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PHYSICAL REVIEW A, VOLUME 63, 043409
Organization and bifurcation of planar closed orbits of an atomic electron in crossed fields

D. M. Wang and J. B. Delos
Physics Department, College of William & Mary, Williamsburg, Virginia 23187-8795
(Received 3 August 2000; published 15 March 2001

We describe the patterns of creation and splitting of planar closed orbits of electrons in hydrogen atoms in
crossed electric and magnetic fields. These orbits lie in the plane perpendicular to the magnetic field, and they
start and end at the nucleus. Using a Poincaap to study the regular motions, we observe that the bifurca-
tions of planar closed orbits fall into an ordered sequence as energy changes: a “tangent bifurcation” creates
one closed orbit that splits into two; subsequently, one of them becomes periodic, and splits by a “pitchfork
bifurcation” into two periodic orbits and one closed orbit. Based on these calculations, we classify the closed
orbits that are involved in a sequence of bifurcations in a family, and we name the family by the winding ratio
of the periodic orbits in the family. To understand this ordered sequence of bifurcations, we create a simple
integrable Hamiltonian as a model of the Poincamap. This model gives a simple interpretation of the
sequence of the bifurcations. The model contains only general assumptions, so we expect that such sequences
of bifurcations of closed orbits will be commonly found in physical systems.

DOI: 10.1103/PhysRevA.63.043409 PACS nuntber32.80-t, 05.45—-a, 03.65.Sq, 32.6@.i

[. INTRODUCTION applied. We get new patterns of creation and splitting of
closed orbits. Some of these patterns are sufficiently similar
We study the planar orbits of an electron in a hydrogerto the patterns seen in bifurcations of periodic orbits that we
atom in crossed electric and magnetic fields. According tean use the same names. We will refer to a “tangent bifur-
closed-orbit theory, each closed orbit produces a sinusoid&tion” and a “pitchfork bifurcation.” However, it must be
oscillation in the absorption spectrum as a function of enfemembered that we are dealing here with a different phe-
ergy, and it produces a peak in the recurrence spectrum. A¥menon. _
the energy changes, new closed orbits are created via bifur- N this paper, we first present an “observed” sequence of
cations, so new peaks appear in the recurrence spectrufifurcations of closed orbitéobserved by numerical experi-
Therefore, the patterns of bifurcations and the organizatiofen). Then we define a half-Poincareap that we use to
of closed orbits are of fundamental interest for understandin§térpret observations. We create a simple model Hamil-
the spectrum. These have been studied experimentally a@hian to model the half-m'ap and illustrate the sequence of
theoretically for Rydberg atoms in a magnetic figld2] or b!furcat!ons of closed orblts._Su_bsequentIy, we show that
in an electric field4,3] separately as well as in parallel elec- blfu_rcat|0ns of the closed orbits in _the crossed-field _syst_em
tric and magnetic field§s,6). fa]l into the same sequence as tha.t in the model Hamllton|an.
In [7], Gao organized the closed orbits of a pure electricd-inally, we present a way to organize the planar closed orbits
field system by their winding ratio. In this integrable system,(Where “planar” means thexy plang into families and as-
all orbits form tori, and periodic orbits correspond to tori Sign each family a family name and each member of a family
with rational winding numbers. Each such rational torus is 9!Vé€n name. .
filed by a family of periodic orbits with fixed action vari-  “Closed” always means closed at the nucleus; typically
ables and varying relative phases. In the pure electric fieldhe electron leaves the atom in one direction and returns
each orbit that is closed at the nucleus is one of these perftom another, and the orbit is not periodic. However, as we
odic orbits. Therefore, Gao showed that we can understandill see below, some orbits are both closed and periodic.
the closed orbits by understanding the rational tori. As the
energy increases, a rational torus, together with its associated II. THE OBSERVED SEQUENCE OF BIFURCATIONS

closed orbit, bifurcates out of the “downhill” orbit, evolves OF THE CLOSED ORBITS
to an uphill orientation, and then disappears by merging with ) ) _
the “uphill” orbit. We have observed two typical sequences of bifurcations

The crossed-field system is completely different. Part off ¢losed orbits. One is shown in Fig. 1. In a region of phase

the phase space is filled with chaotic orbits. However, at lowsPace where there is no closed orbit, as the energy is de-
energies, regular orbits dominate, so we can gain insight b§réased, abruptly a closed orbit appears. We name this one

: _ _ 0 . , :
first focusing our attention on these. Furthermore, the mead=23: the names will be explained as we develop the theory.

surements done by Raitheit al. [8] proved that planar This closed orbit immediately splits into two closed orbits
closed orbits make significant contributions to the recur{C23,C2. We call this creation of a new closed orbit and
rences. Therefore, we restrict our attention to orbits which lighe splitting of this orbit into two closed orbits a tangent
in the plane perpendicular to the magnetic field. bifurcation. As the energy decreases further, each of these
We find that because this system has lower symmetrglosed orbits changes its shape, and, in particuy,
than the parallel-fields system, in general closed orbits do natvolves until at some energy it becomes both closed at the
correspond to periodic orbits. Therefore, little of the well- nucleus and periodic. We then callR; ;. Then two other
developed theory of bifurcations of periodic orbits can beperiodic orbits P2+,3,P£,3) split out of P, 3, while P, 3 re-
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FIG. 1. An example of the normal sequence of bifurcations of The orbitC; 5 exists at low energies, and as the energy is raised, it
closed orbits. A single closed orkm23 is created which splits into undergoes a pitchfork bifurcation. Here we show half of the peri-
two, C; 3 and C, 5 (tangent bifurcation One of them becomes pe- odic orbitsP3 5.
riodic, and then splits off two periodic orbits, becoming again
closed but nonperioditpitchfork bifurcation. The orbits are shown Cas €Xists at very low energies. As energy increases, it
in (u,v) space and inx,y) space. Thetrx axis and ther u axisare ~ €volves into one periodic orbiP; 5 first, then becomes a
“uphill” in the electric potential. The Lorentz force pushes the nonperiodic orbitC; 5, and two periodic orbits R;S,P;Q
electron in a counterclockwise sense in either representation. are created. Here, we observe that the closed orbits appear in

a group of three in an orderly sequence. We call this the

turns to being closed but nonperiodic. We again call the‘truncated sequence” of bifurcations of closed orbits.
closed orb|tC23 We call the splitting of one periodic orbit Why are such numerical observations interesting? First,
into two periodic orbits and one closed orbit a pitchfork bi- from the perspective of atomic spectroscopy, it would be
furcation. Therefore, we observe that the closed orbits appe@ood to understand the orbits and their bifurcations. For ex-
in a group of four in an orderly sequence. We call this theample, Raithel and Walthel8] measured the recurrence
“normal sequence” of bifurcations of closed orbits. spectrum of Rb atoms in crossed fields, and at one particular

A different sequence is shown in Fig. 2. A closed orbitscaled energy they observed a peak associated with the orbit
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we callC; 5. More generally, they found that recurrences are 1

strongest near bifurcations, and indeed, for atoms in crossed x==(U%=-V?), P,
fields, many recurrences are strong enough to be visible only 2

near bifurcations.

Second, from the perspective of bifurcation theory, these y=UV
observations beg for an explanatioft) Within the one- ’
parameter theory of bifurcations of periodic orbits, pitchfork , ,
bifurcations are nongener[®]. That might lead one to ex- &nd make one more rescaling of the variables,
pect that pitchfork bifurcations of closed orbits are also non- U=u/\w, Py=pyo, (4)
generic. However, we will argue in Appendix A that in inte-
grable systems, pitchfork bifurcations of closed orbits are in V=v/o, Pv=p, Vo, (5)
fact generic.(ii) More fundamentally, bifurcation theory is
usually formulated as cal theory[10]. The theorems de- w=\—2€ (6)
scribe what happens typically insafficiently smalfegion of to_put the Hamiltonian in the form:
phase space and parameter space. What we would expect
typically is tangent bifurcations. When we report that what 2 1 s o 1o 4 4
we normally see is a tangent bifurcation followed by a pitch- ~ —=5(Py+p;,) = 5 (U™+v")+ ;(U —v")
fork bifurcation, this observation falls outside of the local @
formulation of bifurcation theory: the phrase “soon followed 1
by” means “after a finite step” in energynot within a suf- + ——(up,—vpy)(U?+v3)+ — (u?+0v?)3.
ficiently small neighborhood. We need an explanation of 40? 320"
why such generic-nongeneric bifurcations are often seen as a @
couple.

The purpose of this paper is to understand these se- The coordinate transformatia®), (3), (4), and(5) maps
quences of creation and splitting of closed orbits. We firsthe wholexy plane to the half §,v) plane. The+u axis
give more detail about the crossed-field system, then we crecorresponds to therx axis (“uphill” ), and the=v axis
ate a simple model. This simple model has sequences @orresponds to the-x axis (“downhill” ). Therefore, we
bifurcations of closed orbits that are analogous to the “nor—omy need to consider the trajectories launched withO.
mal sequence” and the “truncated sequence” of bifurcations

in the crossed-field system. Most important, the model inAlternatively, we may consider those launched with 0.

volves only general assumptions; this leads us to believe thz}:[he original systen(l) has three parameters; B, and the

such sequences of bifurcations of closed orbits will be Comyalue of H(p,q) =E; reduction to Eq(7) shows that only

monly found in many physical systems two parameters are significang, ) or (w,f).. In this work,
' we will vary one parameter).

_UPU_VPV

2
U2+Vv? @

UPy+ VP,

3
UZ+Vv2 ©

y

Ill. THE REDUCED HAMILTONIAN AND TWO

2. The symmetry properties of the regularized
FUNDAMENTAL PERIODIC ORBITS

two-dimensional Hamiltonian

This section is devoted to the transformations of the re- The differential equations generated by the original
duced Hamiltonian, including rescaling and regularizing. WeHamiltonian(1) are invariant under the symmetry operation,

also discuss the role of two fundamental periodic orbits inT¢, , the combination of “time reversal'T with reflection
organizing the planar orbits. in y:
A. The Hamiltonian oy (y——-Y,Py——Py),

1. Reduction and regularization T:(P——-Pt—-1),

We ignore the motion of the protdd1], and we consider Toy: (X,Y,Py,Py,t)=(X,—y,— Py,Py,—1).
the motion of an electron in combined Coulomb fields plus . _ S
magnetic field pointing in the- z direction plus electric field The regularized equations generated by Egjare invari-

pointing in the +x direction, so the+x direction is “up-  ant under inversion and two time-reversal reflections:
hill.” The reduced two-dimensiongRD) Hamiltonian is Ty (U0, Py Py D)= (— Uy =0, = Pus— Py ob),
1.5 42 1 . B. B®. . Toy: t - —P,,—t
H=5 (P3P -~ Fx+ oLt — (457 (@ u+(U,0, Py Py )= (= U0, Py, =Py — 1),
P TO'UZ(u,v,pu,pv,t)—>(u,—v,—pu,pv,—t).
. ~ _ "2 "2 .
with p=+/x“+y~. We scale the coordinates and the param-rherefore, any orbit inu,v,p,,p,) space that does not have

eters according to any symmetry must have three siblings that result from these
f—ER-43 (—ER-22 —rp23 p—pp-13 three symmetry operations. Two orbits im,¢,p,,p,) Space
' ' ' ' that are related by the inversion operatiofur, are identical
transform to semiparabolic coordinates, in (x,y,Px,Py) space.

043409-3
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2.0 ) The origin in coordinate spacei€ 0, =0) directly cor-
‘ e responds to th@, or p, axis on the SOS, so orbits that are
R “ closed at the nucleus are orbits that begin and end on the
‘ ; momentum axig, or p, on the SOS. We may focus our
0.0 (0 (o] 00 6 attention on the behavior of the loops on the left-hand side of

each SOS—the loops surroundigg on theu=0 SOS or
the loops surrounding_ on thev =0 SOS.

IV. POINCARE HALF-MAP

The conventional full Poincamaap is commonly used to
study bifurcations of the closed periodic orlizs10]. On the
SOS generated by the full Poincaneap, periodic orbits
show up as fixed points, so they can be easily located. How-
ever, since most of the closed orbits in the crossed field
system are nonperiodic, the full Poincanap is not so help-
ful. In this section, we define a Poincanalf-map, which is
more useful.

A. Full Poincaré map

Choosing the surfacg;=0 (i.e., eitheru=0 or elsev
=0), we define a map of the corresponding Poingaleme
(qjo,pjo)ﬂ(qjl,pjl) by starting the trajectories on the sur-
face g;=0 with g;>0, integrating the(q;(t),q;(t),pi(t),
p;(t)) equations, and stopping whenever the orbit passes
through g;=0 with ;>0 again, then recordingqf , p;).

This is called the Poincarfell map M, . We denote the pair
2.0 of variables @;,p;) as

20,5 05 %%
. 5, 182

u

_ _ _ z=(d;,p;) 8
FIG. 3. A collection of surfaces of section at three different
energies with fixed external field8=6 T, F=1000 V/cm, orf and the mapping is abbreviated as
=0.2587:(a) E=—250 cm * or e= —1.313 andw=1.620;(b) E _M e f 9
=190 cmi ! or e= —0.998 andw=1.413;(c) E= — 140 cm  or Zer1=Mp(Zii €.1). ©

€=~0.736 andw=1.213. The iterations of the Poincarfell map give us the con-

o ) _ ventional Poincar&0S. Each fixed point on the SOS corre-
B. Two elementary periodic orbits and their role sponds to a periodic orbit of the differential equations.
in the organization of planar motions The surface selected above has a drawback; the trajecto-
For the reduced 2D Hamiltonian, there are two fundamenties do not always pass through the surface but may be tan-
tal periodic orbitsS, andS_, and they are “organizers” of gent to it. This results in discontinuities of 'Ehe midpet]. In
the planar motions. These orbits were studied bytHmnn  this system, we did not find a simple Poincanap that is
and Welgd 12], who show pictures of these orbits at various entirely free of discontinuities. However, we find that the
energies.S, is nearly circular in the X,y) plane, but the map defined in Eq(9) is continuous in substantial regions,
circle is not centered at the nucleus. The electron runs arourgP We can use it to discover orderly bifurcation patterns of
S, in a counterclockwise sense, so the Coulomb force anglosed orbits.
the Lorentz force both point inwards. In the energy range we
study, S, is stable, so quasiperiodic orbits oscillate about it B. Poincare half-map
[13]. . , .
Figure 3 shows surfaces of section calculated in two dif- The symmetries of the system allow us to define a kind of

ferent ways at various energies. The surfaces of section or'@/-map.” If we begin trajectories afj; =0 with g;>0 and

the left are defined by=0 with U>0 and the surfaces of StoP immediately when they return p="0 with q;<0, we
section on the right are defined hy=0 with v>0. The call this mapM .. (z;¢,f). Similarly, if we start withq;<0
smooth curves on the surface of secti®®9 correspond to  and stop at; =0 with q|>0 we call this magM _(z; €, ).
regular tori and they are organized into two groups: one islearly, the full Poincarenap is then

centered atS, and another |_s _cen_tered & . However, My(Ze,f)=M (M (ze,f)).

there is no fundamental distinction between these two

groups, since they are not separated by an unstable periodicis not hard to show that because of the symmetries of this
orbit with a separatrix. system, the maphl, andM _ are related by
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Dynamical system Half-map 1.5 T

Periodic orbits ———— Periodic orbits 5 /1

Closed orbits ———————= Closed orbits 1.0 r A i

6
FIG. 4. Every periodic orbit of the dynamical systddefined
by the differential equationghat goes through the surface of sec-
tion (u=0 or alternativelyv =0) is a periodic orbit of some iterate 0.5 7 7 1
of the half-map. The converse is not necessarily true. Every orbit of D )
the dynamical system that is closed at the origin=Q,v=0) is v 7 \
also a closed orbit of some iterate of the half-map. The converse is 7 ) 6 l
also true. 0.0 - T 1g / ’]\0 i
M_(z;e,f)=—M_(—2Zz¢,f). (10 \ 7 7
Therefore, 0S5 7 l
3
My(z;e,f)=M_M ,(Z;€,f)=—M_ (=M .(zZ;¢,1)), 6
(11) o 6 ]
that is to sayM_M, =(—M)2. We define— M (z;¢,f) '
as the Poincarbalf-map.
C. Periodic orbits of the Poincarehalf-map and the winding 185 P 08 04 0.0 0.4
ratio of the periodic orbits v
1. The correspondence between periodic or closed orbits FIG. 5. The first 20 iterations of the horizontal line Bt
of the Poincarehalf-map and periodic or closed orbits =—95 cmi ! with external fieldB=6 T andF = 1000 V/cm. The
of the dynamical system 5/7 and 2/3 periodic orbits are marked by dots and labeled by 7 and

The Poinca’rehalf-map is defined as M, (z;¢,f). Start- 6 We use bold 0,1,.2,3. to I:?lbel the in.itiﬁl hqrizontal Iing and the
ing from any point, we may iterate the mapM , as many first, second, and third iteration of the initial line, respectively.
times as we wish,

, , a curve, our path bends to the Igft.

2= ~Mo(Z€ ). (12) (iii ) Since the orbits are regular, we can relate the winding
We define a periodic orbit of the half map as the set of pointgate a(e,f;vo,p, ) to the fundamental periods of the tori,
(29,21,25, . . . Z};) generated according to EG.2) such that  which we choose to call, ,(e.f;v0.py,) [15]. The winding
the mth iteration returns to the initial poirty,=z,. We de-  ratio of the points is related to fundamental periods by

fine a closed orbit of the half-map as an orbit such tat

=(Qo=0. (Here, as usual, “closed” means closed at the

nucleus) Tu(e,Fi00.05,)  al(e,fi00,p,)— T
Every periodic orbit of the dynamical system that goes T (efvopn) p- : (13
through the surface of section is also a periodic orbit of some vt = R0 Fuo

iterate of the half-map. Every closed orbit of the dynamical
system is a closed orbit of the half-map, and vice vésez

Fig. 4) In the numerator, we subtraet because the half-map incor-

porates a reflectiorv(— —v,p,— —p,), which we regard as
an advance ofr upon each return. In the denominator, we
divide by 7 instead of 2r because each return t=0 cor-
responds to a half-cycle of themotion.

We focus on the loops arourl, on theu=0 surface to (iv) Besides the central periodic orb@, , there are other
study the closed orbits. In the regular regid@, is sur-  periodic orbits corresponding to tori with a rational period
rounded by smooth curves, and each curve corresponds t0,4io These occur Whe[rE(e,f,vo,pvo)— 7]l is a rational

regular torus in phase space. . . . .
To show how the trajectories wind around the central pe_fra_lctlon_ mil. We name the torus gnd_ its p?”"d'c orbits by
this rational fractionm/I. The periodic orbits of the map

iodi i ly the half- hori [ i . ) . )
E?leg o\r/sg, k\:\;?/: }:t)ﬁeyftolﬁjw?ngrgizétr)vgﬁoonnsz.onta Ine to get show up as intersection points of the spirals on the $@8
(i) Points on the SOS wind around the periodic ofhjt, Fig. 5). R
and we may say that they wind in a clockwise sense. (V) As energy decreases, the winding ratge,f;v,p, )
(i) The winding rate decreases as we go farther from th@round the centelS, increases, and each rational torus
central periodic orbiS, . (If we travel outward fronS, on  moves outward fron$s, .

2. The winding ratios of the periodic orbits
of the Poincarehalf-map

043409-5



D. M. WANG AND J. B. DELOS PHYSICAL REVIEW A63 043409

V. A MODEL OF THE HALF-MAP

slower
In this section, we present a model Hamiltonian that gen-
erates a “twist map.” This twist map is a simple model of
the half-map, and we use this twist map to illustrate the

sequence of bifurcations of closed orbits. We will show in

P
. . _ > faste
the next section that the bifurcations of closed orbits in the
crossed-field system fall into the same sequence as the bifur- / \
Qy

cations in the model. Hence the model Hamiltonian provides
an interpretation of our calculations on the crossed-field sys-
tem.

A. A model Hamiltonian

We consider a model in which a particle moves periodi-
cally on a single coordinatg(t), with an associated canoni-
cal momentunmp(t), so phase space is the two-dimensional
plane @,p). We want a model having the following four P4
properties:(i) the flow in phase space is steady and area-
preserving, so it is governed by a time-independent Hamil-
tonian; (ii) the center =0,p=0) is a fixed point, and there
are no other fixed pointsiii ) points nearby move in a closed >
curve around the center with average angular veloeigy ct 14
(iv) more distant points move around with a lower average C(l)
angular velocity. At a later point we will add a fifth property: o
one of the closed curves defines an outer boundary to the
flow.

A Hamiltonian generating such a flow is P

H=(—wqyl/a)e 2, (14)

4

g

-]

g=

C

@
3

Cq

=
Oy

»
>
o~}
»
>

wherel = (p?+qg?)/4x is the classical action. We may uke
and #=arctan@y/p) as canonical variables, and then

=0, I=const; (15)

A

b=woe ', 6(t)=6y+ wote 2. (16)

FIG. 6. (a) The motions described by the model Hamiltonian are
gircular rotations in thed,p) phase spacéb)—(e) The four short-
est closed orbits are represented dpp) space. Orbits begin at an
open circle and end at a filled circléo) At small T (or small w),

. > - only C, is present(c) At some largefT, C? is created, and it splits
In this model, we use the words “closed orbit” to refer to into C; and C; . (d) C; evolves until it becomes periodi®;.

a “closed orbit atqo W'th_dosure F'meT”: this is an orbit Then it evolves into an orbit that goes around the center more than
that starts at some locatiam, that is not at the center, and gne cycle. At the same time it splits off two periodic ort#t§ that
later, att=T, returns to that same point. Let us now fiX iffer only in phase(e) At the end, four closed orbits exist; two are
and regardw, as a variable parameter. We will speak of nonperiodic,C; , and two are periodicP} .

“bifurcations of closed orbits.” By this we mean that for
some fixedq,, and some fixed, as we vary the parameter
wg, there may be a creation or a splitting of a “closed orbi
at qo with closure timeT.” For example, ifT is fixed much
less than Zr/ wq, then there is no closed orbit moving around
the center having such a short period. However, for that fixed
T, we can increase until it exceeds 2r/T, and then such a
closed orbit will appear.

This looks like a completely trivial problem. In fact, how-  We consider the set of initial conditions
ever, such closed orbits appear in groups of four in an or{q=qy,p=anything. This corresponds to a vertical line in
derly sequencéa tangent bifurcation followed by a pitchfork the (g,p) plane, which we call'(0). Suppose we allow the
bifurcation. After we display this behavior, we will show points on that line to evolve under Hamiltonian’s equations
that planar closed orbits in the crossed-field system appear 15 and (16) until t=T. The line evolves into a curve that
the same way. Indeed, since the model is based on quitge calll'(wyT). If the evolved curvd (wyT) intersects the

This is a continuous version of a “twist map”—the flow
has the properties listed above. Obviously all the orbits ar
periodic, and any orbit that goes through some pgite-
turns repeatedly to that poifsee Fig. 6.

tgeneral assumptions, we expect that this behavior will be
commonly found in physical systems.

B. Normal sequence of bifurcations of closed orbits
of the model Hamiltonian

043409-6
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2.0 \ T T T ; Normal sequence
145 152
16

tangent bifurcation

pitchfork bifurcation

Truncated sequence

FIG. 8. The normal sequence of bifurcations: a tangent bifurca-
tion is followed by a pitchfork bifurcation. In the truncated se-
guence, the tangent bifurcation is not present.

As t continues to increase, the final point @ moves
downward. To understand what happens next, consider the
point (Q=qq,p=0). This is the point on the initial line that
7 is closest to the origin, so this point moves around the origin
with the highest angular frequency,

w1= wgexp — aq§/477).

When t=2m/w4, that point has returned to itself, and we
have a periodic orbit. We see thattaacreases to this value,
the final point ofC; moves down so that it coincides with
this periodic orbit, and the formerly closed orlif evolves
original line I'(0), then the intersection point is the final into a periodic orbit. We may now call B,. The subscript
point of a “closed orbit with closure timg.” means that this periodic orbit has gone around the center
If we fix T and varyw,, then the evolved curve changes in (q=0) once.
some way; it may develop new or additional intersections At this point, the evolved curv& (2mwq/w,) must be
with the original line. These are the above-mentioned “bi-tangent to the original lingy=1 atp=0. Ast continues to
furcations of closed orbits of closure tinfe” increase, the part in the LHP moves to the left and the part in
We need to know how the curve changes whep the upper-half-planédUHP) moves to the right. It follows
changes at fixed. To understand this, we only have to look that the point of intersection witli'(0) moves down, and
at Eq.(16) and note thatv, andt appear together as a prod- two new intersection points appear, one in the UHP and one

FIG. 7. Evolution of the vertical line at different timéswith
wo=0.5,a=—0.2. We label the curves by the time.

uct. Thus to learn how the curve changes withat fixedt,  in the LHP. The original intersection point is the continua-
we only have to ask, how does it evolve witlt fixed wo?  tion of C; ; it is still closed but not periodic, and we again
This is shown in Fig. 7 forwe=0.5a=—0.2g,=1. call it C;. The two new intersection points are periodic or-
Every point moves clockwise on a circle, with points far- pjts: they both lie on the same circle and the same straight
ther from the origin moving more slowly. Points pt=*%  |ine je. they are reflections of each other through phe

half of the line sweep to the left, and points on the upper half‘pitchfork” bifurcation. In this one-dimensional modeP*

of the line sweep to the right. It follows that there is just one - : : + _ L
intersection of the final curve with the initial line, and it lies andP .dn‘fe[ only in th?'r. phaseP™ leavesq=qo with g
>0, while P~ leaves withq<0.

in the lower-half-plangLHP). At small T, there is always

one orbit that moves slightly to the right g=1 and then Reiterating the sequence of events, ai:losed.@%iap-
returns. We call itC,. The zero in the subscript means that Pears that splits into twoC, and C; ; C; persists as a
this orbit does not pass through the cerger0. closed orbit.C; becomes periodiéand we call itP,), then

As t increasessee Fig. 7, the curvel (wot) evolves until  splits off two periodic orbitsP,” and P; , after which it is
eventually the “nose” of the curve is tangent to the vertical again closed but not periodicc{). Four closed orbits sur-
line. A new closed orbit has appeared that we n&fiethis  vive, two of which are periodicR; ,P;) and two of which
orbit moves to the left and then returns, passing back andre not C; ,cf), A picture is given in Fig. 8.
forth through the centej=0 once.

As t continues to increase, the “nose” passes through the
vertical line. The one closed orbit has split into two. One
moves up and one moves down the vertical line, and we call If we iterate the vertical line for a longer time, the curve
the resulting orbit€; andC; . This sequence of events is a I'(wot) curls around the center a second time. Another se-
kind of a tangent bifurcation. quence of bifurcations occurs and creates closed orﬁﬁs:

C. The bifurcation sequences of longer trajectories
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2.0 v ! ' ‘ ‘ ‘ , and varywg. The pitchfork bifurcation for the closed orbits
145 152
16

that pass the origin back and forthtimes happens when

| wo>2mn/T and wn=w0e‘aqg/4”=27-rn/T, wherew, is the
winding rate of the point§=q,,p=0).

F. Local bifurcations versus regional sequences of bifurcations

As discussed earlier, mathematical bifurcation theory is
1 focused on “local” properties of bifurcatiorf40]. The theo-
rems describe what happens within an arbitrarily small
neighborhood of a point in phase space in an arbitrarily small
region of parameter space. From this perspective, the above-
described tangent bifurcation and pitchfork bifurcation are
. independent events that have no relationship to each other.
Also, from the mathematical perspective, the pitchfork bifur-
cation is considered exceptionghongeneric”).

A physicist's perspective is different. For logical reasons
we observe a tangent bifurcation and a pitchfork bifurcation
i close to each other, but not within an arbitrarily small neigh-
borhood. Accordingly, to distinguish this behavior from the

l local properties of each bifurcation, we will call the pair of

20 I I . ‘ ‘ ‘ ‘ bifurcations a‘regional” sequence. Implicit in this discus-
' ' ' ' ' Tq ' sion is the view that in systems of interest in physics, this
: . connected pair of bifurcations will commonly be found.
st s iy o e o lowa, O @ lrGe scale n parametet space, o regonal biu:

: ) ) g ; o %anon sequence may be connected with another; we call
to move in the inner region, s6; and €, do not exist in the these “large-scale connections.” If one were ever to work
bounded phase space. out the whole family of closed orbits and their bifurcations in

' all of phase space and/or all of parameter space, we would
—(C; ,C3), C;—P,—(P;,C;,P,). These orbits pass have a “global” picture.

0.5 -

00 - |

back and forth the center twicé§ executes two full circles In the crossed-field system, we will examine several re-
around the centgr gional sequences of bifurcations, and a few large-scale con-
nections.

D. Truncated sequence of bifurcations of closed orbits
of the model Hamiltonian VI. LOCAL BIFURCATIONS AND REGIONAL

To understand the observed “truncated sequence” of bi- SEQUENCES OF BIFURCATIONS
furcations of closed orbits, we add one more element to our IN THE CROSSED-FIELD SYSTEM

model: an outer boundary. Suppose the allowed region of Now we return to the crossed-field system, and we show
phase space is bounded by a cirdee the dashed circle in that what we learned about the model also applies to our real
Flg 9), and the radius of this circle is too small to include thesystem_ From the above, we see that both the “normal” and
orbit C(l’. Then the bifurcation sequence starts from an exist«truncated” bifurcation sequences have periodic orbits in-
ing closed orbitC; . volved. This means that the bifurcation sequence includes
As energy increases;; first evolves into a periodic or- the passage of a rational torus through the line of initial
bit, then splits into two periodic orbits and a closed orbit by conditions. Therefore, in this section, we first examine the
the pitchfork bifurcation already discussed. The result is thaevolution of rational tori; then we discuss the bifurcations of
three closed orbits are created in an orderly sequence dlfie closed orbits. In this section, we focus on local bifurca-
events:C; , P, , andP; . The closed orbiC; is missing. tions and regional sequences of bifurcations.
We may call this event of a pitchfork bifurcation without a
nearby tangent bifurcation the “truncated sequence of bifur- A. Creation and evolution of rational tori

cations of closed orbits in the model system. In this system, we cannot get the whole picture by looking

at just one Poincarsection. We must examine=0 andv

=0 sections in overlapping ranges of energihe problem

is that the pitchfork bifurcations often occur when the closed
We have discussed above the bifurcation sequences of tlbit has a point of tangency with a SQS.

closed orbits at fixedvy and varyingt. Sincet and wg are In Fig. 10, we show the evolution of the rational torus 2/3

interchangeable in Eq(16), fixing t and varying wg is  on both (,p,) and @,p,) surfaces. On theu,p,) plane, the

equivalent to fixingw, and varyingt. Therefore, the bifurca- winding ratio decreases with increasing distance from the

tion sequences we discussed above also happen as we fixenterS, , and as energy decreases, the winding ratio around

E. Bifurcation sequence of closed orbits
at fixed t and varying wg
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2.0

10 }

FIG. 10. The 2/3 rational torus irv(p,) and u,p,) planes in
overlapping ranges of energy. (@), from inner to outefcurve 1 to
curve 4), energy decreases and the energies-Zfecm !, —95.3
cm™!, =160 cm'!, and —212 cn . In (b), from outer to inner
(curve 2 to curve 5), energy also decreases; the energies%a
cm 1, —160 cni'l, —212 cmi't, and—230 cni'l.

the centerS, increases. It follows that as energy decreases,
the rational torus 2/3 moves outward. At some critical en-

ergy, it becomes tangent to tipe axis.[See curve 2 in Fig.

10(a).]

This indicates that one of the members on this rational

PHYSICAL REVIEW A63 043409

members of the periodic family/n are closed at the origin.
At E=E,,, the rational torus becomes tangent to fhe
axis and two periodic closed members merge to one periodic
closed member. As energy further decreases, the rational
torus moves away from thp, axis and towards_ ; it has
then disappeared from the ) plane. Finally, this rational
torus is annihilated &_ . We use the names of the rational
tori (m/n) to name the associated closed orbits SUC@%

the family name (2,3) is related to the winding ratio of the
periodic members of the family.

B. The sequence of the bifurcation patterns of closed orbits

The evolution of the rational torus shows that the bifurca-
tions of the periodic closed orbits/n happen aErTLn and
Emn- In this section, we show that both of the bifurcation
sequences illustrated by the model Hamiltonian happen in
the crossed-field system: we have observed some normal se-
guences by iterating thp, axis in the ¢,p,) plane near
mn @and we have observed some truncated sequences by
iterating thep, axis in the (1,p,) plane neak,, .

1. “Normal” bifurcation sequences

The (2,3) bifurcation is observed in the sixth iterate of the

torus passes through the origin and becomes a periodic orbialf-map in the p, ,v) plane. The starting points lie on the
closed at the origin. We call the energy at which the rationap, axis. Figure 5 shows thﬁ;s% —95 cmi L. We iterate the

torusm/n is tangent to the, axis E;,Yn. When energy con-

p, axis on theu=0 surface over the energy rang&0 cni *

tinues to decrease, the rational torus 2/3 continues to expand —105 cm ! to observe the (2,3) “normal” bifurcation

so that it crosses the, axis, and two different periodic

sequence.

closed orbits are created. As energy further decreases, at The result is shown in Fig. 11. When energy is below 60.5
some critical energy it touches the classical boundary in them~-1, the sixth iteration does not touch the momentum axis.
(v,p,) plane, and then it disappears from this plane. We calixt the energyE=60.5 cni'%, it is tangent to thep, axis and

the critical energy at which the rational tomEn disappears

from this planeE, ,. To see what is happening there, it iS .« to decrease

better to look at the other SO%,(p,).

On the {,p,) plane, the winding ratio increases with in-
creasing distance from the cent8r, and as energy in-
creases, the winding ratio around the cerer decreases.
When energy is higher thdﬁgg, the rational torus 2/3 does
not appear on theu,p,) surface. AtE= E§3, it appears at

one closed orbiC:g’3 is createdsee Fig. 11a)]. As we con-
the energy, the sixth iteration crossqs,the
axis, and the closed orb(tgy3 splits into two closed orbits
szg andC, ;[see Fig. 1lb)]. This sequence of events is the
tangent bifurcation defined in Sec. V B. Then the closed orbit
C, 5 moves toward the origin and becomes a periodic orbit
P,z at the critical energy ;= —95.3 cmm!) of the 2/3

the boundary. After that, as energy decreases, it moves téational torus. As the energy passgsfhrod@tg, the peri-
ward the cente_ . The two crossings of the rational torus odic orbit P, 5 returns to closed orbi€, ; and two periodic
on thep, axis indicate again that two members of the peri-orbits (Pz3,P£3) are created. The creation of these two pe-

odic family 2/3 are closed at the origin. AA=E, 3, the
rational torus 2/3 becomes tangent to fheaxis, and two

riodic orbits is the “pitchfork bifurcation” defined in Sec.
V B. These two periodic orbits are related to each other by

periodic closed members merge to one periodic closed menP, ;=T P 5.

ber. As energy goes belok=E, 3, the rational torus moves
away from thep, axis and toward the cent& . [See curve
5 in Fig. 1Qb).] Finally it disappears at the cent8r .

Figure 12 shows the normal bifurcation sequence of the
(5,7) family of orbits, which appears on the seventh iterate
of the half-map neaE; ;= —135 cm*. Since it is an odd-

Based on the evolution of the rational torus 2/3, we camumber iteration, the periodic orbits involved in this bifurca-

reiterate the evolution of a general rational tomsn. At
some high energy, the rational torogn is created aS, ,
and as energy decreases, it moves away fm At E

= E;]n, it becomes tangent to the, axis and one periodic

tion sequence are periodic orbits of the half-Poincasap
and each of them is half of a periodic orbit of the dynamical
system.

These bifurcation sequences are the “normal” bifurcation

closed orbit is created; at that point it also becomes visible irsequence in which the closed orbits are created in a group of

the other SOS. As energy continues to decrease, this rationtdur: C, ,

Cmn+ Pmn, andPy, .. As stated earlier,rg,n)

torus crosses the momentum axes on either SOS, and twoeans that periodic members have a rational winding ratio
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FIG. 11. The sixth iteration of the bold vertical arrow line with
external fieldsB=6 T andE=1000 V/cm at various energie&)
E=-50,—55-60.5 (cm'!) from 1 to 3;(b) E=—65,—70,—75 v v v
(cm™Y) from 4 to 6; (c) E=—95.3 (cm!) labeled 7;(d) E
=—100-105 (cm ) from 8 to 9.

U o+ u

m/n, and the closed orbits lie on tori having winding ratios ‘ ";7 57 57
close to this rational number.
FIG. 12. The seventh iteration of the bold vertical arrow line
2. “Truncated” bifurcation sequence with external fieldB=6 T andE= 1000 V/cm at various energies:
_ , , E=-95-101.5-110~135~145 (cm ') from 1 to 5.
The truncated (2,3) bifurcation sequence is observed in
the fourth iterate of the half-map on the,p,) plane.E; this closed orbit moves toward the origin as energy in-

- 1. -
212.cm % i.e., as we go to energy lower thaf 5, Pag oo o AE=E; 3, C,3 becomes a periodic orbi®, ;.

is destroyed. Therefore, we start from below and incréase - e . ;
to observe the creation of the closed orbits. Figure 13 show-ghen the periodic orbit bifurcates into one closed ot

the fourth iteration of the momentum axis. Curve 1 corre-and tWwo periodic orbits F€2+v3"_32,3) as energy goes above
sponds toE=—220 cniL. It crosses the momentum axis E, 3. Thus we have only the pitchfork bifurcation in which a
once, but in contrast to curve 1 in Fig. 11, it does not curveclosed orbit creates a pair of periodic closed orbits. The two
back and cross the momentum axis a second time. Compar&@Ww orbits are related bly; ;= TUUP2+,3+-

to our model in Sec. VD, we could explain this by saying The orbitC, 3 is not the same a€; 3, discussed in the
that the SOS has an outer boundary, on which there is a finitereceding sectiofithese orbits do not continuously connect
positive winding rate. If the arrowhead in Fig. 13 were ex-to each othgr The orbitsC; s and P§5 shown in Fig. 2 are a
tended to the outer boundary, it would still map around to thesecond example of the truncated sequence. If the third iterate
positive quadrant. Hence there is one closed othit and  of the p, axis is shown at energies neal 86 cm i, we get
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15 NormadI sequence
10 b .
R" +
Ba
o5 | .
1
' 2
0.0 P /
L/ 3 Normal sequence Truncated sequence 7
Gs ’
05 | .
5 FIG. 14. We show large-scale connections of two normal re-
23 gional bifurcation sequences and one truncated regional bifurcation
410 | _ sequence. The central normal sequence is connected to the left nor-
mal sequence by an “accidental” connection and is connected to
the truncated sequence by the symmetries of the system.
15
0.5 0.0

c

05 ask what happens after they are created. To answer this ques-
tion, we studied the evolution of the closed orbits after their
creation and found that one closed orbit created in one re-
gional bifurcation sequence may evolve and get involved in
another regional bifurcation sequence. Hence the regional
bifurcation sequences are connected with each other. We call
a bifurcation sequence that includes more than one regional
bifurcation sequence a large-scale connection of regional bi-
furcations. We found that some of the large scale connec-
tions are related to the symmetry of the regularized Hamil-
tonian.

In Fig. 14, we show large-scale connections of three re-
gional bifurcation sequences. When we follow the orbits in
the C; 5 family to lower energies, we find tha&; 5 is con-
nected to a truncated sequence of bifurcations. As stated ear-
lier, the closed orbilC, 3 involved in the low-energy bifur-
cation of P, 3 does not connect continuously to either of the
closed orbits(:zi'3 that are involved in the high-energy bifur-
cation of P, 3. In these two regional bifurcation sequences,
the periodic orbits are all connected by symmetry. The sym-
metry operationd o, Toy, ando,o, acting oanf3 gen-

FIG. 13. The fourth iteration of the bold vertical arrow line with €rate a family of four periodic orbits, which are connected to
external fieldsB=6 T andE=1000 V/cm at various energiek  C;3and toC, 3 as indicated in Fig. 15.
=—220-212-200 (cni'!) from 1 to 3. Below are shown the
resulting orbits(In the pictures oP§3, the nucleus is close to, but
not quite at, the location of a self-intersection of the orbit. Compare LQJGVC +

‘ 2,3

Fig. 11)

a picture comparable to Fig. 13. In this cd3gs= TO’UP;5. \
Hence we observe that both “normal” and “truncated” \
bifurcation sequences appear in the crossed-field system. The o0,k * T%P
“normal” bifurcation sequence involves the bifurcation of a 28
periodic closed orbit aErfm, and the “truncated” bifurca-
tion sequence involves the bifurcation of a periodic closed /

orbit atE, .

VIl. SOME LARGE-SCALE CONNECTIONS

C
OF REGIONAL BIFURCATIONS ™e 2.3

2,3

In the local and regional bifurcations, we observed the FIG. 15. We show a “unit cell” of symmetry-related large-scale

creation of the closed orbis, ,,C, n,Pmn:Pmn- NOwwe  connections involving®; 5.

043409-11



D. M. WANG AND J. B. DELOS PHYSICAL REVIEW A63 043409

We also find thatC, ; is connected to another normal 1 1
sequence of bifurcations. We call this “accidental connec- q 0 q
tion” since none of the trajectories in the other sequence is
connected to the trajectories in the (2,3) sequence by the . 1
symmetry operations. @ )
/

VIll. CONCLUSION

We have shown that closed orbits in the crossed-field sys-
tem are created in orderly sequences of bifurcations, either a
tangent bifurcation followed by a pitchfork bifurcation or a
pitchfork bifurcation by itself. The pitchfork bifurcation al-
ways involves an orbit that is both closed and periodic. Pe-
riodic orbits can be identified by their winding ratio/l, so Pitchfork bifurcation
we label them a$,,,. Each suc_h orbit has par&ners gener- kg 16. Evolution of a cubic curvg(p)=a-+bp+ p® at fixed
ated by the symmetry operatiort®.g., 04o,Pr ). The 4 and variousb. Left: a=0 gives a pitchfork bifurcation; righta
closed orbits that are connected witiil periodic orbits are  +0 gives a tangent bifurcation.
labeledC,,, or C,fm. At the pitchfork bifurcation,C,,, or
Co.1 coincides with the periodic orbR,, . Study of a model 1. Generic bifurcations in cubic curves

Hamiltonian indicates that closed orbits in any integrable general cubic curve can be expressed by the function
system should have comparable behavior.
Q(P)=A+BP+CP?*+DP3. (A1)

Tangent bifurcation

ACKNOWLEDGMENT The family of cubic curves corresponds to the family of
mapsRXx R*— R defined by Eq(A1). For almost all values

of the parameteré\- - - D, the cubic has either one or three
real roots. A bifurcation is a change in the number of real

The authors thank the NSF for financial support.

APPENDIX: PITCHFORK BIFURCATIONS OF CLOSED roots as the parameters change.
ORBITS ARE GENERIC IN INTEGRABLE The parameter space can be reduced to two significant
HAMILTONIAN SYSTEMS dimensions. FobD #0, we can divide byD, g=Q/D, with-

We have shown that both in the model system defined ir?m changing the number of real roots, and we can also trans-

Sec. V and in the crossed-field system, we typically see late the ongm of the P coordinate= F.)_(?/?’ to ellmlnat_e
: : ; . P the quadratic term. Thus by a translatiorpiand a stretch in
tangent bifurcation and a pitchfork bifurcation in an orderly : !
) . . . . .2 g, we can reexpress the cubic function as

sequence; often we see a pitchfork bifurcation by itself, with
no nearby tangent bifurcation. This behavior may sound q(p)=a+bp+p°. (A2)
strange to those who are familiar with the theory of bifurca-
tions of periodic orbits. Tangent bifurcations of periodic or-  If a=0, then by varying the parameterfrom positive to
bits are generic, but pitchfork bifurcations are i@t Nev-  negative, we get a pitchfork bifurcatioffrig. 16: p=0 is
ertheless, in our calculations we have come across pitchfori@ways a root, and wheb passes through zero, two new
more frequently than tangents. roots are created, one on either sidepef0. However, for

One might expect that this is connected to symmetries ofll other values of the parametarwe get a tangent bifurca-
the system. It has been shown that pitchfork bifurcations otion: for a>0 andb>0, only the negative root is present,
periodic orbits are generic if the Hamiltonian has a reflectionand whenb decreases to a sufficiently negative value, two
symmetry[1]; if this symmetry is broken, then the pitchfork new roots are created at positive Thus in the two-
bifurcations are converted to tangent bifurcations. All of thedimensional parameter plana,b), tangent bifurcations are
pitchfork bifurcations of closed orbits that we have calcu-generic, and pitchfork bifurcations occur only on the liae
lated in the crossed-field system are connected with a syn=0, a set of measure zero in the plane.
metry, and that leads one to suspect that breaking the sym- Returning to the four-dimensional parameter space, sup-
metry would have the same effect. We therefore carried oupose the parametess - - D vary in some general manner as
some numerical experiments on simple maps to examine thia function of some other single parameter, which we will call
symmetry breaking. In these calculations, pitchfork bifurca-t. Examining Fig. 16, we see that the only way we can get a
tions turned out to be unexpectedly robust; they were nopitchfork bifurcation is if the parametes(t) - - - D(t) vary

destroyed when the symmetry was broken. in such a way that for some value-t, there exists a value

We propose below that pitchfork bifurcations of closed ;7 gch that and its first two derivatives with respect to
orbits represent a generic pattern of behavior in integrable, 4| vanish simultaneously:

Hamiltonian systems. We will illustrate this by examining

the time evolution of a line in the phase plane. Our math- q(B;T):O, (A3)
ematics will be informal and intuitive rather than formal and e
rigorous[16]. q'(p;t)=0, (A4)
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p P

FIG. 17. Contours of a general Hamiltonian functib(p,q),
the lineq=q, and the evolution of that line to=1.

q"(p;t)=0. (A5)

PHYSICAL REVIEW A63 043409

every point on the initial lineqy=1q, po=anything evolves

to the curve q(t;po,q),p(t; po,a)]. We holdt andq fixed,
S0 pg is the parameter defining the curve.

Proposition At that valuet=T1,

q=aq, (A8)
dq/dpe=0, (A9)
429/ 9p3=0, (A10)
apldpy=0. (A11)

Equation(A8) is a trivial statement: we definedso that it
would be true. Equation§A9) and (A10) are not quite so
obvious. Comparing them with Eq8A3)—(A5), we see that
these equations are precisely what is needed to ensure that
we get a pitchfork bifurcation of the closed orbit. Equation
(A11) is an extra condition that is needed in order to prove
Eq. (A10).

Proof. (i) Since the contouh(q,p) is tangent to the line
q=q atp=p, the gradient oh(p,q) is perpendicular to the
line at that point,

oh(p,a)/dplp5=0. (A12)
(i) As time evolves, the value df(p,q) is conserved, so

h(p(1;po,d0),A(t; Po,do))=h(Po,do)- (A13)

Differentiating this equation once with respectpg we ob-

We will show that this seemingly exceptional condition tain

occurs commonly in integrable Hamiltonian systems; i.e.,
pitchfork bifurcations are generic one-parameter bifurca-

tions of closed orbits in integrable Hamiltonian systems.

2. Proof in a special case

We consider a system with one degree of freedom, having

a Hamiltonianh(p,q) that generates equations of motion

(ohlap)(apldpg) + (dhl/aq)(dql/ dpg) = (dhl dpg).
(A14)

Evaluating this equation afp(q) and using Eq(A12), we
find

(99/dpg) =0. (A15)
(iii) Similarly, differentiating Eq.(A13) with respect togg,

q=dh/ap, (AB)  we find
p=—oh/dq. (A7) (99/dqp) =1. (A16)
If  h(p,q) is smooth, then the solutions (Iv) The map is area-preserving, so
(q(t;po.do),P(t;Po.do)) are smooth functions of and of (. (Po,do) =1, (A17)

the initial conditions pgy,qg). We assume that in a domain

of the phase plane, the contours lofp,q) form smooth
closed curvegFig. 17).

We take an arbitrary ling=0q in this domain, and we
examine its time evolution. Typically there is some value
such that the contout(p,q)=h is tangent to the ling=0q;
let us call the value op at the point of tangency. The
initial point (gy=q,po=p) evolves with time so that it
moves around the contotn(p,q)=h, and it eventually re-
turns to the initial point at a time we call=t. Similarly,

and combining this with EqgA15) and (A16), we find
(dpldpg) = 1. (A18)

(v) Finally, we differentiate Eq(A13) a second time with

respect top,, and evaluate the result ap,q). Throwing
away all the terms that vanish, we are left with

(ah/aa)(5%al apd) = (9°h/ apg)[ 1— (apl pe)?]1=0.
(A19)

QED.
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