 
and maximum of each feature, we then assessed PD sub-clusters ac-
cording to whether their features had significant differences with HC 
subjects (p-value < 0.01; Bonferroni corrected). For plotting in Fig. 5, we 
selected features that were significantly correlated with the identified 
subtype (Spearman correlation, p-value < 0.01). 

Fig. 6 shows a radar plot of the above-mentioned features. What is 
different, is that, for improved visibility, we have reversed the orienta-
tion of some features (where now higher values mean the worst pro-
gression for all features; which we know by correlation with 5 well- 
understood features). And to further simplify, we show the radar after 
final normalization based on the maximum value of each feature. 

As illustrated, HC subjects (age range: 68 ± 11.4, female: 59, male: 
104, Hoehn, and Yahr’s score range: 0.01 ± 0.11) have the lowest scores 
compared to PD sub-clusters. PD patients in Cluster I (age range: 69.5 ±
9.8, female: 88, male: 117, Hoehn and Yahr’s score range: 1.71 ± 0.58) 
showed slower progression in all domains, including motor and non- 
motor symptoms, and imaging, compared to other PD sub-clusters, 
while they have higher scores compared to scores in HC subjects. Pa-
tients in Cluster II (Age range: 70 ± 9.7, female: 167, male: 125, Hoehn 
and Yahr’s score range: 1.70 ± 0.55) have significantly enhanced tremor 
among PD sub-clusters, although other symptoms were mostly larger 
than those in Cluster I. Cluster III (age range: 71.9 ± 10.9, female: 58, 
male: 44, Hoehn and Yahr’s score range: 1.85 ± 0.54) illustrated 
significantly enhanced values for various features (except for tremor) 
especially the imaging features. The 3 identified subtypes can be 
referred to as 1) mild, 2) intermediate, and 3) severe, especially in terms 
of dopaminergic deficit (imaging), while also having some escalating 
motor and non-motor manifestations. 

3.5. Final reproducibility test 

This section shows how many samples are needed to reproduce our 
findings. As clustering of subjects in datasets containing RFS-M was 
similar, we only considered two timeless datasets: i) RFS-M (with 885 
subject visits), and ii) NCF (with 1139 subject visits) for reproducibility 
analysis. We divided our datasets into various subsets (divisions) from 2 
to 30 parts. After applying each data-subset to KMA, we compared the 
subtype obtained by split parts, with the original subtype obtained by 
the timeless dataset. These correlation coefficients can be introduced as 
a standard for the reproducibility test. Figs. 7 and 8 show how much 
clustering results changed when sample sizes were reduced. As shown in 
Fig. 8, sub-clusters resulting from the NCF dataset were more dependent 

Table 2 
Clustering scores are based on the AOCP method for timeless data. The maximum score in each dataset (column) is shown in bold. The last column is created by 
summing the previous columns.  

Cluster number NCF + CIF NCF + CIF+ NCF + CIF + NCF NCF + RFS-S NCF + RFS-M RFS-M Overall score 

RFS-S RFS-M 

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.90 
3.00 0.92 0.91 0.89 0.92 0.88 0.88 0.90 6.28 
4.00 0.92 0.91 0.88 0.91 0.00 0.87 0.00 4.48 
5.00 0.91 0.91 0.88 0.91 0.88 0.87 0.89 6.24 
6.00 0.00 0.00 0.88 0.00 0.88 0.00 0.89 2.64 
7.00 0.00 0.00 0.88 0.91 0.00 0.87 0.00 2.66 
8.00 0.91 0.00 0.00 0.91 0.00 0.00 0.00 1.82 
9.00 0.91 0.91 0.00 0.00 0.00 0.87 0.00 2.68 
10.00 0.91 0.90 0.88 0.00 0.88 0.87 0.00 4.43  

Table 3 
Association tables for cross-sectional linkage of datasets with RFS-M 
Left Table: year-0 dataset used for training, and year-1 dataset used for testing; 
Right Table: year-1 dataset used for training, and year-0 dataset used for testing. 
GXY shows subtype-Y resulting from a training dataset in year-X, and GZY” 
shows the associated patients (in derived subtype-Y from another year-Z) used 
for testing.   

G01 G02 G03   G11 G12 G13 

G11′′ 0.77 0.08 0.01  G01′′ 0.96 0.03 0.02 
G12′′ 0.09 0.92 0  G02′′ 0.14 0.86 0 
G13′′ 0.14 0 0.99  G03′′ 0.23 0 0.77  

Left Table: year-1 dataset used for training, and year-2 dataset used for testing; Right 
Table: year-2 dataset used for training, and year-1 dataset used for testing  

G11 G12 G13   G21 G22 G23 

G21′′ 0.69 0 0  G11′′ 1 0 0 
G22′′ 0 1 0.24  G12′′ 0 0.43 0.57 
G23′′ 0.31 0 0.76  G13′′ 0.18 0 0.82  

Left Table: year-2 dataset used for training, and year-4 dataset used for testing; Right 
Table: year-4 dataset used for training, and year-2 dataset used for testing  

G21 G22 G23   G41 G42 G43 

G41′′ 1 0.17 0  G21′′ 0.79 0.21 0 
G42′′ 0 0.77 0  G22′′ 0 1 0 
G43′′ 0 0.06 1  G23′′ 0 0.13 0.87  
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on sample sizes, while it was already seen before that datasets without 
radiomics features strongly depended on features (Supplemental Tables 
S6 and S7). The last sub-figure (averaged correlation) especially can be 
introduced as a standard to measure reproducibility. 

3.6. Comparing our findings to previous studies 

As shown in Fig. 8, the subtypes obtained by the clinical dataset 
without radiomics features depend more strongly on sample sizes 
compared to those obtained by datasets with radiomics features. In any 
case, differences in inclusion criteria from datasets, feature selection, 
and methodology between cluster analysis studies make it difficult to 

compare subtypes derived from different studied [148]. Though PD is a 
heterogeneous disease and longitudinal data is needed to assess PD more 
extensively, many studies [31,44,47,48,50,62–64] have used baseline 
datasets for clustering PD subjects. Previous efforts did not focus on the 
use of radiomics features, and often no imaging information, from which 
we conclude that the results may have more strongly dependent on 
sample size, and reproducibility remains challenging [148]. Recent 
studies and analyses [68,148] have noted prior efforts to have limited 
reproducibility, which can also be understood in the context of our 
findings. At the same time, we attempt to compare our findings to other 
works in Table 6, where we report the average values of features in 
sub-clusters. We considered all features reported in each study for our 
assessment, though we show then more relevant features in the table. 
These comparisons were performed based on the relative progression of 
disease between the sub-clusters. 

3.7. Independent validation: t-SNE (T-distributed Stochastic Neighbor 
Embedding) plot 

t-SNE [84] is a machine learning algorithm that performs non-linear 
dimensionality reduction to embed high-dimensional data for visuali-
zation in a low-dimensional space of two or three dimensions. Specif-
ically, it transforms each high-dimensional dataset to 2 or 3 dimensions 
in such a way that similar datapoints are modeled by nearby datapoints 
and dissimilar datapoints are modeled by distant datapoints with high 
probability. We utilized this plot as an independent visualization test of 
our efforts to identify PD subtypes. Fig. 9 plots t_SNE results for 
cross-sectional years 0, 1, 2 and, 4, as well as timeless data, color-coding 
our derived ML-based subtypes and HC group on the plots. The plots 
show clear distinctions (particularly along the first dimension) among 
the sub-groups. 

4. Discussion 

Robust identification of PD subtypes has the potential to guide the 
design, and interpretation of clinical trials involving neuroprotective 
and symptomatic therapy [149]. To this end, we explored the applica-
tion of hybrid machine learning systems (HMLSs) to two datasets, 

Fig. 4. Diagram of the relationship between different sub-cluster groups when utilizing RFS-M for analysis. P-values are calculated by High Dimensional Hotelling’s 
T2 Test. 

Table 4 
Comparison of the split timeless subtype with subtype directly derived from 
cross-sectional datasets including RFS-M. GTXY represents the sub-cluster Y 
obtained by the timeless dataset as well as split based on year X, and GCXY 
represents the sub-cluster Y obtained by the cross-sectional dataset in year X.   

GT01 GT02 GT03   GT11 GT12 GT13 

GC01 0.59 0.41 0.01  GC11 0.73 0.27 0 
GC02 0 1 0  GC12 0 1 0 
GC03 0.31 0 0.69  GC13 0.37 0 0.63           

GT21 GT22 GT23   GT41 GT42 GT43 
GC21 0.96 0.04 0  GC41 1 0 0 
GC22 0 1 0  GC42 0 1 0 
GC23 0.16 0 0.84  GC43 0.4 0 0.6  

Table 5 
Comparison of computed subtype obtained by cross-sectional datasets included 
RFS-M with subtype obtained by timeless dataset including RFS-M. GTY repre-
sents the sub-cluster Y obtained by the timeless dataset, and GCY represents the 
formed sub-cluster Y obtained by the cross-sectional datasets.   

GT1 GT2 GT3 

GC1 0.76 0.24 0 
GC2 0 1 0 
GC3 0.29 0 0.71  
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Fig. 5. Bar plot of three kinds of features, motor (dark blue text), imaging (purple text) and non-motor (green text) for our 3 identified PD sub-clusters and 
HC groups. 

Fig. 6. Radar plot of three kinds of features, motor (dark blue text), imaging (purple text) and non-motor (green text) for our 3 identified PD sub-clusters and 
HC groups. 
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namely cross-sectional and timeless, both of which resulted in robust PD 
subtypes. Overall, we arrived at 3 distinct subtypes among PD patients 
using cluster analysis with a comprehensive range of variables including 
both non-imaging information and radiomics features. 

In our work, using solely clustering cost (sum of subject distances in 
each cluster compared to their cluster centers) did not enable one to 
select a unique optimal cluster number (see Supplemental Table S3). 
Thus, we employed additional costs such as AOCF (reproducibility test) 

Fig. 7. Reproducibility test based on timeless RFS-M dataset. X axis represents the number of parts the dataset was divided into, and Y axis represents the correlation 
between specific subtype resulting from each data subset (division) and the original subtype from the entire dataset. The first three plots show the correlations for the 
three clusters and the fourth one shows the means and standard deviations of the correlations in the three clusters. 

Fig. 8. Reproducibility test based on timeless NCF dataset. X axis represents the number of parts the dataset was divided into, and Y axis represents the correlation 
between specific subtype resulting from each data subset (division) and the original subtype from the entire dataset. The first three plots show the correlations for the 
three clusters and the fourth one shows the means and standard deviations of the correlations in the three clusters. 

M.R. Salmanpour et al.                                                                                                                                                                                                                        

Downloaded for Anonymous User (n/a) at Henry Ford Hospital / Henry Ford Health System (CS North America) from ClinicalKey.com by 
Elsevier on May 17, 2022. For personal use only. No other uses without permission. Copyright ©2022. Elsevier Inc. All rights reserved.



Computers in Biology and Medicine 129 (2021) 104142

10

Table 6 
Comparison of our findings with other related works. Subtypes (e.g. I) in the different studies do not necessarily correspond to one another but are listed in relative 
order of severity.  

Present work Sub- 
clusters 

I. Mild II. Moderate III. Severe 

MS (U-III) 22.82 ± 10.77 24.22 ± 10.73 25.41 ± 11.96 
NMS (ST- 
Sec-2) 

31.75 ± 10.05 32.6 ± 9.64 33.72 ± 10.9 

RMF (L-Pu- 
En) 

(2.56 ± 0.45) e11 (1.75 ± 0.4) e11 (0.70 ± 0.37) e11 

Fereshtenejad et al. 
[46] 

Sub- 
clusters 

I. Mainly motor/slow progression II. Intermediate III. Diffuse/malignant subtype 

MS (U-III) 17.7 ± 7.5 24.1 ± 9 27.3 ± 9.4 
NMS (U–I) 4.4 ± 3.1 6 ± 4 10.8 ± 4.9 

Lui et al. [65] Sub- 
clusters 

III. Tremor 
dominant 

IV. Young onset I. Non-tremor dominant II. Worse disease progression 

MS (UIII/ 
DD) 

4.82 ± 2.64 5.59 ± 3.39 16.84 ± 4.56 36.57 ± 7.89 

NMS 
(MMSE) 

27.02 ± 2.66 27.64 ± 2.07 26.79 ± 3.95 26.43 ± 2.76 

Reijnders et al. 
[63] 

Sub- 
clusters 

II. Young onset IV. Tremor-dominant I. Worse disease 
progression 

III. Non-tremor- 
dominant 

MS (T) 0.6 ± 0.6 1.1 ± 0.8 0.9 ± 0.6 0.7 ± 0.8 
NMS 
(MMSE) 

28.2 ± 1.8 27.7 ± 2.3 24 ± 4.7 17.4 ± 7.7 

Lewis et al. [44] Sub- 
clusters 

I. Younger disease onset II. Tremor 
dominant 

IV. Non-tremor 
dominant 

III. Rapid disease progression 

MS (U-III) 21 ± 10 25 ± 12 28 ± 13 30 ± 11 
NMS (VF) 46 ± 13 40 ± 12 33 ± 12 44 ± 9 

Gasparoli et al. 
[49] 

Sub- 
clusters 

I. Slow progression  II. Rapid progression 

MS (UMS) 11.9 ± 3.9  25.1 ± 5.1 
NMS (D) 9.5 ± 0  12.5 ± 0 

Rooben et al. [62] Sub- 
clusters 

I. Mildly affected in 
all domains 

II. Severe motor 
complications 

III. Affected mainly on 
nondopaminergic domains without 
prominent motor complications 

IV. Severely affected on all domains 

MS (T) 3.6 ± 1.9 3.1 ± 1.8 4.1 ± 2.2 1.5 ± 3.1 
NMS (CI) 14.7 ± 5.5 15.8 ± 4.8 19.7 ± 5.4 25.7 ± 5.1 

Post et al. [31] Sub- 
clusters 

I. Younger onset II. Intermediate older onset III. Oldest onset 

MS (UME/ 
DD) 

0.7 0.8 1.7 

NMS 
(MMSE) 

28.7 27.1 26.9 

MS: Motor symptoms, MCS: Motor Composition Score, RMF: Radiomics features, U-III: UPDRS III, L-Pu_En: Left Putamen Energy, ST-Sec-2: STAIA-section 2, U–I: 
UPDRS I, UIII/DD: UPDRS III/disease duration, MMSE: Mini-Mental State Examination, T: Tremor, VF: Verbal Fluency, UMS: UPDRS motor score, D: Depression, CI: 
Cognitive impairment, UME/DD: UPDRS-Motor examination per disease duration. 

Fig. 9. t_SNE plot for NCF + CIF + RFS-M dataset. Clusters I, II and, III were identified in our ML-based effort, independently validated by this plot. The right figure 
also includes healthy-control (HC) patients for comparison. 
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and AOCP (reliability test) for selecting optimal cluster number in each 
dataset, overall arriving at 3 distinct PD subtypes. Moreover, we showed 
that the use of multiple HMLSs worked more effectively than the sole 
usage of clustering algorithms and classifiers (see section III, part A). As 
a result, the PCA + KMA trajectory was shown as an optimal trajectory 
among the various trajectories for the generation and analysis of disease 
subtypes. PCA and KMA were each seen (via ICEM) to result in the most 
consistent number of identified clusters (as shown in 3 last tables within 
Supplemental Table S3, resulted from the datasets with RFS-M). To 
further evaluate our identified subtypes, we performed similarity iden-
tification tests across cross-sectional datasets in each category. To 
identify the similarity between subtypes, first, we utilized the training 
and testing process of KMA. After training the algorithm by a specific 
year, we associated subjects of another year with the resulting clusters 
(testing process). After comparing the associated subjects with the 
original test sub-groups, we were able to identify similar clusters. 

As shown in Supplemental Table S2, the datasets were generated 
according to the maximum sample size and maximum feature size. 
Before cross-linking cross-sectional phenotypes, we selected common 
features between 2 datasets comparing. After re-clustering cross- 
sectional datasets by common features, we were only enabled to reach 
similar clusters using datasets with radiomics features compared to 
when using all features (see Supplemental Table S8). According to 
Supplemental Table S6 and Supplemental Table S7, it seemed that the 
subtypes were sensitive to the reduction in clinical features when using 
no radiomics features. 

In recent studies [68,148], it was recommended that researchers 
should employ methods resulting in reproducible subtypes. As seen in 
Supplemental Table S1, different studies employing a given dataset with 
limited features for clustering PD subjects resulted in different optimal 
numbers. The selections of specific features in clustering can result in a 
different number of optimal sub-clusters (Supplemental Table S3). One 
of the most important rules in clustering approaches is the dependency 
check of sub-groups on the size of features [148]. As seen in the results 
section, datasets without radiomics features are strongly dependent on 
the size of clinical features. Unlike this work, to the best of our knowl-
edge, previously published works did not employ radiomics features or 
even imaging information for PD subtype identification (clustering) [31, 
44,46–50,61–64]. 

As shown in Table 3, associations in combinations with RFS-M were 
more robust compared to combinations with RFS-S (see Supplemental 
Table S9 and Supplemental Table S10). Thus, we were able to verify 3 
distinct subtypes, across the cross-sectional datasets and timeless data-
set. Moreover, Hotelling’s T2 test re-confirmed our findings (see Fig. 4). 
As shown in Fig. 9, the distributions of cross-sectional datasets with RFS- 
M were similar to the timeless dataset. This plot can also be introduced 
as a powerful independency test among the sub-groups. These plots 
properly showed clear differences (especially on the first dimension) 
among the sub-groups. 

In a recent study of ours [36], conventional mean uptake analysis 
showed no correlations with clinical measures in PD subjects in either 
the caudate and putamen. By contrast, significant correlations were 
observed for radiomics features, against motor and cognitive measures 
as well as disease duration. As a result, it can be concluded that RFS-M is 
potentially very important for the clustering of PD subjects. Moreover, 
radiomics features of DAT SPECT images, going beyond conventional 
imaging measures, were seen to provide significant improvements in 
prediction [21] and diagnosis tasks [37]. Overall, radiomics features 
have shown considerable potential as biomarkers of PD progression [34, 
35]. 

Subsequently, we assessed the dependency of our results on sample 
size. As shown in Tables 4 and 5, datasets with RMS-M overall resulted in 
better performance than other datasets shown in Supplemental Table 
S11-S12; the final reproducibility test confirmed our findings (see 
Fig. 7). Although the results of NCF + RFS-S shown in Supplemental 
Table S13- S14 also indicated good performance, usage of this dataset 

does not enable reaching appropriate cross-linking performance 
compared to datasets with RMS-M (see Supplemental Table S10). 
Overall, we believe, this is an important towards development of robust 
models, not considered in prior works [31,44,46–50,61,63,64]. 

Reproducing results of previous studies is difficult because the 
datasets used are different. Furthermore, clustering results did not 
employ imaging features and may depend on sample size or feature size 
as discussed already. In recent studies [68,148], analysis of previously 
published data-driven PD subtype classification systems suggested a lack 
of reproducibility and need for the establishment of standards for vali-
dation and the use of clustering systems. Clinical measurements based 
on visual examination in different clinical centers have several sources 
of error and can be a major challenge. A systematic analysis of images 
may provide help to this end. Thus, RFS-M, e.g. generated through our 
SERA radiomics software [72] standardized using guidelines from the 
IBSI (Image Biomarker Standardization Initiative) [73], can be a valu-
able step towards reproducible research. As shown, cluster results of 
combinations with RFS-M are more robust to variation in the size of the 
samples, and feature compared to other results, and the final repro-
ducibility test confirmed our findings (see Fig. 7). Since motor symptoms 
[16,51–55] as well as non-motor symptoms [51,54,55,150–155] in PD 
subjects strongly correlate with neuronal dysfunction in the brain, 
radiomics features have the potential to capture and correlate with at-
tributes of both symptomatic groups [71]. As seen, all combinations 
including RFS-M, even the use of RFS-M alone, enabled us to reach 
similar clusters. As a result, it can be seen that radiomic features 
uniquely determine PD subtypes identified in this work. 

Fig. 6 showed the relative progression of disease between the sub- 
clusters. The subjects in the HC group depicted dramatically lower 
scores among the PD subtype in all domains, including motor symptoms, 
non-motor symptoms, and imaging information. Sub-cluster I had lower 
scores compared to other PD sub-clusters. Thereby, the patients in this 
sub-cluster appear in a less progressed stage of disease in all domains 
than those in other PD subtypes. The patients in sub-cluster II indicated 
worse tremor across all groups, although, other symptoms (except 
Hoehn and Yahr’s score) were bigger than those in sub-cluster I, lower 
than those in sub-cluster III. Patients in sub-cluster III had the worst 
symptoms (except tremor) among PD sub-clusters. The patients in this 
sub-cluster had the worst neuronal loss in the substantia nigra with the 
loss of dopaminergic terminals in the basal ganglia [156,157], whilst, 
motor and non-motor symptoms had lower progression than those in 
other sub-clusters. In short, our 3 identified subtypes are 1) mild, 2) 
intermediate and 3) severe, especially in terms of dopaminergic deficit 
(imaging), but also with motor and non-motor manifestations. 

Differences in inclusion criteria from datasets, in feature selection, 
and in methodology between cluster analysis studies have made it 
difficult to compare the subtypes [148]. We note that a recent study 
indicated that tremor is not an independent indicator of a benign disease 
course, thus we did not emphasize it for defining the name of 
sub-clusters [158]. As shown in Supplemental Table S1, Hoehn, and 
Yahr (YH) [56] introduced disease severity into 5 stages. Since then, 
stage 0 has been added, and stages 1.5 and 2.5 have been proposed and 
are widely used [56,57]. Overall, patients with higher H&Y scores have 
been reported to have a poorer quality of life [159]. Based on Table 6, 
we provide a relative comparison of sub-clusters obtained in different 
efforts. These comparisons were performed based on the relative pro-
gression of disease between the sub-clusters. Fereshtenejad et al. [46] 
found three sub-clusters. The relative progression of disease among their 
sub-clusters I, II and, III appears somewhat related to ours in sub-clusters 
I, II and, III. Post et al. [31] also defined 3 sub-clusters. By comparison, 
Lui et al. [65], Reijnders et al. [63], Lewis et al. [44] and, Rooben et al. 
[62] identified 4 sub-clusters, and we have attempted to roughly map 
their clusters to relevant columns, indicating the relative progression of 
the disease. Finally, Gasparoli et al. [49] found only two sub-clusters, 
which we also summarize. At the same time, as emphasized above, 
these various sub-clusters are likely not similar (e.g. as imaging was not 
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utilized, and different methods and patient data were utilized). 
The limited size of a dataset is a limiting factor in PD subtype iden-

tification; as such, to maximize our numbers as well as to maximize our 
features, we had to select different sets. Another approach we used to 
tackle this limitation was the usage of timeless datasets. In our work, we 
used dimensionality reduction algorithms to reduce the size of features 
to avoid overfitting, although it was possible to utilize feature selection 
algorithms that we hope to explore in future work. Furthermore, our 
study is for a particular cohort of patients, and our findings should be 
externally validated on an independent database. 

At the same time, there are many advantages to this study. Impor-
tantly, we utilized a very comprehensive database including a broad 
spectrum of non-imaging and imaging features. Furthermore, our study 
focused on the added value of imaging, including the generation of 
radiomics features, in a standardized manner, based on guidelines from 
the IBSI, aiming towards the identification of a robust PD subtype. 

Furthermore, there is evidence that a cross-sectional only analysis 
cannot accurately reveal the progression of the disease [160,161], and 
the strength of our study is additional the usage of the timeless dataset 
formed from longitudinal data, enabling a more balanced definition of 
subtype. In the future, we aim to investigate optimal feature selection 
and machine learning methods for both tasks of i) clustering of PD 
subjects and ii) predicting PD outcome (e.g. disease subtype in year 4). 
Moreover, we aim to identify distinct disease progression pathways in 
Parkinson’s disease (PD), utilizing clustering of time-series data (longi-
tudinal clustering), and relating disease progression pathways to PD 
subtypes. 

5. Conclusion 

We aimed to perform robust identification of PD subtypes, incorpo-
rating clinical and imaging data. We utilized hybrid machine learning 
systems, with a comprehensive analysis of the trajectories, for optimal 
selection of clusters, and extensive analysis of robustness. In particular, 
the usage of radiomics features enabled the identification of clusters that 
were more robust to variations in features and samples. Based on cross- 
sectional as well as timeless datasets, including cross-linkage between 
them, three PD subtypes were identified: 1) mild, 2) intermediate and 3) 
severe, especially in terms of dopaminergic deficit (imaging), but also 
with motor and non-motor manifestations. Furthermore, clusters 
generated using SPECT-based segmentation remained less consistent 
when the number of subjects changed (reproducibility test), while the 
use of MRI to segment SPECT images enabled more robust identification 
of PD subtypes. Overall, we conclude that utilization of PCA + KMA 
trajectory and datasets including RFS-M can produce reproducible 
subtypes in PD patients. 
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