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Order and chaos in semiconductor microstructures 
w. A. Lin and J. B. Delos 
Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, 
Cambridge, Massachusetts 02138 and Department of Physics, College of William & Mary, 
Williamsburg, Virginia 23185 

R. V. Jensen 
Department of Physics, Texas A & M University, College Station, Texas 77844 

(Received 2 July 1993; accepted for publication 12 October 1993) 

The semiclassical theory of ballistic electron transport in semiconductor microstructures 
provides a description of the quantum conductance fluctuations in terms of the classical 
distributions for the lengths and directed areas of the scattering trajectories. Because the 
classical dynamics differs for integrable (circular) and chaotic (stadium) scattering domains, 
experimental measurements of the conductance of these microstructures provide a unique probe 
of the quantum properties of classically regular and chaotic systems. To advance these 
theoretical and experimental studies we compare geometrical formulas for the classical 
distributions of lengths and areas with numerical simulations for microstructures examined in 
recent experiments, we assess the effects of lead size and placement, aud we provide a critical 
analysis of the role of scattering "noise" on the classical and semiclassical predictions. Finally, 
we present a detailed comparison of the semiclassical theory with recent experimental 
measurements of the conductance fluctuations in circular- and stadium-shaped microstructures. 

I. INTRODUCTION 

Advances in semiconductor fabrication techniques 
have produced solid-state devices that confine electrons to 
move in very small two-dimensional areas of the size of 
about a micron. Studies of the conduction properties of 
these "microstructures," which may someday form the 
components of very large scale integrated circuits, repre
sent an exciting new area of research. 

In high mobility GaAs microstructures the mean free 
path for elastic scattering of the electron from impurities is 
much larger than the size of the device. Consequently, the 
conducting electrons move freely through the device except 
at the confining walls where they undergo specular reflec
tion. Moreover, at low temperatures (-20 mK) the mean 
free path for inelastic scattering is even longer and the 
electrons maintain their phase coherence for a long time 
inside the structure. As a result, the resistance of the device 
is primarily determined by the geometry of the structure. 

In a recent experiment, I the resistance across two dif
ferent microstructures in the shape of a stadium and a 
circular disk was measured as a function of applied per
pendicular magnetic field. Although the measured resis
tance was a complex function of the applied field in both 
cases, shape-dependent differences in the fluctuating resis
tance were clearly identifiable. 

A detailed understanding of the complicated conduc
tance fluctuations in these simple devices poses a challenge 
to theory. In addition to the practical considerations of the 
electrical properties of these devices, this experiment also 
provides a unique comparison of how regular and chaotic 
classical electron dynamics can affect the quantum trans
port. Since the classical motion of the ballistic electron in 
the stadium-shaped microstructure is chaotic while the 
classical dynamics in the circle is regular, a semiclassical 
description2 of the electron transport is required that can 

discriminate between regular and chaotic scattering of the 
conducting electrons as they traverse these devices. 

In their seminal work, Jalabert, Baranger, and Stone3 

combined the Landauer formula' for the conductance, 

(I) 

in terms of the complex transmission amplitudes tnm con
necting the incoming and outgoing conduction channels, 
with Miller's semiclassical formula' for the scattering am
plitudes, 

(2) 

written as a weighted sum of the total semiclassical phases 
eM>, accumulated along each classical path r connecting 
incoming channel m with outgoing channel n, to derive a 
simple expression for the statistical correlation of the con
ductance fluctuations as a function of applied perpendicu
lar magnetic field, B. The differences in the semiclassical 
phases are primarily determined by the magnetic flux pass
ing through the areas, A, enclosed by the ballistic electron 
orbits as they pass through the device. Therefore, by re
placing the weighted sums over classical orbits by integrals 
over the classical distributions of enclosed areas, the semi
classical correlation function for the conductance fluctua
tions can be simply expressed3 as, 

(13G(B+IlB)13G(B) cc I f:oo dA e'2~&BA/~P(A) (. 
(3) 

where %=h/e=4.14 X 10-3 T p,m2 is the fundamental 
unit of magnetic flux and P(A) is the distribution of (di
rected) areas enclosed by the classical scattering trajecto
ries. 
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For weak magnetic fields the curvature of these classi
cal electron orbits can be neglected and the areas computed 
using the straight line (B = 0) classical trajectories. Since 
numerical simulations3 indicated that these classical orbits 
through chaotic scattering domains exhibit an exponential 
decay in the distribution of directed areas, 

peA) «e-aIAI , (4) 

the integral in Eq. (3) could be easily evaluated, 

(5) 

to relate the semiclassical correlation of conductance fluc
tuations to the single classical exponent, a.6 

In a previous paper, Jensen7 provided analytical deri
vations of the distributions of classical trajectories in var
ious chaotic scattering domains with explicit geometrical 
formulas for the area decay exponentsi a, that can be con
veniently used both to design and to interpret experiments 
of the ballistic electron transport in semiconductor micro
structures. The primary purposes of the present work are 
to compare these analytical formulas with detailed numer
ical simulations of the classical scattering through two
dimensional domains shaped like the chaotic stadium and 
regular circle and to use these analytical and numerical 
results to interpret recent experimental measurements 
which contrast the statistical properties of the conductance 
fluctuations in real microstructures with these shapes. 

In Sec. II we describe the results of numerical simula
tions of the classical distributions of path lengths and di
rected areas for trajectories scattering through stadium. and 
circle domains with two openings of variable width, w, 
corresponding to the experimental leads. For the chaotic 
stadium, the numerical distributions of classical lengths 
and areas are both exponential with characteristic expo
nents that are well described by the simple geometrical 
formulas of Ref. 7. In particular, we confirm in Sec. II A 
the predicted dependence of the area decay exponent on 
the square root of the width of the leads, 

(6) 

which has also been inferred in the recent analysis of ex
perimental measurements of conductance fluctuations in 
stadium-shaped microstructures.8 

In contrast, the numerical distributions for the path 
lengths and areas in the circle described in Sec. II B exhibit 
an initial exponential decay which crosses over to a power 
law behavior. Simple analytical arguments are presented to 
account for this behavior that can be generalized to any 
integrable scattering domain. In particular, we find that the 
initial exponential decay of the length distributions appears 
to be similar to the comparably sized stadium. However, 
because of the conservation of angular momentum in the 
integrable circle, the areas enclosed by the trajectories in
crease linearly with length and the initial exponential de
cay of the areas will be characterized by an exponent pro
portional to the lead widths, 

(7) 

which is very different from the chaotic case, Eq. (6). This 
new prediction may provide the clearest experimental 
means of distinguishing the regular and chaotic scattering 
domains. 

In Sec. II C we briefly examine the dependence of the 
stadium results on the locations of the lead openings. Cu
riously, the classical distribution of lengths in the stadium 
can also exhibit a power law tail for some lead locations 
that lead to long-time trapping in the bouncing-baIl motion 
between the two straight sides. However, because these 
orbits enclose very little directed area they cause nO signif
icant modifications to the exponential distribution of areas. 

Some of the most important results of our numerical 
studies presented here are the illustrations in Sec. II D of 
the effects of random, nonspecular scattering that may 
arise from imperfections in real experimental microstruc
tures. Here we find that strongly chaotic domains, like the 
long-sided stadium studied by Marcus et al., 3 are relatively 
insensitive to this scattering "noise." However, less cha
otic, short-sided stadium domains and the integrable cir
cular domains are strongly affected by noise. In these cases 
the decay exponents for the lengths and areas are increased 
and the power law tails are destroyed. Nevertheless, the 
predicted linear dependence of the effective ac for the circle 
on the lead widths, Eq. (7), appears to survive for small 
levels of nonspecular scattering. 

Finally, in Sec. III the classical results for the area 
distributions, P(A), for both the stadium and circle are 
used in combination with the semiclassical expressions for 
the correlation function, Eq. (3), to provide a detailed 
comparison of theory with recent experimental results. In 
particular, we show that the correlation of the measured 
conductance as a function of the magnetic field for the 
long-sided, chaotic stadium is well described by the classi
cal area decay exponents, a" evaluated for the specific 
devices used in the experiments. However, the experimen
tal measurements for the circle cannot be adequately de
scribed using the theoretical results for the ideal circle. 
Only if we invoke large levels of nonspecular scattering 
noise in the classical simulations can we recover the fast 
(approximately) exponential decays observed in the exper
iment. 

II. CLASSICAL DYNAMICS 

A. Chaotic billiard (stadium) 

For a billiard system with two holes (where particles 
enter from one of the holes), trajectories with different 
initial conditions spend different times inside the structure 
and travel different distances before escaping. Universal 
behavior associated with the underlying chaotic dynamics 
predicts that the probability density for traveling a distance 
I then escaping is2 P(l) <X e-rl. In addition to this, for weak 
magnetic fields that do not significantly bend the straight
line trajectories, one can also define an effective area 
A == (1/ B) J &f. dI accumulated along the straight-line 
path from entrance to escape where &f is the vector po-
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tential for the applied magnetic field of strength B. Nu
merically, the probability density for acquiring an area A 
before escaping is found to be3 P(A) cc e-aIAI. 

Jensen7 showed, by means of the mixing property of a 
fully chaotic system, that the exponential decay exponent r 
can be related to geometrical dimensions of the microstruc
ture~ 

total size of holes 
r 1T(area of container) . 

(8) 

For a stadium with two holes of equal size w, ihis gives 

2w 

r 1T(1TR2+2WR) 
(9) 

where R is the radius of the semicircles and W is the length 
of the straight sides. This formula is valid for small holes 
where the presence of the holes does not significantly affect 
the mixing property. 

For various chaotic structures there is a general 
relationship7,9 between the two exponents r and a, 

a cc .,Jr. (10) 

The nontrivial dependence of a on the square root of r 
arises because the directed areas are accumulated in a ran
dom walk process as the scattered electron circulates one 
way and then the other as it bounces chaotically around 
the billiard. In particular, since r is proportional to the 
lead size, w, these results predict that the area decay expo
nent for the chaotic scattering domains will be propor
tional to the square root of the hole size, Eq. (6). 

For a stadium billiard the geometrical formula7 gives, 

(11) 

where A,= ,f2R ( ,f2R + W) is a typical magnitUde for the 
enclosed area. For the strongly chaotic, long-sided sta
dium, W> R, the parameter b was expected to be around 4 
[Eq. (44) in Ref. 7]. However, because of the tendency for 
orbits to circulate several times around before reversing 
direction for the short-sided stadia with W < R, this pa
rameter had to be reduced to bz 1 to achieve agreement 
with the numerical simulations by Jalabert et al. 3 for short
sided stadia. 

To perform our numerical simulations, we first adjust 
the length of the stadium and the size of the holes, then 
send in large number of particles (typically 107 ) at differ
ent initial conditions, follow the orbits until they escape, 
and record I and A. The distribution of the initial condi
tions is such that the particles are uniformly distributed 
over the entrance slit and at each position the directions of 
the particles are distributed uniformly over sin f3 where f3 
is the initial angle from the normal to the boundary at the 
entrance slit. If the resulting distributions of areas and 
lengths follow exponential laws, we fit the data to get r 
and a. 

In general, we find that if one of the leads is located on 
a curved side where the particles enter and the other lo
cated on a straight side, we get good exponential distribu-

~ 
(a) ~ (b) 

~ 

3: 
z'" 
r:1 
~ .. 

o 0+-----,-___ -/ 
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FIG. 1. Numerical simulations of the classical distributions for (a) di
rected areas, N(A), and (b) lengths. N(I), for the stadium microstruc
ture of Marcus et aL I We scale the lithographic dimension of the struc
ture to correspond to R= 1. W=2, and w=O.4667. (All the simulations 
done in this paper are for R = 1.) One hole is centered on a semicircle, 
where 107 particles are injected into the stadium, and the other is located 
at the joining point of the semicircle and one of the straight sides. For all 
the figures. N(A) is the total number of particles that escaped and en
closed an area that is within the range of a bin centered at A, and similarly 
for N(l). The best fit to the exponential decays of enclosed areas in (a) 
give a=0.351 ±0.OO3, while Eq. (11) predicts as=0.414, and the best fit 
to the exponential decay of lengths traveled in (b) gives r=0.0459 
±O.OOOl, while Eq. (9) predicts r,~O.0416. 

tions that agree very well with the predictions of the simple 
geometrical formulas. For example, Fig. I shows the re
sults for the length and area distributions for the stadium 
scattering domain with relative dimensions equivalent to 
the lithographic dimensions of the microstructures studied 
in Ref. I. The exponential laws hold very well. In Fig. 2(a) 
we compare the numerical values of r as a function of side 
length W with the analytical formula, Eq. (9), and Fig. 
2 (b) verifies the linear relationship between a and .,Jr pre
dicted by Eq. (11). 

For this long-sided stadium with W/R=2, the predic
tion of Eq. (11) with bz4 is in good agreement with the 
numerical simulations. However, for shorter-sided stadia 
Fig. 3 shows that the parameter, b, decreases approxi
mately linearly with W / R because of the increasing ten-

(a) 0 (b) 
" '" 0 0 
0 o 

0 

1'-~ 
.. 

t;;"l 
0 0 0 

0 
~ ~ 0 
0 0 , 

0 2 3 4 0.1 0.2 

W VI' 
0.3 

FIG. 2. Comparison of the numerical simulations with the geometrical 
formulas for the length and area decay exponents in the stadium. (a) 
Simulation results (plus) for r as a function of side length Wat fixed hole 
size w=0.2 give excellent agreement with Eq. (9) (solid curve). (b) For 
fixed side length, W=4, and different hole sizes, w=0.2, 0.4, 0.6, 0.8, 1.0, 
the simulation results (diamond) show a good linear relationship for a vs 
.ft as predicted by Eq. (11). 
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,.c 

'" 

° 2 3 
W 

4 

FIG. 3. The parameter h in the geometrical formula for the area decay 
exponent, Eq. (1 ~), increases linearly with stadium side length W. At 
fixed hole size, w=O.2, a is obtained from simulations at each side length, 
W, and the factor b is extracted by making use of Eq. (11) and Eq. (9). 
The best fit line has a slope 1.28::l:0.0t and b-intercept O.4S±O.03. 

dency for the orbits to circulate around the short-sided 
stadia.7 Figure 3 also shows that for longer-sided stadia the 
parameter b continues to increase to values larger than 4, 
presumably because the many orbits bouncing between the 
two straight sides enclose very little area. 

B. Integrable billiard (circle) 

Because of the conservation of angular momentum, the 
classical motion in the circular scattering domain is not 
chaotic. A scattering particle enters the circle with an ini
tial angle relative to the boundary and preserves that angle 
at each bounce until it finds a hole and exits. In contrast 
with the irregular stadium dynamics, the particle orbits 
continue to circulate around the scattering domain in the 
same direction until they escape. Numerical simulations of 
the classical dynamics indicate that the distributions of 
lengths and areas exhibit an initial exponential decay 
which crosses over to a power law behavior for large path 
lengths or areas, 

(12) 

[

e-a,IAI A<.A· 

P,(A)- IIAPA,' A>~:; (13) 

where /3,,,,,/3 A"" 3 and Lc and Ac are the critical length and 
area where the distributions cross over from exponential to 
power law. For example, Fig. 4 shows the classical distri
butions of areas and lengths from our numerical simula
tions of scattering through an ideal circular domain corre
sponding to the lithographic dimensions of the circular 
device studied in Marcus et al. 's experiments. I 

Our numerical simulations indicate that for small holes 
the initial exponential decay for the path lengths appears to 
be approximately described by the geometrical estimates 
for a chaotic billiard, Eq. (8), with the area of the circle 

2w 
(14) 

(b) 

~ 
~ 

3: ~'" =-Zoo Z 
.:: .::oo - -.... .... 

0 0 

-80 -40 0 40 80 ° 300 600 
(e) A (d) I 

'" -
~ ~ 

3: '" 
s 

~ 
Zoo Zoo· 
.:: .:: - -.... .... 

0 0 

° 2 3 4 5 2 4 6 
In A In I 

FIG. 4. Simulations of the area and length distributions for the circle of 
Marcus et al. 1 using the lithographic dimensions scaled to R = 1. The 2 
holes of width w=0.3182 are separated by 90°. In (a) and (b), the X 
symbols are for the case with the initial distribution of the particles at the 
entrance hole has 1000 positions and each position is given 10000 angles, 
while the line is for the case with 100 positions and 100000 angles. The 
distributions show exponential decays for small lengths or areas and long 
tai1s for larger lengths or areas. (c) The log-log plot shows that the long 
tail in the area distribution is a power law. A best fit line over the section 
shown has a slope /3 A = - 3.33 ±0.07. In (d) the log-log plot shows that 
the long tail in the length distribution is also a power law with slope 
/3,= -3.26,>0.02. 

This exponential decay can be partly understood by follow
ing the classical dynamics of the strip of initial conditions 
in the Birkoff phase space for the circular billiard with a 
single hole shown in Fig. 5. After n bounces the linearly 
stretching strip of scattering trajectories will cross the loss 
strip n times. Since the area of each intersection is propor
tional to the square of the width, W, times the slope, 
0: 1I21TRn, of the scattering strip, the total area of the n 
intersections at the nth bounce will be En ""w2/21TR. If 
none of these orbits have escaped on previous bounces, 
then the fraction of orbits in the initial strip with phase 
space area P( 0) = 2w escaping on the nth bounce will be 
approximately En/P(O) =W/41TR and the surviving prob· 
ability after n bounces will be 

P(n+ I) =P(O) (l-nw/41TR) ""P(O)e-(w/4.-R)n, 

for nw/41TR~1. (15) 

Finally, assuming that a typical orbit traverses a distance 
of ""R between bounces, we arrive at a distribution of path 
lengths with an initial exponential decay of r=W/41TR2. If 
we double this rate for two holes of size w, this estimate is 
close to the chaotic value, Eq. (14). 

Because of the regular dynamics in the circle, these 
arguments for the "average" behavior of "typical" orbits 
can only be expected to be qualitatively correct. The im-
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FIG. S. The Birkoffphase space for a two-dimensional billiard system is a rectangle spanned by a coordinate variable, s, corresponding to the distance 
along the boundary for particle impact and a conjugate momentum variable given by sin!3 of the scattering angle {3 relative to the normal direction from 
the boundary. The evolution of an initial strip of trajectories that entered a hole in the side of a circular domain, centered at s=7rR with a uniform 
distribution in sin p, is shown. The time evolution in this integrable system causes the strip to stretch out at a linear rate and wrap around the rectangular 
phase space. This strip overlaps the vertica110ss strip, corresponding to orbits that can exit the hole, in rhomboid-shaped regions. In (a) the initial strip 
is evolved for 2 bounces (indicated by the striped region) and the points representing the orbits escaping back through the opening are removed. In (b) 
the strip of evolving trajectories intersects the loss strip 4 times after 4 bounces, but two regions of overlap have already been depleted after 1 and 2 
bounces. In addition, two gaps have appeared in the strip of trajectories that escaped on the third bounce. Finally, (c) shows the chopped up strip of 
orbits after 8 bounces. AU three figures show two black, triangular regions that represent some of the longest lived trajectories tnat contribute to tne 
long-tim.e, power law tails in this integrable system. In (a) these triangles are shown with height 118. After 4 bounces all of these orbits remain trapped 
in (b); however, after 8 bounces, some of these orbits have begun to escape and one comer of each triangle is chopped off. If the height of the triangle 
is reduced to 1I2n, these triangles of initial conditions with area 0:: lint will survive n bounces. 

portant result is that these numerical simulations and an
alytical arguments indicate that the initial exponential de
cay rate for the circle should be proportional to the lead 
width as in the chaotic case. However, since the regular 
orbits in the circle always circulate in the same direction, 
the areas enclosed will also be proportional to the length 
(in contrast with the chaotic case) and the area decay 
exponents may be expected to scale linearly with lead 
width as in Eq. (7). In particular, the initial area decay 
exponent may be estimated by, 

(16) 

where L",4R is an estimate of a "typical" orbit length 
required to enclose an area A ",R2. 

For n> 41TR/w the exponential decay predicted by Eq. 
(15) slows down because the escaping areas of phase space 
have already been depleted on previous bounces. (In con, 
trast, the mixing property of the chaotic scattering domain 
ensures that the surviving orbits are unifonnly mixed in 
phase space.) In the integrable system this steady decrease 
in the escape rate leads to an effective power law decay of 
the distributions of lengths and areas observed in the nu
merical simulations, Eqs. (12) and (13). Using the argu
ments above the crossover from exponential to power law 
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FIG. 6. This simulation for the area and length distributions of the sta
dium (+ symbols) differs from Fig. 1 (shown as lines in this figure) only 
in the location of the holes. In this case both holes are symetrically located 
on one of the curved ends. (a) The length distribution shows an initial 
exponential decay for small / and a long tail for large I. The best line fit to 
the exponential part gives r=O.046±O.OO3, which is basically the same as 
that in Fig. 1. (b) The log-log plot shows that the long tail is a power law. 
A best fit line over the section shown has a slope -3.18±O.06. [The 
distribution of the areas is not significantly different from Fig. 1 (a),] 

can be roughly estimated to occur when the number of 
bounces exceeds nc:::::41rRlw and l'>Lc:::::41TR2Iw and 
A >Ac:::::1TR'lw. 

The numerical simulations also indicate that this 
power law decay is characterized by a power around 
f31""f3A",,3 (Ref. to) which is different from the power of 
2 for the escape of a uniform distribution of initial condi
tions in a regular domain through a single hole." Again a 
simple analytical argument can be invoked to account for 
this power of 3. First, we note that the longest surviving 
orbits correspond to those initial conditions at the edge of 
the entrance slit that just miss escaping in a previous 
bounce. For example, the small triangles of initial condi
tions of height cc 1I2n= 118 in Fig. 5(a) that just survived 
the first transit through the billiard will continue to remain 
completely trapped for n=4 bounces as shown in Fig. 
5 (b). However, this triangle of trapped orbits has already 
begun to erode after 8 bounces as indicated in Fig. 5 (c). 
Since the phase space area of these triangles is cc 1I2n2, the 
number of trajectories surviving longer than n bounces 
represented by this region will be N (n) cc 1I2n2 and the 
probability density for surviving n bounces will be 
P(n}=N'(n) cc lin'. 

C_ Location of holes 

We note that our numerical simulations do not always 
give exponential decays for the stadium. If we put both 
holes on the curved sides, we can obtain power law long
time tails for the distribution oflengths, as shown in Fig. 6. 
We have found!2 that this comes about because a small 
fraction of particles enter into the region of phase space 
surrounding the family of periodic orbits bouncing between 
the two straight sides13 and they get trapped in that motion 
for a long time. The long-time tail begins to show up when 
most of the particles in the non-bouncing-ball region es
cape. 

Once an orbit enters this bouncing-ball region it is hard 
to get out. The present situation is similar to a common 
trend for "nonhyperbolic" chaotic scattering,14 where a 
power law survival probability is obtained due to particles 
spending a long time near KAM surfaces. However, the 
stadium is not a near-integrable system and does not have 
KAM surfaces. So our present result shows a new possi
bility for the occurrence of a power law decay in a hyper
bolic system. 

D. Effects of random scattering 

We next consider effects associated with deviations of 
real microstructures from the perfect circular and stadium 
billiard domains. In a real device the boundary may be 
rough rather than smooth; or inside the 2-D scattering 
domain the potential could be bumpy rather than flat.!S It 
would be hard to exactly simulate these imperfections. But 
the effect of these is to deflect the trajectory somewhat at 
each bounce from that of a perfect system. If we assume 
that these imperfections are distributed quite irregularly or 
randomly, then this situation can be simulated by the ad
dition of a random angle in the range [-a1T, a1T] to /3 at 
each bounce, where aE[O,I] gives the amplitude of the 
noise. (If the addition of the random angle causes the re
flected ray to go outside of the wall, we simply consider it 
as an incident ray and it gets reflected again by the perfect 
wall at the same position along the boundary.) 

If the deviations from specular scattering in the ideal 
domain are due to irregularities in the boundary, the mag
nitude of the scattering "noise" measured by the parameter 
a can be estimated from height h and scale length A of the 
"ripple." For hlA4" I, the scattering angle will deviate from 
the ideal value by an amount of order hi A, so we can 
choose a::::: hi A. 

On the other hand if the deviations are due to potential 
bumps on the interior of the scattering domain, the devia
tion in the scattering angle can be estimated from the de
flection of the trajectory as it traverses the domain. For 
potential bumps of height V and scale length A, the deflect
ing force wiJI be proportional to VIA. Since the force is 
only applied for a time, 1:::::2Alu, the transverse change in 
momentum due to the scattering from each bump can be 
estimated by /!"plp:::::2Vlmu2. In a solid state device this 
deflection of the scattering electron trajectory causes the 
scattering angle to change by an amount proportional to 
the ratio of the potential height, V, to the electron Fermi 
energy, € f= mu2/2. If the electron traverses only a single 
bump in crossing the device then the magnitude of the 
scattering noise can be estimated by 

(17) 

If the scale length of the bumps is much smaller than the 
size of the device, A 4"R, then multiple scatterings can oc
cur; however, for a random potential this scattering will be 
a random walk and the estimate for the noise amplitude, 
Eq. (17), will only be increased by a factor of ::::: ~RIA. 

Our numerical simulations indicate that the addition of 
random scattering noise has a small effect on the long-sided 
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FIG. 7. The influence of scattering "noise" on the area and length distri
butions for the circular microstructure of Marcus et all Different sym
bols are for different noise amplitUdes: a=O (circle), a=0.001 (line), 
a~0.OO5 (plus), a~O.OI (X), a~0.05 (diamond), and a~0.5 (square). 

stadium with W/R=2. This is due to the inherent ran
domness of the chaotic motion in the stadium. The distri
butions remain good exponentials. An increase of a from 0 
to 0.5 only increases a, from 0.35 to 0.46 and y, from 0.046 
to 0.054. If we scale the results for a=0.5 to the litho
graphic dimensions of the stadium-shaped devices in Ref. 
I, we get a,=5.1 f'm- 2 and y,=0.18 f'm- I . 

For the circle, Fig. 7 shows that, at a small noise level 
of a=O.OOI, the distributions differ little from those for 
a=O. However, for a=0.05 we can already see a strong 
effect of the noise, which has turned most of the power law 
part into exponential. Beyond a=0.05, the distributions 
fit quite well with exponential decays and we see a large 
change in ac going from 0.3 to 0.8 as a is changed from 
0.05 to 0.5, while Yc has a modest change from 0.065 
to 0.086. Therefore, the random noise has a strong effect 
in reducing the ability of the particles to circulate. Scaled 
to the lithographic dimension of the circle in Ref. I, 
these results for a=0.5 give ac=4.! f'm- 2 and 
yc=0.19 f'm- I . These are close to the exponents for the 
long-sided stadium. So we see that at high noise level it is 
hard to distinguish the circle from the stadium on the basis 
of the shape of the classical distributions of lengths and 
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FIG. 8. The influence of scattering "noise" on the area and length distri
butions for the large stadium of Keller et al.,17 scaled to R= I, W 
=0.2887, w=0.2887. Different symbols are for different noise amplitudes: 
a~O (square), a~O.OOI (line), a~0.05 (triangle), a~0.5 (plus), a=0.7 
(X), and a= 1 (diamond). 
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FIG. 9. Effects of noise on circles and stadium for different hole size w. In 
(a) and (b) the values of r and a for the exponential part of the distri
butions for the circle scale linearly with w for zero or small levels of noise 
a=O (circle), a=0.05 (triangle), and a=O.1 (cross). However, at the 
larger levels of noise, a=0.25 (diamond) and a=0.5 (plus), the depen
dence of a on w begins to curve. The line in (a) shows the predictions of 
Eq. (14) for the initial exponential decay. In (c) and (d) the values of r 
and a for the stadium with W = 2 at different hole sizes show the pre
dicted dependence on wand ./W, respectiVely, for all noise levels, a=O 
(square), a=0.05 (triangle), and a=0.5 (plus). The line in (c) shows 
the predictions of Eq. (9). Only for w> 0.4 does the large hole size effect 
the ergodic property leading to significant deviations. 

areas alone since the noise has destroyed the order in the 
circle that was responsible for the power law tails. 

We also find that noise has a large effect on the ten
dency for orbits to circulate in the short-sided stadia. For 
example, Fig. 8 shows the numerical distributions of areas 
for different levels of nonspecular scattering for a short
sided stadium with W/R=0.25. In this case a noise level of 
a=0.5 increases the area decay exponent by as much as a 
factor of 3. 

Finally, we note that the significant differences in the 
scaling of the area decay exponent with hole size for the 
chaotic stadium, Eq. (6), and the regular circle, Eq. (7), 
appear to persist in the presence of small levels of scatter
ing noise. As a consequence, this important distinction be
tween the regular and chaotic scattering may survive in 
real measurements with "noisy" devices. For illustration, 
Fig. 9, shows the values of y and a as functions of hole size, 
w, for both the circle and the stadium with different levels 
of noise. 

Ill. COMPARISON OF THE SEMICLASSICAL THEORY 
AND EXPERIMENT 

The analytical and numerical results for the classical 
distributions of areas enclosed by particles scattering 
through the stadium and circle domains can now be incor
porated into the semiclassical theory for the conductance 
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FIG. to. The power spectrum predicted by the semiclassical theory, Eq. 
(18), for an exponential distribution of directed areas with a=O.35 (solid 
curve) is compared with the results for the convolution of a distribution 
with an initial exponential decay with a=O.35 that crosses over to a 
power law tail. Eq. (13). with Ac= 15 (dashed curve). Here both convo
lutions of the respective area distributions are plotted in arbitrary units as 
functions of A = ~of. 

fluctuations for comparison with experimental measure
ments of the power spectrum of the conductance fluctua
tions. This is determined experimentally by the Fourier 
transform of the correlation function of conductance fluc
tuations measured as a function of magnetic field. 

The semiclassical theory for weak magnetic fields, Eq. 
(3), expresses the correlation function of the conductance 
fluctuations as the square of the Fourier transform of the 
classical distribution of areas. Therefore, using the auto
correlation theorem,16 we can relate the theoretical predic
tion for the power spectrum of quantum conductauce fluc
tuations directly to a convolution of the classical area 
distributions, 

S(<I>of) = fdA P(A)P(<I>of+A) (18) 

as a function of the product of the magoetic "frequency," 
f (in I/Tesla) and the quantum unit of magnetic flux 
<1>0 = hie. 

In the case of the chaotic stadium, the exponential 
distribution of directed areas gives a simple prediction for 
the power spectrum '.3 of the conductance fluctuations, 

S(<I>of) =S(O) [I +a<l>ofle-aW (19) 

in terms of the purely classical parameter a. For an ideal 
circle the convolution of the exponential plus power law 
distribution, Eq. (13), cannot be expressed in a simple 
analytical form, but is similar to the exponential distribu
tion for low magoetic frequencies and falls off less quickly 
than exponential for large areas or frequencies, A = <l>of as 
shown in Fig. 10. However, as demonstrated in Sec. II D, 

the introduction of experimental "noise" can have a large 
effect on modifying the exponential decay of enclosed areas 
for short-sided stadia and for the circle and in suppressing 
the power law tail in the distributions for the circle. As a 
consequence, comparisons of ideal theory with realistic ex
periment must always keep in mind the potential influence 
of "noise." 

By evaluating the classical distributions for the geo
metrical parameters of the experimental devices, these the
oretical predictions can be directly compared with the ex
perimental measurements. For example, in the experiments 
of Marcus et al.' the conductance fluctuations have been 
measured as a function of applied magnetic field for mi
crostructures shaped like a stadium and a circle. The litho
graphic dimensions of the stadium were 1.2 f.Lm in length 
and 0.6 f.Lm in width, corresponding to a radius of R =0.3 
f.Lm for the curved ends and a length of W =0.6 f.Lm for the 
straight sides. The lithographic widths of the two attached 
leads, one at the center of one curved side and one at the 
near edge of the straight side, were w = O. 14 f.Lm. The litho
graphic radius of the circle was chosen to be Rc=O.44 f.Lm 
so the devices would have similar lithographic areas of 
",0.6 f.Lm2. Because of edge depletion the effective dimen
sions of the devices should be reduced. In fact, 
measurements' in high magnetic fields of the Aharonov
Bohm oscillations in the conductance due to magnetic flux 
enclosed by gyrating electrons circulating around the edge 
of the device indicates a reduction of the effective area by 
30% corresponding to a decrease in the linear dimensions 
of the device and the leads of 15 %. 

To compare with the experimental results,' we define 
a' =aI2rr.6 The fits of Eq. (19) to the experimental data' 
for the power spectrum gave values of a';' = 1.2 and 1.1 
f.Lm -2 for two stadium-shaped samples which correspond 
to values of a,=5.2 and 5.6 f.Lm-2. The value from our 
numerical simulations of the classical dynamics in the sta
dium using the lithographic dimensions of these devices is 
a,=3.9 f.Lm-2 for the ideal stadium and a,=5.1 f.Lm-2 for 
the noisy stadium with a=O.5 which are in good agree
ment with the experimental values. Even the simple geo
metrical formula for the area decay exponent, Eq. (II), in 
an ideal stadium gives a value of a,=4.8 f.Lm-2 which is in 
remarkably good agreement with experiment. To the best 
of our knowledge, this provides a first successful compar
ison between theory and experiment for the conductance 
fluctuations in ballistic microstructures. 

Marcus et al.'s experimental results 1 for the power 
spectrum of the conductance fluctuations in the circular 
domain were very similar to those for the stadium at small 
"frequencies" but drop off more slowly for large values of 
f corresponding to the survival of more orbits enclosing 
larger directed areas than in the stadium. Although the 
experimental results for the circle exhibit a qualitative re
semblance to the theoretical curve for the convolution of 
the power law area distributions for the ideal circle shown 
in Fig. 10, quantitative agreement was not possible using 
either the lithographic or the 15% smaller effective dimen
sions of the circular microstructure. The theoretical pre
dictions based on the numerical simulations of the classical 
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FIG. 1 J. The theoretical predictions for the power spectra for the noisy 
stadium (solid curve) and noisy circle (dashed curve) with noise level 
a=O.5 are plotted for the lithographic dimensions of the stadium~ and 
circle-shaped microstructures studied in Ref. 1. The numerical simula
tions of the area distributions gave exponential distributions in both cases 
with as=5.1 p,m-2 for the stadium and ac=4.1 p.m-2 for the circle, The 
power spectra are plotted as a function of "magnetic" frequency f mea
sured in IlTesla for direct comparison with the experimental results in 
Fig. 2 of Ref. I. 

scattering dynamics through the ideal circle give an initial 
value of ac'" 1.7 p.m-2 which is approximately a factor of 
2 or 3 slower decay for the exponential part the power 
spectrum than observed in the experiment. 

However, as noted in our numerical studies of the ef
fects of noise in Sec. II D, the addition of random scatter
ing to the classical dynamics removes the power law tail 
from the distribution of areas for the circle and signifi
cantly increases the rate of decay while having little effect 
on the results for the long-sided stadium. Consequently, 
better quantitative agreement of theory and experiment 
can be achieved if we assume a large level of random, 
nonspecular scattering with a~O.S which gives a value of 
a c=4.1 p.m -2 in much better agreement with the experi
ment. The predicted results of the semiclassical theory for 
the power spectra in both the stadium and circle with a 
noise level of a=O.S are shown in Fig. II. 

The addition of large amounts of scattering noise may 
also account for the apparent discrepancies between theory 
and experiment in the very recent experimental results by 
Keller et al. 17 for short-sided stadium-shaped microstruc-

, tures. In Keller et al.'s experiments17 the conductance fluc
tuations of two short-sided stadia were studied, a large 
stadium with curved sides of radius, R=O.6 p.m, and 
straight side length, W=O.IS p.m, and a small stadium 
with R=O.3 p.m and W=O.IS p.m. In both cases the lead 
widths spanned the entire straight side with w=O.IS p.m. 
Because of the tendency of the classical orbits to circulate 
in the same direction in the short-sided stadium, the theo
retical predictions for a may be expected to be much 

TABLE I. Comparison of experimental values of a (in }Lm- 2) with nu
merical simulations using lithographic dimensions of the experimental 
structures with and without scattering noise. 

Microstructure Simulation (a=O) Simulation (a=0.5) Experiment 

long stadium I 3.9 5.1 5.2 
circle' 1.7 4.1 ",4 
short stadium 
(large) 17 0.53 1.5 1.3 
short stadium 
(small) 17 3.6 7.7 11 

smaller (with b~ I) for the short-sided stadium than for 
the long-sided stadium used in Marcus et al. 's 
experiments. 1 But the experimental values17 for the decay 
of the conductance fluctuations indicated a value of a that 
was approximately a factor of 3 larger than theory. How
ever, as shown in Fig. 8, the addition of noise has a large 
effect on the distribution of enclosed areas for the short
sided stadia that can account for the factor of 3. Conse
quently, this discrepancy may be reconciled if we again 
assume a large level of random, nonspecular scattering 
with a~O.S. 

The results of these comparisons of experimental mea
surements of the conductance fluctuations in long- and 
short-sided stadium- and circle-shaped microstructures 
with the semiclassical theory, including the effects of non
specular scattering noise, are summarized in Table I. 
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