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Abstract—We propose a novel hybridization method for
stability analysis that over-approximates nonlinear dynamical
systems by switched systems with linear inclusion dynam-
ics. We observe that existing hybridization techniques for
safety analysis that over-approximate nonlinear dynamical
systems by switched affine inclusion dynamics and provide
fixed approximation error, do not suffice for stability analysis.
Hence, we propose a hybridization method that provides a
state-dependent error which converges to zero as the state
tends to the equilibrium point. The crux of our hybridization
computation is an elegant recursive algorithm that uses partial
derivatives of a given function to obtain upper and lower
bound matrices for the over-approximating linear inclusion.
We illustrate our method on some examples to demonstrate the
application of the theory for stability analysis. In particular,
our method is able to establish stability of a nonlinear system
which does not admit a polynomial Lyapunov function.

Keywords-hybridization; non-linear dynamics; stability anal-
ysis;

I. INTRODUCTION

Embedded control systems consist of software controlled
physical systems that enable sophisticated functionalities
such as autonomous driving in vehicles and automated
load balancing in smart grids. The safety criticality of
these systems demands rigorous analysis methodologies to
ensure their adherence to the correct functionalities. Hybrid
systems theory provides a mathematical framework for the
modelling and analysis of mixed discrete-continuous behav-
iors exhibited due to the interaction of discrete software
components with continuous physical entities in embedded
control systems. In this paper, we focus on the analysis of
an important correctness specification of embedded control
systems, namely, stability.

Stability is a fundamental property in control system
design that stipulates that small perturbations to the initial
state of the system lead to only small deviations in the
resulting behaviors of the system (Lyapunov stability), and
that the effect of small perturbations to the initial state
eventually vanish (asymptotic stability). Stability analysis
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has been extensively studied in the domain of control
theory [1]; however, stability analysis remains a challenge,
especially for nonlinear, switched and hybrid systems. There
are broadly two methods for the analysis of nonlinear
systems [2], namely, linearization (Lyapunov’s first method)
and Lyapunov’s second method. The first method consists
of constructing a linear approximation & = Ax of the
nonlinear system & = f(z), and determining the stability
of the latter by examining the eigenvalues of the matrix
A. However, this method in general only applies to deduce
asymptotic stability, and Lyapunov stability of, especially
marginally stable systems, cannot be concluded using this
method, since, small imprecisions in the approximation
can destabillize a marginally stable system. In addition,
eigenvalue-based analysis does not extend to non-linear,
switched or hybrid systems.

Lyapunov’s second method establishes the stability of a
system & = f(z) by exhibiting a function, called a Lyapunov
function, that serves as a certificate of stability. A Lyapunov
function is a continuously differentiable function V' from
the state space to non-negative reals, such that V(0) = 0
only at 0 (assumed to be the equilibrium point) and the
value of the function decreases along any trajectory of
the system. Automated methods for computing Lyapunov
functions essentially consist of a template-based search,
wherein, say, a polynomial with coefficients as parameters is
chosen as a candidate Lyapunov function, and the conditions
of Lyapunov functions are encoded as constraints on the
parameters, which are then solved using certain semi-definite
programming techniques such as sum-of-squares program-
ming [3]-[5]. However, the challenges with Lyapunov’s
second methods are choosing the appropriate templates and
the drastic increase in the computation time with the increase
in the degree of the polynomials. There has been some
work on learning Lyapunov functions [6]. Extensions of
Lyapunov functions to hybrid systems stability analysis have
been proposed using the notions of common and multiple
Lyapunov functions [4], where either a single function that
serves as a Lyapunov function for every mode of the system
is chosen, or a set of functions, wherein each serves as a
Lyapunov function for a particular mode, is chosen along
with additional constraints that are required to be satisfied



at the switching surface. However, Lyapunov function based
methods were shown to suffer from numerical issues and to
be sensitive to the encoding of the switching constraints [7].

In this paper, we present an alternate stability analysis
method for nonlinear switched systems based on abstrac-
tions; an abstraction based approach broadly consists of con-
structing simplified systems and analyzing these simplified
systems to infer correctness of the given systems. Switched
systems [8] consist of a finite set of continuous systems
along with a time-based or state-based switching logic.
Here, we consider switched systems that are specified by a
partition { P;} of the state-space and a dynamics & = F;(z)
associated with each of the regions P;. The system evolves
according to & = F;(x) while in region P; and switches to
the dynamics & = F);(x) at the boundary of P, and P;.

The main result of the paper is a novel hybridization
technique for stability analysis that over-approximates a
switched (nonlinear) system by a switched system with lin-
ear inclusion dynamics. Hybridization [9]-[11], refers to an
over-approximation method, where the state-space is divided
into a finite number of regions and the dynamics restricted to
each region is over-approximated by a computationally more
tractable dynamics, such as piecewise affine or polyhedral
dynamics. For instance, in [11], the nonlinear dynamics
& = f(x) is over-approximated by piecewise affine dy-
namics as follows. Given a partition of the state space into
regions P4, ..., Pk, in each region P;, the dynamics is over-
approximated by an affine dynamics @ = Ax + u, where
u € [—e, €]™ for some € > 0. Here, € captures the greatest
distance between f(z) and the approximation Az over the
region P;.

While existing hybridization techniques are useful for
safety analysis, we observe that they do not yield useful
results for stability analysis. More precisely, let us consider
the stability of & = f(x) with respect to the equilibrium
point 0, that is, f(0) = 0. Note that & = Ax + u,
u € [—¢€,€]™ is not stable with respect to 0, for any matrix
A; in particular, it does not even have O as an equilibrium
point. Our main insight is that the over-approximation cannot
have a fixed error € for every point in the domain of
approximation FP;, but instead the error should reduce as
we move closer to the equilibrium point. Hence, we seek an
approximation & = Az + yx, v € [—¢, €| or equivalently,
& € {(A+~I)x : v € [—€, €]}, where the error [—ez, ex]
converges to 0 as z tends to 0. In particular, we intend to find
two linear functions that bound the nonlinear function f(x)
as in Ajx < f(x) < Asz, referred to as a linear inclusion
dynamics, where < denotes component-wise comparison
between vectors.

Our broad idea for approximating a function f(z) is
based on bounding the partial derivatives of f(x) and
using the bounds to define the linear functions. Traditional
hybridization uses bounds of f(x) instead of the derivatives.
More precisely, in the one-dimensional case, we show that if

a< 2 f(x) <bforz €[0,00), then az < f(z) < bx. We
generalize this observation to higher dimensions, however,
the extension is non-trivial, since, the component-wise upper
and lower bounds on partial derivatives for each dimension
do not provide the bounds for f. We propose an alternate
representation for polyhedral sets using a finite number of
upper and lower bound functions, and present a recursive
definition for the computation of upper and lower bounded
matrices using those computed for appropriate functions of
lower dimension.

The resulting approximate system, which is a switched
system with linear inclusion dynamics, can be analyzed for
establishing stability of the original nonlinear system. We
use the the tool AVERIST [12] for the stability analysis of
the hybridized system and illustrate our method on some ex-
amples, including proving stability on a system for which no
polynomial Lyapunov function exists [13]. To the best of our
knowledge, this is the first investigation on the application
of abstractions, in particular, hybridization, for the analysis
of stability of nonlinear and switched dynamical systems.
Abstraction based approaches for stability verification of
linear and polyhedral inclusion dynamics have been explored
before [7], [14].

II. PRELIMINARIES

In this section, we present some notations and definitions
that we will use in the following sections.

Euclidean space: Let R denote the set of reals, R>g
the set of non-negative reals and R<q the set of non-positive
reals. An interval is a closed convex subset of R. A fime
interval is an interval I of the form either [0,7") for some
T € R>q or [0,00). A signed interval is an interval of the
form [0, 77, [0, 00), [-T,0] or (—o0,0]. The n-dimensional
Euclidean space is given by R". Given a point x € R",
we use z; to denote the ¢-th component of x, that is, x =
(x1,...,2n), and we denote xi the point (z,...,z,) €
R~ k*1 for any k € {1,...,n}. Observe that we use bold
letters for multidimensional points. We use ||x|| to denote
the infinity norm of x € R™, and (x,y) to denote the dot
product of x,y € R”. Given a set X C R, the powerset of
X, denoted P(X), is the set of all subsets of X. We denote

a matrix A € R™™"™ as (a;;) 1<i<n > Where a;; € R is the
o 1<j<m
(i,7)-th element of A.

Polyhedral sets: A linear constraint is an expression of
the form (a,x) > b, where a € R is a tuple of values, b is
areal value, x = (21, ..., 2,) is a tuple of variables. A half-
space is a set defined by a linear constraint with inequality
relation. A polyhedral set is determined by an intersection
of finitely many half-spaces. It is said to be pointed if one
of its vertices is the origin, 0.

An orthant in R™ is a polyhedral set O, = I(e1) X
. x I(e,) where € € {—1,1}", I(-1) = (—00,0] and
I(1) = [0,00). An orthant in R is known as a ray while in



R? is known as a quadrant. We call orthant-polyhedron a
polyhedral set P such that there exists € € {—1,1}" with
P C Q.. A pointed orthant-polyhedron P is said to be a po-
polyhedron. Given P C R" and 1 < i1, ...,1; < n, the pro-
jection of Pinto {i1,...,ix} is defined as proj;, , (P) =
{(y1,--.,y):Fx € P such that y; = x;,,...,Yyx = Ti, }.
An n-dimensional polyhedral partition of X C R™ is a
finite tuple P = (P1,..., P;) such that X = UpepP,
P; # O for every i and P, N P; =  for every i # j,
where P is the interior of P. A refinement partition of P
is a polyhedral partition @ = (Q1,...,Qx) of X such that
for every @; € Q there exists a P; with Q; C P;. Such a
relation between ); and P; is denoted by ind(P,Q;) = j.

Functions and derivatives: Given a function F, we
use dom(F') to denote the domain of F, and img(F) to
denote the image of F. A function F' is said to be an n-
dimensional function if dom(F) C R™, a real-valued func-
tion if img(F) C R and a vector-valued if img(F) C R™.
Given a function F' from X to R", the components of F
are the functions F; : X — R, where F;(x) is the i-th
component of F'(x) with 1 < 7 < n. We say a function
F : X — Y is of class C¥(X) if every component of
the function is continuously differentiable with respect to
k coordinates, which can be different or just the same. A
function F' is bounded if img(F') is bounded. Given a one
dimensional function F': R — R", we use F to denote the

derivative iF(t) A function F' from a polyhedral set P to
R™ is said to be linear if there exist a € R™ and b € R, such
that for every x € P, F(x) = (x,a) + b; and piecewise-
linear if there exists a polyhedral partition P of P such that
for every (Q € P, the function F' restricted to () is linear.

A. Ordered-bounded representation and maximal functions

Recall that given x € R™, we denote xy the point
(g, ..., xn) € RPFHL forany k € {1,...,n}.

Definition 1. Let P be a polyhedron in R™. The ordered-
bounded representation of P is {[l5,...,13], [ub,...,ub]}
where 1% and u% are piecewise linear functions over R"~*
for 1 < k < n, and U}y and us are constant values
in R such that P = {x € R"™ : lh(x2) < x1 <
ub(x2),. .., l’f;(karl) < < u’lg(xk+1), B <z, <
u'p}.

Remark 1. We will ignore the superscript k, since, it is
often clear from the argument of l’f) and u’,g functions, and
instead will denote them as lp and up.

We note that the functions [p and up are piecewise
linear functions, which can be computed effectively from
a description of P as conjunctions of linear constraints.
Figure 1 shows a polyhedron P, depicted in blue and
described by 3 linear constraints, P = {x € R?:z;—x29 <
0,21 > 0,21 + x2 > 1}. Observe that this is not a unique
description of P. The ordered-bounded representation is an
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Figure 1: Ordered bounded representation

alternative description where we first enclose the variable
To between two values, which in this case are as follows
05 < 25 < 00,80 lp = 0.5 and up = oco. Second, we
enclose the variable x; between functions of x5. Observe
in Figure 1 that the dotted black line x5 = 1 partitions the
polyhedron P into a lower and an upper region. The lower
region corresponds to the triangular area delimited by the
orange, green and black-dotted lines, where 0.5 < z2 <
and z; is lower bounded by the orange line and upper
bounded by the green line. The upper region corresponds
to the unbounded region with x5 > 1 and where z; is lower
bounded by the blue line and upper bounded by the green
line. Formally, we define

ZP(ZL'Q) _ {1 — X2

if0.5<as <1
0 if 20 >

1

and up(xy) = x2, and the ordered-bounded representation
of Pis {x € R? : Ip(x2) < 1 < up(z2),lp <2 <up}.

Lemma 1. Given an n-dimensional convex and closed
polyhedral set P, there exist two piecewise linear functions
Ip,up : R"1 — R such that P = {x € R" : Ip(x2) <
T, < UP(Xz)} NR x projz)wn(P).

Proposition 1. Given a convex and closed polyhedral set
P in R™, an ordered-bounded representation of P is com-
putable.

Both proof of Lemma 1 and proof of Proposition 1 can
be found in the Appendix.

III. SWITCHED SYSTEMS

In this section, we define a class of switched systems [8],
where the continuous state-space is partitioned into a finite
number of regions, each of which is associated with a
differential inclusion. Each of the regions corresponds to
a (discrete) operational mode, and differential inclusion
specifies the evolution of the continuous state in that mode.
The continuous state does not change (reset) during a mode
switch.



Definition 2. An n-dimensional switched system (SS) is a
tuple S = (P, F), where P = (Pi,. .., Py) is a polyhedral
partition and F is a tuple of functions from R™ to P(R™),
(F1(x),..., Fr(x)).

Next, we define an execution that specifies the evolution
of the continuous state of the system with time elapse. The
execution follows the solution of the differential inclusion
& € F;(z) while in the polyhedral region P;, and switches
to a solution of the differential inclusion of an adjacent
polyhedral region at the boundary.

Definition 3. An execution o of an n-dimensional SS
S = (P, F) is a continuous function o : I — R", where T
is a time interval, such that there exists a finite or infinite
sequence of pairs of polyhedral sets and real values of the
form (Pi,t1),...,(Pg,tg),... satisfying the following for
every v > 1:

e D=tp<t1 <...<tp < ..,

o« PP,

o o(t) € P; for every t € [t;_1,t;] and

. %U(t) € Fi(o(t)) for every t € [ti_1, 4.

An execution o : I — R™ of S is complete if I = [0, 0);
otherwise, it is finite. We denote the set of all executions
of the system S by exec(S), and the set of all complete
executions by cexec(S).

Next, we identify certain subclasses of switched systems.
Firstly, a differential equation is a special type of differential
inclusion % € F'(x), where F(x) is a singleton set. Hence,
we model a single nonlinear system, x = f(x),x € P,
where P is a polyhedral set and f is a nonlinear function,
as a switched system & = (P,F), with P = (P) and
F = (F), where F(x) = {f(x)}. We will also denote
the single nonlinear system as S = (P, f). Next, we say
that a switched system S = (P, F) is a nonlinear switched
system if F;(x) = {fi(x)} for every x € P;, where f;
is a nonlinear function. A switched system S = (P, F)
is a polyhedral inclusion switched system if F;(x) = Q
for every x € P;, where Q C R"™ is a polyhedral set. A
linear inclusion switched system S = (P,F) is such that
Fi(x) ={y e R": Ax <y < Bx} where A, B € R"*",

IV. LYAPUNOV STABILITY

Stability is a fundamental property of dynamical systems,
that is considered as an important objective in the control
system design. It ensures that small perturbations to the
initial state of the system result in just small deviations of
the nominal behaviour of the system, and also that the effect
of the perturbations eventually subsides. Here, we introduce
two classical notions of stability in control theory, namely,
Lyapunov stability and asymptotic stability. These notions
of stability are considered with respect to an equilibrium
state, which corresponds to a state where the system does
not change with time. We assume that the origin 0 is an

equilibrium state, without loss of generality. For a non-linear
system x = f(x), this means that f(0) = 0. Intuitively, a
system is Lyapunov stable if executions that start close to
the equilibrium remain close to it.

Definition 4. A set of executions ¥ of an SS S is Lyapunov
stable with respect to the equilibrium state O if for every
€ € Ry there exists § € Rsqg such that every execution
o : I — R" belonging to X, with 0(0) € Bs(0), satisfies
o(t) € B.(0) for every t € I.

A system is asymptotically stable if, in addition to being
Lyapunov stable, satisfies that every execution starting close
enough to the equilibrium converges to it.

Definition 5. An execution o : I — R" is said to converge
to 0 if for every € € Ry there exists a time T € I such
that o(t) € B.(0) for every t > T.

Definition 6. A set of executions 3 of an SS S is asymptot-
ically stable with respect to O if it is Lyapunov stable and
there exists n € Ry such that every execution o € ¥ with
0(0) € B,,(0) converges to 0.

We say that a switched system S is Lyapunov stable if
exec(S) is Lyapunov stable with respect to 0. A switched
system S is said to be asymptotically stable if cexec(S) is
asymptotically stable with respect to 0.

V. HYBRIDIZATION

Checking stability of a nonlinear system X = f(x) is a
challenging problem, more so when it is part of a switched
system. In this section, we present a general method to
abstract a nonlinear dynamical system by a “switched” linear
inclusion system. The latter is a class of hybrid systems
which can be analyzed, for instance, using results from [7].

A. Motivation

Our abstraction falls into a general technique called
hybridization, wherein the state-space is partitioned into a
finite number of regions, and the dynamics restricted to
each region is over-approximated by a simpler dynamics [9],
[10]. For instance, given a partition of the state-space
P = (Py,...,P;) and a nonlinear system x = f(x), a
simpler affine dynamics x = A;x + u, u € B.(0) for
some € > 0 is constructed for every P; where f(x) €
Fi(x) = {Aix+u : v € B0)} for all x € P,
Thus, the switched linear system (P, (Fi,..., Fy)), over-
approximates the behaviors of (U;P;, ). While such affine
approximations are useful in proving safety [9], [11], they
are not conducive for stability analysis. Note that F;(0) =
B.(0), which does not imply that 0 is an equilibrium point.
More importantly, there is a fixed error of € > 0 between the
concrete and the abstract vector fields even at a very small
distance from the equilibrium point.
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Figure 2: Hybridization techniques

For illustration, consider the nonlinear system & =
—sinx restricted to the interval [0, 1]. Existing hybridiza-
tion techniques overapproximate the nonlinear system by
& € —0.75x + [—¢, €] for € € R>(. Figure 2a shows the
result of such a hybridization procedure, where the function
—sinz is depicted in red, and the region where the over-
approximated derivative & lies is represented in light red.
Observe that for x(t) = 0, we conclude &(t) € [—e, €.
Therefore, there is no equilibrium point but an interval, and
stability cannot be analyzed with respect to it.

Since, intuitively, stability requires that small perturba-
tions in the state with respect to 0 lead to small deviations,
we need an abstraction in which the error between the
concrete and abstract systems decrease as we move closer
to 0. Hence, we propose to approximate x = f(x), by a
linear inclusion dynamics

Alxg)'(gAQX,XGPi

in which the error ||A1x — Aox||< ||A1 — Asl]-||x|| tends
to 0 as x tends to 0. Figure 2b shows two linear functions,
y = —z and y = —0.54z, which provide an envelope for
y = —sinx whose over-approximation error converges to
0 as z tends to 0. We define the linear inclusion system as
—z < ¢ < —0.54z, for which 0 is an equilibrium point.

B. Stability-based hybridization approach

First, we describe a general framework for constructing
the hybridization of a nonlinear switched system, assum-
ing we have a method to construct linear inclusion over-
approximations of a nonlinear dynamics in each region of the
partition. In the next section, we provide a specific method
to construct the linear inclusion over-approximation for each
nonlinear dynamics.

Definition 7. Given an n-dimensional function [ and a
polyhedral set P C R", a linear inclusion approximation
of f in P is a function G from P to P(R™), such that there
exist A, B € R™ "™, where for every x € P, f(x) € G(x) =
{y e R": Ax < y < Bx}.

Definition 8. Given a n-dimensional nonlinear switched
system S = (P,F), a polyhedral set R and a refinement
partition Q = (Q1,...,Qx) of P, we define a hybridized
switched system H(S, R, Q) as the switched system (Q,G)

with G = (G1,...,Gy), where G; is a linear inclusion
approximation of fina(p,Q,) in Qi N R for every 1 < i < k.

Note that the nonlinear system and the switched system
are defined over the whole state-space R", however, the
linear inclusion dynamics over-approximates the actual dy-
namics only on some polyhedral set R, which is usually a
compact set. Restricting to R is necessary to obtain tight
upper and lower bounds for f(x). On the other hand, the
stability of the hybridized system still implies the stability of
nonlinear system, since, stability is a property about a small
neighborhood around the equilibrium. This is summarized
in the following theorem.

Theorem 1. Given a n-dimensional nonlinear switched
system S = (P, F), a polyhedral set R containing B.,(0) for
some v > 0 and a polyhedral partition P = (Py,..., Py)
of R™, if the hybridized switched system H(S,R,P) is
Lyapunov (asymptotically) stable with respect to 0, then S
is Lyapunov (asymptotically) stable with respect to 0.

Proof: Suppose H(S,R,P) is Lyapunov stable. We
need to prove that S is Lyapunov stable. Let us fix € > 0.
Let € > 0 be such that ¢ < « and Bs.(0) C R. From
Lyapunov stability of H(S, R, P), let § > 0 be such that all
executions o of H(S, R, P) with o(0) € Bs(0) will remain
within B.(0). We claim that all executions ¢’ of S which
start within Bs(0) will also remain within B.(0). Suppose
not, then ¢’ will at some time go out of B.(0). Let T be
a time such that ¢’ is out of B.(0) but still has not left
Bs¢(0). Hence, o’ until time 7T is still within R. Then ¢’
until time 7" is an execution of H (S, R, P) as well, since, the
derivative of ¢’ until time T will lie in the linear inclusions
of the corresponding regions in P. However, ¢’ started in
B;(0), and reached a point outside B.(0) in H(S, R, P),
which contradicts the choice of 4.

Asymptotic stability of S follows from a similar observa-
tion that if executions starting from an 7 neighborhood of
H(S, R, P) converge, then executions starting from a small
enough neighborhood will remain within R for all times,
and hence, will converge as well. |

Next, we propose a technique for abstracting a nonlinear
function to a linear inclusion approximation in a particular
region of the state-space.

VI. LINEAR INCLUSION ABSTRACTION

In this section, we present the crux of the hybridization
procedure, that is, a method for over-approximating a non-
linear function by a linear inclusion over a polyhedral set.
Consider a single nonlinear system S = (R”, f), and a
compact po-polyhedron P, where f : R” — R" is a
function of class Cl(R"), that is, it is differentiable. The
goal is to find two matrices A, B € R"™*", such that
Ax < f(x) < Bx for every x € P. We construct such
matrices by iteratively constructing linear bounds on each



component f; : R" — R of f. More precisely, we compute
vectors a,b € R™ such that (a,x) < f;(x) < (b,x) for
every x € P. Existence of such vectors is summarized in
the following theorem.

Theorem 2. Let f : R™ — R be an n-dimensional real-
valued function of class C™(P), where f(0) =0 and P is a
compact po-polyhedron. Then, there exist vectors a,b € R"
such that (a,x) < f(x) < (b,x) for every x € P.

A. One dimensional nonlinear function approximation

First, we prove Theorem 2, when f is a one-dimensional
function, that is, f : R — R. The broad idea is to obtain
a bound on f, by bounding their derivatives. The following
lemma states the existence of two constant values which
linearly bound the value of a one-dimensional real-valued
function.

Lemma 2. Ler f(x) be a one-dimensional real-valued
function such that f(0) = 0 and f € CY(I) where I is
a signed interval. Let a and b be real values such that
a < %f(x) < b forall x € I Then, ax < f(z) < bz
when I C [0,00) and bz < f(x) < ax when I C (—00,0].

Proof: We know that a < % () < bforall z € I. Let
us consider y € I. In the case of I C [0, 00), by integrating
from O to y with respect to dz, we obtain the following

Y v g Y
/ adxé/ —f(x)dxé/ bdz,
0 o dx 0

which is ay — 0 < f(y) — f(0) < by — 0. Since f(0) =0,
we obtain ay < f(y) < by for every y € I. In the case of
I C (—00,0], by integrating from y to 0 with respect to dz,
we obtain the following

/0 0 4 0
adxé/ —f(x)d:rg/ bdx,
y y dz y

which is 0 — ay < f(0) — f(y) < 0 — by. Hence, by <
f(y) < ay for every y € 1. [ |

Remark 2. Observe that Lemma 2 is a consequence of the
mean-value theorem.

Example 1. Consider the dynamical system © = —sinx
restricted to the interval [0, 1]. We want to compute a,b € R
such that for every x € [0,1], ax < —sinx < bx. Figure 2b
shows two sample linear functions ax and bx, which contain
the function — sinx. Hence, the tightest values of a and b
will be the minimum and maximum slope of the function
—sinz in the considered interval [0,1]. This is captured by
the inequality a < —cosz < b, where — cosx is obtained
by differentiating — sinx with respect to x. . Therefore,
the bounds are obtained by computing the maximum and
minimum of —cosx in the interval [0,1]. The maximum
(minimum) of — cos x is obtained by equating its own deriva-
tive to zero, that is, by solving sinx = 0. This last equation
give us the solution x* = 0. The other bound will correspond

to an end-point of the interval, that is, x* = 1. Then,
a=—cos0 = —1and b = —cosl = —0.54. Hence, the
over approximation is as follows, —x < —sinx < —0.54x
for every x € [0,1]. Such an approximation is shown in
Figure 2b, where the upper bound function, y = —0.54z,
is depicted in blue, the lower bound function y = —z, is
depicted in green, and the nonlinear function, y = —sinz,
is depicted in red.

B. Multi-dimensional nonlinear function approximation

In this section, we describe the idea behind the exten-
sion of Lemma 2 to multiple dimensions, and provide the
details. Unlike Lemma 2, a multidimensional real-valued
function f : R™ — R satisfiying the inequality a <
Vf(x) < b, where V is the gradient, need not satisfy
(a,x) < f(x) < (b,x). That is, finding bounds on the
gradient of f does not provide coefficients for a sound
linear inclusion approximation of f. The computation of
coefficients for a sound linear inclusion approximation of f
in a polyhedron P requires, among other tasks, to construct
the ordered-bounded representation of P and incorporate it
in the definition of functions derived from f.

For illustration, let us consider a two dimensional function
f(x1, o) restricted to a compact po-polyhedron P. Let us
assume that P is contained in the first quadrant. We start by
computing the partial derivative of f with respect to the first
variable, 1, and optimize over the set P, thus, obtaining

a1 < 7— f(z1,22) < by, (D
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for every (xz1,22) € P. Following the proof of Lemma 2,
we fix a point (y1,y2) € P, and we intend to find linear
functions over y; and yo which bound the nonlinear function
f from above and below. Note that we cannot integrate
the inequality in (1) from O to y;, because, the inequality
need not hold for all points x; in the interval [0,y1], as
the inequality holds for those x; such that (zq,z2) € P.
Given xo, let [p(z2) denote the lowest value of x; such
that (z1,22) € P. We can now integrate the inequality in
(1) from Ip(z2) and y1, and obtain the following:

aryr—arlp(xs) < f(y1, 22)—f(lp(22), 22) < biy1—b1lp(x2)

2
for every (y1,z2) € P. Let us consider the lower bound,
by reorganizing the above inequality, we obtain ajy; +
fp(z2),22) — arlp(x2) < f(y1,22). Let us define g(z2)
to be f(Ip(z2),x2) — ailp(z2), then we have

aryr + g(z2) < f(yr,22) (3)

for every (y1,xz2) € P. Note that ¢g is a function over
just the variable xo. If we approximate g(z2) by linear
functions over all values x5 such that (z1,z9) € P, that
is, 9 € proj,(P), then, we can use that inequality within
(3). However, since g is a function over just the variable xo
and proj,(P) is some interval of the form [0, a), we can use



Lemma 2 to obtain ag, be such that aszy < g(22) < boxa.
Putting all together, we obtain, a1y1 + asye < f(y1,y2). If
P were in the second quadrant, then we would use the upper
bound of P up(xs) instead of the lower bound Ip(z2).

The broad idea for the approximation of f(x) follows
the above description. The bounding linear functions are
constructed by using the bounds on a partial derivative of f,
and recursively, bounding linear functions on another func-
tion that has one less variable. We summarize the recursive
definitions of the functions and the bounds. Consider the
po-polyhedron P in ordered-bounded form, we proceed to
construct a series of functions and points which depend on
three elements: the function f, the lower and upper bound
functions /p and up, and the orthant containing P. These
functions are, in total, 2n functions constructed using an
iterative method.

Definition 9. Let f be an n-dimensional function and P a
compact n-dimensional polyhedron. The maximal functions
on f and P, denoted by gy and hy for k € {1,...,n} are
defined as follows:

g1(x) = h1(x) = f(x) for x € P and for k € {2,...,n} with

C1l =proj,_,(P) € Rxg, and C2 = proj,_,(P) C R<y,

~Jgr—1(lp(xx), xx) — ag,_, lp(xx) i C1

gr(xXx) = .
gr—1(up(Xk), Xk) — by, _,up(xx) if C2
(1) = hi—1(lp(xk), Xx) — bp,_,lp(xk) if C1
/ hip—1(up(Xk),Xx) — an,_,up(xx) if C2

for xx € proj, . (P), where ag, by, ,an, and by, are
. h
such that ag, < aﬂ(xk) < by, and ap, < a—k(xk) < by,
T xr
for every xi € proj; ., (P) with k € {1,...,n}.
Definition 10. 7he maximal bounds on f and P are denoted
by a = (a1,...,a,) and b = (by,...,b,), where the
coordinates ay, and by, for every k € {1,...,n}, are defined

as follows:
Qgy,
Qg =
{bgk
if proj,(P) S Rxo

L
an, if proj,(P) € R<g

Next, we present the theoretical result that states the re-
lation between the maximal functions and maximal bounds.

ifprojk(P) CR>o
if proj,(P) € R<o

Lemma 3. Let f be an n-dimensional real-valued function
of class C™(P) where 0 is an equilibrium point and P is
a compact po-polyhedron. Let gy, hy be maximal functions
on f and P for every k € {1,...,n}, and a,b € R" be
maximal bounds on [ and P. Then, (ay,xx) < gr(xk) and
hi(xk) < (bk,xxk) for every xx € proj, ,(P).

.....

We use Lemma 3 to provide a proof of Theorem 2.
Note that when £ = 1, we obtain from Lemma 3 that
(a,x) < g1(x) and hi(x) < (b,x). But from Defini-
tion 9, we know that f(x) = g1(x) = hi(x), and hence,
(a,x) < f(x) < (b,x) for every x € P. We proceed with
the proof of Lemma 3 in the Appendix.

C. Abstraction algorithm

In this section, we present the main algorithm for the
computation of the matrices which define the abstract linear
inclusion of a single nonlinear system. Algorithm 1 takes as
input an n-dimensional vector-valued function f and a po-
polyhedron P C R"™, and outputs two n-dimensional real
matrices A and B such that Ax < f(x) < Bx for every
x € P. The function BOUNDFUNCTIONS on P computes
the functions involved in the ordered-bounded representation
of P in Definition 1. The function DIFFERENTIAL(g, k)
computes the partial derivative of the function g with re-
spect to the variable xj. The function PROJECTION(P, k)
computes the projection of polyhedron P over xj, while
POSTPROJECTION(P, k) computes the projection of P over
the variables xy, ..., Z,.

VII. COMPUTATIONAL DETAILS

In this section, we discuss some computational aspects
that arise in the implementation of the hybridization method
in Algorithm 1. The linear inclusion hybridization proce-
dure has been implemented in SageMath 7.6 [15] which
uses a Python-based language. We use Parma Polyhedra
Library (PPL) [16] for representation and manipulation of
convex polyhedra and the Python package Scipy for solv-
ing optimization problems over multidimensional functions.
NetworkX is a Python package intended to create and
manipulate graphs, which is required in the construction of
the nonlinear and linear inclusion switched systems.

Algorithm 1 requires the construction of upper and lower
bound functions in the construction of the ordered-bounded
representation of a polyhedral set, that is specified using
a conjunction of linear constraints. This is achieved by
considering the facets bounding the polyhedra and determin-
ing which of them correspond to upper/lower bounds. This
construction requires the transformation of polyhedral con-
straints and can be accomplished using the Parma Polyhedra
Library (PPL). The projections of polyhedral sets required
by the algorithm can also be computed using PPL.

The maximal functions and their partial derivatives can
be computed, for instance, using a library for symbolic
calculus integrated into the sagemath software. A critical
step of the algorithm is to solve the optimization problems
over the maximal functions, which requires, in general, the
use of nonlinear optimization algorithms. We have used a
minimization routine included in the Python library Scipy
for scientific computing. This function supports several
minimization algorithms and uses, by default, when provided



Algorithm 1 Over-approximation of a nonlinear function

Require: An n-dimensional vector-valued function f and a
polyhedral set P
Ensure: Two n-dimensional real matrices
I: Ip,up := BOUNDFUNCTIONS(P)
2: INITIALIZE(A, B)
3: for f; in f do

4 g:=fih=f

5. INITIALIZE(a,b)

6: for kin (1,...,n) do

7: g’ = DIFFERENTIAL(g, k)

8: h’ := DIFFERENTIAL(h, k)

9: @ = POSTPROJECTION(P, k) {Projection of P
OVer Tk, ...,Tn}

10: if PROJECTION(P, k) C R then

11 ay := MINIMIZE(¢', Q)

12: by, := MAXIMIZE(R', Q)

13: g:= g(lp[k‘]) —a * lp[k]

14: h:= h(lp[k]) — b * Lp[k]

15: else

16: ay = MAXIMIZE(¢', Q)

17: by, := MINIMIZE(R', Q)

18: g:= g(uplk]) — ax * up[k]

19: h:= h(UP[k]) — by * UP[]C]

20: end if

21: a.APPEND(ay)

22: b.APPEND(by,)

23:  end for

24:  A.APPEND(a)
25:  B.APPEND(b)
26: end for

27: return A, B

constraints, the Sequential Least SQuares Programming
(SLSQP). The input to the function is the objective function,
an initial point and a set of constraints. We note that the
optimal values returned are sensitive to the initial point
provided, and hence, will play a crucial role in the precision
of the overall approximation methods.

Finally, the linear inclusion switched system constructed
is abstracted into a switched system with polyhedral in-
clusion dynamics by using the results in [7], which are
integrated into the AVERIST [12] software tool. Moreover,
AVERIST is used for stability analysis of the switched system
with polyhedral inclusions.

VIII. EXAMPLES

In this section, we present examples of single and
switched nonlinear dynamical systems and illustrate the
construction of linear inclusion dynamics which over-
approximates such nonlinear dynamics. We summarize com-
putational times in seconds.

(a) Example 2

(b) Example 3

Figure 3: Phase portraits

Example 2. Consider a normalized pendulum model, which
corresponds to a 2-dimensional nonlinear dynamical system

of the form:
I"l = T2
{ . . “)
To = —SINT] — T2

Figure 3a shows the phase portrait for this system, where
executions of the system are depicted in red. We will
focus on the dynamical system restricted to the region
R = [-1,1] x [-1,1]. The goal is to define a linear
inclusion dynamical system whose set of executions
contains the executions of the nonlinear system in the
region R. First, consider a planar partition which consists
of the four quadrants, P = (Q1,Q2,Q3,Q4). The
quadrants intersected with the region R result in a set of
polyhedral sets, denoted by Py, Ps,Ps, P, respectively.
These polyhedral sets are depicted in Figure 4a. Figure 4b
shows executions of the restricted dynamical system to the
first quadrant. Next, consider the following 2-dimensional
functions, f1(x1,22) = x9 and fo(x1,22) = —sinx; — xo,
which correspond to the right hand side of Equation 4.
We denote f(x) = (fi(x1,22), fa(x1,22)). Then, we
compute the matrices A and B for each P; with
i € {1,...,4} such that Ax < f(x) < Bx for all
x € [0,1] x [0,1] N P;. Function fy is already linear,
so no further computation is required for it. Next, we
consider the function fo. After computation, we obtain the
—x1 — 3 < fa(x) < —0.54x1 — x4 for (z1,22) € Py,
—0.54x1 — 29 < fo(x) < —x1 — 29 for (z1,22) € Ps,
—0.5421 — 29 < fo(x) < —x1 — 22 for (x1,22) € P3 and
—X1 — X2 < fQ(X) < 70.54%1 — T2 fOV (2131,$2) € P4.
An hybridized switched system is defined by the partition
P and the functions F;(x) obtained from the previous
inequalities, that is Fy(x) = {y € R? : —z1—x2 < fo(x) <
—0.54z1 — 22}, Fo(x) = {y € R? : —0.5421 — 25 <
fo(x) < —x1 — 22}, F3(x) = {y € R? : —0.54x; — x5 <
fo(x) < —21 — 29} and Fy(x) = {y € R? : —2; — 25 <
fa(x) < —0.54x; — x2}. Then, the hybridized switched
system is analyzed by AVERIST and stability cannot be
established. A finer polyhedral partition is used for con-
structing a new hybridized switched system. This polyhedral
partition is obtained by partitioning the quadrants with the
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(a) Partition intersected with R (b) Restriction to P

Figure 4: Phase portrait of restricted pendulum model

linear equalities 1 —x2 = 0 and x1 + x5 = 0. For the new
hybridized switched system AVERIST establishes stability.

Example 3. Next, we consider the following stable nonlin-
ear system S,

T1 = —T1 + T1T2
{,.CQ = —X2

This system does not admit a polynomial Lyapunov func-
tion [17]. Figure 3b shows the phase portrait of system
S. We have considered the polyhedral partition P =
{Q1,Q2,Q3,Q4}, where Q; correspond to the i — th
planar quadrant, and the region for approximation to be
R = [-1,1] x [-1,1]. We have abstracted the nonlinear
dynamics at each planar quadrant, and constructed the
linear inclusion switched system H(S,R,P), which has
been over-approximated by a polyhedral switched system
and evaluated by the stability analysis tool AVERIST, which
has established stability of the polyhedral switched system
despite the inexistence of a polynomial Lyapunov function.
Therefore, we conclude stability of the initial system with
respect to the origin.

Example 4. Consider a system S switching between the
nonlinear dynamics described in Example 2 and Example 3.
The system evolves in the upper quadrants by following
the dynamics in Example 3 and in the lower quadrants
by following the dynamics in Example 2. We restrict the
nonlinear hybridization procedure to the polyhedral region
R =[-1,1] x [-1, 1] as in previous examples, and consider
the polyhedral partition P = (Q1,Q2,Q3,Q4,Qs5,Qs)
where ()1 and Q2 correspond to the first and second quad-
rants, respectively. The sets Q3 and Q4 are the polyhedral
sets obtained by partitioning the third quadrant with the
linear equality v1 — x5 = 0, while the the sets Q5 and
Q¢ are obtained by partioning the fourth quadrant with
the linear equality x1 + xo = 0. The nonlinear switched
system is abstracted to the linear inclusion switched system
H(S,R,P) = (P,f), where F = {Fl,FQ,Fg,F4,F5,F6}
such that Fy(x1,22) = {(y1,92) € R? : —11 < o1
0,y2 = —x2}, Fa(xr,22) = {(y1,92) € R? : 0 < 1
—a1,y2 = 2}, Fy(z1,22) = {(y1,92) € R? : o
x2,—0.54x1 — 22 < Yo < —w1 — 22}, Fy(wr,22) =

II7ANW/AN

Figure 5: Inverted pendulum on a cart

{(y1,y2) € R? 1 y1 = w9, —0.5421 — 29 < yo < —z1 — 22},
Fs(z1,22) = {(y1,92) € R? : y1 = x9,—11 — 73 <
y1 < —0.54z — 1’2} and FG(Il,.TQ) = {(yl,yg) e R?:
Y1 = To,—x1 — x2 < y1 < —0.54xy — 0.54xo}. This
linear switched system has been over-approximated by a
polyhedral switched system and evaluated by AVERIST,
which has established stability of the polyhedral switched
system. Consequently, we conclude stability of the initial
nonlinear switched system with respect to the origin.

Example 5. A Segway personal transporter is modelled as
an inverted-pendulum. A well known issue for this kind of
personal transporters is that they place the user on top of
an unstable mobile platform. Therefore, the design of such
transporters requires the stabilization of the platform and
moving it in a controlled manner. Segway can be modelled as
an inverted pendulum that consists of a cart pendulum sys-
tem, where the cart moves horizontally and a rod is attached
to the cart that can rotate in the same direction in which the
cart moves. This system model is shown in Figure 5. The rod
standing up is an unstable equilibrium. Stabilization of the
system consists of controlling the acceleration of the cart to
maintain the pendulum in the upright position. The equation
of motion of the system is the following:

(I +mi?)f — gmlsin® — miucosf = 0,

where m is the mass of the rod, 1 is the length of the
pendulum, g is the gravitational acceleration constant, 0
is the angular displacement of the rod from the vertical
position and I is the moment of inertia. The input u is the
cart acceleration and needs to be set for stabilization.

Let us fix the parameter values as m = 0.5k, [ = 0.2m
and g = 9.8m/s2, and denote 0 and 0 by x1 and xo,
respectively. Therefore, we describe the evolution of the
system by the following nonlinear dynamics in a state-space
form (where the derivatives appear only on the left hand
side):

L.ﬂl = T2

®)

To = —42.61sinxy + 4.35u cos x1

One of the popular design techniques is to design PID



controllers based on a linearization of the non-linear system.
P is the simplest of them which uses proportional values of
the difference between the state and the equilibrium point,
while D includes a derivative term. P is more efficient in
terms of real-time implementation since it does not require
the computation of the derivatives, and is easy to adjust
for good system performance. However, it is not always
possible to construct a P controller that stabilizes a non-
linear system. For instance, we cannot find a stabilizing P
controller for the inverted pendulum, but we were able to
find a stabilizing PD controller. To enhance the performance,
we can design a switching controller that corresponds to
a P controller in the first and third planar quadrants and
to the previously designed PD controller in the other two
quadrants. Observe that the second and forth quadrants
correspond to the rod rotating counterclockwise whereas
the first and third quadrants correspond to the rod rotating
clockwise. We design the P controller and the PD controller
by choosing appropriate gains. More precisely, we design
a PD controller with gains k, = 5 and kg = —1.839 that
renders the system of Equations 5 to be:

= ©)
To = —42.61sinx; + 21.75x1 cos 1 — 8o cOS x1

We design the P controller for the case of clockwise rotation
with gain k, = 5, and it results in the following unstable
dynamical system:

= 0
To = —42.61sinxq + 21.75x1 cos x1

Our approach can be applied to algorithmically evaluate
stability not only for the case of a single PD controller
(Equation 6) but for the switching controller (Equation 6
and Equation 7). Stability is deduced in both cases.

We provide technical details for the analysis of the
switched system S = (P,F) where P = (Py, Py, P3, Py)
is a polyhedral partition with P; corresponding to the i-th
planar quadrant; and F = {F(x), F»(x), F1(x), F2(x)}
with Fy(z1,22) = (x2,—42.61sinz; + 21.75z1 cosxq)
and Fy(x1,29) = (x9,—42.61sinzy + 21.752; cosxy —
8xo cosx1). We have considered the polyhedral refinement
partition Q@ = (Q1,Q2,Qs,Q4,Q5,Qs, Q7,Qs), where
Q; correspond to the regions delimited by the hyper-
planes {(z1,22) : z1 = 0}, {(z1,22) : z2 = 0},
{(z1,22) : 321 + 22 = 0} and {(x1,22) : 1027 — 22 =
0}; and the region for approximation R = [—1,1] x
[-1,1]. We have abstracted the nonlinear dynamics in
each polyhedral region Q; € O, and constructed the
linear inclusion switched system H(S,R,Q) = (Q,G),
where G = {Gl,G27G37G4,G5,G6,G7,G8} such that
Gi(z1,22) = {(y1,92) € R? : y1 > zo,y1 < 72,92 >
—20.9.231,5y2 < —104.3.1‘1}, GQ(JUl,l‘g) = {(y1,y2) € R?:
Y1 = X2, Y1 < To,dYys = —147.8xy + 4.35x9,50ys <

Examples 2.1 2.2 3 4 5.1 5.2

1 . .
Nonlinear hybridization | 0.047 | 0.102 | 0.167 | 0.088 | 0.258 0.123 0.280

Linear hybridization 0.001 | 0.002 | 0.003 | 0.002 | 0.004 | 0.0034 | 0.003

Stability verification — — 0.450 | 0.461 | 0.645 0.475 0.719

Table I: Computational times

—1043z1}, Gs(x1,22) = {(y1,92) € R? : y1 > 29,91 <

T2, Y2 > 736.31‘1 — 1312,5y2 < *10431’1 — 401‘2},
Gu(z1,22) = {(y1,y2) € R* : y1 > mzo,yn <
To,y2 = —24.7x1 — 8x2,by2 < —104.3z; — 40z5},

Gs(z1,22) = {(y1,y2) € R? : y1 > zo,y1 < x2,5y2 >
—104.33}1,y2 < —20.9%‘1}, G6($1,3}2) = {(yl,yg) € R? :
Y1 = To, Y1 K To,dye = —104.3z1,5ys < —147.8x1 +
4.3w2}, Gr(w1,22) = {(y1,y2) € R? : y1 > 29,41 <
X9, bys > —104.3x1 — 4029, y2 < —36.321 — 13.1525} and
Gs(z1,22) = {(y1,92) € R? : y1 > zo,y1 < x2,5y2 >
—104.3x1 — 40z9,y2 < —24.7xy — 8xo}. This linear
inclusion switched system has been over-approximated by
a polyhedral switched system and evaluated by AVERIST,
which has established stability of the latter. Consequently,
we conclude stability of the initial nonlinear switched system
with respect to the origin and correctness of the designed
switching controller.

A summary of computational times for the considered
examples is presented in Table I. The first row refers to
the example number. Observe that Example 2 has two
instances, each of them with a different polyhedral partition,
as previously explained. Also Example 5 has two instances,
the system with the PD controller (5.1) and the controller
switching between the PD and the P controllers (5.2). The
second row shows the time for abstracting the nonlinear
dynamical systems to linear inclusion dynamical systems.
The third row reports the time taken for abstracting the
linear inclusion switched systems to polyhedral inclusion
switched systems. The last row includes the time spent by
AVERIST in order to prove stability. In the case of not time
appearing, stability was not proven. The experimental results
in Table I demonstrate the feasibility of our approach for
stability analysis of nonlinear switched systems.

IX. CONCLUSION

In this paper, we presented an abstraction based analysis
method for stability that constructs a hybridized linear
inclusion switched system from a given nonlinear system.
The latter system can be analyzed efficiently using existing
techniques, which might require further abstraction [7]. Our
framework applies to the general class of non-linear systems
& = f(x), such that f is differentiable. The computational
challenge is in computing the upper and lower bounds on
certain partial derivatives, which involve nonlinear functions.
Further work will involve building a prototype tool that
integrates our hybridization technique with methods for
analyzing linear inclusion switched systems, and performing
experimental comparison with existing tools. Our examples



already indicate that there are benefits to our approach, since,
our method can successfully deduce stability of a non-linear
system for which no polynomial Lyapunov function exists.
In addition, it will be interesting to investigate heuristics
for choosing the partition for hybridization, including coun-
terexample guided abstraction refinement techniques [18],
[19].

APPENDIX

A. Proof of Lemma 1

Given P convex and closed, we know by defini-
tion that there exist a3 = (ai1,...,01n),---,8m =
(am1s--yGmn) € R™ and by,...,b, € R such that
P={xeR":(a;,x)+b; >0,...,(am,Xx) + by, = 0}.
The linear constraints defining P can be rearranged in
order to obtain inequalities with respect to x; of the form
;1T] = —Q; 9T — ... — QjnTy — b; for every 1 < i < m.
We can clasify them in those with a;; > 0, a;; < 0
and a;; = 0. Let us call I; the index set with a;; > 0
and [, the index set with a;; > 0. Consider the linear
inequalities (a;,x) + b; > 0 where ¢« € I;. Let us denote
such linear inequalities after rearrangement as f;(x2) <
where ¢ € I;. We know that every point x € P is such that
max;ey, fi(Xx2) < z1. Next, we prove that max;cy, fi(x2)
is a linear piecewise function.Since f;(x2) < x1 with @ € I
are linear constraints defining the convex polyhedral set P,
we know that fj(x2) is smaller or equal to f;(xa) for
i € I | if there exists x1 such that (z1,29,...,2,) € P
and fr(x2) = x1. Therefore, max;cy, fi(x2) = fi(x2) if
Xo satisfies ﬂ (ai, (fr(x2), @2, ..., 2n)) + b; = 0. We

1<i<m
denote I,(x2) as max;cy, fi(x2). Analogously, we define
the piecewise linear function u,(x2) to be min;er, fi(x2).
Since there can be linear constraints with a;; = 0, we ensure
that P is well defined by equating to {x € R™ : [p(x2) <
21 < up(x2)} NR x pro, . (P).

B. Proof of Proposition 1

Given a polyhedral set P, the construction of an ordered-
bounded representation is inductively achieved. The base
case considers P, = P, which is a convex and closed
polyhedral set. Then, by Lemma 1, there exist 5 and u}
such that P, = {x € R" : [L(x2) < 71 < ub(x2)} NR x
proj27m7n(P1). For the case ¢, with 2 < ¢ < n, we define
P; = proj; ,(P-1). By definition of projection, we know
that P; is convex and closed. Therefore, by Lemma 1, there
exist the functions /% and u’, such that P; = {x; € R" "1
Ip(xi+1) < 2 < up(Xip1)} DR X proj; g ,(P1).
Hence, the ordered-bounded representation of the polyhedral
set Pis {[lb,..., %], [ub,...,u]}. Observe that all these
operations can be performed algorithmically.

C. Proof of Lemma 3

We prove the inequality (ay,xx) < gr(xx) and
hip(xkx) < (bk,xk) for every xx € proj, ,(P) by
reverse induction on k.

.....

Base case: For the case of £k = n, we need to show that
(an,Xn) < gn(xn) and h,(xn) < (bnp,xn) for every
Xn € proj,(P). But a, = a, and x, = z,, hence, we
need to show that a,z, < gn(z,) and h,(z,) < bya,
for every x,, € proj,(P). The result then follows from
Lemma 2.

Induction step: Here, we prove that if (axi1,Xki1) <
gh+1(Xit1) and hpp1(Xir1) < (b1, Xky1) for every
X1 € Projyiy . ,(P), then (ak,xx) < gi(xk) and
hi(xk) < (bk,Xk) for every xi € proj, ,(P). Consider
the ordered-bounded representation of P. We will consider
the two different cases, namely, proj,(P) C Rsq or
proj;(P) € Reo.

Case proj,(P) € R>q: We know, by Definition 9 that

0
Qg < axkgk(xk)’ )
0
Tl‘khk(xk) < bhk- 9)

Let us integrate both inequalities with respect to zj; from
lp(XK+1) to Yg, where (Yr, Tpt1, - -+, Tn) € Projy . (P).
For Equation 8, we compute

Yk Yk o
/ ag,dxy, < / — gk (Xx)dx)
! 1

P (Xxy1) P(XKy1) Oy,

and obtain the following

g Y=g P (Xit1) < (Y, Xit1) =g (Lp (Xkt1), X)),

which can be reorganized as

ag, Ykt gr(Lp (Xict1), Xier1) =g, Lp (Xict1) < gk (Yhs Xict1)-

By definition of ggt1(Xk+1), the inequality corresponds to

g Yk + ght1(Xt1) < gk (Yk, Xiet1)-

Then, by considering the induction hypothesis, we obtain

ag Yk + (Akt1, (Xi+1)) < Ge (Y, Xacr1)-

Since this inequality holds for any fixed y € P, and ax =
(ag,,aK+1), we have

(ax, xx) < gr(xxk) for every (xk) € proj,  ,(P).

Next, for Equation 9, we compute

/ —hk(xk)dxk g / bhkdl'k
Ip(XK+1) Oy, Ip(Xx+1)



and obtain the following,
R (Yres Xi1) =i (Lp (Xk41) s Xkt1) < Ony Yk —bny lp (Xk41)s
which we reorganize as
P (ks Xer1) < bny Y t+hi(Lp (K1) Xaer1) —bny L (Xt 1)-
By definition of hj41(Xk41), the inequality corresponds to
R (Y Xie1) < bp U + A1 (Xkt1)-
Then, by considering the induction hypothesis, we obtain
P (Yks Xic+1) < bny Yk + (Pt 1, Xic1).

Since this inequality holds for any fixed y € P, and by =
(bhk ; bk+1), we have

hi(xx) < (by,xx) for every xi € Projy . n(P).

Case proj.(P) C R<o: Analo-
gously, we know, by Definition 9, that
o0
Bfmgk(xk) < by, an, < 75— hi(xxk)
(10a) (10b)

Note that since proj,(P) C R<g, we need to integrate the
inequalities with respect to x, from yy, to up(Xx+1), where

(Y Th41s- -+, Tn) € projy ,(P). For Equation 10a, we
compute
/uP(Xk+1) 9 up (Xk+1)
k(XK )dxy, é/ by, dy,
Yk axk Yk *

and obtain the following,

I (up(Xicr1)s Xt 1) =gk (Yr> Xaet1) < by up (Xt 1) —bg, Y

which we reorganize as

gr(up(Xk41), Xi1) —bg up (Xk41)+g, Y < g (Y Xkt 1)-

By definition of ggt1(Xk+1), the inequality corresponds to
Irt1(Xk+1) + g Yk < i (Y, Xic1)-

Then, by considering the induction hypothesis, we obtain
(Akt1,XKt1) + bg Ui < 91 (Y Xct1)-

Since this inequality holds for any fixed y € P, and ay =
(bgx > ak+1), we have

(ak, xk) < gr(xx) for every xy € projk’”__’n(P).

Next, for Equation 10b, we compute the integral between
yr and up(Xk+1) and obtain the following,

an, up (Xir1) =an, Y < i (up(Xier1), Xier 1) =Pk (Yr, Xaera ),
which we reorganize as

I (Yr, Xk1) < hi(up(Xk41)s Xkt1) —ahy, Up (Xk41)+ah, Yi-

By definition of A1 (Xk+1), the inequality corresponds to

P (i, Xxt1) < hig1 (Xk41) + Qny Yk

Then, by considering the induction hypothesis, we obtain

hie (Ui, X1) < (Prt1, Xkt1) + Ghy Yk

Since this inequality holds for any fixed y € P, and by =
(an, , brs1), we have

hi(xk) < (b, xx) for every xx € projk)‘_wn(P).

Hence, every ak, by € R"*+1 from Definition 9 are such
that (ak,xk) < gk(xk) and hk<Xk) < (bk,Xk> for every
Xk € projkw,n(P).
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