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Abstract
Introduction Laser Interstitial Thermotherapy (LITT; also known as Stereotactic Laser Ablation or SLA), is a minimally 
invasive treatment modality that has recently gained prominence in the treatment of malignant primary and metastatic brain 
tumors and radiation necrosis and studies for treatment of spinal metastasis has recently been reported.
Methods Here we provide a brief literature review of the various contemporary uses for LITT and their reported outcomes.
Results Historically, the primary indication for LITT has been for the treatment of recurrent glioblastoma (GBM). However, 
indications have continued to expand and now include gliomas of different grades, brain metastasis (BM), radiation necrosis 
(RN), other types of brain tumors as well as spine metastasis. LITT is emerging as a safe, reliable, minimally invasive clinical 
approach, particularly for deep seated, focal malignant brain tumors and radiation necrosis. The role of LITT for treatment 
of other types of tumors of the brain and for spine tumors appears to be evolving at a small number of centers. While the 
technology appears to be safe and increasingly utilized, there have been few prospective clinical trials and most published 
studies combine different pathologies in the same report.
Conclusion Well-designed prospective trials will be required to firmly establish the role of LITT in the treatment of lesions 
of the brain and spine.

Keywords LITT · Laser interstitial thermotherapy · SLA · Stereotactic laser ablation · Glioma · Brain metastasis · 
Radiation necrosis · Meningioma · Spinal metastasis

Introduction

Laser Interstitial Thermotherapy (LITT; also known as Ste-
reotactic Laser Ablation or SLA) is a minimally invasive 
treatment modality that has recently gained prominence in 
the treatment of malignant brain tumors [1–15]. Historically, 
the primary indication for LITT has been for the treatment of 
recurrent glioblastoma (GBM). However, indications have 
continued to expand and now include gliomas of different 
grades, brain metastasis (BM), radiation necrosis (RN) as 

well as spine tumors [1–14, 16, 17]. There are also small 
numbers of other tumor types which have been treated with 
LITT. This paper serves as a brief review of these topics 
with conclusions in each section.

Thermal ablation using cryoablation, radiofrequency, 
ultrasound and laser has a long tradition of efficacy in many 
tumor types including brain tumors [15, 18, 19]. How-
ever, while laser has long been utilized for open surgery, 
the earliest cases of LITT for brain tumors were reported 
in 1983 [20]. The efficacy of early LITT was highly vari-
able, performed with different, unique platforms at a small 
number of institutions, and thus limited to sites with clinical 
interest and technological support [12, 21–23]. After 2006, 
three technological innovations led to commercialization of 
LITT which in turn led to increased adoption for tumors 
and epilepsy: the development of MRI compatible, cooled 
probes; reproducible MRI thermometry; and software that 
could integrate the findings of repeated thermometry to 
identify cumulative thermal damage of several individual 
LITT treatments. The two currently commercially available 
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LITT platforms are the “Visualase” system approved by the 
FDA in 2009 after a phase I study in 4 patients with brain 
metastasis, and the Monteris NeuroBlate Platform, which 
was first approved by the FDA in 2013 after a first in man 
trial in 10 patients with unresectable recurrent glioblastomas 
[11, 24]. The features of these platforms have been described 
previously [25–27].

Treatment of low grade gliomas (WHO grade I‑II)

Eighteen studies and case reports have described treatment 
of 98 patients undergoing LITT therapy for low grade glio-
mas (Table 1) [21, 28–38]. The majority of tumors were 
less than 35 mm in diameter and were considered unresect-
able because of location within eloquent brain or due to a 
perceived high risk of conventional open surgery. LITT was 
usually used as the primary mode of treatment and not fol-
lowed by adjuvant therapy. In the overwhelming majority, 
tumors were in areas of eloquence or very high surgical risk 
[29, 31, 33, 34, 39–42]. In general, the use of LITT in treat-
ing low grade (WHO I–II) glioma appears to be well toler-
ated without permanent neurological deficits. The majority 
of tumors were stable, or demonstrated partial response. One 
study provided mean values for time to progression and sur-
vival of 16 and 34 months, respectively [21]. No prospective 
clinical trials have been reported.

High grade gliomas (WHO grade III‑IV)‑ 
including recurrent GBMs

Nineteen studies highlighted experience with LITT of high-
grade gliomas (WHO grade III and IV), reporting 252 cases 
(Table 2) [9, 21, 22, 24, 25, 27, 30, 32, 33, 43–46]. The age 
of patients varied from 24 to 78 years. All treated tumors 
were < 50 mm in diameter. LITT was mainly utilized for 
management of residual or recurrent neoplasms, when other 
treatment options had been exhausted. In general, thermal 
therapy was well tolerated. The most common complications 
were seizures as well as complications typical of this popu-
lation of patients with malignant brain tumors and limited 
mobility including deep venous thrombosis, and pulmonary 
embolism. These complications were encountered, on aver-
age, in 3.5%, 4.7% and 2.4% of cases, respectively, with 
slightly higher risk in patients with recurrent tumors [21, 24, 
33, 44–46]. Moderate perilesional brain edema after surgery 
was common [24, 32, 43, 46]. Transient postoperative neuro-
logical decline was occasionally noted, whereas permanent 
deficit was only encountered in 0–10% of patients (in aver-
age, 4.8%) [22, 25, 33, 47]. The risk of deficit was associated 
with early use of the technology, as well as treatment of large 
and deep seated or eloquent lesions.

Length of hospital stay after LITT for recurrent GBM 
(rGBM) was shorter in comparison to tumor resection [48, 
49]. During follow-up, tumors usually demonstrated volume 
reduction [24, 32, 33, 43]. Several clinical series also dem-
onstrated extended survival (median, 9.0–11.2 months) after 
LITT in patients with rGBM refractory to other treatment and 
not suitable for re-resection, which was beneficial in compari-
son to best palliative care [21, 22, 24, 25, 27, 46].

Another challenge has been tumor volume. Most of the 
lesions treated in the literature, and the majority of the patients 
with the best outcomes, are those with volumes of less than 
10 cm3 (which corresponds to a radius of 1.33 cm) [1, 5]. This 
has been attributed to the observation that larger tumors typi-
cally cause more swelling which is poorly tolerated. Wright 
et al. demonstrated that LITT can be combined with a mini-
craniotomy and trans-sulcal, trans-tubular approach which 
addresses the challenge of post-treatment swelling in patients 
with large, difficult to access large [1]. The authors noted that 
in this subgroup of patients, minimally invasive LITT com-
bined with a small craniotomy using a tubular retractor sys-
tem facilitated a radical resection required to achieve survival 
advantage in such patients without the need for a larger crani-
otomy. They noted that LITT changed the consistency of the 
tumor, devascularizing it and making it more “suckable” and 
thus more easily and safely removable. Median survival in 
this study of 10 patients with median age of 65 was more than 
16 months, with PFS of 9.3 months [1]. Another group demon-
strated that LITT induces a transient breakdown of the peritu-
moral blood-tumor barrier which has potential to improve drug 
delivery to intracranial tumors [50]. Several trials assessing the 
utility of LITT to augment drug delivery have been proposed 
and some are underway.

The two largest case series of LITT for GBM also demon-
strated a longer survival time in patients using LITT when no 
other therapeutic options were available to the patient except 
for best palliative care. The first in man trial of LITT for inop-
erable rGBM demonstrated a median survival of 10.5 months 
after LITT compared to the expected 3–5 month median sur-
vival with best conventional care (n = 10 patients) which was 
replicated in another series of four cases [24, 27]. However, it 
should also be noted that recurrent GBM amenable to treat-
ment with LITT are highly selective subpopulation of GBM 
with unifocal tumors less than 5 cm in diameter, and thus not 
necessarily generalizable to many historical controls. In gen-
eral, LITT has been well tolerated although temporary and 
permanent injuries have also been observed after LITT. Two 
studies, totaling 32 patients, have examined the length of hos-
pital stay (LOS) in LITT versus open surgical resection sce-
narios, and both proved a shorter length in favor of LITT [22, 
25]. While only three of the published studies were prospective 
clinical trials, three ongoing studies examine the potential of 
LITT to potentiate chemotherapy or immunotherapy [11, 14, 
24, 51–53].
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Conclusions

LITT has been in development for the past two decades and 
has now demonstrated efficacy in the treatment of glioma 
of various grades and types. While most of the publications 
have been retrospective case studies, these demonstrate that 
LITT is a potentially beneficial focal form of therapy in 
patients with gliomas who are not otherwise candidates for 
open surgery or have exhausted other therapeutic modalities. 
This noninvasive, anatomically and physiologically person-
alized form of treatment has the added asset of incurring 
substantially less hospitals costs and posing much less peri-
procedural medical risks to the patient.

Treatment of brain metastasis

An estimated 25–35% of all cancer patients suffer from 
brain metastasis (BM), though the true incidence of BM 
remains unknown and is expected to rise in parallel with 
the increasing incidence of cancer and with the aging of 
society [54]. Additionally, since most effective cytotoxic 
drugs and monoclonal antibodies drugs penetrate the blood 
brain barrier (BBB) only poorly, patients are living longer 
from diagnosis until tumors develop in the CNS and possibly 
other sequestered locations.

The lack of efficacy of chemotherapy for BM treatment 
has resulted in a dependence on surgical resection and/or 
ionizing radiation. Radiation can be delivered as whole brain 
radiation therapy (WBRT), which is dosed to the entire brain 
typically over 10–15 sessions; or as stereotactic radiosurgery 
(SRS), where multiple high energy beams converge specifi-
cally on the target with rapid dose falloff in 1–5 fractions. 
Because WBRT is associated with increased risk of neuro-
cognitive deficits, the majority of patients afflicted with a 
limited number of BM are treated with SRS [14, 55–57]. The 
current clinical practice suggest that SRS remains the first 
line treatment for BM patients in this context.

In recent years, however, LITT, has emerged as a thera-
peutic option for BM that recur after SRS [3, 5]. These BM 
will be referred to as BMRS (brain metastasis recurred after 
SRS). In this section, the efficacy of LITT in this context 
will be reviewed. Focus will lie only on studies where histo-
logically confirmed BM recurrence were treated with LITT. 
Studies primarily focusing on radiation necrosis (RN) will 
be reviewed in a separate section.

Local control

Carpentier et al. were the first to report local control for 
LITT treated BMRS [58]. In this study, local control was 
defined as post-treatment contrast-enhancing volume Ta
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(CEv) smaller than pre-treatment CEv. Using this defi-
nition, the authors report that local control was 60% for 
partially ablated lesions (n = 6) and 85% for completely 
ablated lesions (n = 9). Ahluwalia et al. reported a multi-
center study involving 42 patients (20 with BMRS) treated 
with LITT [57]. Of the BMRS patients, local control was 
observed in 100% of completely ablated BMRS, but only 
37.5% of incompletely treated lesions suffered disease 
progression. Similarly, Ali et al. found that 100% local 
control was achieved with completely ablated BMRS, but 
only 65.3% if < 80% of BMRS was ablated [14]. In a sub-
set of these patients treated with adjuvant radiosurgery, 
local control was 100% irrespective of the extent of abla-
tion. Rao et al. similarly reported local control in 85.7% 
of patients undergoing complete ablation a series of 14 
BMRS patients [59].

Overall survival

Median overall survival in LITT-treated BMRS patients 
ranges from 5.8 months to 19.8 months, with one year sur-
vival of 0–65% [25, 58–60]. The longest reported survivor-
ship after LITT was 30 months. Most patients died within 
months of laser ablation, suggesting that systemic disease 
control remains a key determinant of survival for patients 
with BMRS as with SRS [1, 25, 58–60].

Neurologic and functional status

Chaunzwa et al. report stable or improved KPS was observed 
in 13/22 patients (59%) who had pre-operative KPS of 
70–100. Ablation of > 90% of BMRS was associated with 
a higher likelihood of improved KPS. This study did not 
stratify results by BMRS or RN and should be interpreted in 
this context [61]. Similarly, in a series of 42 BMRS patients, 
Ahluwalia et al. noted 87% of patients experienced stable or 
improved KPS at last follow-up [57]. Reduction in steroid 
requirement was reported in 31% of these cases.

Complications

The complication rate associated with LITT of BMRS 
was < 10%. Complications include catheter misplacement, 
infection, hydrocephalus, hemorrhage, thermal injury to nor-
mal brain, and malignant edema requiring re-operation for 
hemicraniectomy. In the four cases of post-LITT malignant 
cerebral edema requiring hemicraniectomy, ablated volume 
ranged from 29 to 70  cm3 [14, 62–64]. This suggests that 
LITT of larger lesions should be avoided, or combined with 
debulking as previously noted [1].

Conclusion

The available retrospective studies suggest that LITT is a 
good option for patients suffering from BMRS. Neurologi-
cal outcome is generally favorable and complete ablation 
increase the likelihood of local control. Prospective studies 
will be needed to better understand optimal application of 
LITT for BMRS.

LITT for cerebral radiation necrosis

Radiation necrosis (RN), a severe local tissue reaction 
which most commonly occurs 3–12 months after comple-
tion of radiation therapy, is a common complication of 
radiation therapy (RT) for primary and metastatic brain 
tumors, occurring 4.7–9.2% in patients with metastatic brain 
tumors undergoing SRS with higher doses associated with a 
higher risk of RN [65–68]. Although most cases of RN are 
self-limiting, symptomatic lesions may require treatment. 
Steroids are the mainstay of treatment for RN by inhibit-
ing the pro-inflammatory cytokine response from radiation 
[69]. However, the treatment response is transient and some 
patient may become steroid dependent. In addition, steroid 
treatment carries significant side effects, including infection, 
gastrointestinal bleeding, myopathy and diabetes. Bevaci-
zumab, a vascular endothelial growth factor inhibitor, has 
also been shown to be effective in RN [70]. Other treatment 
such as Vitamin E, hyperbaric oxygen, pentoxifylline and 
anticoagulation have also been used with limited efficacy 
[71–73]. For a minority of patients, surgery may be neces-
sary to relieve mass effect. Open surgery provides the ben-
efit of immediate relief of mass effect and tissue diagnosis, 
but carries attendant risks of surgical morbidity, including 
stroke, hemorrhage, and wound-related complications and 
usually requires a pause in systemic treatments to allow for 
wound healing.

LITT has emerged as an increasingly popular treatment 
for recurrent or enlarging enhancing lesions after RT and 
or SRS for brain tumors. When performed with a stereotac-
tic biopsy, as it is typically performed, LITT provides the 
advantage of combining the diagnostic procedure (to assess 
tumor recurrence versus RN) along with cytoreductive treat-
ment with a minimally invasive technique approach and 
short hospitals stay. As such, it may minimize the amount of 
time needed to be off systemic treatments and lessen recov-
ery time. On the downside, it is not suitable for patients 
already suffering from mass effect and is subject to sampling 
error as with all stereotactic biopsies. No RCTs have been 
performed to date examining the role of LITT in RN, but 
multiple retrospective studies have demonstrated LITT to 
be a promising treatment modality.

The use of LITT for RN was first described in 2012 
[74]. Since then, multiple retrospective studies have been 
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published examining the role of LITT in RN [11, 57, 59, 60, 
75–81]. Most studies have contained a mixture of patients 
with either recurrent tumor or RN post-SRS for brain metas-
tasis or glioma, with three focused solely on RN [11, 57, 59, 
60, 75–81].

Control of RN and complications

In the studies where the ablation percentage was calcu-
lated, between 86.4 and 100% of the contrast enhancing 
volume was ablated [57, 61, 75, 77, 80, 82]. Early studies 
were encouraging, with most patients achieving palliation 
of symptoms, especially in those patients who were able to 
attain complete ablations [11, 79]. Hong et al. performed a 
retrospective cohort study comparing LITT to craniotomy 
for patients with progressive enhancement post-SRS for 
metastatic disease. For the patients undergoing LITT with 
biopsy proven RN, they demonstrated a local control rate of 
87.4% at 18 months. Of note, in patients who were found to 
have tumor, local control rate was 61.5% compared to 87.4% 
for those with RN [75]. Similarly, Ahluwalia et al. showed 
a 91% local control rate at 12 weeks for the 19 patients with 
RN who underwent LITT, compared to 54% for the 20 with 
recurrent tumor [57]. Smith et al. published a case series 
with a mixture of histologies including low and high grade 
gliomas, meningioma and metastatic disease. For the seven 
patients with metastatic disease, the local control rate was 
86%. Several other studies were done without biopsies, thus 
response rates represent a mixture of recurrent metastatic 
disease and RN [11, 59, 76]. Hernandez et al. reported a 
series of 59 patients with 74 treated lesions, which was a 
continuation of an earlier work by Rao et al. [76]. In that 
study, only ten of the 59 (16.9%) patients had local recur-
rence of disease after LITT.

Complication rates ranged from 0% -30% [11, 57, 59, 60, 
75–81]. Most of the complications were due to hemorrhage, 
seizures, new or worsened motor deficit due to proximity of 
the corticospinal tract, as well as systemic complications 
such as myocardial infarction, deep vein thrombosis and 
pulmonary embolism. This is in line with other LITT case 
series. Of note, in the retrospective cohort study performed 
by Hong et al., they found a similar rate of complications in 
patients undergoing LITT vs. craniotomy [75].

Weaning of steroids

RN can lead to steroid dependence which is sometimes as 
debilitating as recurrent tumor, thus, most of the studies 
examined the ability to wean off steroids after LITT [11, 
57, 59, 61, 75, 78–80, 82]. Due to variability in reporting, it 
is difficult to draw generalized conclusions. However, typi-
cally steroids could be weaned within 2–4 weeks in many 
cases (70–100%) [59, 61, 77, 78]. In two of the larger series 

by Ahluwalia et al. and Hong et al., 31% were weaned off at 
12 weeks and 34.8% patients were weaned off at 4 weeks, 
respectively [57, 75]. Finally, in a multicenter retrospective 
case series by Chaunzwa et al., 19/30 (63.3%) patients had 
adequate steroid use data for analysis. Eleven patients had 
symptom relief with steroids pre-LITT (36.7%), of which 9 
(30%) were able to wean off steroids completely by a median 
of 5 weeks [61].

Conclusions

LITT appears to be a viable treatment for RN in several 
retrospective studies, though no prospective studies or trials 
have been reported. Complication rates for LITT in the set-
ting of RN are similar to LITT performed for other oncologi-
cal conditions and appear to be lower than the rate seen in 
craniotomies. Most patients with biopsy proven RN will be 
able to wean off steroids. Finally, biopsy does appear to con-
fer valuable data, as it may influence treatment post-LITT.

LITT for other neoplastic conditions

The bulk of the reported data about LITT for oncology indi-
cations has focused on gliomas, recurrent metastases and 
RN. However, though there have been no prospective stud-
ies of other types of intracranial lesions, there have been a 
few case series reviewing the use of LITT for dural-based 
lesions, largely meningiomas [82–84]. Ivan et al. described 
a group of five patients with recurrent extra-axial masses 
including three grade I meningiomas, one grade III men-
ingioma, and one solitary fibrous tumor. All had clear evi-
dence of tumor progression after initial treatment including 
craniotomy and radiation, but were poor candidates for open 
surgery. In this case series, the grade I meningiomas showed 
good response to LITT, with 52% reduction of the size of 
the lesions at 3 months. The other two patients showed early 
progression at three months for the anaplastic meningioma 
and ten months for the solitary fibrous tumor, in line with 
the aggressive pathology of the masses [84]. A follow up 
study of the same group of patients demonstrated no evi-
dence of recurrence of the grade I meningiomas with a fol-
low up of seven to ten months [84]. Similarly, in another 
small retrospective case series, two patients with anaplastic 
meningiomas and one with benign meningioma were treated 
with LITT. Average ablation coverage was 75%, with both 
of the anaplastic meningioma patients having early progres-
sion [82]. The grade 1 meningioma was recurrence-free at 
28 weeks. Unfortunately, this patient had severe edema after 
the procedure leading to near hemiplegia. Although the 
hemiplegia eventually resolved, it took six months to do so 
[82]. Although these studies describe only a very small num-
ber of patients, available data demonstrate that the localized 
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pathology of the meningiomas defines the localized clinical 
course of this disease, which tends to recur locally rather 
than at distant sites regardless of what treatment modality 
is utilized.

LITT has also been employed for other more commonly 
seen pediatric intra-axial pathologies, such as ependymo-
mas, primitive neuroectodermal tumors, subependymal giant 
cell astrocytoma, pilocytic astrocytoma, medulloblastoma, 
choroid plexus xanthogranuloma, and ganglioglioma [62, 
85–88]. All are relatively small case series, but treatment 
results and complications are in line with the results seen 
in adult patients [62, 85–89]. Notably in the case series by 
Tovar-Spinoza and Choi, many of the lesions treated were 
difficult or potentially dangerous areas to treat such as the 
cerebellar peduncle, thalamus or midbrain. Despite this, only 
two out of eleven patients (18.2%) had complications con-
sisting of transient weakness in both patients, and akinetic 
mutism and eye motion disorder in one of the patients, of 
which both patients largely recovered. In addition, durable 
response to treatment was seen, with decrease in tumor vol-
ume out to six months [85]. In summary, LITT for pediatric 
pathologies is analogous to adult tumors with the caveat that 
the pediatric patients may have greater capacity for neuro-
logical recovery.

Treatment for spine tumors

Advances in cancer therapy has led to longer survival time 
of patients with various cancer subtypes. Multidisciplinary 
teams of spine surgeon, radiation and medical oncologists, 
pain and rehabilitation specialists, and interventional radi-
ologist have formed in order to deliver the best spine can-
cer treatment. The goals of treatment for metastatic spine 
disease remain palliative and aside from traditional goals 
such as local tumor control, achievement of symptom pal-
liation and improved health-related quality of life (HRQoL) 
is paramount [90].

Spinal LITT

Patients with metastatic spinal tumors that cause epidural 
compression benefit from a combination of surgical decom-
pression known as separation surgery followed by radiation 
therapy; in fact, Laufer et al. have demonstrated that separa-
tion surgery in combination with stereotactic radiation pro-
vides one-year local control rates of more than 91% regard-
less of tumor histology radiosensitivity [91]. Spinal LITT 
represents a novel minimally invasive approach to treating 
metastatic spine tumors. The surgical aim of LITT to treat 
spinal metastasis is to achieve local tumor control, allow for 
fast recovery, minimize postoperative pain and morbidity, 
and curtail delays in initiating or interrupting systemic thera-
pies directed at the primary tumor [92]. The LITT technique 

has been introduced as an alternative to separation surgery 
and is used in a synergistic fashion with radiation therapy. 
The surgical aim of LITT to treat spinal metastasis is to 
achieve local tumor control, allow for fast recovery, mini-
mize postoperative pain and morbidity, and curtail delays in 
initiating or interrupting systemic therapies directed at the 
primary tumor [92]. Spinal LITT is currently being done 
only at a small number of centers and most of the reports 
are retrospective.

Ahrar and Stafford first reported the use of LITT to treat 
spinal metastasis in 2010, but their study excluded tumors 
extending to the epidural space [93]. The authors concluded 
that LITT was a safe and reliable technique. More recently, 
Tatsui et al. found that LITT is safe and effective in patients 
with mild epidural compression secondary to tumor exten-
sion utilizing LITT as an option to replace separation sur-
gery for specific patients as well as an adjunct to SSRS [94]. 
Specifically, patients go through LITT and then SSRS in 
standard doses to cover the gross tumor volume, as if no 
thermal ablation were performed. If spinal instability is sus-
pected, percutaneous placement of spinal instrumentation 
and cement augmentation can be done in the same sitting, 
though this is not part of the LITT per se.

Details of operative considerations, placement of probe 
and ablation steps have been previously published in detail. 
Briefly, LITT procedures are done with an intraoperative 
MRI (iMRI) [90]. The diameter of the MRI bore must be 
large enough to fit the patient in the prone position with 
part of the probe protruding about 6 cm above the skin. The 
patient is positioned prone over gel rolls placed in parallel 
along the patient body axis with the arms tucked to the side. 
The probe is placed a distance of 6 mm from the ventral 
dural border of the posterior vertebral body using CT-based 
image guidance [95]. Tatsui et al. have found that a dis-
tance of 5 mm on each side of the laser fiber is covered 
by temperatures associated with tumor cell death [96]. If 
more coverage is needed, more than one probe may be used 
in various positions from different entry points in order to 
increase the area of cell death [95]. LITT is then performed. 
The heating process is monitored in real time with thermal 
MRI, and once the temperature reaches a critical level at 
the dural edge, the system deactivates, protecting the spinal 
cord from thermal damage. The LITT procedure is followed 
by SSRS in standard doses to cover the gross tumor vol-
ume. Patients undergoing LITT are admitted on the same 
day of the procedure with the average length of the pro-
cedure approaching eight hours. This time includes patient 
anesthesia and positioning, obtaining the fluoroscopic match 
for navigation, placing the access cannulas into the desired 
location in the epidural tumor, transferring the patient into 
the MRI magnet, obtaining the localization for each fiber, 
obtaining parameters for the thermal map for each fiber, per-
forming an average of five cycles of heating per puncture 
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with ventilator pauses, evaluating somatosensory evoked 
potential monitoring between each cycle, obtaining a final 
scan with and without contrast to evaluate the ablated tis-
sue, closing the stab wounds, and transferring the patient to 
a stretcher for extubation. Post operatively, individuals are 
admitted to regular hospital beds after the procedure, and the 
median hospital stay was two days. Patients are discharged 
once pain is under control and they are typically capable of 
ambulating without assistance.

Overall Conclusions

LITT is emerging as a safe, reliable, minimally invasive clin-
ical approach, particularly for deep seated, focal malignant 
brain tumors and radiation necrosis. The role of LITT for 
treatment of other types of tumors of the brain and for spine 
tumors appears to be evolving at a small number of centers. 
While the technology appears to be safe and increasingly 
utilized, there have been few prospective clinical trials, and 
most published studies combine different pathologies in the 
same report. Well designed prospective trials for each of 
the various pathologies currently treated will be required to 
firmly establish the role of LITT in the treatment of lesions 
of the brain and spine.
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