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Semiclassical model of L-doublet states in diatomic molecules
Laurie J. Kovalenko
Natural Sciences Collegium, Eckerd College, St. Petersburg, Florida 33711

John B. Delos
Physics Department, College of William and Mary, Williamsburg, Virginia 23185

~Received 4 February 1997; accepted 26 June 1997!

An intuitive picture ofL-doubling in diatomic molecules is presented using a semiclassical theory.
A common view ofL-doubling as arising from electrons ‘‘lagging’’ behind the rotating internuclear
axis is shown to be misleading; rather, the eigenfunctions are symmetric about the molecular axes
and can be expressed as a superposition of pure nonrotating orbitals and travelling waves. These
results are shown to be consistent with a full quantum treatment. We also examine, for the first time,
time-dependent states, by monitoring expectation values of electronic- and nuclear-angular
momenta. For low rotation frequency, the expectation value of the electronic-angular momentum
locks onto the rotating internuclear axis, while for high rotation frequency it locks onto the
space-fixed total-angular momentum axis. At intermediate frequencies is a complicated behavior.
© 1997 American Institute of Physics.@S0021-9606~97!01937-5#

I. INTRODUCTION

The phenomenon ofL-doubling has been known for a
long time and has been successfully treated theoretically in
the early 20th century by several of the Old Masters.1–3

More recent full quantum treatments include those by
Hougen,4 Zareet al.,5 and Helmet al.6 However, a physical
picture ofL-doubling using an intuitive semiclassical model
is lacking.

Since typical energy splittings are less than 1 cm21,
L-doubling may appear to be justifiably negligible. Even for
states differing by such a negligible amount of energy,
though, there is a big difference between them in terms of
the spatial orientation of their charge distribution. Preferen-
tial population of one component over another has been seen
in numerous cases including collisional energy transfer,7

scattering off a surface,8 and photodissociation,9 and has led
to insight into the dynamics of these processes.

Consider a diatomic molecule in a1P electronic state. In
the absence of rotation there are two degenerate states rep-
resented by this term symbol, differing in their value ofL
~L561!. The electron probability density of the two states
can be represented schematically by the orbitals labeledPX

andPY shown in Fig. 1~a! ~where in addition aS orbital is
shown!. Now let the nuclei rotate about theX-axis. One of
theP-orbitals,PY , lies in the plane of nuclear motion while
the other does not. Nuclear rotation thus lifts the degeneracy
of these two states; the resulting pair of eigenstates for the
rotating molecule is called aL-doublet.

A common explanation for this energy splitting is that
the electrons in thePY state, unable to keep up with the
rotating internuclear axis, lag behind, while the electrons in
the PX state are not affected by the nuclear motion. This
description of lagging orbitals was particularly spelled out in
Ref. 6, and a picture similar to our Fig. 1~b! appears in Ref.
10. The picture seems plausible, since quantum theory as-
serts that theP andS states are mixed, and since the super-

position of aP and aS state can produce a misaligned or-
bital.

In fact, this picture cannot be correct. One realizes this
when seeking answers to the following questions:~1! What
does the orthogonal combination ofPY and S states look
like? and~2! What happens in the high-rotation limit? Con-
cerning the latter question, the electronic states ought to go
to degenerate space-fixed states with the nuclei twirling rap-
idly inside. How could misaligned states ever approach this
limit?

The problem with the concept of a lagging orbital does
not arise from the quantum formalism. For example, the
equations for energy and wave functions given in Ref. 6 are
perfectly correct. The problem arises because the quantum
formulas are so opaque that it is hard to get an intuitive
picture from them.

The goal of this paper is to provide a physical picture of
L-doubling using the physical insight of semiclassical
theory. These semiclassical results are then shown to be con-
sistent with those of a more rigorous, full quantum model. In
a subsequent paper we use this semiclassical model as a
starting place to study collisional processes responsible for
transitions between theseL-doublet states.

In Sec. II we set up a semiclassical model of a diatomic
molecule, obtain formulas for energies and wavefunctions,
and obtain an intuitive physical picture of theL-doublet
states. In Sec. III we show that the semiclassical theory gives
~to good approximation! the same energy levels and wave
functions as the full quantum theory, presented in brief form
in the Appendix. Then, in Sec. IV, we use the semiclassical
method to give the first examination of time-dependent
states. We monitor expectation values of the electronic
orbital-angular momentum vector,^L &, for an arbitrary state.
Our present treatment does not include the influence of elec-
tron spin; this will be treated in a later paper.

Note that in addition to providing a physical picture of
L-doubling in diatomic molecules, these semiclassical de-
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scriptions, especially the time-dependent pictures, are needed
to explore the mechanism of collision-induced transitions be-
tween theseL-doublet states, presented in the accompanying
paper.

II. SEMICLASSICAL MODEL

The model presented here is a modification of our pre-
vious work.11 The diatomic molecule is treated as a three-
particle system, consisting of two nuclei and an active elec-
tron. The motions of the nuclei are described by classical
mechanics, while the motion of the active electron is de-
scribed by quantum mechanics.

Let R be the internuclear vector, pointing fromA to B
and specified by its coordinates$R,Q,F%, as shown in

Fig. 2. Viewed from a frame in which the center of mass of
the nuclei remains fixed, the relative motion of the nuclei can
be described by the motion of a particle of reduced mass
m,5MAMB /(MA1MB).

In this treatment we consider only the influence of
nuclear rotation on electronic motion and so fix the internu-
clear distance,R, at its equilibrium value. For now we fur-
ther simplify our model by restricting the nuclear rotation to
a plane ~we consider the effects of a three-dimensional
nuclear trajectory in Sec. IV!. Since the spatial orientation of
the plane of nuclear rotation is arbitrary, we choose the plane
of rotation to be theX8Y8 plane by settingQ590°, leaving
only one nonzero nuclear equation of motion11

Ḟ5
Nz8
mR2 , ~1!

whereNZ8 is the projection of the nuclear angular momen-
tum vector,N, on theZ8 axis.12

Let r (r ,u,f) be the vector representing the position of
the active electron relative to the center of mass of the mol-
ecule; angles are defined relative to the internuclear axis, i.e.,
in the rotating frame. The electronic wave functionY(r ,t)
satisfies a time-dependent Schro¨dinger equation,

i\
]Y~r ,t !

]t
5helY~r ,t !, ~2!

wherehel denotes the Born–Oppenheimer electrostatic elec-
tronic Hamiltonian.

We expand this wave function in the Born–
Oppenheimer basis~eigenfunctions ofhel!,

Y~r ,t !5(
L

cL~ t !uL&5(
L

cL~ t !FL~r ,u;R!eiLf, ~3!

FIG. 1. ~a! Schematic of three molecular orbitals (PX ,PY ,S). The nuclei
are represented by the two black dots on theZ axis. In the absence of
nuclear rotation the twoP orbitals are indistinguishable and thus degener-
ate.~b! A common physical picture used to explainL-doubling in which the
PY andS orbitals are said to ‘‘lag behind’’ the rotating nuclear axis, thus
losing some of their respectiveP andS character, while thePX orbital does
not need to adjust to the nuclear rotation to retain itsP symmetry.

FIG. 2. The Euler anglesQ andF specifying the position of the internuclear
vector,R, with respect to the space-fixed$X8,Y8,Z8% frame. These angles
also define the body-fixed$X,Y,Z% frame, where the positiveZ-axis is cho-
sen along the internuclear axis, in the direction fromA to B. Space-fixed
coordinates are denoted by primes.
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and truncate this set to the three molecular states having the
same electronic orbital-angular momentumL51, the twoP
states of interest and the closestS state. Phase conventions
on angular momentum eigenstates are those of Condon and
Shortley.13

The matrix representation of the Schro¨dinger equation
for the electron in the Born–Oppenheimer basis is

i\
d

dt
c~ t !5$hel1ḞL x%c~ t !, ~4!

where in addition to the electrostatic term,hel , there is an
angular coupling term,ḞL x , which arises because the basis
functions are defined with respect to a rotating frame of ref-
erence.

The matrix elements ofhel are diagonal and are the
Born–Oppenheimer energies,ek , tabulated in Herzberg.3

The angular coupling matrix elements are computed by ex-
pressing the operatorLx in terms of raising and lowering
operators,L1 andL2 . No general formula can be given for
the matrix elements ofL6 ; however, selection rules for an-
gular momentum components do hold13 and can be ex-
pressed as

^L8uL6uL&5dL8,L61A2\Q, ~5!

where the parameterQ allows for the fact that the molecular
basis functions differ from spherical harmonics. For our pur-
poses, we setQ51 in our numerical calculations.

A unitary transformation from the$uL&,L50,61% repre-
sentation to the spatially-aligned$uPX&,uPY&,uS&% represen-
tation converts the Hamiltonian matrix to block-diagonal
form

hel1ḞL x5S eP 0 0

0 eP i\vQ

0 2 i\vQ eS

D , ~6!

where the rows and columns are labeled by the three basis
functions $PX ,PY ,S%. The PX orbital is uncoupled from
the others. We note that this particular transformation pro-
duces purely real basis functions; this fact will be useful later
in our interpretation of theL-doublet eigenfunctions.

The eigenvalues of this matrix are the ‘‘electronic en-
ergy levels,’’

e65
eS1eP

2
,

~7!

e05ePAS eS2eP

2 D 2

1~\vQ!2.

The behavior of these electronic energy levels as a function
of nuclear rotation rate is characterized by the ratio,d, of the
term characteristic of the angular coupling, 2\vQ, to the
anisotropy of the electrostatic potential,uDeS,Pu[eS2eP ,

d[
2\vQ

uDeS,Pu
. ~8!

Rewriting Eqs.~7! in terms ofd gives

e0

uDeS,Pu
50,

e6

uDeS,Pu
5

1

2
6

A11d2

2
, ~9!

where we defineeP50. The behavior of the electronic en-
ergy as a function ofd for each eigenstate is shown in Fig. 3.
The energies of theL-doublets diverge with increasing rota-
tion rate, while the energy of the uncoupled eigenstate re-
mains constant. The energy splitting between theL-doublets
becomes comparable to that between the Born–Oppenheimer
S,P states at aroundd53.

We now look at the electronic eigenstates by plotting the
angular dependence ofuYu2, shown in Fig. 4. For the pur-
poses of this section, we approximate the electronic basis
functions as spherical harmonics. The angular dependence
for the case of no nuclear rotation~d50! is shown in Fig.
4~a!, two P orbitals and oneS orbital. Ford52, shown in
Fig. 4~b!, the states are wider at their waists and have the
shape of peanut shells. At higherd, shown in Fig. 4~c! for
d520, they have become donut-shaped. In every case, the
eigenfunctions have a symmetry with respect to the body-
fixed axes. These eigenfunctions are not ‘‘lagging.’’

For further interpretation, we develop formulas for the
electronic energies and wavefunctions in the limiting cases
of high and low rate of rotation. Limiting behavior in the
case of low rotation can be obtained by expanding the square
root in Eq.~7! as a power series ind. To first order ind, for
the case whereeS.eP ,14 the electronic energies are

e05eP , e25eP2d
\vQ

2
, e15eS1d

\vQ

2
, ~10!

and the associated eigenfunctions are

Y05uPX&,

Y25S uPY&1
id

2
uS& D 1

A11S d

2
D 2

, ~11a!

FIG. 3. Dependence of the semiclassical electronic energy levels on nuclear
rotation rate for the three eigenstates. The energies are normalized with
respect to the anisotropy of the potential, and are plotted vsd, the ratio of
the angular coupling to the anisotropy@see Eqs.~8! and ~9!#.
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Y15S uS&1
id

2
uPY& D 1

A11S d

2
D 2

.

We can rewrite the latter two of the above formulas in an
equivalent form that allows for further interpretation:

Y25H S 12
d

2
D uPY&1 i

d

2
@ uS&2 i uPY&] J 1

A11S d

2
D 2

,

~11b!

Y15H S 12
d

2
D uS&1 i

d

2
@ uPY&2 i uS&] J 1

A11S d

2
D 2

.

Since the basis functionsuPX&,uPY&, anduS& are all real, the
linear combinations@ uPY&2 i uS&] and @ uS&2 i uPY&] repre-
sent traveling waves. Thus Eqs.~11b! show thatY1 is a
quantum superposition of mostly the aligneduS& state with a
bit of a traveling wave state,@ uPY&2 i uS&].

We now consider the high rotation limit, this time by
expanding the square root in Eq.~10! as a power series in
~1/d!. To first order in~1/d! the electronic energies are given
by

e05eP , e65
eS1eP

2
6S \vQ1

uDeSPu
4 F1

dG D , ~12!

and the associated eigenfuntions by

Y05uPX&,

Y25H uPY&1 i S 12
1

d
D uS&J 1

A11S 12
1

d
D 2

, ~13!

Y15H uS&1 i S 12
1

d
D uPY&J 1

A11S 12
1

d
D 2

.

The respective angular dependencies are shown in Fig. 4~b!
for d52, where now the loss of the node along theZ axis is
evident. Figure 4~c! shows angular dependencies for a much
larger rotation rate,d520. In this high-d limit the Y6 eigen-
states show no discernible angular dependence in the plane
of rotation and are well represented by traveling waves. The
nuclei are rotating so quickly that the electrons see an aver-
age potential energy, which is cylindrically symmetric about
the X-axis. Accordingly, the eigenfunctions of the Hamil-
tonian are eigenfunctions ofLX with eigenvalues 0 or61\.

To summarize,L-doublet wavefunctions do not lag be-
hind the rotating internuclear axis; rather, they are superpo-
sitions of alignedS,P states with travelling waves. In the
low-rotation limit, the aligned component dominates, while
in the high-rotation limit the travelling wave-component
dominates.

We now use a more rigorous, full quantum model of the
diatomic molecule to verify the results of the semiclassical
model.

III. COMPARISON OF SEMICLASSICAL AND
QUANTUM RESULTS

In order to compare the semiclassical energy levels with
those from the full quantum model~see Appendix!, we need
to add to the semiclassical electronic eigenvalues the classi-
cal nuclear rotational energy,

erot5
mR2v2

2
. ~14!

To relate the resulting semiclassical total energies, which
depend onv, to the quantum energies, which are character-
ized by the quantum numberK, we need to ‘‘quantize’’v. A
reasonable choice is

v~K !5
2BAK~K11!

\
, ~15!

FIG. 4. Angular dependence of semiclassical electron probability densities
for the three eigenstates at three nuclear rotation rates.~a! For the case of no
rotation ~d50!, each eigenstate is a pure Born–Oppenheimer state, aligned
along one of the molecular axes.~b! For moderate rotation~d52!, the C6

eigenstates are mainly aligned states, with a travelling wave component.~c!
For very high rotation~d520!, theC6 eigenstates have become nearly pure
traveling waves. In no case is there a ‘‘misaligned’’ eigenstate.
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where the rotational energy constantB 5 \2/(2mR2). The
resulting total energy levels for the semiclassical model, nor-
malized to the anisotropy of the electrostatic potential, are
then

E0
SC

uDeS,Pu
5

B

uDeS,Pu
K~K11!,

E6
SC

uDeS,Pu
5

B

uDeS,Pu
K~K11!1

1

2

6AS 1

2D 2

14S BQ

uDeS,Pu D
2

K~K11! , ~16!

and are shown along with the exact quantum energies in Fig.
5. As a consequence of this choice ofv(K), we find the
following:

~i! The semiclassical quantityd, defined in Eq.~8!, is
exactly equal to the quantum quantityD, defined in
Eq. ~A10!.

~ii ! For the uncoupled state, the above semiclassical for-
mula for the energy,E0 , is equivalent to the quantum
formula, given in Eq.~A9!.

~iii ! The above semiclassical formulas forE6 are quite
close to the quantum formulas, given in Eq.~A9!.
This is illustrated in Fig. 5. On the scale of this figure
we can see no difference between the quantum and
semiclassical values forE2 . However, there is a
small but visible discrepancy between the quantum
and semiclassical values forE1 .

~iv! Much of this last discrepancy can be eliminated~if
necessary! by adding the correction 2B to the eigen-
valuesE1 , as shown in Fig. 5.

We now compare semiclassical and quantum wavefunc-
tions. The quantum expressions in Eqs.~A14! and ~A17!
contain Wigner-d functions as factors. A plot of three of
these functions is shown in Fig. 6. One can show that the full
width at half maximum~FWHM! of thed-function, for large
K, is given by

FWHM52F90°2arcsinS 1

AK 2
D G . ~17!

For highK, thed-function is seen to be highly peaked about
Q590°, representing localization of the nuclei near theX8Y8
plane, consistent with the semiclassical model. Since this
factor causes the eigenfunctions to be nonzero only near
Q590°, we can simplify the expressions for the wave func-
tions by replacing the cot~Q/2! and tan~Q/2! factors in Eqs.
~A14! and ~A17! by their values atQ590°. In addition, we
make a further approximation by replacing@K/(K11)#1/2

with unity. The high-K quantum eigenfunctions of Eq.~A17!
then become

FIG. 5. Comparison of total energy levels for the three eigenstates calcu-
lated by the full quantum method~solid lines! and the semiclassical method
using the approximate ‘‘quantization’’ ofv given in Eq.~15! ~dotted lines!.
The energies are normalized with respect to the anisotropy of the potential.
For ease of visualization we plot the square root of the energy. The value of
K is written above selected energy levels. Agreement is especially good for
the twoL-doublet states,C0 andC2 , though not so good for theC1 state.
This discrepancy between the quantum and semiclassical energies for the
C1 state can be reduced by adding a correction term of 2B to the semiclas-
sical C1 ~dot–dashed lines!.

FIG. 6. Plot of Wigner-d functions for K51, 7, and 80~solid lines, in
arbitrary units!. These functions are highly peaked aboutQ5p/2 for highK,
indicating localization of the nuclear wave functions near theX8,Y8 plane.
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C0
E,K,M52eiKFdK,0

K ~Q!uPx&,

C2
E,K,M5

2eiKFdK,0
K ~Q!

A11S 12
1

D
D 2

F uPy&1 i S 12
1

D
D uS&G , ~18!

C1
E,K,M5

eiKFdK,0
K ~Q!

A11S 12
1

D
D 2

F uS&1 i S 12
1

D
D uPy&G ,

where these eigenfunctions are now separated into nuclear
and electronic factors. These quantum electronic factors are
identical to the semiclassical electronic eigenfunctions in Eq.
~13!.

In Fig. 4, we used the semiclassical wave functions to
plot electronic angular probability distributions. Alterna-
tively, we can use the full quantum wave functions to obtain
conditional probability distributions for finding the electron
in a particular solid angle given that the nuclei are found in
the X8Y8 plane ~Q590°!. These quantum angular distribu-
tions are identical to the semiclassical angular distributions.

Similar approximations can be made for the quantum
eigenfunctions in the low-K limit, though we are constrained
in how low we can go. As seen in Fig. 6, it is still reasonable
to approximate cot~Q/2!>tan~Q/2!>1 for K57. However,
this would not be a reasonable approximation forK51; the
nuclei are not localized near theX8Y8 plane for such a low
value ofK. This approximation gives

C0
E,K,M52eiKFdK,0

K ~Q!uPX&,

C2
E,K,M5

eiKFdK,0
K ~Q!

A11S D

2
D 2

F uPY&1 i
D

2
uS&G , ~19!

C1
E,K,M5

eiKFdK,0
K ~Q!

A11S D

2
D 2

F uS&1 i
D

2
uPY&G ,

where these formulas should be satisfactory for 4<K
!uDeS,Pu/(4BQ). Here the upper limit comes from setting
D!1 in Eq. ~A10!. For the low-K limit too, these quantum
electronic factors are identical to the semiclassical electronic
wave functions in Eq.~11!.

IV. DYNAMICS OF TIME-DEPENDENT STATES

Let us now examine time-dependent states of the mol-
ecule. These pictures will be especially helpful for our study
of collision processes in the accompanying paper. We moni-
tor the expectation value of the electronic orbital-angular
momentum vector,̂L &, as a function of time. We choose the
initial electronic state so that we can easily see the time-
evolution of ^L &; in particular we choose the Born–

Oppenheimer basis functionuL&5u21&, so that̂ L & starts out
along the negativeZ axis. We begin by using planar nuclear
trajectories, withv given by Eq.~4!.

We first consider the case of low rotation rate, corre-
sponding toK57. Integration of Eq.~4! gives the result
shown from a space-fixed point of view in Fig. 7~a!, and
from a molecule-fixed point of view in Fig. 7~b! The mol-
ecule has undergone 3/4 of a rotation in 1 ps, during which
time ^L & has undergone approximately 5 precessions about
the internuclear axis. Thus the projection of^L & onto the
internuclear axis,̂ LZ&, is fixed. We saŷ L & is ‘‘locked’’
onto the internuclear axis. The frequency of precession de-
pends on the anisotropy of the electrostatic potential, and is
given by uDeS,Pu/\. The same trajectory is shown in Fig.
7~c! over a longer time duration of 7 ps, from which it is
seen that̂ LZ& is actually slowly oscillating. The frequency
for this oscillation depends on the energy splitting between
the L-doublets, and is equal to $ue02e2u/\%
>$\v2/uDeS,Pu% by Eqs.~8! and~9!. This figure also shows
that ^L & is precessing nearly, but not quite, about the inter-
nuclear axis;̂ L & seems to ‘‘hover’’ just above the axis. A
top view of the same trajectory, as viewed from along the
negativeX-axis, is shown in Fig. 7~d!. Here ^L & is seen to
‘‘wag’’ from one side of theX axis to the other. The origin
of this wag is the precession of^N& and ^L & about the total
angular momentum̂K &, as shown later in this section. The
rate of wag is 2v, twice the rotation rate.

Now consider a rapidly rotating molecule, by settingK
5500. Figure 8~a! shows the molecule undergoing about 3/4
of a rotation in a much shorter time, 0.015 ps, while^L &
remains nearly space-fixed. Since the precession rate, char-
acteristic of the anisotropy of the electrostatic potential, is
the same as before,^L & has undergone only a small fraction
of a precession in this time, barely discernible from the pic-
ture. Thus in this case the molecule is rotating far too quickly
for ^L & to follow, and we saŷ L & is ‘‘decoupled’’ from the
internuclear axis. The view from the rotating molecular
frame, Fig. 8~b!, gives another perspective. Since^L & rotates
approximately 3/4 of a revolution in 0.015 ps, the projection
of ^L & onto the molecularZ axis oscillates. This oscillation
frequency is still related to the ‘‘L-doublet splitting,’’ and is
equal to (e02e2)/\. In this high-K limit this L-doublet
splitting approaches the nuclear rotation frequency. Return-
ing to a view from the space-fixed frame, and following the
trajectory for a longer time, 0.75 ps, we see in Fig. 8~c! that
^L & slowly oscillates along the space-fixedX8 axis, with a
frequency of oscillation given byuDeS,Pu/(2\). The differ-
ence uDeS,Pu/2 is the energy gap,E2(K11)2E0(K)
'E1(K21)2E0(K), between Y0 and the nearestY6

states. This energy gap arises from the anisotropy of the
potential energy felt by the electron in the space-fixed frame,
produced by the nuclei that are rapidly rotating in theX8Y8
plane. Note also that the line on which^L & oscillates slowly
rotates. The motion of̂L & in the space-fixed frame then has
the appearance of the motion of a Foucault pendulum.

If we consider an intermediate case, a value ofK where
the precession rate is comparable to the oscillation rate, (K
580), we get the trajectory shown in Fig. 9, shown from a
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space-fixed point of view. The behavior of^L & is compli-
cated. Over the 9 ps duration of this trajectory,^L & has un-
dergone about 4 precessions while^LZ& has undergone about
5 oscillations. To aid in visualizing the motion of^L &, pro-
gressive positions of̂L & are numbered in the figure.

By considering planar nuclear trajectories, we have
avoided the question of how the electronic motion affects the
nuclear motion, which we now address. Using the method
described in our previous paper,11 we generate a 3D nuclear

trajectory such that both total energy and total angular mo-
mentum are conserved. In addition to monitoring^L & as a
function of time, we also monitor the expectation values of
both the total angular momentum,^K &, and the nuclear an-
gular momentum̂ N&. The result is shown in Fig. 10~a! in
the low rotation limit (K57) for the same set of initial con-
ditions used to generate the planar trajectory results of Fig. 7.
It is seen that̂ N& and ^L & precess about a space-fixed^K &
with a period equal to the rate of rotation. Thus^L & is not

FIG. 7. Behavior of the expectation value of electronic orbital-angular momentum^L & for low rotation (K57). A planar nuclear trajectory is used.~a! A
typical trajectory is shown in the space-fixed frame with atomA at the origin. The initial position of the molecular axis is shown in gray, the final position
in black, from which it is seen that the molecule undergoes about 3/4 of a rotation in 1 ps. Several snapshots of the vector^L & are shown. The heavy black
line shows the locus of the tips of this vector, which starts out along the negativeX8 axis and ends up along the positiveY8 axis. This behavior can be better
understood by looking at~b! in which the same trajectory is shown but in the body-fixed frame. It is evident that^L &, which starts out along the internuclear
axis, ~negativeZ-axis!, precesses approximately five times about that axis. The same trajectory is shown in~c! for the body-fixed frame over a longer time
duration, 7 ps, during which timêLZ& is seen to have undergone almost one complete oscillation along the internuclear axis. Also note that^L & has a
component of angular momentum along the negativeX-axis, the axis of rotation. A top view of the same trajectory, as viewed from along the negativeX-axis,
is shown in~d!. Here^L & is seen to ‘‘wag’’ from one side of theX axis to the other.

5466 L. J. Kovalenko and J. B. Delos: L-doublet states in diatomic molecules

J. Chem. Phys., Vol. 107, No. 14, 8 October 1997



only precessing rapidly about the internuclear axis but also
more slowly about the total angular momentum. Figure 10~b!
shows the same trajectory, viewed in the body-fixed frame.
The qualitative behavior of̂L & is similar to that shown for
the planar trajectory in Fig. 7~c!. The nuclear angular mo-
mentum,^N&, which must by definition be perpendicular to
thez axis, is always found nearly along theX axis, the initial
axis of nuclear rotation. In fact,̂N& oscillates with small
amplitude in the xy plane about theX axis, causing the total
angular momentum,̂K &, to oscillate accordingly.

There is one qualitative difference in the electronic mo-
tion for planar trajectories as compared with 3D trajectories
and it is present only in the lowK limit. In the former case,
^LZ& always oscillates at a frequency given by theL-doublet
splitting, while in the latter case conservation laws may pre-
vent ^LZ& from oscillating. This constraint can be seen in
Fig. 11 (K51), where^L & is seen always to point away
from atomA, such that̂ LZ& is always along the negativeZ
axis. Imagine now that̂LZ& were to lie along the positiveZ
axis, which would be the case if it underwent half of an
oscillation. The electronic energy for this hypothetical state
would be nearly the same, and thus, by energy conservation,
the length of^N& would have to be nearly the same. Yet
since^L & would point in a different direction from the origi-
nal ^L &, the resultant of̂L & and^N& would be very different
from the initial ^K &. But by conservation of total angular
momentum,̂ K & must be constant. Thus oscillation of^L &
along the internuclear axis for such a small value ofK would
violate conservation of total angular momentum and so^LZ&
is constrained in its range of oscillation.

FIG. 8. Behavior of the expectation value of electronic orbital-angular mo-
mentum^L & for high rotation (K5500). A planar nuclear trajectory is used.
~a! A typical trajectory is shown in the space-fixed frame. The molecule has
undergone about 3/4 of a rotation in 0.015 ps, during which time^L & re-
mains nearly space-fixed. In~b! the same trajectory is shown but in the
body-fixed frame. Note that the projection of^L & on the rotatingZ axis,
^LZ&, is oscillating at the same frequency as the nuclear rotation frequency.
The same trajectory is shown in~c! for the space-fixed frame over a longer
time duration, 0.75 ps. HerêL & is seen to oscillate along a nearly space-
fixed axis on a time scale of about 0.2 ps, while that axis itself slowly
rotates. The motion of̂L & is thus like a Foucault pendulum, with successive
positions of^L & indicated in the figure with the numbers 1–4.

FIG. 9. Behavior of the expectation value of electronic orbital-angular mo-
mentum,^L &, for intermediate rotation (K580), where the precession fre-
quency of^L & about the internuclear axis is comparable to the oscillation
frequency of its projection along the same axis. A planar nuclear trajectory
is used. The molecule undergoes about 7 or 8 rotations in 0.9 ps. The motion
of ^L & appears analogous to that of a Focault pendulum. It starts in region 1,
oscillates nearly along theX8 axis to region 2, then over to 3, and so on.
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This is not a problem for large enoughK. As K in-
creases, so does the length of^N&, while the length of̂ L & is
constrained to be less than or equal to 1. Thus^K & becomes
nearly coincident witĥ N&, which is perpendicular to the
diatomic axis. Then oscillation of̂ LZ& causes a much
smaller relative change in the length of^N&, enabling both
energy and angular momentum to be conserved. Consider the
caseK57, as shown in Fig. 10~b!. ^LZ& oscillates its full
range, and the electronic motion as viewed from the molecu-
lar frame is nearly the same as for the planar case.

V. CONCLUSION

We have obtained a semiclassical picture ofL-doubling,
one which is consistent with a full quantum treatment, but

which gives a more intuitive, pictorial view of the dynamics.
We see that ‘‘lagging’’ of oriented orbitals behind the rotat-
ing internuclear axis is not a correct description of the states;
rather, the decoupling of the electronic motion from the
nuclear axis is represented by states which can be interpreted
as a superposition of aligned states and traveling waves.

We have investigated how the expectation value of elec-
tronic orbital-angular momentum,^L &, changes with time for
different nuclear rotation rates. We see that not only does
^L & precess about the nuclear axis, but its projection along
that axis oscillates.

We have shown that in most cases, the behavior of^L &
for a planar nuclear trajectory is similar to that for a 3D

FIG. 10. Behavior of̂L & and the expectation value of nuclear angular momentum,^N&, accounting for conservation of total energy and angular momentum.
A typical trajectory for low rotation (K57) is shown in~a! the space-fixed frame and~b! the body-fixed frame. The time duration is 7 ps, which corresponds
to approximately 4

1
4 nuclear rotations. In the body-fixed frame,^L & is seen to undergo a spiraling motion, corresponding to fast precession about the rotating

axis and slower oscillation along that axis. This behavior is qualitatively similar to that obtained for the planar nuclear trajectory shown in Fig. 7~c!. Also in
the body-fixed frame, the nuclear angular momentum vector,^N&, though always perpendicular to theZ-axis, is not constant; rather, it oscillates in theXY
plane about the negativeX-axis. In the space-fixed frame, the nuclear angular momentum vector,^N&, is seen to adjust to the motion of^L & such that the total
angular momentum,̂K &, remains fixed. The nuclear trajectory is seen to be nearly planar.
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trajectory in which energy and total angular momentum are
conserved; however, we have identified one regime, very
low K, in which the behavior differs qualitatively from that
for a 3D trajectory. Specifically, we saw that for largeK,
^LZ& oscillates between approximately1L and 2L, while
for small K the range of oscillation of̂LZ& is smaller.

Now that we have verified the results of the semiclassi-
cal model, we use this semiclassical theory in the accompa-
nying paper to obtain insight into the dynamics of
collisionally-induced electronic transitions in oriented di-
atomic molecules.
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APPENDIX: FULL QUANTUM MODEL

Here we review the quantum theory ofL-doubling, set-
ting it up in a way that will make it easy to compare with the
corresponding semiclassical description given in Sec. II.

The Hamiltonian for the total system is given by

H52
\2

2m
¹R

21he . ~A1!

The wave functionCE,K,M for the full system of electrons
and nuclei is an eigenfunction of H and of both the square of
the total angular momentum operator,K2, with eigenvalue
K(K11)\2, and the projection of the total angular momen-
tum onto a space-fixed axis,KZ8 , with eigenvalueM\.

We expand the eigenfunctionCE,K,M in terms of basis
functions which are products of Born–Oppenheimer elec-
tronic eigenfunctions,fL(r;R ), nuclear vibrational factors,

u(R)/R, and symmetric-top eigenfunctions,DML
K* (F,Q,0),

CEKM5(
L

cLS u~R!

R DDML
K* ~F,Q,0!fL~r ;R!. ~A2!

We use an ‘‘active’’ notation for the nuclear angular
factor15

DML
K* ~F,Q,0!5eiM FdML

K* ~Q!,
~A3!

dML
K* ~Q!5^K,M ue2 iK YQ\uK,L&.

Since the molecule is cylindrically symmetric, the choice of
the third Euler angle,x, in theD(F,Q,x), is arbitrary.16 We
choosex50.

Substituting the expansion ofCE,K,M into the full Schro¨-
dinger equation and following the procedure in Delos,17

gives

(
L

cL

{
dL8,LF \2

2m

]2

]R2 1^fL8uhelufL&2E

1
\2

2mR2 @K~K11!2L2#

1
1

2mR2 ~^fL8uL
2ufL&2L2\2!

G
2dL8,L11H \2

2mR2 A@~K1L11!~K2L!#^fL8uL1ufL&J
2dL8,L21H \2

2mR2 A@~K2L11!~K1L!#^fL8uL2ufL&J

}
u50. ~A4!

To express this in block-diagonalized matrix form we transform the basis set to the linear combinations

FIG. 11. A three-dimensional trajectory conserving total energy and angular
momentum forK51. In this case the nuclei do not rotate in a plane. Instead,
the twirling internuclear axis traces out a cone. Also,^LZ& cannot oscillate
significantly along the internuclear axis. It is restricted by conservation of
total angular momentum and energy.
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g15
1

A2
@2DM ,1

K* u1&1DM ,21
K* u21&], g25

21

iA2
@DM ,1

K* u1&1DM ,21
K* u21&], g35DM ,0

K* u0&, ~A5!

using the same transformation as in the semiclassical treatment. The resulting matrix representation of the secular equation is
then given by

U ~ER1EK1eP8 2E! 0 0

0 ~ER1EK1eP8 2E! 2 i2BQAK~K11!

0 i2BQAK~K11! ~ER1EK1eS8 !2E
U50, ~A6!

where we have used the following definitions:18

ER[
2\2

2mu

]2u

]R2 , EK[BK~K11!,

eP8 [eP22B1
^1,1uL2u1,1&

2mR2 , ~A7!

eS8 [eS1
^1,0uL2u1,0&

2mR2 , B5
\2

2mR2 .

Energy levels, found by solving this secular equation,
are

E05ER1EK1eP8 ,
~A8!

E65ER1EK1S eP8 1eS8

2 D
6AS eS8 2eP8

2 D 2

1~2BQ!2K~K11! .

The first term,ER , corresponds to radial, or vibrational, en-
ergy. This is an additive constant to all energy levels, so we
ignore it. In these expressions there is one relevant parameter
which depends on the particular molecule, the ratio of the
anisotropy of the electrostatic potential,eS2eP[uDeu, to
the rotational energy constant,B. Therefore, to see how
these eigenvalues vary with nuclear rotation, we divide these
equations byuDeu,

E0

uDeu
5

B

uDeu
K~K11!,

~A9!

E6

uDeu
5

B

uDeu
K~K11!1S 1

2
1

B

uDeu D
6AS 1

2
1

B

uDeu D
2

14S BQ

uDeu D
2

K~K11! .

Here we have defined the zero of energy to beeP , consistent
with the semiclassical treatment. These energy levels are the
solid lines shown in Fig. 5.

We now derive formulas for energy levels and eigen-
functions in the two limits of low and highK. The limiting
behavior for low values ofK is obtained by expanding the
square root in Eq.~A8! as a power series inD,

D5
4BQAK~K11!

uDeu
. ~A10!

To first order inD, the energy levels are given by the familiar
formulas

E05BK~K11!,

E25BK~K11!1eP8 2BQAK~K11!D, ~A11!

E15BK~K11!1eS8 1BQAK~K11!D,

and the associated wave functions by

C0
E,K,M5S 2DK,1

K* u1&1DK,21
K* u21&

A2
D ,

C2
E,K,M>

1

A11S D

2
D 2 F2S 2DK,1

K* u1&2DK,21
K* u21&

iA2
D

1
iD

2
~DK,0

K* u0&!G , ~A12!

C1
E,K,M>

1

A11S D

2
D 2 F2 iD

2 S 2DK,1
K* u1&2DK,21

K* u21&

iA2
D

1~DK,0
K* u0&!G .

Anticipating comparison with semiclassical results, we re-
write this in an equivalent form for the particular case of
M5K, in which the projection of total angular momentum
along the space-fixedZ8 axis is as large as possible.~The
choice of M is arbitrary.! Substituting Eq.~A3! into Eq.
~A12! and using the following expression19 for Wigner-d’s
with M5K:
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dK,L
K ~Q!5~21!K2LA ~2K !!

~K1L!! ~K2L!!

3FcosS Q

2 D GK1LFsinS Q

2 D GK2L

, ~A13!

we obtain the following equivalent expressions for the low-K
limit wave functions of Eq.~A12!:

C0
E,K,M5eiKFdK,0

K ~Q!A K

K11

3F cotS Q

2 D u1&2tanS Q

2 D u21&

A2
G ,

C2
E,K,M5

eiKFdK,0
K ~Q!

A11S D

2
D 2
HA K

K11

3F 2cotS Q

2
D u1&2tanS Q

2
D u21&

iA2
G1

iD

2
u0&J ,

~A14!

C1
E,K,M5

eiKFdK,0
K ~Q!

A11 S D

2
D 2
H iD

2
A K

K11

3F 2cotS Q

2
D u1&2tanS Q

2
D u21&

iA2
G1u0&J .

Similarly, the high-K limiting behavior of the energy
levels can be obtained by expanding the square root in Eq.
~A8! as a power series in 1/D. To terms of lowest nonvan-
ishing order in 1/D, the energy levels are given by

E05EK1eP8 ,

E25EK1
eP8 1eS8

2
22BQAK~K11!2

uDe8u
4

1

D
, ~A15!

E15EK1
eP8 1eS8

2
12BQAK~K11!1

uDe8u
4

1

D
,

and the associated wave functions by

C0
E,K,M5S 2DK,1

K* u1&1DK,21
K* u21&

A2
D ,

C2
E,K,M5

i

A11S 12
1

D
D 2 F S DK,1

K* u1&1DK,21
K* u21&

A2
D

1S 12
1

D
D ~DK,0

K* u0&!G ,

~A16!

C1
E,K,M5

1

A11S 12
1

D
D 2 F ~DK,0

K* u0&!

1S 12
1

D
D S DK,1

K* u1&1DK,21
K* u21&

A2
D G .

Again, for the case ofM5K, we use Eqs.~A3! and~A13! to
rewrite these high-K limit wave functions in the equivalent
form

C0
E,K,M5eiKFdK,0

K ~Q!A K

K11

3F cotS Q

2 D u1&2tanS Q

2 D u21&

A2
G ,

C2
E,K,M5

eiKFdK,0
K ~Q!

A11S 12
1

D
D 2
HA K

K11

3F cotS Q

2
D u1&1tanS Q

2
D u21&

iA2
G

1 i S 12
1

D
D u0&J , ~A17!

C1
E,K,M5

eiKFdK,0
K ~Q!

A11S 12
1

D
D 2
H u0&2 i S 12

1

D
DA K

K11

3F cotS Q

2
D u1&1tanS Q

2
D u21&

iA2
G J .
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The above formulas for energy levels and wave func-
tions are easy enough to derive, but it is hard to see their
physical meaning. In Sec. III we compare these rigorous full
quantum results with those of our more intuitive semiclassi-
cal treatment.

1J. H. Van Vleck, Phys. Rev.33, 467 ~1929!.
2R. S. Mulliken and A. Christy, Phy. Rev.38, 87 ~1931!.
3G. Herzberg,Molecular Spectra and Molecular Structure I. Spectra of
Diatomic Molecules~Van Nostrand Reinhold, New York, 1950!, pp. 212–
231.

4J. T. Hougen, Natl. Bur. Stand. Monograph 115~1970!.
5R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, J. Mol.
Spectrosc.46, 37 ~1973!.

6H. Helm, R. P. Saxon, and D. L. Huestis, J. Chem. Phys.76, 2516~1982!.
7J. B. Norman and R. W. Field, J. Chem. Phys.92, 76 ~1990!.
8A. C. Luntz, A. W. Kleyn, and D. J. Auerbach, J. Chem. Phys.76, 737
~1982!.

9P. Andresen and E. W. Rothe, J. Chem. Phys.82, 3634~1985!.
10P. W. Atkins,Molecular Quantum Mechanics, 2nd ed.~Oxford University

Press, Oxford, 1983!.
11L. J. Kovalenko, S. R. Leone, and J. B. Delos, J. Chem. Phys.91, 6948

~1989!.

12We use the symbolN for nuclear angular momentum rather than the
conventional symbolR so as not to confuse nuclear angular momentum
with the nuclear trajectory,R.

13E. U. Condon and G. H. Shortley,The Theory of Atomic Spectra~Cam-
bridge University Press, Cambridge, 1963!.

14Through out this paper we consider the case whereeS.ep . In the oppo-
site case, theeS is replaced byep and theep by eS in Eq. ~10!.

15R. N. Zare,Angular Momentum~Wiley, New York, 1988!.
16The following statement in Ref. 15 on p. 297: ‘‘The choice ofx50 im-

plies that the molecule-fixedY axis coincides with the line of nodes, that
is, lies in the plane of rotation, while the molecule-fixedX axis is perpen-
dicular to the plane of rotation, which is the directionJ points in the high
J limit.’’ can be confusing. This statement is true only foruM u>K. The
body-fixed axis which is perpendicular to the plane of rotation depends on
the choice ofboth M andx. For a choice ofM5K andx50, theX axis
is perpendicular to the plane of rotation, while forM50 andx50 theY
axis is perpendicular to the plane of rotation.

17J. B. Delos, Rev. Mod. Phys.53, 287 ~1981!.
18TheL2 operator is diagonal in this representation; it is shown in reference

4 that its matrix elements forL51 are all equal.
19A. R. Edmonds,Angular Momentum in Quantum Mechanics~Princeton

University Press, Princeton, 1974!, where we have re-expressed the equa-
tion in terms of ‘‘active’’ d’s of Zare.

5472 L. J. Kovalenko and J. B. Delos: L-doublet states in diatomic molecules

J. Chem. Phys., Vol. 107, No. 14, 8 October 1997


	Semiclassical Model of Λ-doublet States in Diatomic Molecules
	Recommended Citation

	tmp.1638969888.pdf.iQp3n

