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Semiclassical model of A-doublet states in diatomic molecules

Laurie J. Kovalenko
Natural Sciences Collegium, Eckerd College, St. Petersburg, Florida 33711

John B. Delos
Physics Department, College of William and Mary, Williamsburg, Virginia 23185

(Received 4 February 1997; accepted 26 June 1997

An intuitive picture of A-doubling in diatomic molecules is presented using a semiclassical theory.

A common view ofA-doubling as arising from electrons “lagging” behind the rotating internuclear
axis is shown to be misleading; rather, the eigenfunctions are symmetric about the molecular axes
and can be expressed as a superposition of pure nonrotating orbitals and travelling waves. These
results are shown to be consistent with a full quantum treatment. We also examine, for the first time,
time-dependent states, by monitoring expectation values of electronic- and nuclear-angular
momenta. For low rotation frequency, the expectation value of the electronic-angular momentum
locks onto the rotating internuclear axis, while for high rotation frequency it locks onto the
space-fixed total-angular momentum axis. At intermediate frequencies is a complicated behavior.
© 1997 American Institute of Physids50021-960807)01937-3

I. INTRODUCTION position of all and a2, state can produce a misaligned or-
bital.
The phenomenon of-doubling has been known for a In fact, this picture cannot be correct. One realizes this
long time and has been successfully treated theoretically ivhen seeking answers to the following questiofis:What
the early 20th century by several of the Old Masters. does the orthogonal combination bf, andS states look
More recent full quantum treatments include those bylike? and(2) What happens in the high-rotation limit? Con-
Hougen Zareet al,” and Helmet al® However, a physical cerning the latter question, the electronic states ought to go
picture of A-doubling using an intuitive semiclassical model to degenerate space-fixed states with the nuclei twirling rap-
is lacking. idly inside. How could misaligned states ever approach this
Since typical energy splittings are less than Iém limit?
A-doubling may appear to be justifiably negligible. Even for ~ The problem with the concept of a lagging orbital does
states differing by such a negligible amount of energy.not arise from the quantum formalism. For example, the
though, there is a big difference between them in terms oéquations for energy and wave functions given in Ref. 6 are
the spatial orientation of their charge distribution. Preferenperfectly correct. The problem arises because the quantum
tial population of one component over another has been sedormulas are so opaque that it is hard to get an intuitive
in numerous cases including collisional energy tran&fer, picture from them.
scattering off a surfac®and photodissociatiohand has led The goal of this paper is to provide a physical picture of
to insight into the dynamics of these processes. A-doubling using the physical insight of semiclassical
Consider a diatomic molecule in*&l electronic state. In  theory. These semiclassical results are then shown to be con-
the absence of rotation there are two degenerate states registent with those of a more rigorous, full guantum model. In
resented by this term symbol, differing in their valueof a subsequent paper we use this semiclassical model as a
(A==1). The electron probability density of the two states starting place to study collisional processes responsible for
can be represented schematically by the orbitals labdled transitions between these-doublet states.
andII shown in Fig. 1a) (where in addition & orbital is In Sec. Il we set up a semiclassical model of a diatomic
showr). Now let the nuclei rotate about thé-axis. One of  molecule, obtain formulas for energies and wavefunctions,
theIl-orbitals,IIy, lies in the plane of nuclear motion while and obtain an intuitive physical picture of the-doublet
the other does not. Nuclear rotation thus lifts the degeneracstates. In Sec. 1ll we show that the semiclassical theory gives
of these two states; the resulting pair of eigenstates for th&o good approximationthe same energy levels and wave
rotating molecule is called A-doublet. functions as the full quantum theory, presented in brief form
A common explanation for this energy splitting is that in the Appendix. Then, in Sec. IV, we use the semiclassical
the electrons in thdly state, unable to keep up with the method to give the first examination of time-dependent
rotating internuclear axis, lag behind, while the electrons instates. We monitor expectation values of the electronic
the 11 state are not affected by the nuclear motion. Thisorbital-angular momentum vectd(, ), for an arbitrary state.
description of lagging orbitals was particularly spelled out inOur present treatment does not include the influence of elec-
Ref. 6, and a picture similar to our Fig(kd appears in Ref. tron spin; this will be treated in a later paper.
10. The picture seems plausible, since quantum theory as- Note that in addition to providing a physical picture of
serts that thdl and3, states are mixed, and since the super-A-doubling in diatomic molecules, these semiclassical de-
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FIG. 2. The Euler angle® and® specifying the position of the internuclear
vector, R, with respect to the space-fixdX',Y’,Z'} frame. These angles
also define the body-fixefX,Y,Z} frame, where the positivé-axis is cho-
sen along the internuclear axis, in the direction frénto B. Space-fixed
coordinates are denoted by primes.

Fig. 2. Viewed from a frame in which the center of mass of
the nuclei remains fixed, the relative motion of the nuclei can
be described by the motion of a particle of reduced mass
/.L,:MAMB/(MA+ MB)

In this treatment we consider only the influence of
nuclear rotation on electronic motion and so fix the internu-
clear distanceR, at its equilibrium value. For now we fur-
ther simplify our model by restricting the nuclear rotation to
a plane (we consider the effects of a three-dimensional
nuclear trajectory in Sec. IV Since the spatial orientation of
the plane of nuclear rotation is arbitrary, we choose the plane
FIG. 1. (a) Schematic of three molecular orbitalH ¢ ,IT,,S). The nuclei ~ Of rotation to be theX’Y’ plane by setting?=90°, leaving

are represented by the two black dots on hexis. In the absence of onIy one nonzero nuclear equation of motibn
nuclear rotation the twalI orbitals are indistinguishable and thus degener-

ate.(b) A common physical picture used to explairdoubling in which the . N,

ITy andX, orbitals are said to “lag behind” the rotating nuclear axis, thus b= ?, D
losing some of their respectilé and>, character, while thélx orbital does M

not need to adjust to the nuclear rotation to retaifitsymmetry. WhereNzr is the projection of the nuclear angular momen-

tum vector,N, on theZ’ axis!?

scriptions, especially the time-dependent pictures, are neederc]i Let_r(r,la,qﬁ) be trlle.vectorhrepresentlng the posrﬁon Ofl

to explore the mechanism of collision-induced transitions be!l® active electron relative to the center of mass of the mol-

tween these\-doublet states, presented in the accompanyin?cme; angles are defined relative to the internuclear axis, i.e.,
' n the rotating frame. The electronic wave functidifr,t)

paper. - ) Y ;
satisfies a time-dependent Satlirger equation,
Il. SEMICLASSICAL MODEL dY(r,t)
. ip . if :helY(rvt)v (2)
The model presented here is a modification of our pre- at

: 1 : : ; : .
vious work:™ The diatomic molecule is treated as a three-whereh,, denotes the Born—Oppenheimer electrostatic elec-
particle system, consisting of two nuclei and an active electrgnic Hamiltonian.

tron. The motions of the nuclei are described by classical \ve expand this wave function in the Born—
mechanics, while the motion of the active electron is de-gppenheimer basi@igenfunctions ohy),
scribed by quantum mechanics.

Let R be the internuclear vector, pointing froAxto B Y= caIA =S e (OE.(r .0 R)eM 3
and specified by its coordinatgR,®,®}, as shown in (. ; A(DIA) ; AOFArGRIETE (3
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5462 L. J. Kovalenko and J. B. Delos: A-doublet states in diatomic molecules

and truncate this set to the three molecular states having the e+

same electronic orbital-angular momenturs 1, the twoll

states of interest and the clos&sstate. Phase conventions

on angular momentum eigenstates are those of Condon and

Shortley®® —€ 1
The matrix representation of the ScHimger equation |A€ZH| e

for the electron in the Born—Oppenheimer basis is 2

d .
if r c(O)={hert L je(t), (4) 1

where in addition to the electrostatic terim,, there is an
angular coupling temﬂ)EX' which arises because the basis FIG. 3. Dependence of the semiclassical electronic energy levels on nuclear

f . defined with tt tati f f frotation rate for the three eigenstates. The energies are normalized with
unctions are defined with respect to a rotating frame of re Tespect to the anisotropy of the potential, and are plotted, ke ratio of

erence. the angular coupling to the anisotropsee Eqs(8) and(9)].
The matrix elements ohg are diagonal and are the

Born—Oppenheimer energies,, tabulated in Herzberd.

The angular coupling matrix elements are computed by ex-

pressing the operatdr, in terms of raising and lowering € _, e. 1 vi+ 5 ©
operators|., andL_. No general formula can be given for |Aesnl 7 JAespl 27 2

the matrix elements df .. ; however, selection rules for an-

gular momentum components do hbldand can be ex- here we definee;=0. The behavior of the electronic en-

pressed as ergy as a function o for each eigenstate is shown in Fig. 3.
, _ The energies of thA-doublets diverge with increasing rota-

(A |Li|A>_5A"Ail\/§hQ’ © tion rate, while the energy of the uncoupled eigenstate re-
where the paramet&) allows for the fact that the molecular mains constant. The energy splitting betweenAhdoublets
basis functions differ from spherical harmonics. For our pur-becomes comparable to that between the Born—Oppenheimer
poses, we se@=1 in our numerical calculations. 3,11 states at around=3.

A unitary transformation from th§ A),A=0,%1} repre- We now look at the electronic eigenstates by plotting the
sentation to the spatially-align¢llI),|ITy),|2)} represen- angular dependence ¢Y|?, shown in Fig. 4. For the pur-
tation converts the Hamiltonian matrix to block-diagonal poses of this section, we approximate the electronic basis
form functions as spherical harmonics. The angular dependence
for the case of no nuclear rotatid@=0) is shown in Fig.

) e 0 _ 0 4(a), two II orbitals and one orbital. For 5=2, shown in
hg+®L,=| O €n ihoQ |, (6)  Fig. 4(b), the states are wider at their waists and have the
0 —ihwQ e shape of peanut shells. At highéy shown in Fig. 4c) for

6=20, they have become donut-shaped. In every case, the
where the rows and columns are labeled by the three basg;genfunctions have a symmetry with respect to the body-
functions{IIy I1y,%}. The Iy orbital is uncoupled from fixed axes. These eigenfunctions are not “lagging.”
the others. We note that this particular transformation pro-  gor further interpretation, we develop formulas for the
duces purely real basis functions; this fact will be useful latelg|ectronic energies and wavefunctions in the limiting cases

in our interpretation of the\-doublet eigenfunctions. of high and low rate of rotation. Limiting behavior in the
The eigenvalues of this matrix are the “electronic en-case of low rotation can be obtained by expanding the square
ergy levels, root in Eq.(7) as a power series i8. To first order ing, for
14 : -
es+ep the case wheres> ¢, the electronic energies are
e, =—F—,
- 2
(7) hwQ fwQ
2 eozfn, e_:EH_é_, e+:62+5_, (10)
€3~ €n 2 2 2
€= €1 > +(AwQ)~.

. . .and th iat igenfunctions ar
The behavior of these electronic energy levels as a functioft d the associated eigenfunctions are

of nuclear rotation rate is characterized by the radimf the

term characteristic of the angular couplingi @Q, to the Yo=|IIx),
anisotropy of the electrostatic potentigh es 1j|=e€s — €y,
) 1
2hwQ ( '
_ Y_=| [+ —[3) ]| ———, (11a
Bezal ® 72 /
i, _ ) 1+| =
Rewriting Egs.(7) in terms of § gives 2

J. Chem. Phys., Vol. 107, No. 14, 8 October 1997
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We now consider the high rotation limit, this time by
expanding the square root in E(LO) as a power series in
(1/68). To first order in(1/8) the electronic energies are given

by
es+eq [Aesp| [1
e=¢€, €+= 5 |l hwQ+ 7 50 (12
and the associated eigenfuntions by
Yo:|Hx>:
1 1
Y_={|[Ily)+i|1-=||2)| —F/————, (13
) 1)\ 2
1+ 1-—=
S
B
Y,= +i| 1— =11 .
=ty -y —
1+ 1——)
é

The respective angular dependencies are shown in Hxy. 4
for 6=2, where now the loss of the node along hexis is
evident. Figure &) shows angular dependencies for a much
larger rotation rateg=20. In this high# limit the Y .. eigen-

FIG. 4. Angular dependence of semiclassical electron probability densitiestates show no discernible angular dependence in the plane

for the three eigenstates at three nuclear rotation r@eBor the case of no

rotation (6=0), each eigenstate is a pure Born—Oppenheimer state, aligned

along one of the molecular axed) For moderate rotatiofd=2), the ¥ ..

of rotation and are well represented by traveling waves. The
nuclei are rotating so quickly that the electrons see an aver-

eigenstates are mainly aligned states, with a travelling wave compgoent. @ge potential energy, which is cylindrically symmetric about
For very high rotatior{3=20), the ¥ .. eigenstates have become nearly pure the X-axis. Accordingly, the eigenfunctions of the Hamil-

traveling waves. In no case is there a “misaligned” eigenstate.

Y, =

i
5+ ]
1+

2

tonian are eigenfunctions dafy with eigenvalues 0 ot 14.

To summarize A-doublet wavefunctions do not lag be-
hind the rotating internuclear axis; rather, they are superpo-
sitions of aligned>,I1 states with travelling waves. In the
low-rotation limit, the aligned component dominates, while
in the high-rotation limit the travelling wave-component
dominates.

We now use a more rigorous, full quantum model of the
diatomic molecule to verify the results of the semiclassical

We can rewrite the latter two of the above formulas in anmodel.

equivalent form that allows for further interpretation:

o )
Y—:|(1_E)|HY>"H E[|E>_i|HY>]] e

oo

Since the basis function$ly),|ITy), and|3) are all real, the
linear combinationg|ITy)—i|2)] and[|2)—i|IIy)] repre-
sent traveling waves. Thus Eg&llb show thatY, is a
quantum superposition of mostly the aligngd state with a
bit of a traveling wave staté|ITy)—i|X)].

1)
=)+ 5[|HY>—i|z>1]

5\ 2
1+

2

IIl. COMPARISON OF SEMICLASSICAL AND
QUANTUM RESULTS

In order to compare the semiclassical energy levels with
those from the full quantum modé&ee Appendix we need
to add to the semiclassical electronic eigenvalues the classi-
cal nuclear rotational energy,

wR2w?

5 (14

€rot™
To relate the resulting semiclassical total energies, which
depend orw, to the quantum energies, which are character-
ized by the quantum numbé&r, we need to “quantize’w. A
reasonable choice is

 2BVK(K+1)
TR

K) (15

J. Chem. Phys., Vol. 107, No. 14, 8 October 1997
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4 o\ / )
N L B cot () tan (=)
— e 3.5 \ /
\ T I/‘/d:,o(e)
— 2 \ ;
1 Og,o(e)
T ' oo
N 1 e
08 0.5 . N
P — o ®  ® W7
IT
0.6 S

T FIG. 6. Plot of Wignerd functions forK=1, 7, and 80(solid lines, in
arbitrary unitg. These functions are highly peaked ab®ut =/2 for highK,
- indicating localization of the nuclear wave functions nearXieY’ plane.

0.4

I . (i)  For the uncoupled state, the above semiclassical for-
0.2 mula for the energyk,, is equivalent to the quantum
1 1 formula, given in Eq(A9).
(i) The above semiclassical formulas fBr. are quite
close to the quantum formulas, given in E@\9).
This is illustrated in Fig. 5. On the scale of this figure
Y, |72 v, we can see no difference between the quantum and

FIG. 5 C ) ‘ total levels for the th ) at | semiclassical values foE_. However, there is a
. 5. Comparison of total energy levels for the three eigenstates calcu- . .
lated by the full quantum methddolid lines and the semiclassical method small but visible dlscrepancy between the quantum

using the approximate “quantization” @b given in Eq.(15) (dotted line. and semiclassical values fér, .
The energies are normalized with respect to the anisotropy of the potentia(iv) ~ Much of this last discrepancy can be eliminatgd

Fo_r ease of visualization we plot the square root of the_energy. _The value of necessaWby adding the correction to the eigen-
K is written above selected energy levels. Agreement is especially good for

the twoA-doublet states¥', and¥ _ , though not so good for thé . state. valuesE ., as shown in Fig. 5.

This discrepancy between the quantum and semiclassical energies for the We now compare semiclassical and quantum wavefunc-
V¥, state can be reduced by adding a correction termBofd@the semiclas- P q

sical ¥, (dot—dashed lings tions. The quantum expressions in E¢a14) and (Al7)
contain Wignerd functions as factors. A plot of three of
these functions is shown in Fig. 6. One can show that the full

where the rotational energy constdht= %2/(2uR?). The  Width at half maximum(FWHM) of the d-function, for large

resulting total energy levels for the semiclassical model, norK. is given by

malized to the anisotropy of the electrostatic potential, are

then
E(S’C ( ) FWHM=2| 90 r( ! )1 (17)
= K(K+1), = °—arcsin -—| |.
|A€z,n| |A€z,n| I§/§
ESC 1
—— = K(K+1)+ =
Besnl Besa (K72

For highK, thed-function is seen to be highly peaked about
\/ 1\? BQ ©®=90°, representing localization of the nuclei nearxi&’
- 2 +4 [Aes g plane, consistent with the semiclassical model. Since this
. ’ .. _ factor causes the eigenfunctions to be nonzero only near
and are shown along with th_e exact quantum energies in F'Q@=9O°, we can simplify the expressions for the wave func-
. As_a f:onsequence of this choice ofK), we find the tions by replacing the c@®/2) and tari®/2) factors in Egs.
following: (A14) and(A17) by their values a®=90°. In addition, we
(i) The semiclassical quantity, defined in Eq.(8), is make a further approximation by replacifigl/(K+ 1)]%?
exactly equal to the guantum quantify defined in  with unity. The highK quantum eigenfunctions of EGA17)
Eqg. (AL10). then become

2
) K(K+1), (16)

J. Chem. Phys., Vol. 107, No. 14, 8 October 1997
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WEKM_ _okegK (@)[1L,),

cey A A©) _ 1) ]
vE =—12_|Hy>+| 1_K|E>_’ (18)
1+ 1——)
A
e*Pdg (@) 1 '
1+ 1——) ) '
A

where these eigenfunctions are now separated into nucl

N2
and electronic factors. These quantum electronic factors a

identical to the semiclassical electronic eigenfunctions in Eq
(13).

5465

Oppenheimer basis functidn)=|—1), so that(L) starts out
along the negativ& axis. We begin by using planar nuclear
trajectories, withw given by Eq.(4).

We first consider the case of low rotation rate, corre-
sponding toK=7. Integration of Eq.(4) gives the result
shown from a space-fixed point of view in Fig(ay, and
from a molecule-fixed point of view in Fig.() The mol-
ecule has undergone 3/4 of a rotation in 1 ps, during which
time (L) has undergone approximately 5 precessions about
the internuclear axis. Thus the projection (@f) onto the
internuclear axis{Lz), is fixed. We say(L) is “locked”
onto the internuclear axis. The frequency of precession de-
Ends on the anisotropy of the electrostatic potential, and is
§iven by |Aes |/%. The same trajectory is shown in Fig.
7(c) over a longer time duration of 7 ps, from which it is
seen thafL,) is actually slowly oscillating. The frequency

In Fig. 4, we used the semiclassical wave functions . s oscillation depends on the energy splitting between

plot electronic angular probability distributions. Alterna-

tively, we can use the full quantum wave functions to obtain_ (ho

conditional probability distributions for finding the electron
in a particular solid angle given that the nuclei are found in
the X'Y’ plane (®=90°). These quantum angular distribu-
tions are identical to the semiclassical angular distributions

Similar approximations can be made for the quantum.

eigenfunctions in the lovic limit, though we are constrained
in how low we can go. As seen in Fig. 6, it is still reasonable
to approximate cd®/2)=tan(®/2)=1 for K=7. However,
this would not be a reasonable approximationKor 1; the
nuclei are not localized near tB€ Y’ plane for such a low
value ofK. This approximation gives

W M= — e Pdy o(0)|TTy),

E,K,M ein)dEO() - A -
vt :ﬁ [TLy) +i E|E> , (19
1+(—| '
e ®df (@) [ A ]
PE N |34 5 (11
1+ =] '
2

where these formulas should be satisfactory fos ki
<|Aes n|/(4BQ). Here the upper limit comes from setting
A<1 in Eq. (A10). For the lowK limit too, these quantum
electronic factors are identical to the semiclassical electroni
wave functions in Eq(11).

IV. DYNAMICS OF TIME-DEPENDENT STATES

Let us now examine time-dependent states of the mol

the A-doublets, and is equal to{|eg—e_|/A}
%/|Aes 11} by Eqgs.(8) and(9). This figure also shows
that(L) is precessing nearly, but not quite, about the inter-
nuclear axisiL) seems to “hover” just above the axis. A
top view of the same trajectory, as viewed from along the
negativeX-axis, is shown in Fig. @). Here(L) is seen to
wag” from one side of theX axis to the other. The origin
of this wag is the precession ¢N) and(L) about the total
angular momentuniK), as shown later in this section. The
rate of wag is @, twice the rotation rate.

Now consider a rapidly rotating molecule, by settikg
=500. Figure &) shows the molecule undergoing about 3/4
of a rotation in a much shorter time, 0.015 ps, while)
remains nearly space-fixed. Since the precession rate, char-
acteristic of the anisotropy of the electrostatic potential, is
the same as beforél.) has undergone only a small fraction
of a precession in this time, barely discernible from the pic-
ture. Thus in this case the molecule is rotating far too quickly
for (L) to follow, and we sayL) is “decoupled” from the
internuclear axis. The view from the rotating molecular
frame, Fig. 8b), gives another perspective. Sinde) rotates
approximately 3/4 of a revolution in 0.015 ps, the projection
of (L) onto the moleculaZ axis oscillates. This oscillation
frequency is still related to the A-doublet splitting,” and is
equal to ey—e_)/A. In this highK limit this A-doublet
splitting approaches the nuclear rotation frequency. Return-
ing to a view from the space-fixed frame, and following the
trajectory for a longer time, 0.75 ps, we see in Fi¢c)&hat
¢L) slowly oscillates along the space-fixed axis, with a
frequency of oscillation given bjA es j|/(2#). The differ-
ence |Aes |/2 is the energy gapE_(K+1)—Ey(K)
~E,(K—=1)—Ey(K), betweenY, and the nearesi .
states. This energy gap arises from the anisotropy of the
potential energy felt by the electron in the space-fixed frame,
produced by the nuclei that are rapidly rotating in Xer’

ecule. These pictures will be especially helpful for our studyplane. Note also that the line on whi¢h) oscillates slowly

of collision processes in the accompanying paper. We mon

iFotates. The motion ofL) in the space-fixed frame then has

tor the expectation value of the electronic orbital-angularthe appearance of the motion of a Foucault pendulum.

momentum vectorL ), as a function of time. We choose the

If we consider an intermediate case, a valudofvhere

initial electronic state so that we can easily see the timethe precession rate is comparable to the oscillation réte, (
evolution of (L); in particular we choose the Born— =80), we get the trajectory shown in Fig. 9, shown from a

J. Chem. Phys., Vol. 107, No. 14, 8 October 1997



5466 L. J. Kovalenko and J. B. Delos: A-doublet states in diatomic molecules

(b) (d)

FIG. 7. Behavior of the expectation value of electronic orbital-angular momefityrfor low rotation (K=7). A planar nuclear trajectory is use@ A
typical trajectory is shown in the space-fixed frame with atrat the origin. The initial position of the molecular axis is shown in gray, the final position
in black, from which it is seen that the molecule undergoes about 3/4 of a rotation in 1 ps. Several snapshots of tfle)\@etashown. The heavy black
line shows the locus of the tips of this vector, which starts out along the negétigis and ends up along the positiVé axis. This behavior can be better
understood by looking gb) in which the same trajectory is shown but in the body-fixed frame. It is evidenflthatvhich starts out along the internuclear
axis, (negativeZ-axis), precesses approximately five times about that axis. The same trajectory is sh@yifointhe body-fixed frame over a longer time
duration, 7 ps, during which timéL ) is seen to have undergone almost one complete oscillation along the internuclear axis. Also n¢it¢ hiaat a
component of angular momentum along the negatiaxis, the axis of rotation. A top view of the same trajectory, as viewed from along the ne}adixis,

is shown in(d). Here(L) is seen to “wag” from one side of thX axis to the other.

space-fixed point of view. The behavior 6f) is compli-  trajectory such that both total energy and total angular mo-
cated. Over the 9 ps duration of this trajectofly) has un- mentum are conserved. In addition to monitorifig) as a
dergone about 4 precessions wHile,) has undergone about function of time, we also monitor the expectation values of
5 oscillations. To aid in visualizing the motion 6f ), pro-  both the total angular momentudk), and the nuclear an-
gressive positions ofL) are numbered in the figure. gular momentumN). The result is shown in Fig. 18) in

By considering planar nuclear trajectories, we havethe low rotation limit (<= 7) for the same set of initial con-
avoided the question of how the electronic motion affects thalitions used to generate the planar trajectory results of Fig. 7.
nuclear motion, which we now address. Using the methodt is seen thatN) and(L) precess about a space-fix@d)
described in our previous pap€rwe generate a 3D nuclear with a period equal to the rate of rotation. Thils) is not

J. Chem. Phys., Vol. 107, No. 14, 8 October 1997
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V4
0

FIG. 9. Behavior of the expectation value of electronic orbital-angular mo-
mentum,(L ), for intermediate rotation =80), where the precession fre-
guency of(L) about the internuclear axis is comparable to the oscillation
frequency of its projection along the same axis. A planar nuclear trajectory
is used. The molecule undergoes about 7 or 8 rotations in 0.9 ps. The motion
of (L) appears analogous to that of a Focault pendulum. It starts in region 1,
oscillates nearly along th&’ axis to region 2, then over to 3, and so on.

only precessing rapidly about the internuclear axis but also
more slowly about the total angular momentum. Figuré)10
shows the same trajectory, viewed in the body-fixed frame.
The qualitative behavior ofL) is similar to that shown for
the planar trajectory in Fig.(€). The nuclear angular mo-
mentum,(N), which must by definition be perpendicular to
thez axis, is always found nearly along theaxis, the initial
axis of nuclear rotation. In fact,N) oscillates with small
amplitude in the xy plane about théaxis, causing the total
angular momentuni,K), to oscillate accordingly.

There is one qualitative difference in the electronic mo-
tion for planar trajectories as compared with 3D trajectories
and it is present only in the low limit. In the former case,
(L) always oscillates at a frequency given by theloublet
splitting, while in the latter case conservation laws may pre-
vent (L) from oscillating. This constraint can be seen in
Fig. 11 K=1), where(L) is seen always to point away
from atomA, such thafL;) is always along the negativ@
axis. Imagine now thatL ;) were to lie along the positivé
axis, which would be the case if it underwent half of an
FIG. 8. Behavior of the expectation value of electronic orbital-angular mo_oscillation. The electronic energy for this hypothetical state
mentum(L ) for high rotation K =500). A planar nuclear trajectory is used. Would be nearly the same, and thus, by energy conservation,
(a) A typical trajectory is shown in the space-fixed frame. The molecule haghe |ength Of<N> would have to be nearly the same. Yet
undergone about 3/4 of a rotation in 0.015 ps, during which timere-  gjnce(| ) would point in a different direction from the origi-
mains nearly space-fixed. Ifb) the same trajectory is shown but in the .
body-fixed frame. Note that the projection {f) on the rotatingZ axis, nal <L>’ the resultant O{L> and<N> would be very different
(L,), is oscillating at the same frequency as the nuclear rotation frequencyfrom the initial (K). But by conservation of total angular
The same trajectory is shown o) for the space-fixed frame over a longer momentum,<|(> must be constant. Thus oscillation (ji)
time duration, 0.75 ps. Her@k) is seen to oscillate along a nearly space- 41onq the internuclear axis for such a small valu&afould
fixed axis on a time scale of about 0.2 ps, while that axis itself slowly . .

violate conservation of total angular momentum andLlsg

rotates. The motion ofL) is thus like a Foucault pendulum, with successive ] o e
positions of(L) indicated in the figure with the numbers 1—4. is constrained in its range of oscillation.
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(a) ! (b)

FIG. 10. Behavior ofL) and the expectation value of nuclear angular momentiith,accounting for conservation of total energy and angular momentum.
A typical trajectory for low rotation K=7) is shown in(a) the space-fixed frame arttl) the body-fixed frame. The time duration is 7 ps, which corresponds

to approximately 4 nuclear rotations. In the body-fixed fran{g,) is seen to undergo a spiraling motion, corresponding to fast precession about the rotating
axis and slower oscillation along that axis. This behavior is qualitatively similar to that obtained for the planar nuclear trajectory showicin &igo T

the body-fixed frame, the nuclear angular momentum ve{, though always perpendicular to t#eaxis, is not constant; rather, it oscillates in k¥

plane about the negativé-axis. In the space-fixed frame, the nuclear angular momentum véioiis seen to adjust to the motion ¢f) such that the total
angular momentum(K ), remains fixed. The nuclear trajectory is seen to be nearly planar.

This is not a problem for large enoudh. As K in-  which gives a more intuitive, pictorial view of the dynamics.
creases, so does the lengtiX by, while the length of L) is ~ We see that “lagging” of oriented orbitals behind the rotat-
constrained to be less than or equal to 1. T{is becomes  ing internuclear axis is not a correct description of the states;
nearly coincident with{N), which is perpendicular to the rather, the decoupling of the electronic motion from the
diatomic axis. Then oscillation ofLz) causes a much nyclear axis is represented by states which can be interpreted

smaller relative change in the length @), enabling both 55 5 gyperposition of aligned states and traveling waves.
energy and angular momentum to be conserved. Consider the We have investigated how the expectation value of elec-

caseK=7, as shown n Fig. .](0)' <L.Z> oscillates its full tronic orbital-angular momentur{l- ), changes with time for
range, and the electronic motion as viewed from the molecu-. .
different nuclear rotation rates. We see that not only does

lar frame is nearly the same as for the planar case. . . S
(L) precess about the nuclear axis, but its projection along
V. CONCLUSION that axis oscillates.

We have obtained a semiclassical picture\efloubling, We have shown that in most cases, the behavidiLof
one which is consistent with a full quantum treatment, butfor a planar nuclear trajectory is similar to that for a 3D
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APPENDIX: FULL QUANTUM MODEL
Here we review the quantum theory afdoubling, set-
ting it up in a way that will make it easy to compare with the
corresponding semiclassical description given in Sec. Il.
The Hamiltonian for the total system is given by

\\\)Xl ﬁZ
H:—Z V2+he. (A1)

The wave function 5K:M for the full system of electrons
and nuclei is an eigenfunction of H and of both the square of
the total angular momentum operaté?, with eigenvalue
2 . .

FIG. 11. A three-dimensional trajectory conserving total energy and angulaK (K +1)%<, and th_e pI’OJe(.:tlon of .the t_Otal angular momen-
momentum foiK = 1. In this case the nuclei do not rotate in a plane. Instead,tum onto a space-fixed axiK,;., with eigenvaluevi.
the twirling internuclear axis traces out a cone. Aldo;) cannot oscillate We expand the eigenfunctidi[TE'K'M in terms of basis
significantly along the internuclear axis. It is restricted by conservation Offunctions which are products of Born—Oppenheimer elec-
total angular momentum and energy. . . . . .

tronic eigenfunctionsg ,(r;R), nuclear vibrational factors,

. . . *

u(R)/R, and symmetric-top e|genfunct|ori§,'f,,A(<I),®,0),

trajectory in which energy and total angular momentum are

conserved; however, we have identified one regime, very xpEKM:E Cy @)Dfﬂl(q),@,o)sﬁA(f:R)- (A2)
low K, in which the behavior differs qualitatively from that A R
for a 3D trajectory. Specifically, we saw that for larffe ) .
(L,) oscillates between approximatelyA and —A, while We use an “active” notation for the nuclear angular
for smallK the range of oscillation ofL) is smaller. factor"®

Now that we havg verifigd thg results of .the semiclassi- D,'f,&(d),@,O):e‘Mq’dm(@),
cal model, we use this semiclassical theory in the accompa- (A3)

nying paper to obtain insight into the dynamics of dfﬂl(@):(K,M|e*‘KY®ﬁ|K,A).
collisionally-induced electronic transitions in oriented di-

atomic molecules. Since the molecule is cylindrically symmetric, the choice of
the third Euler angley, in theD(®,0,), is arbitrary*® We
ACKNOWLEDGMENTS choosex=0.

Substituting the expansion &5 XM into the full Schie
This research was funded by both the American Chemidinger equation and following the procedure in Delbs,
cal Society-Petroleum Research Fund and a William andjives

f A2 92 . \

Za_RZ+<¢A’|heI|¢A>_E
ﬁ2

Sara +2#—R2[K(K+1)—Az]

1
> e + oz (G| L2 r) — A%H2) ) u=0. (A4)
A 2uR

ﬁZ
—5Ar,A+1(m \/[(K+A+1)(K_A)]<¢A’|L+|¢A>]

hZ
F%r,Aq{ﬁ \/[(K_A+1)(K+A)]<¢A’|L—|¢A>]J

To express this in block-diagonalized matrix form we transform the basis set to the linear combinations
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1 K* K* -1 K* K* K*
—[-Dn4d1)+Dy —a|=1)], ¥2=—=[Dnal1)+Dy _1|—1)], =Dy ¢0), (AS5)

Y1= =
Y2 iv2
using the same transformation as in the semiclassical treatment. The resulting matrix representation of the secular equation is
then given by

(ER+ EK+ El,-[_E) 0 0
0 (ERtExte—E) —i2BQVK(K+1)| =0, (AB)
0 i2BQVK(K+1) (ErtExtes)—E
|
where we have used the following definitiof¥s: 4BQVK(K+1)
= (A10)
—#2 ¢%u |Ae|
ER:Z,LL_UW’ EK=BK(K+1), . . . 3
To first order inA, the energy levels are given by the familiar
) (1,1L?1,2) formulas
en=e€n—2B+ W—, (A7)
Eo=BK(K+1),
, (1,0L? 1,0 h?
Es= €y 2 R2 ' = 2 RZ' ,
I m E_=BK(K+1)+e;—BQVK(K+1)A, (Al
Energy levels, found by solving this secular equation,
are E.=BK(K+1)+es+BQVK(K+1)A,

Eq=Egr+Ex+e€f, . -
0 TR TKETH (A8) and the associated wave functions by

E.KM_
\I’O -

_D§,1|1>+D§,—1|_1>)

V2

2
+(2BQ)’K(K+1) .

+ \/ €€
2

The first term,Eg, corresponds to radial, or vibrational, en- (yEKM~
ergy. This is an additive constant to all energy levels, so we

ignore it. In these expressions there is one relevant parameter 1+
which depends on the particular molecule, the ratio of the

anisotropy of the electrostatic potential — e =|A€|, to iA

the rotational energy constarB. Therefore, to see how +— (D§*0|O>)], (A12)
these eigenvalues vary with nuclear rotation, we divide these 2 '

equations byAd|,

(—D§,1|1>—D&,1|—1>)

iv2

A
2

. K* K*
i:iK(K"l_l) WEKM 1 —iA _DK,1|1>_DK,71|_1>
Ael |Ael ’ - > )

4 (A9) R V2
14| —
R S LT e 2
A A NKFDH 5+ 5y
+\/ 1 B \? 4/ BQ ZKK . +(D§,*0|0>)]-
=V 2T aq) T4 ae) KKFD

Here we have defined the zero of energy taeQe consistent  Anticipating comparison with semiclassical results, we re-
with the semiclassical treatment. These energy levels are therite this in an equivalent form for the particular case of
solid lines shown in Fig. 5. M=K, in which the projection of total angular momentum

We now derive formulas for energy levels and eigen-along the space-fixed' axis is as large as possibl€lhe
functions in the two limits of low and higK. The limiting  choice of M is arbitrary) Substituting Eq.(A3) into Eq.
behavior for low values oK is obtained by expanding the (A12) and using the following expressibhfor Wigner-d's
square root in Eq(A8) as a power series if, with M =K:
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| _ K* K* .
d& A(@):(_l)KfA\/ (ZK) \I’E’K’M: DK,1|1>+DK,71| 1>
: (K+A)H(K=A)! 0 2 '
o) K+A 0) K—A
X cos<§) sm(;) , (A13) WEKM_ i D§,1|1>+D§,71|_1>
- e \/5
we obtain the following equivalent expressions for the Idw- 1+ 1- A
limit wave functions of Eq(A12): (A16)
1 -
+|{ 1——|(Dgo0)) |,
PEKM_giKOgK (@) K A ( K’O| 2
0 K.0 K+1
0 0 1 *
coff —||1)—tan || —1) PEKM= D§,0|0>)
% 2 2 1 2
' 1+(1-—
V2 A
( 1 (D&f1|1>+oﬁfl|—1>)]
K 4K +1-— .
q,E,K,M:e dg o(O) [ K A \/5
B A2 K+1 .
142 Again, for the case oM =K, we use EgqstA3) and(A13) to
2 rewrite these highk limit wave functions in the equivalent
form
—coff —||1)—tan —||—1 ) _ K
2 2 +£ 0) ‘PE’K'MIG'K(Ddﬁ,O(@) s
iv2 2 ’
Al4 © 1 © 1
(A14) XCOE|>—ta§|_>
\/E 1
iK® 4K :
PEKM_ e %dg o(0) E [ K
+ .
B A 2| 2 VK+1 ek ekPdi «(0) | K
2 - 1,2 K+1
) ) 1+ 1—X
—co —)|1)—ta —1|-1)
2 2 ® ®
X : +[0) | . coff —||1)+tan —||—1)
iV2 2 2
X
iv2
Similarly, the highK limiting behavior of the energy I\/—
levels can be obtained by expanding the square root in Eq.
(A8) as a power series in A/ To terms of lowest nonvan- 1
ishing order in 1A, the energy levels are given by +il 1= K) 0y |, (A17)
EOZEK+ 61’-[,
e ?dk (®) 1 K
€1+ € |[A€’'| 1 EkM__ ~_ KO —il1== -
E =Eqt o ——2BQVK(K+ 1)~ —— 1, (AL5) v T2 0= 1= 1] Vet
1+(1——
A
. €Nt es |Ae’| 1 c) 0
E,=Ex+ —5— +2BQVK(K+ 1)+ —— 1, Cot(_ Dtar |- 1)
2 2
X
and the associated wave functions by i\/E
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The above formulas for energy levels and wave func-?we use the symboN for nuclear angular momentum rather than the
tions are easy enough to derive, but it is hard to see their conventional symboR so as not to confuse nuclear angular momentum
hysical meaning. In Sec. Il we compare these rigorous full,Vth the nuclear trajectonk. .
physical mea | 9 ith SheC f € compa e ese g0 OUIS U_ h3E. U. Condon and G. H. Shortleffhe Theory of Atomic Specti&€am-
quantum results with those of our more intuitive semiclassi- bridge University Press, Cambridge, 1963

cal treatment. “4Through out this paper we consider the case whetee,, . In the oppo-
site case, thes is replaced by, and thee, by es in Eq. (10).
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