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Organization and bifurcation of planar closed orbits of an atomic electron in crossed fields

D. M. Wang and J. B. Delos
Physics Department, College of William & Mary, Williamsburg, Virginia 23187-8795

~Received 3 August 2000; published 15 March 2001!

We describe the patterns of creation and splitting of planar closed orbits of electrons in hydrogen atoms in
crossed electric and magnetic fields. These orbits lie in the plane perpendicular to the magnetic field, and they
start and end at the nucleus. Using a Poincare´ map to study the regular motions, we observe that the bifurca-
tions of planar closed orbits fall into an ordered sequence as energy changes: a ‘‘tangent bifurcation’’ creates
one closed orbit that splits into two; subsequently, one of them becomes periodic, and splits by a ‘‘pitchfork
bifurcation’’ into two periodic orbits and one closed orbit. Based on these calculations, we classify the closed
orbits that are involved in a sequence of bifurcations in a family, and we name the family by the winding ratio
of the periodic orbits in the family. To understand this ordered sequence of bifurcations, we create a simple
integrable Hamiltonian as a model of the Poincare´ map. This model gives a simple interpretation of the
sequence of the bifurcations. The model contains only general assumptions, so we expect that such sequences
of bifurcations of closed orbits will be commonly found in physical systems.

DOI: 10.1103/PhysRevA.63.043409 PACS number~s!: 32.80.2t, 05.45.2a, 03.65.Sq, 32.60.1i

I. INTRODUCTION

We study the planar orbits of an electron in a hydrogen
atom in crossed electric and magnetic fields. According to
closed-orbit theory, each closed orbit produces a sinusoidal
oscillation in the absorption spectrum as a function of en-
ergy, and it produces a peak in the recurrence spectrum. As
the energy changes, new closed orbits are created via bifur-
cations, so new peaks appear in the recurrence spectrum.
Therefore, the patterns of bifurcations and the organization
of closed orbits are of fundamental interest for understanding
the spectrum. These have been studied experimentally and
theoretically for Rydberg atoms in a magnetic field@1,2# or
in an electric field@4,3# separately as well as in parallel elec-
tric and magnetic fields@5,6#.

In @7#, Gao organized the closed orbits of a pure electric
field system by their winding ratio. In this integrable system,
all orbits form tori, and periodic orbits correspond to tori
with rational winding numbers. Each such rational torus is
filled by a family of periodic orbits with fixed action vari-
ables and varying relative phases. In the pure electric field,
each orbit that is closed at the nucleus is one of these peri-
odic orbits. Therefore, Gao showed that we can understand
the closed orbits by understanding the rational tori. As the
energy increases, a rational torus, together with its associated
closed orbit, bifurcates out of the ‘‘downhill’’ orbit, evolves
to an uphill orientation, and then disappears by merging with
the ‘‘uphill’’ orbit.

The crossed-field system is completely different. Part of
the phase space is filled with chaotic orbits. However, at low
energies, regular orbits dominate, so we can gain insight by
first focusing our attention on these. Furthermore, the mea-
surements done by Raithelet al. @8# proved that planar
closed orbits make significant contributions to the recur-
rences. Therefore, we restrict our attention to orbits which lie
in the plane perpendicular to the magnetic field.

We find that because this system has lower symmetry
than the parallel-fields system, in general closed orbits do not
correspond to periodic orbits. Therefore, little of the well-
developed theory of bifurcations of periodic orbits can be

applied. We get new patterns of creation and splitting of
closed orbits. Some of these patterns are sufficiently similar
to the patterns seen in bifurcations of periodic orbits that we
can use the same names. We will refer to a ‘‘tangent bifur-
cation’’ and a ‘‘pitchfork bifurcation.’’ However, it must be
remembered that we are dealing here with a different phe-
nomenon.

In this paper, we first present an ‘‘observed’’ sequence of
bifurcations of closed orbits~observed by numerical experi-
ment!. Then we define a half-Poincare´ map that we use to
interpret observations. We create a simple model Hamil-
tonian to model the half-map and illustrate the sequence of
bifurcations of closed orbits. Subsequently, we show that
bifurcations of the closed orbits in the crossed-field system
fall into the same sequence as that in the model Hamiltonian.
Finally, we present a way to organize the planar closed orbits
~where ‘‘planar’’ means thexy plane! into families and as-
sign each family a family name and each member of a family
a given name.

‘‘Closed’’ always means closed at the nucleus; typically
the electron leaves the atom in one direction and returns
from another, and the orbit is not periodic. However, as we
will see below, some orbits are both closed and periodic.

II. THE OBSERVED SEQUENCE OF BIFURCATIONS
OF THE CLOSED ORBITS

We have observed two typical sequences of bifurcations
of closed orbits. One is shown in Fig. 1. In a region of phase
space where there is no closed orbit, as the energy is de-
creased, abruptly a closed orbit appears. We name this one
C2,3

0 ; the names will be explained as we develop the theory.
This closed orbit immediately splits into two closed orbits
(C2,3

2 ,C2,3
1 ). We call this creation of a new closed orbit and

the splitting of this orbit into two closed orbits a tangent
bifurcation. As the energy decreases further, each of these
closed orbits changes its shape, and, in particular,C2,3

1

evolves until at some energy it becomes both closed at the
nucleus and periodic. We then call itP2,3. Then two other
periodic orbits (P2,3

1 ,P2,3
2 ) split out of P2,3, while P2,3 re-
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turns to being closed but nonperiodic. We again call the
closed orbitC2,3

1 . We call the splitting of one periodic orbit
into two periodic orbits and one closed orbit a pitchfork bi-
furcation. Therefore, we observe that the closed orbits appear
in a group of four in an orderly sequence. We call this the
‘‘normal sequence’’ of bifurcations of closed orbits.

A different sequence is shown in Fig. 2. A closed orbit

C3,5 exists at very low energies. As energy increases, it
evolves into one periodic orbitP3,5 first, then becomes a
nonperiodic orbitC3,5, and two periodic orbits (P3,5

1 ,P3,5
2 )

are created. Here, we observe that the closed orbits appear in
a group of three in an orderly sequence. We call this the
‘‘truncated sequence’’ of bifurcations of closed orbits.

Why are such numerical observations interesting? First,
from the perspective of atomic spectroscopy, it would be
good to understand the orbits and their bifurcations. For ex-
ample, Raithel and Walther@8# measured the recurrence
spectrum of Rb atoms in crossed fields, and at one particular
scaled energy they observed a peak associated with the orbit

FIG. 1. An example of the normal sequence of bifurcations of
closed orbits. A single closed orbitC2,3

0 is created which splits into
two, C2,3

1 andC2,3
2 ~tangent bifurcation!. One of them becomes pe-

riodic, and then splits off two periodic orbits, becoming again
closed but nonperiodic~pitchfork bifurcation!. The orbits are shown
in (u,v) space and in (x,y) space. The1x axis and the6u axis are
‘‘uphill’’ in the electric potential. The Lorentz force pushes the
electron in a counterclockwise sense in either representation.

FIG. 2. An example of the truncated sequence of bifurcations.
The orbitC3,5 exists at low energies, and as the energy is raised, it
undergoes a pitchfork bifurcation. Here we show half of the peri-
odic orbitsP3,5

6 .
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we callC3,5. More generally, they found that recurrences are
strongest near bifurcations, and indeed, for atoms in crossed
fields, many recurrences are strong enough to be visible only
near bifurcations.

Second, from the perspective of bifurcation theory, these
observations beg for an explanation.~i! Within the one-
parameter theory of bifurcations of periodic orbits, pitchfork
bifurcations are nongeneric@9#. That might lead one to ex-
pect that pitchfork bifurcations of closed orbits are also non-
generic. However, we will argue in Appendix A that in inte-
grable systems, pitchfork bifurcations of closed orbits are in
fact generic.~ii ! More fundamentally, bifurcation theory is
usually formulated as alocal theory @10#. The theorems de-
scribe what happens typically in asufficiently smallregion of
phase space and parameter space. What we would expect
typically is tangent bifurcations. When we report that what
we normally see is a tangent bifurcation followed by a pitch-
fork bifurcation, this observation falls outside of the local
formulation of bifurcation theory: the phrase ‘‘soon followed
by’’ means ‘‘after a finite step’’ in energy,not within a suf-
ficiently small neighborhood. We need an explanation of
why such generic-nongeneric bifurcations are often seen as a
couple.

The purpose of this paper is to understand these se-
quences of creation and splitting of closed orbits. We first
give more detail about the crossed-field system, then we cre-
ate a simple model. This simple model has sequences of
bifurcations of closed orbits that are analogous to the ‘‘nor-
mal sequence’’ and the ‘‘truncated sequence’’ of bifurcations
in the crossed-field system. Most important, the model in-
volves only general assumptions; this leads us to believe that
such sequences of bifurcations of closed orbits will be com-
monly found in many physical systems.

III. THE REDUCED HAMILTONIAN AND TWO
FUNDAMENTAL PERIODIC ORBITS

This section is devoted to the transformations of the re-
duced Hamiltonian, including rescaling and regularizing. We
also discuss the role of two fundamental periodic orbits in
organizing the planar orbits.

A. The Hamiltonian

1. Reduction and regularization

We ignore the motion of the proton@11#, and we consider
the motion of an electron in combined Coulomb fields plus
magnetic field pointing in the1z direction plus electric field
pointing in the1x direction, so the1x direction is ‘‘up-
hill.’’ The reduced two-dimensional~2D! Hamiltonian is

H5
1

2
~ P̂x̂

2
1 P̂ŷ

2
!2

1

r̂
1Fx̂1

B

2
L̂ ẑ1

B2

8
~ x̂21 ŷ2! ~1!

with r̂5Ax̂21 ŷ2. We scale the coordinates and the param-
eters according to

f 5FB24/3, e5EB22/3, r 5 r̂ B2/3, P5 P̂B21/3,

transform to semiparabolic coordinates,

x5
1

2
~U22V2!, Px5

UPU2VPV

U21V2
, ~2!

y5UV, Py5
UPV1VPU

U21V2
, ~3!

and make one more rescaling of the variables,

U5u/Av, PU5puAv, ~4!

V5v/Av, PV5pvAv, ~5!

v5A22e ~6!

to put the Hamiltonian in the form:

2

v
5

1

2
~pu

21pv
2!2

1

2
~u21v2!1

f

2v3
~u42v4!

1
1

4v2
~upv2vpu!~u21v2!1

1

32v4
~u21v2!3.

~7!

The coordinate transformation~2!, ~3!, ~4!, and~5! maps
the wholexy plane to the half (u,v) plane. The6u axis
corresponds to the1x axis ~‘‘uphill’’ !, and the6v axis
corresponds to the2x axis ~‘‘downhill’’ !. Therefore, we
only need to consider the trajectories launched withu̇.0.
Alternatively, we may consider those launched withv̇.0.
The original system~1! has three parameters:F, B, and the
value of H(p,q)5E; reduction to Eq.~7! shows that only
two parameters are significant, (e, f ) or (v, f ).. In this work,
we will vary one parameter (E).

2. The symmetry properties of the regularized
two-dimensional Hamiltonian

The differential equations generated by the original
Hamiltonian~1! are invariant under the symmetry operation,
Tsy , the combination of ‘‘time reversal’’T with reflection
in y:

sy :~y→2y,Py→2Py!,

T:~P→2P,t→2t !,

Tsy :~x,y,Px ,Py ,t !→~x,2y,2Px ,Py,2t !.

The regularized equations generated by Eq.~7! are invari-
ant under inversion and two time-reversal reflections:

susv :~u,v,pu ,pv ,t !→~2u,2v,2pu ,2pv ,t !,

Tsu :~u,v,pu ,pv ,t !→~2u,v,pu ,2pv ,2t !,

Tsv :~u,v,pu ,pv ,t !→~u,2v,2pu ,pv ,2t !.

Therefore, any orbit in (u,v,pu ,pv) space that does not have
any symmetry must have three siblings that result from these
three symmetry operations. Two orbits in (u,v,pu ,pv) space
that are related by the inversion operationsusv are identical
in (x,y,Px ,Py) space.
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B. Two elementary periodic orbits and their role
in the organization of planar motions

For the reduced 2D Hamiltonian, there are two fundamen-
tal periodic orbitsS1 andS2 , and they are ‘‘organizers’’ of
the planar motions. These orbits were studied by Flo¨thmann
and Welge@12#, who show pictures of these orbits at various
energies.S1 is nearly circular in the (x,y) plane, but the
circle is not centered at the nucleus. The electron runs around
S1 in a counterclockwise sense, so the Coulomb force and
the Lorentz force both point inwards. In the energy range we
study,S1 is stable, so quasiperiodic orbits oscillate about it
@13#.

Figure 3 shows surfaces of section calculated in two dif-
ferent ways at various energies. The surfaces of section on
the left are defined byu50 with u̇.0 and the surfaces of
section on the right are defined byv50 with v̇.0. The
smooth curves on the surface of section~SOS! correspond to
regular tori and they are organized into two groups: one is
centered atS1 and another is centered atS2 . However,
there is no fundamental distinction between these two
groups, since they are not separated by an unstable periodic
orbit with a separatrix.

The origin in coordinate space (u50,v50) directly cor-
responds to thepu or pv axis on the SOS, so orbits that are
closed at the nucleus are orbits that begin and end on the
momentum axispu or pv on the SOS. We may focus our
attention on the behavior of the loops on the left-hand side of
each SOS—the loops surroundingS1 on theu50 SOS or
the loops surroundingS2 on thev50 SOS.

IV. POINCARÉ HALF-MAP

The conventional full Poincare´ map is commonly used to
study bifurcations of the closed periodic orbits@7,10#. On the
SOS generated by the full Poincare´ map, periodic orbits
show up as fixed points, so they can be easily located. How-
ever, since most of the closed orbits in the crossed field
system are nonperiodic, the full Poincare´ map is not so help-
ful. In this section, we define a Poincare´ half-map, which is
more useful.

A. Full Poincaré map

Choosing the surfaceqi50 ~i.e., eitheru50 or elsev
50), we define a map of the corresponding Poincare´ plane
(qj 0

,pj 0
)→(qj 1

,pj 1
) by starting the trajectories on the sur-

face qi50 with q̇i.0, integrating the„qi(t),qj (t),pi(t),
pj (t)… equations, and stopping whenever the orbit passes
through qi50 with q̇i.0 again, then recording (qj ,pj ).
This is called the Poincare´ full map M p . We denote the pair
of variables (qj ,pj ) as

z[~qj ,pj ! ~8!

and the mapping is abbreviated as

zk115M p~zk ;e, f !. ~9!

The iterations of the Poincare´ full map give us the con-
ventional Poincare´ SOS. Each fixed point on the SOS corre-
sponds to a periodic orbit of the differential equations.

The surface selected above has a drawback; the trajecto-
ries do not always pass through the surface but may be tan-
gent to it. This results in discontinuities of the map@14#. In
this system, we did not find a simple Poincare´ map that is
entirely free of discontinuities. However, we find that the
map defined in Eq.~9! is continuous in substantial regions,
so we can use it to discover orderly bifurcation patterns of
closed orbits.

B. Poincaréhalf-map

The symmetries of the system allow us to define a kind of
‘‘half-map.’’ If we begin trajectories atqi50 with q̇i.0 and
stop immediately when they return toqi50 with q̇i,0, we
call this mapM 1(z;e, f ). Similarly, if we start withq̇i,0
and stop atqi50 with q̇i.0, we call this mapM 2(z;e, f ).
Clearly, the full Poincare´ map is then

M p~z;e, f !5M 2„M 1~z;e, f !….

It is not hard to show that because of the symmetries of this
system, the mapsM 1 andM 2 are related by

FIG. 3. A collection of surfaces of section at three different
energies with fixed external fieldsB56 T, F51000 V/cm, or f
50.2587:~a! E52250 cm21 or e521.313 andv51.620;~b! E
52190 cm21 or e520.998 andv51.413;~c! E52140 cm21 or
e520.736 andv51.213.
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M 2~z;e, f !52M 1~2z;e, f !. ~10!

Therefore,

M p~z;e, f !5M 2M 1~z;e, f !52M 1„2M 1~z;e, f !…,
~11!

that is to say,M 2M 15(2M 1)2. We define2M 1(z;e, f )
as the Poincare´ half-map.

C. Periodic orbits of the Poincaréhalf-map and the winding
ratio of the periodic orbits

1. The correspondence between periodic or closed orbits
of the Poincaréhalf-map and periodic or closed orbits

of the dynamical system

The Poincare´ half-map is defined as2M 1(z;e, f ). Start-
ing from any point, we may iterate the map2M 1 as many
times as we wish,

zk118 52M 1~zk8 ;e, f !. ~12!

We define a periodic orbit of the half map as the set of points
(z0 ,z18 ,z28 , . . . ,zm8 ) generated according to Eq.~12! such that
the mth iteration returns to the initial pointzm8 5z0. We de-
fine a closed orbit of the half-map as an orbit such thatqm8
5q050. ~Here, as usual, ‘‘closed’’ means closed at the
nucleus.!

Every periodic orbit of the dynamical system that goes
through the surface of section is also a periodic orbit of some
iterate of the half-map. Every closed orbit of the dynamical
system is a closed orbit of the half-map, and vice versa~see
Fig. 4!.

2. The winding ratios of the periodic orbits
of the Poincaréhalf-map

We focus on the loops aroundS1 on theu50 surface to
study the closed orbits. In the regular region,S1 is sur-
rounded by smooth curves, and each curve corresponds to a
regular torus in phase space.

To show how the trajectories wind around the central pe-
riodic orbit, we apply the half-map to a horizontal line to get
Fig. 5. We have the following observations:

~i! Points on the SOS wind around the periodic orbitS1 ,
and we may say that they wind in a clockwise sense.

~ii ! The winding rate decreases as we go farther from the
central periodic orbitS1 . ~If we travel outward fromS1 on

a curve, our path bends to the left.!
~iii ! Since the orbits are regular, we can relate the winding

rate ā(e, f ;v0 ,pv0
) to the fundamental periods of the tori,

which we choose to callTu,v(e, f ;v0 ,pv0
) @15#. The winding

ratio of the points is related to fundamental periods by

Tu~e, f ;v0 ,pv0
!

Tv~e, f ;v0 ,pv0
!

5
ā~e, f ;v0 ,pv0

!2p

p
. ~13!

In the numerator, we subtractp because the half-map incor-
porates a reflection (v→2v,pv→2pv), which we regard as
an advance ofp upon each return. In the denominator, we
divide by p instead of 2p because each return tou50 cor-
responds to a half-cycle of theu motion.

~iv! Besides the central periodic orbit,S1 , there are other
periodic orbits corresponding to tori with a rational period
ratio. These occur when@ā(e, f ,v0 ,pv0

)2p#/p is a rational

fraction m/ l . We name the torus and its periodic orbits by
this rational fractionm/ l . The periodic orbits of the map
show up as intersection points of the spirals on the SOS~see
Fig. 5!.

~v! As energy decreases, the winding rateā(e, f ;v0 ,pv0
)

around the centerS1 increases, and each rational torus
moves outward fromS1 .

FIG. 4. Every periodic orbit of the dynamical system~defined
by the differential equations! that goes through the surface of sec-
tion (u50 or alternativelyv50) is a periodic orbit of some iterate
of the half-map. The converse is not necessarily true. Every orbit of
the dynamical system that is closed at the origin (u50,v50) is
also a closed orbit of some iterate of the half-map. The converse is
also true.

FIG. 5. The first 20 iterations of the horizontal line atE
5295 cm21 with external fieldsB56 T andF51000 V/cm. The
5/7 and 2/3 periodic orbits are marked by dots and labeled by 7 and
6. We use bold 0,1,2,3 to label the initial horizontal line and the
first, second, and third iteration of the initial line, respectively.
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V. A MODEL OF THE HALF-MAP

In this section, we present a model Hamiltonian that gen-
erates a ‘‘twist map.’’ This twist map is a simple model of
the half-map, and we use this twist map to illustrate the
sequence of bifurcations of closed orbits. We will show in
the next section that the bifurcations of closed orbits in the
crossed-field system fall into the same sequence as the bifur-
cations in the model. Hence the model Hamiltonian provides
an interpretation of our calculations on the crossed-field sys-
tem.

A. A model Hamiltonian

We consider a model in which a particle moves periodi-
cally on a single coordinateq(t), with an associated canoni-
cal momentump(t), so phase space is the two-dimensional
plane (q,p). We want a model having the following four
properties:~i! the flow in phase space is steady and area-
preserving, so it is governed by a time-independent Hamil-
tonian;~ii ! the center (q50,p50) is a fixed point, and there
are no other fixed points;~iii ! points nearby move in a closed
curve around the center with average angular velocityv0;
~iv! more distant points move around with a lower average
angular velocity. At a later point we will add a fifth property:
one of the closed curves defines an outer boundary to the
flow.

A Hamiltonian generating such a flow is

H5~2v0 /a!e2aI, ~14!

whereI 5(p21q2)/4p is the classical action. We may useI
andu5arctan(q/p) as canonical variables, and then

İ 50, I 5const; ~15!

u̇5v0e2aI, u~ t !5u01v0te2aI. ~16!

This is a continuous version of a ‘‘twist map’’—the flow
has the properties listed above. Obviously all the orbits are
periodic, and any orbit that goes through some pointq0 re-
turns repeatedly to that point~see Fig. 6!.

In this model, we use the words ‘‘closed orbit’’ to refer to
a ‘‘closed orbit atq0 with closure timeT’’: this is an orbit
that starts at some locationq0 that is not at the center, and
later, att5T, returns to that same point. Let us now fixT,
and regardv0 as a variable parameter. We will speak of
‘‘bifurcations of closed orbits.’’ By this we mean that for
some fixedq0, and some fixedT, as we vary the parameter
v0, there may be a creation or a splitting of a ‘‘closed orbit
at q0 with closure timeT.’’ For example, ifT is fixed much
less than 2p/v0, then there is no closed orbit moving around
the center having such a short period. However, for that fixed
T, we can increasev0 until it exceeds 2p/T, and then such a
closed orbit will appear.

This looks like a completely trivial problem. In fact, how-
ever, such closed orbits appear in groups of four in an or-
derly sequence~a tangent bifurcation followed by a pitchfork
bifurcation!. After we display this behavior, we will show
that planar closed orbits in the crossed-field system appear in
the same way. Indeed, since the model is based on quite

general assumptions, we expect that this behavior will be
commonly found in physical systems.

B. Normal sequence of bifurcations of closed orbits
of the model Hamiltonian

We consider the set of initial conditions
(q5q0 ,p5anything!. This corresponds to a vertical line in
the (q,p) plane, which we callG(0). Suppose we allow the
points on that line to evolve under Hamiltonian’s equations
~15! and ~16! until t5T. The line evolves into a curve that
we call G(v0T). If the evolved curveG(v0T) intersects the

FIG. 6. ~a! The motions described by the model Hamiltonian are
circular rotations in the (q,p) phase space.~b!–~e! The four short-
est closed orbits are represented in (q,p) space. Orbits begin at an
open circle and end at a filled circle.~b! At small T ~or smallv0),
only C0 is present.~c! At some largerT, C1

0 is created, and it splits
into C1

1 and C1
2 . ~d! C1

1 evolves until it becomes periodic,P1.
Then it evolves into an orbit that goes around the center more than
one cycle. At the same time it splits off two periodic orbitsP1

6 that
differ only in phase.~e! At the end, four closed orbits exist; two are
nonperiodic,C1

6 , and two are periodic,P1
6 .
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original line G(0), then the intersection point is the final
point of a ‘‘closed orbit with closure timeT.’’

If we fix T and varyv0, then the evolved curve changes in
some way; it may develop new or additional intersections
with the original line. These are the above-mentioned ‘‘bi-
furcations of closed orbits of closure timeT.’’

We need to know how the curve changes whenv0
changes at fixedT. To understand this, we only have to look
at Eq.~16! and note thatv0 andt appear together as a prod-
uct. Thus to learn how the curve changes withv0 at fixed t,
we only have to ask, how does it evolve witht at fixedv0?
This is shown in Fig. 7 forv050.5,a520.2,q051.

Every point moves clockwise on a circle, with points far-
ther from the origin moving more slowly. Points atp56`
do not move at all. Therefore, for smallt, points on the lower
half of the line sweep to the left, and points on the upper half
of the line sweep to the right. It follows that there is just one
intersection of the final curve with the initial line, and it lies
in the lower-half-plane~LHP!. At small T, there is always
one orbit that moves slightly to the right ofq051 and then
returns. We call itC0. The zero in the subscript means that
this orbit does not pass through the centerq50.

As t increases~see Fig. 7!, the curveG(v0t) evolves until
eventually the ‘‘nose’’ of the curve is tangent to the vertical
line. A new closed orbit has appeared that we nameC1

0; this
orbit moves to the left and then returns, passing back and
forth through the centerq50 once.

As t continues to increase, the ‘‘nose’’ passes through the
vertical line. The one closed orbit has split into two. One
moves up and one moves down the vertical line, and we call
the resulting orbitsC1

2 andC1
1 . This sequence of events is a

kind of a tangent bifurcation.

As t continues to increase, the final point ofC1
1 moves

downward. To understand what happens next, consider the
point (q5q0 ,p50). This is the point on the initial line that
is closest to the origin, so this point moves around the origin
with the highest angular frequency,

v15v0 exp~2aq0
2/4p!.

When t52p/v1, that point has returned to itself, and we
have a periodic orbit. We see that ast increases to this value,
the final point ofC1

1 moves down so that it coincides with
this periodic orbit, and the formerly closed orbitC1

1 evolves
into a periodic orbit. We may now call itP1. The subscript
means that this periodic orbit has gone around the center
(q50) once.

At this point, the evolved curveG(2pv0 /v1) must be
tangent to the original lineq051 at p50. As t continues to
increase, the part in the LHP moves to the left and the part in
the upper-half-plane~UHP! moves to the right. It follows
that the point of intersection withG(0) moves down, and
two new intersection points appear, one in the UHP and one
in the LHP. The original intersection point is the continua-
tion of C1

1 ; it is still closed but not periodic, and we again
call it C1

1. The two new intersection points are periodic or-
bits; they both lie on the same circle and the same straight
line, i.e., they are reflections of each other through thep
50 axis. The creation of these two orbits may be called a
‘‘pitchfork’’ bifurcation. In this one-dimensional model,P1

and P2 differ only in their phase:P1 leavesq5q0 with q̇

.0, while P2 leaves withq̇,0.
Reiterating the sequence of events, a closed orbitC1

0 ap-
pears that splits into two,C1

2 and C1
1 ; C1

2 persists as a
closed orbit.C1

1 becomes periodic~and we call itP1), then
splits off two periodic orbitsP1

1 and P1
2 , after which it is

again closed but not periodic (C1
1). Four closed orbits sur-

vive, two of which are periodic (P1
1 ,P1

2) and two of which
are not (C1

2 ,C1
1). A picture is given in Fig. 8.

C. The bifurcation sequences of longer trajectories

If we iterate the vertical line for a longer time, the curve
G(v0t) curls around the center a second time. Another se-
quence of bifurcations occurs and creates closed orbits:C2

0

FIG. 7. Evolution of the vertical line at different timest with
v050.5, a520.2. We label the curves by the time.

FIG. 8. The normal sequence of bifurcations: a tangent bifurca-
tion is followed by a pitchfork bifurcation. In the truncated se-
quence, the tangent bifurcation is not present.
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→(C2
2 ,C2

1), C2
1→P2→(P2

1 ,C2
1 ,P2

2). These orbits pass
back and forth the center twice (P2 executes two full circles
around the center!.

D. Truncated sequence of bifurcations of closed orbits
of the model Hamiltonian

To understand the observed ‘‘truncated sequence’’ of bi-
furcations of closed orbits, we add one more element to our
model: an outer boundary. Suppose the allowed region of
phase space is bounded by a circle~see the dashed circle in
Fig. 9!, and the radius of this circle is too small to include the
orbit C1

0. Then the bifurcation sequence starts from an exist-
ing closed orbitC1

1 .
As energy increases,C1

1 first evolves into a periodic or-
bit, then splits into two periodic orbits and a closed orbit by
the pitchfork bifurcation already discussed. The result is that
three closed orbits are created in an orderly sequence of
events:C1

1 , P1
1 , andP1

2 . The closed orbitC1
2 is missing.

We may call this event of a pitchfork bifurcation without a
nearby tangent bifurcation the ‘‘truncated sequence of bifur-
cations of closed orbits in the model system.’’

E. Bifurcation sequence of closed orbits
at fixed t and varying v0

We have discussed above the bifurcation sequences of the
closed orbits at fixedv0 and varyingt. Sincet and v0 are
interchangeable in Eq.~16!, fixing t and varying v0 is
equivalent to fixingv0 and varyingt. Therefore, the bifurca-
tion sequences we discussed above also happen as we fixt

and varyv0. The pitchfork bifurcation for the closed orbits
that pass the origin back and forthn times happens when

v0.2pn/T andvn5v0e2aq0
2/4p52pn/T, wherevn is the

winding rate of the point (q5q0 ,p50).

F. Local bifurcations versus regional sequences of bifurcations

As discussed earlier, mathematical bifurcation theory is
focused on ‘‘local’’ properties of bifurcations@10#. The theo-
rems describe what happens within an arbitrarily small
neighborhood of a point in phase space in an arbitrarily small
region of parameter space. From this perspective, the above-
described tangent bifurcation and pitchfork bifurcation are
independent events that have no relationship to each other.
Also, from the mathematical perspective, the pitchfork bifur-
cation is considered exceptional~‘‘nongeneric’’!.

A physicist’s perspective is different. For logical reasons
we observe a tangent bifurcation and a pitchfork bifurcation
close to each other, but not within an arbitrarily small neigh-
borhood. Accordingly, to distinguish this behavior from the
local properties of each bifurcation, we will call the pair of
bifurcations a‘‘regional’’ sequence. Implicit in this discus-
sion is the view that in systems of interest in physics, this
connected pair of bifurcations will commonly be found.

On a larger scale in parameter space, one regional bifur-
cation sequence may be connected with another; we call
these ‘‘large-scale connections.’’ If one were ever to work
out the whole family of closed orbits and their bifurcations in
all of phase space and/or all of parameter space, we would
have a ‘‘global’’ picture.

In the crossed-field system, we will examine several re-
gional sequences of bifurcations, and a few large-scale con-
nections.

VI. LOCAL BIFURCATIONS AND REGIONAL
SEQUENCES OF BIFURCATIONS

IN THE CROSSED-FIELD SYSTEM

Now we return to the crossed-field system, and we show
that what we learned about the model also applies to our real
system. From the above, we see that both the ‘‘normal’’ and
‘‘truncated’’ bifurcation sequences have periodic orbits in-
volved. This means that the bifurcation sequence includes
the passage of a rational torus through the line of initial
conditions. Therefore, in this section, we first examine the
evolution of rational tori; then we discuss the bifurcations of
the closed orbits. In this section, we focus on local bifurca-
tions and regional sequences of bifurcations.

A. Creation and evolution of rational tori

In this system, we cannot get the whole picture by looking
at just one Poincare´ section. We must examineu50 andv
50 sections in overlapping ranges of energy.~The problem
is that the pitchfork bifurcations often occur when the closed
orbit has a point of tangency with a SOS.!

In Fig. 10, we show the evolution of the rational torus 2/3
on both (u,pu) and (v,pv) surfaces. On the (v,pv) plane, the
winding ratio decreases with increasing distance from the
centerS1 , and as energy decreases, the winding ratio around

FIG. 9. Same as Fig. 7, with an outer boundary added. The
dashed line is the forced boundary and the particle is only allowed
to move in the inner region, soC1

0 and C1
2 do not exist in the

bounded phase space.
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the centerS1 increases. It follows that as energy decreases,
the rational torus 2/3 moves outward. At some critical en-
ergy, it becomes tangent to thepv axis. @See curve 2 in Fig.
10~a!.#

This indicates that one of the members on this rational
torus passes through the origin and becomes a periodic orbit
closed at the origin. We call the energy at which the rational
torusm/n is tangent to thepv axis Em,n

1 . When energy con-
tinues to decrease, the rational torus 2/3 continues to expand
so that it crosses thepv axis, and two different periodic
closed orbits are created. As energy further decreases, at
some critical energy it touches the classical boundary in the
(v,pv) plane, and then it disappears from this plane. We call
the critical energy at which the rational torusm/n disappears
from this planeEm,n

2 . To see what is happening there, it is
better to look at the other SOS (u,pu).

On the (u,pu) plane, the winding ratio increases with in-
creasing distance from the centerS2 , and as energy in-
creases, the winding ratio around the centerS2 decreases.
When energy is higher thanE2,3

1 , the rational torus 2/3 does
not appear on the (u,pu) surface. AtE5E2,3

1 , it appears at
the boundary. After that, as energy decreases, it moves to-
ward the centerS2 . The two crossings of the rational torus
on thepu axis indicate again that two members of the peri-
odic family 2/3 are closed at the origin. AtE5E2,3

2 , the
rational torus 2/3 becomes tangent to thepu axis, and two
periodic closed members merge to one periodic closed mem-
ber. As energy goes belowE5E2,3

2 , the rational torus moves
away from thepu axis and toward the centerS2 . @See curve
5 in Fig. 10~b!.# Finally it disappears at the centerS2 .

Based on the evolution of the rational torus 2/3, we can
reiterate the evolution of a general rational torusm/n. At
some high energy, the rational torusm/n is created atS1 ,
and as energy decreases, it moves away fromS1 . At E
5Em,n

1 , it becomes tangent to thepv axis and one periodic
closed orbit is created; at that point it also becomes visible in
the other SOS. As energy continues to decrease, this rational
torus crosses the momentum axes on either SOS, and two

members of the periodic familym/n are closed at the origin.
At E5Em,n

2 , the rational torus becomes tangent to thepu

axis and two periodic closed members merge to one periodic
closed member. As energy further decreases, the rational
torus moves away from thepu axis and towardS2 ; it has
then disappeared from the (v,pv) plane. Finally, this rational
torus is annihilated atS2 . We use the names of the rational
tori (m/n) to name the associated closed orbits such asC2,3

1 ;
the family name (2,3) is related to the winding ratio of the
periodic members of the family.

B. The sequence of the bifurcation patterns of closed orbits

The evolution of the rational torus shows that the bifurca-
tions of the periodic closed orbitsm/n happen atEm,n

1 and
Em,n

2 . In this section, we show that both of the bifurcation
sequences illustrated by the model Hamiltonian happen in
the crossed-field system: we have observed some normal se-
quences by iterating thepv axis in the (v,pv) plane near
Em,n

1 and we have observed some truncated sequences by
iterating thepu axis in the (u,pu) plane nearEm,n

2 .

1. ‘‘Normal’’ bifurcation sequences

The (2,3) bifurcation is observed in the sixth iterate of the
half-map in the (pv ,v) plane. The starting points lie on the
pv axis. Figure 5 shows thatE2,3

1 '295 cm21. We iterate the
pv axis on theu50 surface over the energy range250 cm21

to 2105 cm21 to observe the (2,3) ‘‘normal’’ bifurcation
sequence.

The result is shown in Fig. 11. When energy is below 60.5
cm21, the sixth iteration does not touch the momentum axis.
At the energyE560.5 cm21, it is tangent to thepv axis and
one closed orbitC2,3

0 is created@see Fig. 11~a!#. As we con-
tinue to decrease the energy, the sixth iteration crosses thepv

axis, and the closed orbitC2,3
0 splits into two closed orbits

C2,3
1 andC2,3

2 @see Fig. 11~b!#. This sequence of events is the
tangent bifurcation defined in Sec. V B. Then the closed orbit
C2,3

1 moves toward the origin and becomes a periodic orbit
P2,3 at the critical energy (E2,3

1 5295.3 cm21) of the 2/3
rational torus. As the energy passes throughE2,3

1 , the peri-
odic orbit P2,3 returns to closed orbitC2,3

1 and two periodic
orbits (P2,3

1 ,P2,3
2 ) are created. The creation of these two pe-

riodic orbits is the ‘‘pitchfork bifurcation’’ defined in Sec.
V B. These two periodic orbits are related to each other by
P2,3

2 5TsuP2,3
1 .

Figure 12 shows the normal bifurcation sequence of the
(5,7) family of orbits, which appears on the seventh iterate
of the half-map nearE5,7

1 52135 cm21. Since it is an odd-
number iteration, the periodic orbits involved in this bifurca-
tion sequence are periodic orbits of the half-Poincare´ map
and each of them is half of a periodic orbit of the dynamical
system.

These bifurcation sequences are the ‘‘normal’’ bifurcation
sequence in which the closed orbits are created in a group of
four: Cm,n

2 , Cm,n
1 , Pm,n

1 , andPm,n
2 . As stated earlier, (m,n)

means that periodic members have a rational winding ratio

FIG. 10. The 2/3 rational torus in (v,pv) and (u,pu) planes in
overlapping ranges of energy. In~a!, from inner to outer~curve 1 to
curve 4), energy decreases and the energies are270 cm21, 295.3
cm21, 2160 cm21, and 2212 cm21. In ~b!, from outer to inner
~curve 2 to curve 5), energy also decreases; the energies are295.3
cm21, 2160 cm21, 2212 cm21, and2230 cm21.
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m/n, and the closed orbits lie on tori having winding ratios
close to this rational number.

2. ‘‘Truncated’’ bifurcation sequence

The truncated (2,3) bifurcation sequence is observed in
the fourth iterate of the half-map on the (u,pu) plane.E2,3

2

'2212 cm21; i.e., as we go to energy lower thanE2,3
2 , P2,3

is destroyed. Therefore, we start from below and increaseE
to observe the creation of the closed orbits. Figure 13 shows
the fourth iteration of the momentum axis. Curve 1 corre-
sponds toE52220 cm21. It crosses the momentum axis
once, but in contrast to curve 1 in Fig. 11, it does not curve
back and cross the momentum axis a second time. Compared
to our model in Sec. V D, we could explain this by saying
that the SOS has an outer boundary, on which there is a finite
positive winding rate. If the arrowhead in Fig. 13 were ex-
tended to the outer boundary, it would still map around to the
positive quadrant. Hence there is one closed orbitC2,3 and

this closed orbit moves toward the origin as energy in-
creases. AtE5E2,3

2 , C2,3 becomes a periodic orbitP2,3.
Then the periodic orbit bifurcates into one closed orbitC2,3

and two periodic orbits (P2,3
1 ,P2,3

2 ) as energy goes above
E2,3

2 . Thus we have only the pitchfork bifurcation in which a
closed orbit creates a pair of periodic closed orbits. The two
new orbits are related byP2,3

2 5TsvP2,3
1 .

The orbit C2,3 is not the same asC2,3
6 , discussed in the

preceding section~these orbits do not continuously connect
to each other!. The orbitsC3,5 andP3,5

6 shown in Fig. 2 are a
second example of the truncated sequence. If the third iterate
of the pu axis is shown at energies near2186 cm21, we get

FIG. 11. The sixth iteration of the bold vertical arrow line with
external fieldsB56 T andE51000 V/cm at various energies:~a!
E5250,255,260.5 (cm21) from 1 to 3; ~b! E5265,270,275
(cm21) from 4 to 6; ~c! E5295.3 (cm21) labeled 7; ~d! E
52100,2105 (cm21) from 8 to 9.

FIG. 12. The seventh iteration of the bold vertical arrow line
with external fieldsB56 T andE51000 V/cm at various energies:
E5295,2101.5,2110,2135,2145 (cm21) from 1 to 5.
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a picture comparable to Fig. 13. In this caseP3,5
2 5TsuP3,5

1 .
Hence we observe that both ‘‘normal’’ and ‘‘truncated’’

bifurcation sequences appear in the crossed-field system. The
‘‘normal’’ bifurcation sequence involves the bifurcation of a
periodic closed orbit atEm,n

1 , and the ‘‘truncated’’ bifurca-
tion sequence involves the bifurcation of a periodic closed
orbit at Em,n

2 .

VII. SOME LARGE-SCALE CONNECTIONS
OF REGIONAL BIFURCATIONS

In the local and regional bifurcations, we observed the
creation of the closed orbitsCm,n

2 ,Cm,n
1 ,Pm,n

1 ,Pm,n
2 . Now we

ask what happens after they are created. To answer this ques-
tion, we studied the evolution of the closed orbits after their
creation and found that one closed orbit created in one re-
gional bifurcation sequence may evolve and get involved in
another regional bifurcation sequence. Hence the regional
bifurcation sequences are connected with each other. We call
a bifurcation sequence that includes more than one regional
bifurcation sequence a large-scale connection of regional bi-
furcations. We found that some of the large scale connec-
tions are related to the symmetry of the regularized Hamil-
tonian.

In Fig. 14, we show large-scale connections of three re-
gional bifurcation sequences. When we follow the orbits in
the C2,3

1 family to lower energies, we find thatP2,3
1 is con-

nected to a truncated sequence of bifurcations. As stated ear-
lier, the closed orbitC2,3 involved in the low-energy bifur-
cation ofP2,3 does not connect continuously to either of the
closed orbitsC2,3

6 that are involved in the high-energy bifur-
cation of P2,3. In these two regional bifurcation sequences,
the periodic orbits are all connected by symmetry. The sym-
metry operationsTsu , TsV , andsusv acting onP2,3

1 gen-
erate a family of four periodic orbits, which are connected to
C2,3

6 and toC2,3 as indicated in Fig. 15.
FIG. 13. The fourth iteration of the bold vertical arrow line with

external fieldsB56 T andE51000 V/cm at various energies:E
52220,2212,2200 (cm21) from 1 to 3. Below are shown the
resulting orbits.~In the pictures ofP2,3

6 , the nucleus is close to, but
not quite at, the location of a self-intersection of the orbit. Compare
Fig. 11.!

FIG. 14. We show large-scale connections of two normal re-
gional bifurcation sequences and one truncated regional bifurcation
sequence. The central normal sequence is connected to the left nor-
mal sequence by an ‘‘accidental’’ connection and is connected to
the truncated sequence by the symmetries of the system.

FIG. 15. We show a ‘‘unit cell’’ of symmetry-related large-scale
connections involvingP2,3

1 .
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We also find thatC2,3
2 is connected to another normal

sequence of bifurcations. We call this ‘‘accidental connec-
tion’’ since none of the trajectories in the other sequence is
connected to the trajectories in the (2,3) sequence by the
symmetry operations.

VIII. CONCLUSION

We have shown that closed orbits in the crossed-field sys-
tem are created in orderly sequences of bifurcations, either a
tangent bifurcation followed by a pitchfork bifurcation or a
pitchfork bifurcation by itself. The pitchfork bifurcation al-
ways involves an orbit that is both closed and periodic. Pe-
riodic orbits can be identified by their winding ratiom/ l , so
we label them asPm,l . Each such orbit has partners gener-
ated by the symmetry operations~e.g., susvPm,l

1 !. The
closed orbits that are connected withm/ l periodic orbits are
labeledCm,l or Cm,l

6 . At the pitchfork bifurcation,Cm,l or
Cm,l

1 coincides with the periodic orbitPm,l . Study of a model
Hamiltonian indicates that closed orbits in any integrable
system should have comparable behavior.
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APPENDIX: PITCHFORK BIFURCATIONS OF CLOSED
ORBITS ARE GENERIC IN INTEGRABLE

HAMILTONIAN SYSTEMS

We have shown that both in the model system defined in
Sec. V and in the crossed-field system, we typically see a
tangent bifurcation and a pitchfork bifurcation in an orderly
sequence; often we see a pitchfork bifurcation by itself, with
no nearby tangent bifurcation. This behavior may sound
strange to those who are familiar with the theory of bifurca-
tions of periodic orbits. Tangent bifurcations of periodic or-
bits are generic, but pitchfork bifurcations are not@9#. Nev-
ertheless, in our calculations we have come across pitchforks
more frequently than tangents.

One might expect that this is connected to symmetries of
the system. It has been shown that pitchfork bifurcations of
periodic orbits are generic if the Hamiltonian has a reflection
symmetry@1#; if this symmetry is broken, then the pitchfork
bifurcations are converted to tangent bifurcations. All of the
pitchfork bifurcations of closed orbits that we have calcu-
lated in the crossed-field system are connected with a sym-
metry, and that leads one to suspect that breaking the sym-
metry would have the same effect. We therefore carried out
some numerical experiments on simple maps to examine this
symmetry breaking. In these calculations, pitchfork bifurca-
tions turned out to be unexpectedly robust; they were not
destroyed when the symmetry was broken.

We propose below that pitchfork bifurcations of closed
orbits represent a generic pattern of behavior in integrable
Hamiltonian systems. We will illustrate this by examining
the time evolution of a line in the phase plane. Our math-
ematics will be informal and intuitive rather than formal and
rigorous@16#.

1. Generic bifurcations in cubic curves

A general cubic curve can be expressed by the function

Q~P!5A1BP1CP21DP3. ~A1!

The family of cubic curves corresponds to the family of
mapsR3R4→R defined by Eq.~A1!. For almost all values
of the parametersA•••D, the cubic has either one or three
real roots. A bifurcation is a change in the number of real
roots as the parameters change.

The parameter space can be reduced to two significant
dimensions. ForD5” 0, we can divide byD, q5Q/D, with-
out changing the number of real roots, and we can also trans-
late the origin of the P coordinatep5P2C/3 to eliminate
the quadratic term. Thus by a translation inp and a stretch in
q, we can reexpress the cubic function as

q~p!5a1bp1p3. ~A2!

If a50, then by varying the parameterb from positive to
negative, we get a pitchfork bifurcation~Fig. 16!: p50 is
always a root, and whenb passes through zero, two new
roots are created, one on either side ofp50. However, for
all other values of the parametera, we get a tangent bifurca-
tion: for a.0 andb.0, only the negative root is present,
and whenb decreases to a sufficiently negative value, two
new roots are created at positivex. Thus in the two-
dimensional parameter plane (a,b), tangent bifurcations are
generic, and pitchfork bifurcations occur only on the linea
50, a set of measure zero in the plane.

Returning to the four-dimensional parameter space, sup-
pose the parametersA•••D vary in some general manner as
a function of some other single parameter, which we will call
t. Examining Fig. 16, we see that the only way we can get a
pitchfork bifurcation is if the parametersA(t)•••D(t) vary
in such a way that for some valuet5 t̃ , there exists a value
p5 p̃ such thatq and its first two derivatives with respect to
p all vanish simultaneously:

q~ p̃; t̃ !50, ~A3!

q8~ p̃; t̃ !50, ~A4!

FIG. 16. Evolution of a cubic curveq(p)5a1bp1p3 at fixed
a and variousb. Left: a50 gives a pitchfork bifurcation; right:a
Þ0 gives a tangent bifurcation.
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q9~ p̃; t̃ !50. ~A5!

We will show that this seemingly exceptional condition
occurs commonly in integrable Hamiltonian systems; i.e.,
pitchfork bifurcations are generic one-parameter bifurca-
tions of closed orbits in integrable Hamiltonian systems.

2. Proof in a special case

We consider a system with one degree of freedom, having
a Hamiltonianh(p,q) that generates equations of motion

q̇5]h/]p, ~A6!

ṗ52]h/]q. ~A7!

If h(p,q) is smooth, then the solutions
„q(t;p0 ,q0),p(t;p0 ,q0)… are smooth functions oft and of
the initial conditions (p0 ,q0). We assume that in a domain
of the phase plane, the contours ofh(p,q) form smooth
closed curves~Fig. 17!.

We take an arbitrary lineq5q̃ in this domain, and we
examine its time evolution. Typically there is some valueh̃

such that the contourh(p,q)5h̃ is tangent to the lineq5q̃;
let us call the value ofp at the point of tangencyp̃. The
initial point (q05q̃,p05 p̃) evolves with time so that it
moves around the contourh(p,q)5h̃, and it eventually re-
turns to the initial point at a time we callt5 t̃ . Similarly,

every point on the initial line (q05q̃, p05anything! evolves
to the curve@q( t̃ ;p0 ,q̃),p( t̃ ;p0 ,q̃)#. We hold t̃ andq̃ fixed,
so p0 is the parameter defining the curve.

Proposition. At that valuet5 t̃ ,

q5q̃, ~A8!

]q/]p050, ~A9!

]2q/]p0
250, ~A10!

]p/]p050. ~A11!

Equation~A8! is a trivial statement: we definedt̃ so that it
would be true. Equations~A9! and ~A10! are not quite so
obvious. Comparing them with Eqs.~A3!–~A5!, we see that
these equations are precisely what is needed to ensure that
we get a pitchfork bifurcation of the closed orbit. Equation
~A11! is an extra condition that is needed in order to prove
Eq. ~A10!.

Proof. ~i! Since the contourh(q,p) is tangent to the line
q5q̃ at p5 p̃, the gradient ofh(p,q) is perpendicular to the
line at that point,

]h~p,q!/]pu p̃,q̃50. ~A12!

~ii ! As time evolves, the value ofh(p,q) is conserved, so

h„p~ t̃ ;p0 ,q0!,q~ t̃ ;p0 ,q0!…5h~p0 ,q0!. ~A13!

Differentiating this equation once with respect top0, we ob-
tain

~]h/]p!~]p/]p0!1~]h/]q!~]q/]p0!5~]h/]p0!.
~A14!

Evaluating this equation at (p̃,q̃) and using Eq.~A12!, we
find

~]q/]p0!50. ~A15!

~iii ! Similarly, differentiating Eq.~A13! with respect toq0,
we find

~]q/]q0!51. ~A16!

~iv! The map is area-preserving, so

]~p,q!/]~p0 ,q0!51, ~A17!

and combining this with Eqs.~A15! and ~A16!, we find

~]p/]p0!51. ~A18!

~v! Finally, we differentiate Eq.~A13! a second time with
respect top0, and evaluate the result at (p̃,q̃). Throwing
away all the terms that vanish, we are left with

~]h/]q!~]2q/]p0
2!5~]2h/]p0

2!@12~]p/]p0!2#50.
~A19!

QED.

FIG. 17. Contours of a general Hamiltonian functionh(p,q),

the lineq5q̃, and the evolution of that line tot5 t̃ .
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