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Semiclassical calculations of vibrational energy levels for
nonseparable systems using the Birkhoff-Gustavson normal

form

R. T. Swimm and J. B. Delos

Department of Physics, College of William and Mary, Williamsburg, Virginia 23185
(Received 19 February 1979; accepted 23 April 1979)

We present a semiclassical method of calculating vibrational energy levels for a system of nonseparable
coupled oscillators. For a Hamiltonian written as a power series in which the leading terms are given by a
sum of one-dimensional harmonic oscillator Hamiltonians, the method involves transforming the original
classical Hamiltonian via a succession of canonical transformations into a normal form which is a power
series originally defined by Birkhoff and later generalized by Gustavson. Two’ cases are distinguished. If
the harmonic oscillator frequencies in the unperturbed Hamiltonian are incommensurable, then the normal
form is a power series whose terms are products of one-dimensional harmonic oscillator Hamiltonians; if
the frequencies in the unperturbed Hamiltonian are commensurable, then additional terms which cannot
be written as products of one-dimensional harmonic oscillator Hamiltonians enter into the normal form.
Once the normal form is obtained, semiclassical quantization of action variables is straightforward. The
incommensurable case yields a formula for the energy spectrum which is a power series in the quantum
numbers. The commensurable case is more complicated, and yields a form from which energy levels may
be obtained individually by numerical calculation and quantization of a one-dimensional phase integral.
Nonseparable two-dimensional examples are treated for each case. The results obtained for both cases
show excellent agreement with quantum mechanical calculations. The quantum calculations indicate that

all of the energy levels fall into a regular pattern.

I. INTRODUCTION

The work to be described in this paper has two goals,
The first is to develop a new mostly analytical semi-
classical method for calculation of vibrational energy
levels of nonseparable systems of coupled oscillators.
The second is to use this method to study and interpret
the quantum-mechanical energy spectrum for such sys-
tems. In particular, we search for evidence of an “ir-
regular” spectrum,

It is useful to summarize some of the rather surpris-
ing properties of classical mechanical systems that have
been established in the past 15 years, It is well known!
that, for any system of coupled oscillators, so long as
the forces are linear functions of the displacements, the
standard normal-mode analysis separates the variables,
and shows that the general motion is a superposition of
independent harmonic oscillations. More generally, all
separable, bound classical systems with n degrees of
freedom have a set of related properties: (i) the system
possesses at least »n isolating integrals?® of the motion
(an integral is isolating if it reduces by one the dimen-
sion of the set of phase space points which the trajec-
tory may approach); (ii) the motion is multiply periodic
(quasiperiodic) and topologically equivalent to flow on
an n-dimensional torus in the 2n-dimensional phase
space; (iii) the motion can be described in terms of ac-
tion-angle variables; (iv) the Hamilton—-Jacobi equation
possesses a complete integral which generates the
transformation to action-angle variables. All of these
properties are established in the standard textbooks on
classical mechanics,! and such motion is said to be
“regular.”

Systems for which the Hamilton-Jacobi equation is
not separable, however, may possess fewer than » iso-
lating integrals. Counsequently, while some trajectories
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are still multiply periodic, other irregular trajectories
exist for which the motion is not multiply periodic, the
trajectory is not confined to an n-dimensional torus,
there is no complete integral for the Hamilton-Jacobi
equation having the properties needed to generate a
transformation to action-angle variables, and action-
angle variables do not exist.

The full complexity of such classical systems is re-
vealed in the work of Kolmogorov,3 Arnolci,4 and Moser
(KAM), which has been made accessible to nonmathe-
maticians by Ford.® KAM consider systems for which
the Hamiltonian consists of an unperturbed part H,,
having only multiply periodic trajectories, and a general
analytic perturbation H,. They prove that most of the
regular trajectories of the unperturbed system remain
regular under sufficiently small perturbations. There
may be a set of irregular trajectories (and this set may
even be dense), but the regular trajectories outweigh
them in somewhat the same way that irrational numbers
outweigh rational numbers on the real line.” As the size
of the perturbation term increases, the regions of ir-
regular motion increase, and they may eventually fill
practically all of the energy shell in phase space. Nu-
merical experiments displaying this behavior were
made by Henon and Heiles, ® Ford,® and others.

5

The existence of these two types of motion in classi-
cal mechanics suggests that there may be two distinct
types of behavior in quantum mechanics. The set of
quantum states which correspond via the semiclassical
approximation to regular classical trajectories may be
called the regular part of the spectrum.? For these
states, the function S which is a proper solution to the
Hamilton—-Jacobi equation would correspond to the phase
of the wave function, and the energy spectrum could be
calculated approximately by a generalized Bohr-Som-
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merfeld procedure. In any such procedure, the possible
presence of a (presumably small) set of irregular tra-
jectories is ignored; the Hamiltonian is transformed
canonically to a function of the actions, and the quantiza-
tion of action variables gives the energy spectrum. In
this way, a set of » quantum numbers is assigned to
each quantum state.

There now exist several numerical methods for carry-
ing out such calculations.!®=! In the next section, a
new method is described which allows the solution to the
classical problem to be carried out a.nalytically.15 By
using a kind of perturbation theory in classical mechan-
ics, a power series Hamiltonian can be reduced to a
certain “normal form,” which (in the simplest case) is
directly related to a power series in the action varia-
bles. The quantum spectrum then follows trivially.

What is the behavior of quantum states for which the
corresponding classical trajectories are irregular ?
Percival® has suggested that there will be no unambigu-
ous assignment of » quantum numbers to each of these
states, that the energies of these states may be espe-
cially sensitive to small changes in the Hamiltonian,
and that the distribution of energy levels could appear
to be random.

In Sec. I of this paper, the method developed in Sec.
11 is applied to the Henon—Heiles Hamiltonian, which is
known to exhibit a transition between dominantly regular
and dominantly irregular classical trajectories. Three
results are found: (i) the normal form very accurately
describes the lower energy levels of this system; (ii)
as the energy increases the error in the (truncated) nor-
mal form also increases until, in the case considered,
the numerical results are not sufficiently accurate to
make an unambiguous correlation between semiclassical
calculations and exact quantum calculations; however,
(iii) the pattern established in the lower quantum levels
persists up to the dissociation energy-—there is no sign
of irregular or “random” spacings of energy levels,
and it appears that every bound state can be character-
ized by two quantum numbers.

1l. THE BIRKHOFF-GUSTAVSON NORMAL FORM

In this section, we describe a method of treating non-
separable classical systems that was originally de-
veloped by Birkhoff'® and later extended by Gustavson.'’
Birkhoff’s method provides a procedure to transform the
original nonseparable oscillator Hamiltonian canonically
into the normal form consisting of a power series in
one-dimensional harmonic oscillator Hamiltonians, Be-
cause of the particular simplicity of this form, the
Hamiltonian can be easily quantized.

The result obtained by Birkhoff is that, given a Hamil-
tonian H which can be written as a formal power series
without constant or linear terms, and such that the
quadratic terms may be written as a sum of uncoupled
harmonic oscillator terms with incommensurable fre-
quencies, there exists a formal real canonical transfor-
mation generated by a power series such that H is trans-
formed into a Hamiltonian which is a power series in
one-dimensional uncoupled harmonic oscillator Hamil-
tonians, i.e.,
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where £, are canonical coordinates, 7, are canonical
momenta, and I is a formal power series in £ +72. If
the series I were to converge, the new equation could
be easily integrated, the transformation to angle-action
variables would be straightforward, » independent iso-
lating integrals would exist, and the motion would be
multiply periodic.

Unfortunately, Siegel!®® has shown that Birkhoff’s
normal form diverges in general because of small di-
visors in the coefficients. In hindsight, it is easy to
see why this must be so: The normal form cannot de-
scribe irregular motion, but irregular trajectories are
known to exist, and they may be dense; hence, the radius
of convergence of the normal form must be zero.

Birkhoff’s method was applied by Gustavson in order
to obtain power series expressions for isolating inte-
grals, and to analytically predict the Poincaré surfaces
of section for the Henon and Heiles system. (Since the
potential treated had commensurable frequencies, Gus-
tavson had to modify Birkhoff’s method somewhat.)
These calculations showed that, despite the known di-
vergence of the power series representing the normal
form, a truncated series can give accurate approxima-
tions to the regular trajectories (but not, of course, to
the irregular trajectories).

The procedure for transforming to Birkhoff’s normal
form is reviewed here, although it is an essentially un-
modified form of the procedure presented in Gustavson’s
paper.!?

Consider a system described by a Hamiltonian
H(u, v):H(E)(u’ U) +H(S)(u’ ’U) Haae ,

which is a power series in coordinates u and momenta
v. H' is taken to be a homogeneous polynomial of
degree s:

H® W, v)= D a,utv’,
{+j=8
i,j>0

§=2,3,....

For systems in which H'® is positive definite, there
exists a canonical transformation (x, v) ~ (g, p) which
transforms H®’ into the form

HPq,p)=3 2 @+p)). 2)
k=

Following Gustavson, we now define a normal form.
Let H(g, p) be a Hamiltonian with H?’(g, p) as given in
Eq. (2). Then we say that H{g, p} is in normal form if
DH(g, p)=0, where

n
(-] 9
D=- w, ( —= —) . 3
; e \dr 8, D 84, @)
This is equivalent to requiring that the Poisson bracket
of H¥ with H vanish, since D is given by
D=-[H?, ]. @

(The minus sign is included here to be consistent with
the quantity. Gustavson calls D; apparently his Eq.
(2. 4) should also have this minus sign. )
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A power series Hamiltonian can be transformed to
normal form by a sequence of canonical transformations.
Each transformation is defined by means of a type-2
generating function F, such that

Fy(P,q)=2_ Py, +W(P,q), (5)
1]

where P are the new canonical momenta and where the
properties of W *’ will be described presently. (Where
the abbreviated notation P, @, p, or ¢ is used, P means

Py, ...,P, etc.) The resulting transformation equations
are '
8W (s)
Q:q + 3P ’ (63.)
W (s)
=P+ , 6b
P 5 (6b)
Hip,q)=T(P,Q), (6c)

where @ is the coordinate canonically conjugate to P,
and where I is the Hamiltonian in the new variables.
Beginning with s =3, the transformations sequentially
normalize the terms of degree s in the Hamiltonian.
This can be achieved by taking W *’ to be a homogeneous
polynomial of degree s.

Substituting Eqs. (6a) and (6b) into (6c), we obtain
oW (& ) ( oW (s))
H<P+ e ,q) =T P,q+—aP— (7)

and if we expand H and T in a Taylor series about P
and ¢, and then collect and equate all terms of equal
degree, the following set of equations, equivalent to
Eq. (7), is obtained:

H“’(P,q):l"(”(P,q), i<s, (83)
DWW P, q)=TP,q)-H®P,q), i=s, (8b)
M@, =1V PO+ L
y [(awm)j L) <8W“’)’/a’r‘”
og / aPi "\ ap! /\ g’ )] ’
i>s, (8c)

where j is the vector (jy, j;) restricted such that

1= |j] + s = 1) =1,

1< |j| <1<i,

1z2, s=3,
and j! =j!4,!. In these equations,

HO@,q)=HY (p,q) |,.p (92)
and

r'P,q) =1, Q)|q.q » (9b)

as arises from the Taylor expansion.

Equation (8a) shows that the transformation of degree
s leaves lower degree terms unaffected; Eq. (8Db) is the
equation to be solved for W"’, and when this is done,
Eq. (8c) gives the higher degree terms in the new Ham-
iltonian,

In order to solve Eq. (8b) for W ‘*’, we temporarily
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make a transformation to variables in which D is diago-
nal: Define

P=2"2(n, +iL,), (10a)
7, =12'2(n, - it,) . (10p)
Under this transformation D-of), where
- 7] ]
D, &)=iQ w ( —- —> 11
2 wn(b g M gy 1)
It follows by inspection that functions of the form
— 1
By, 1ymemy =TT EL K (12)
are eigenfunctions of D with eigenvalues
i wylmy=1,),
k
i.e.,
By igmny=[ 12 a0t 1] @rpguimy - 1)
Consequently,
- -1
D-lélllzmimz: [2; wk(mk - lk)] q’lilzmxmz . (13b)

Under the transformation discussed here, Eq. (8b) be-
comes

DWW _gls) (14)

&) operating with

This equation may now be solved for %
D! on both sides

V-V(”zl}‘(f“"’ _I}(s)) . (15)

H'* is a known function. However, so far, T**’ has
been unspecified. I’ is now determined from the re-
quirement that W **’ be finite. Clearly, I’ must be
chosen so as to exactly cancel any terms in H'* which
would give a vanishing denominator in Eq. (13b). So
long as the frequencies are incommensurable, the only
terms that must appear in ') are those for which
m,=1, for all k; those terms are

(imy &) ma )" = [3 (P + gD (3PS + )T
Such terms are called null space terms, and the re-
maining terms are called range space terms. There-

fore, if H is separated into null space terms N'*’ and
range space terms R'®’,

rrts) (s) nis)
H'S =N +R'® s

(18)

amn

and if we require I'*®’ to cancel the null space terms in
H'®), Eq. (15) results in

‘=N, (18)
ﬁ/(s):b-i;{(s) . (19)

Having obtained I**> and W ¢’, we can use the inverse
equations to Eq. (10) to obtain I** and W'¢’. '*’ will
be composed only of terms such as in Eq. (16) (as men-
tioned, provided that the frequencies w, are incommen-
surable). Note that arbitrary null space terms could be
added to W, but following Gustavson, we omit such
terms. The above method for constructing the normal
form simultaneously satisfies the definition of a normal
form, and serves to eliminate exactly those terms in
H'®’ which would cause divergence of the equation for

J. Chem. Phys., Vol. 71, No. 4, 15 August 1979
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W [Eq. (15)].

Now that degree s terms in the Hamiltonian have been
transformed into the normal form I'*®’, W‘®’ must be
used in Eq. (8c) to calculate higher degree terms in the
new Hamiltonian. The process can then be repeated to
normalize terms of degree s+ 1, It is found that the
normal form contains only terms of even degree.

Asanexample, we studied the Hamiltonian!? () (®),12(), ()

H=3(p}+p} + wig} + wle}) + Ay (g} + na}) (20)
=H(2) +H(3) ,

where p is momentum, and ¢ is a coordinate. The sec-
ond degree terms H?’ can be brought into Birkhoff’s
normal form by the transformation

e Wby, (1)
2= &%,

giving
H? =i: (P +qdw, , (22)

ksl

A X
oS — 2, 4 g 3
—mwlwz 914> w U4

Applying the above procedure, the normal form ob-
tained through degree four with

(4,‘1:1.3, :—0.1,
w2=0.7, n=0.1
is given by

r=3[1.3P} + @} +0.7(P} + @3)] - 1. 56185
x 10733 (P} + @) F - 1. 023323 x 10°2[$(P} + Q) (P} + @1)]
- 5.80199 X103 (3P} + @D)]? . (23)-

Once the transformation to Birkhoff’s normal form is

made, the harmonic oscillator terms can be transformed

to action variables via the canonical transformation

J, 1/2
p, _—_( ;rk) cos2rw, , (24a)
J 172
Q= (-1-:) sin27rw, , (24b)
which results in
(P + QY =d,/2n . (25)

For the example just given, the normal form [Eq.
(23)] becomes [through terms of degree four in (@, P)]

r=1.3(,/2n1)+0.7W,/2m) - 1, 56185 x 10°3(J,/27)?

-1, 023323 x10°2(JJ,/47%) - 5. 80199 X 10°3(J, /27)2 .
(26)
Once the classical motion is expressed in terms of ac-
tion variables, semiclassical quantization is straight-
forward.

The above treatment is satisfactory provided that the
frequend es are incommensurable, but a problem arises
if they are commensurable in low order. For example,
assume w; =2w,, and consider Eq. (13a) for &;g9, =1, &}:

1709

Dy =[w (= 1) + wp(@) e85 . @7
=0
Therefore, D-'n,& would diverge.

In order to avoid this occurrence, ''*’ must be chosen
to cancel any such additional terms in H'®’, Aside from
this change, the procedure is identical to that for the in-
commensurable case.

The second Hamiltonian which we treated is given
bylo(c).ﬁ

H=3(p}+p3)+ (g1 +43) + M2 (q] +na})
where

A=0.0125,

n=-1/3.

The normal form for this Hamiltonian is (through fourth
degree)

r=3[P}+ Q] + (P + @))] - 5. 2083 <1073 (P + @})]*
+4.1667x1074[$ (P + @3)(P} + @})] - 5. 2083
x1074[3 (P} + @3)]% - 3. 6459 X 1074 [(P, Py + @,Q, )
- (P,Q, - Q.P)?] . (29)

Comparison with Eq. (23) for an incommensurable case
shows that cross terms have entered for the commen-
surable case.

(28)

We now wish to express this normal form in terms of
angle-action variables. If the transformation Eqs. (24)
are applied to this normal form (29), we obtain

= (1/27)(J, +J,) - 5. 2083 x1074(J,/27)* + 4. 1667
X 1074(J,J,/4n2) — 5. 2083 X 10°4(J, /27 )
- 3. 6459 x10°4(J,J,/7?) cos[4n (wy = w,)]. (30)

It can be seen that, while the unperturbed terms depend
only on the J’s, the higher degree terms depend on the
w’s. Therefore, Eqs. (24) do not result in a transfor-
mation to angle-action variables. However, the addi-
tional canonical transformation given by

=3 +J'),
Ji=3d-J"),

wy=(w+w'),
(31)
wi=@w-w'),

will yield a form which is cyclic in w, so the canonically
conjugate momentum J is constant. This two-step pro-

cess can be carried out in one step using the canonical
transformation

Po=(12L)" costantwun], (32a)
Q= (J;ﬂ"' )m sin[2n(w+w')], (32b)
P = ("—;;r‘—’i)m cos[2n(w - w’)], (32¢)
Q= (%‘ﬁ)m sin[2n 60— )] . (320)

It is found that all orders of the normal form are then
cyclic in the variable w. The complete result, through
degree 8 terms for the Hamiltonian (28), is

J. Chem. Phys., Vol. 71, No. 4, 15 August 1979
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(33a)
9.1146x10™* . X104 . -4
r'=- . (JZ—J'Z)cos(Bﬂw’)—3 906:2 107 2 114:2“0 J'?, (33p)
-7 -5
re -4 7:10 B =-JJ'?) cos(8nw’)+%§ﬂ W' - J'%) cos(8mw’)
m
3.50x10°¢ 1,139x10°° 3 X M
_2.50% S 135:r8 10° 50,4 7><310 JJ,2_1.899;<10 7 33¢)
m m
5.6x10°8 . -8 -1
r¢- —1#& W2 =J"?)? cos(167w’) ~ ﬁ%l-o— J*cos(@mw') + 2—7215-19— J2"? cos (8nw'’)
2.26x10°7 1. 7 8 -7
_—?—J"cos(81rw’)+l7§£—(¢l"‘f—JJ'S)cos(81rw')—4'4:410 J‘+1'77;:10 JJ!
1.59x10°7 2.96x10°7 1.69x10°7
—__rrl—eﬁJ'2 -—‘—"?4——'JJ’S-I——""";T'z—-(-)—J"1 , (33d)

where I'*?’ corresponds to terms of degree 2 in (P, Q),
ete.

J can be shown to be an action variable by noting that
§Z Pd@,=J ,
k

where the phase integral is evaluated over a path in
(@, P) space generated by letting w increase by unity
(bringing @, P through one cycle) while holding (', w’)
fixed. This follows by observing that

J+J |2

dQy= (71_—) cos[2m (w + w')](2mdw) ,

(34)

, (35)
dQ,= (i%ﬂ‘—]—)m cos[27(w - w')]2ndw) ,

and by replacing Py, P, by expressions given in Egs.
(32a) and (32¢).

However, J’ is not an action variable, since w’ ap-
pears in the Hamiltonian. We therefore see that, for
the commensurable case, the normal form is not an
analytic expression in terms of angle-action variables.
Nevertheless, by transforming one pair of the variables
into angle-action form, we have effectively reduced T
to a single degree of freedom, since the action J can be
regarded as a fixed parameter. This will allow us to
quantize J directly, and satisfy the other quantization
condition by numerically quantizing a one-dimensional
phase integral. After the normal form is obtained, the
numerical effort involved is only slightly greater than
that involved in one-dimensional WKB calculations.

There is one additional note in regard to generating
the normal form. Although the method is straightfor-
ward in principle, even for a relatively simple Hamil-
tonian, the algebraic manipulations involved can rapidly
get out of hand. (For example, expanded through eighth
degree, the many higher order terms of the Hamiltonian
generated while constructing the normal form lead to in-
termediate forms for the Hamiltonian containing almost
500 terms.) We found it most convenient to carry out
the sequence of canonical transformations using
MACSYMA," a computer language that permits analyti-
cal calculations. The calculation of the normal form

for the incommensurable case required less than 4 min
CPU time on a PDP 10 when done using single precision,
and 24 min CPU time when done using extended preci-
sion. Calculations for the commensurable case took
slightly more CPU time.

1. QUANTIZING THE NORMAL FORM

In this section, we calculate a semiclassical approxi-
mation to an energy spectrum by quantizing the normal
form, and we compare the results to essentially exact
quantum mechanical results that were obtained for us by
D. Noid.?

Quantizing the incommensurable case is straightfor-
ward. Since the normal form can be expressed entirely
in terms of action variables, we merely have to replace
those action variables by an appropriate multiple of &
(half- or full-integral quantization), and the result is a
power series in the quantum numbers. The commen-
surable case is less straightforward. Since the normal
form is expressed in terms of one action variable, we
can again quantize that action variable by replacing it
by the appropriate multiple of 2, and the second quan-
tum condition is provided by numerically evaluating and
quantizing a phase integral.

Again, it should be borne in mind that we are ignoring
the full complexity of classical motion (i.e., the irregu-
lar trajectories embedded among the multiply periodic
ones), Equivalently, we are ignoring the fact that the
normal form does not converge. Nevertheless, by trun-
cating the normal form, we are able to obtain remark-
able agreement with quantum mechanics, as shown
below.

A. The incommensurable case

After obtaining the normal form, and expressing it in
terms of action variables, we merely have to make the
following replacement:

J
2P+ Q)= 32~ +2)h (36)
Notice that
Refer-

where the quantum number 7, is an integer,
half-integral quantization has been chosen here.

J. Chem. Phys., Vol. 71, No. 4, 15 August 1979
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ence to Eqs. (24a) and (24b) shows that J, is given by

Jy= § P,dQ, (no sum), (37

where the phase integral is evaluated over a path gener-
ated by allowing the angle variable w, to increase by
unity (bringing @,, P, through one cycle) while holding
w, (k' #k) constant. In (@, P) space, the resultant path
will have two turning points (zeros of P,), and @, and
P,. (¥’ #k) may vary, but must return to their original
values without passing through a full cycle (otherwise
w, would have increased by unity). Half-integral quan-
tization therefore follows. Also, in the unperturbed

limit, the normal form simply describes two uncoupled
harmonic oscillators, for which half-integral quantiza-
tion is correct. The quantization for the perturbed case
therefore reduces unchanged to the correct quantization
in the unperturbed limit.

For the Hamiltonian (20), with parameters
=-0.1,
n = 0. 1 3

(.01=1.3,
w2=0.7,

the quantized normal form is {up to harmonic oscillator
terms of degree 8)

Ty + S, (g + HR]=1. 30y +5) + 0. T(n, + 3) - 0. 00156185 (1, + 3)? - 0. 01023323 (g + 3)(m, + ) — 0. 00580199 (1, + 3)?
- 0. 00001092 (1, + 3)* = 0. 00017719 (ny + 3)(n, + 3)* — 0. 00027327 (1; + £)*(n, + 3) — 0. 00008625 (15 + 2)°
~ 0. 00000013 (1, + )¢ — 0. 00000529 (ny + 3) (n, + 3)° — 0. 00001183 (1, + 3)?(n, + 3)?
- 0.00001071(n; + 3)%(n, + 3) — 0. 00000229 (n, + 3)* , (38)

where 7Z=1 here.

Table I compares the energy levels predicted by this
formula with quantum mechanical values calculated with
a 30x30 (900 function) harmonic oscillator basis set.
Two percentage errors are listed. The first (AE,,,) is
the percent error of the correction to the unperturbed
energy [i.e., AE.,; = (Epgys — Equ)/(Ey - Eqy)]. This er-
ror parameter is a useful measure of the improvement
that a semiclassical calculation gives over a zeroth
order approximation which treats the system as a set of
uncoupled harmonic oscillators. The second (AE,,) is
the percent error of the energy value [AE,,= (Epyr
~Equ)/Equ]. As shown, AE_, is less than 2% through
level 42, and less than about 7% over the entire spec-
trum. AE,, is less than about 0.08% through level 42,
and less than about 0, 5% over the entire spectrum.

It will be seen that the absolute error of the semi-
classical value is comparable to the spacing between
levels for states near the escape energy (E,.=11. 5).
However, even ignoring the values based on the normal
form, it is easy to verify that all of the quantum values
fall into a regular pattern that is consistent with the
given assignments. (There are some sets of nearly de-
generate states that are difficult to identify definitively,
but the given assignments appear to be most compatible
with the pattern of other levels.)

Caution is required in drawing general conclusions
about irregular spectra from this example, because the
region of irregular classical behavior has not been ex-
tensively studied.

B. The commensurable case

To quantize the normal form given in Eq. (33), let us
begin by quantizing J:

J= f 3 p,dq,, (34)
c k

where the path ¢ is defined by letting the angle variable

w increase by unity, holding »’ fixed. In this case,
there appears to be no obvious argument telling how
many caustics such an integration path will touch. We
therefore found it necessary to obtain the correct quan-
tization by numerically generating an integration path
in (@, P) space using Eqs. (32) with w varying. (This
illustrates a problem with methods which do not display
integration paths; the proper quantization sometimes
can be determined only by actually counting the number
of caustics touched by the integration path.) As was
found by Noid and Marcus, two classes of motion ap-
pear—rotations and librations. Figure 1 shows the
caustics for each type of trajectory, and the paths la-
beled A are the ones obtained by varying w. For both
classes, the integration path touches four caustics, and
Keller’s quantization prescription®! therefore requires
full integral quantization

J=m+h. (39)

It will be noted that, in the unperturbed limit, the nor-
mal form again represents two uncoupled harmonic os-
cillators (with equal frequencies in this case). The cor-
rect quantization is half-integral for each oscillator;
however, because the frequencies are equal, the actions
for each oscillator can be directly added, yielding Eq.
(39). We therefore find that the quantization for the per-
turbed case again reduces unchanged to the correct
quantization in the unperturbed limit.

For the second quantum condition, we quantize the
phase integral

fc' I dw' = i ' Z, P,dQ, , (40)

where the path ¢’ is defined by allowing w’ to vary over
one cycle, holding w fixed. Again, we must determine
how many caustics the integration path touches, and we
use Eqs. (32) to generate an integration path in (Q, P)
space as w’ varies. This time the process is compli-
cated by the fact that J’ varies with w'. In order to find
the dependence of J’ on »’, we use the normal form (33).
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TABLE 1. Energy levels for an incommensurable case.

n Ny Ny Eponr® Equ® E¢¢ AE ., ¢ AE g°

1 0 0 0.9955 0.9955 1, 0000 0% 0%

2 0 1 1.6870 1.6870 1.7 0% 0%

3 1 0 2.2782 2.2781 2.3 0.5% 0.004%

4 0 2 2. 3750 2,3750 2.4 0% 0%

5 1 1 2.9584 2.9584 3.0 0% 0%

6 0 3 3.0595 3.0596 3.1 —-0.2% —0.003%

7 2 0 3.5480 3.5479 3.6 0.2% 0.003%

8 1 2 3.6348 3.6347 3.7 0.2% 0.003%

9 0 4 3.7404 3.7404 3.8 0% 0%
10 2 1 4.2164 4.2162 4.3 0.2% 0.005%
11 1 3 4,3071 4.3069 4.4 0.2% 0.005%
12 0 5 4.4176 4.4176 4.5 0% %
13 3 0 4.8045 4.8043 4.9 0.2% 0.004%
14 2 2 4.8803 4.8799 5.0 0.3% 0.008%
15 1 4 4,9753 4.9749 5.1 0.3% 0.008%
16 0 6 5.0910 5.0909 5.2 0.1% 0.002%
17 3 1 5.4601 5.4597 5.6 0.3% 0.007%
18 2 3 5.5397 5.5390 5.7 0.4% 0.013% -
19 1 5 5.6393 5.6385 5.8 0.5% 0.014%
20 0 7 5.7605 5.17601 5.9 0.3% 0.007%
21 4 0 6.0468 6.0463 6.2 0.3% 0.008%
22 3 2 6.1108 6.1099 6.3 0.5% 0.015%
23 2 4 6.1944 6.1931 6.4 0.6% 0.021%
24 1 6 6.2989 6.2975 6.5 0.7% 0.022%
25 0 8 6.4260 6.4253 6.6 0.5% 0.012%
26 4 1 6.6889 6.6878 6.9 0.5% 0.016%
27 3 3 6.7564 6.7546 7.0 0.7% 0.027%
28 2 5 6. 8443 6.8419 7.1 0.9% 0.035%
29 1 7 6.9540 6.9515 7.2 1.0% 0.036%
30 0 9 7.0873 7.0861 7.3 0.6% 0.017%
31 5 0 7.2742 7.2730 7.5 0.5% 0.017%
32 4 2 7.8255 7.3234 7.6 0.7% 0.029%
33 3 4 7.3967 7.3935 7.7 1.0% 0.043%
34 2 6 7.4891 7.4850 7.8 1.3% 0.055%
35 1 8 7.6044 7.6003 7.9 1.6% 0.054%
36 0 10 7.7445 7.7423 8.0 0.9% 0.028%
37 5 1 7.9019 7.8996 8.2 0.8% 0.029%
38 4 3 7.9564 7.9524 8.3 1.2% 0.050%
39 3 5 8.0315 8. 0259 8.4 1.5% 0.070%
40 2 7 8.1288 8. 1220 8.5 1.8% 0.084%
41 1 9 8. 2500 8.2435 8.6 1.8% 0.079%
42 0 11 8.3973 8.3939 8.7 1.1% 0.041%
43 6 0 8.4858 8.4835 8.8 0.7% 0.062%
44 5 2 8.5235 8.5190 8.9 1.2% 0.053%
45 4 4 8.5814 8.5743 9.0 1.7% 0.083%
46 3 6 8. 6607 8.6513 9.1 2.1% 0.109%
47 2 8 8, 7632 8.7524 9.2 2.4% 0.123%
48 1 10 8. 8908 8. 8805 9.3 2.5% 0.116%
49 0 12 9. 0456 9.0403 9.4 1.5% 0.059%
50 6 1 9.0982 9.0934 9.5 1.2% 0.053%
51 5 3 9.1387 9.1305 9.6 1.7% 0.090%
52 4 5 9.2001 9.1882 9.7 2.3% 0.130%
53 3 7 9,2840 9.2689 9.8 2.8% 0.163%
54 2 9 9.3921 9.3752 9.9 3.2% 0.180%
55 1 11 9. 5264 9.5108 10.0 3.29 0.164%
57 0 13 9.6894 9.6812 10.1 2.0% 0.085%
56 7 0 9.6808 9.6762 10.1 1.0% 0.048%
58 6 2 9.7038 9.6948 10.2 1.8% 0.093%
59 5 4 9.7472 9.7331 10.3 2.5% 0.145%
60 4 6 9.8125 9.7932 10.4 3.2% 0.197%
61 3 8 9.9012 9.8776 10.5 3.8% 0.24%
62 2 10 10. 0152 9.9895 10.6 4.2% 0.26%
63 1 12 10.1568 10.1332 10.7 4.1% 0.23%
66 0 14 10. 3285 10. 3161 10.8 2.6% 0.120%
64 7 1 10.2769 10.2676 10.8 1.7% 0.091%
65 6 3 10.3023 10. 2861 10.9 2.6% 0.157%
67 5 5" 10. 3489 10, 3253 11.0 3.5% 0.23%
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TABLE I (Continued)

n Ny Ny E ponrt® Equ® E,° AE,, ¢ AE ,,°
68 4 7 10.4183 10,3877 1.1 4.3% 0.29%
69 3 9 10.5121 10. 4758 11.2 5,0% 0.35%
70 2 11 10.6326 10,5937 11.3 5.5% 0.37%
71 1 13 10. 7819 10.7463 11.4 5.4% 0.33%
76 0 15 10.9627 10.9439 11.5 3.4% 0.172%
72 8 0 10. 8582 10. 8478 11.4 1.9% 0.096%
73 7 2 10. 8654 10,8493 11.5 2.5% 0.148%
74 6 4 10. 8933 10.8657 11.6 3.8% 0.25%
75 5 6 10.9434 10, 9053 11.7 4.8% 0.35%
77 4 8 11,0172 10. 9700 11.8 5.7% 0.43%
78 3 10 11.1166 11. 0612 11.9 6.6% 0.50%
79 2 12 11,2439 11. 1856 12.0 7.2% 0.52%
80 1 14 11.4014 11,3484 12.1 7.1% 0.47%
85 0 16 11.5902! 11.5324! 12.2

81 8 1 11.4369 11.4129 12.1 3.5% 0.21%
82 7 3 11.4460 11.4158 12.2 3.9% 0.26%
83 6 5 11.4767 11,4325 12.3 5.1% 0.39%
84 5 7 11.5305¢ 11.4703 12.4

®Calculated using the present method.
tCalculated by Don Noid. 2’
°Energy of uncoupled system.

If the value of T" (energy) and J are chosen, Eq. (33) can
be solved for J’ as a function of w’.

Care must be taken at this point. Notice that if T
were approximated by including terms only through I“G),
then a cubic equation for J' would result; if terms
through I'® were included, then a quartic equation
would result; and so on. We expect that as more terms
of I" are included, J’ will be expressed more accurately
as a function of w'. However, also an additional root is
introduced for each additional degree included in I". In
order to generate the integration path in (@, P) space,
we must be able to select the correct root. We are
looking for the roots whose value we know approximately
when only lower degree terms are included in I', and
whose accuracy increases as we include higher degree
terms in I'.

It was found by inspection that, if terms through I'‘®
are included, the roots to the resulting cubic equation
for J' as a function of w’ have a structure such as that
shown in Figs. 2 and 3 (with w=0). It can be seen that
for some values of w’, there is only one real root J',
while for other w’, there are three real roots J’'. (The
root which is shown as a wavy line in the diagram may
appear above or below the closed loop.)

It was further found by investigation tha if terms
through I'® are included, then the roots lying on the
closed loops of Figs. 2 and 3 only change slightly. The
other root may change considerably, and a fourth root
is also introduced since the equation for J’ is now
quartic.

Finally, when trajectories in (P, Q) space were gen~
erated, and points on those trajectories were trans-
formed into (', w’) variables, they were always found to
lie on the loops shown in Figs. 2 and 3. Therefore, it
was concluded that they were the physically meaningful
roots. The fact that the position of the closed loop
changed only slightly when I'*® terms were included

AE vy = E pewr —Equ)/\E o~ Equ).
CAE,, = (E
'Exceeds escape energy E,,,=11.5 eV,

BoNF—EQqu)/Equ-

PATH B

PATH A

CAUSTICS

PATH B

PATH A

CAUSTICS

FIG. 1. (a) Schematic for quantization of rotation-type trajec-
tories. The caustics are the boundaries between the classical-
ly allowed and classically forbidden regions: the trajectory
lies within the annulus. (A) and (B) are paths for integration
to obtain action variables. (b) Same as Fig. 1(a) but for libra-
tion-type trajectories. The trajectory lies within the distorted
rectangle.
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FIG. 2. J’ vsw’ for a rotation-type trajectory. This is ob-
tained by regarding J and I' as fixed parameters and numerical-
ly solving Eq. (33) for J’ as a function of w’.

could be taken as an indication that the truncated series
for TI' gives physically meaningful results.

One final point was observed: For the cases tested,
rotations always transformed onto a loop centered on
w'=1/8 (Fig. 2), while librations always transformed
onto a loop centered on w’ =0 (Fig. 3). Therefore, in-
tegration paths in (@, P) space for rotations were gen-
erated by varying w’ over a loop centered on w’ =1/8,
while paths for librations were generated by varying »’
over a loop centered on w’' =0,

Having determined which root J’ was the correct one
to choose, we proceeded to see how many caustics were
touched by the integration path for the phase integral
(40), i.e., w’" was varied over a cycle, the correspond-
ing J’ was calculated by choosing the correct root of
I'=E, and the transformation equations (32) were used
to generate an integration path. This path is shown
[labeled as path (B)] lying on a trajectory in Fig. 1.

Using the notation of Noid and Marcus, we see by re-
ferring to Fig. 1 that integrating around a loop centered
on w’ =1/8 for a rotation case is topologically equivalent
to calculating an r-cycle phase integral:

f

rotation

J'dw’:fp,d'r:(n,+%)h . (41)
Integrating around a loop centered on w’=0 for a libra-
tion case is topologically equivalent to calculating a 6-
cycle phase integral

f J’ dw':fpydy -1 27lh
libration

(where we have used the same quantization for the 6~
cycle phase integral as did Noid and Marcus, despite
the fact that a proper treatment requires that tunneling
be included). Notice that, in effect, the integration
quantizes the area of the loops shown in Figs. 2 and 3.

“42)

The energy levels were generated using a program
written in APL. The steps involved in calculating one
energy level are as follows:

(1) set J by selecting a value for the quantum number
n in Eq. (39);

(2) guess a value for the energy E (the energy of the
unperturbed level is a good first guess);

(3) calculate the phase integral shown in Eq. (40) nu-
merically using values for J’ provided by inverting the
equation for T

R. T. Swimm and J. B. Delos: Vibrational energy levels for nonseparable systems

(4) iterate steps (2) through (4) until the value of the
phase integral has converged with sufficient precision
to the desired value. The successive guesses for ener-
gy are made using a linear extrapolator. Two passes
must be made initially in order to extrapolate. The
process converged fairly rapidly for the levels we cal-
culated; a total of five to six passes were required for
convergence,

Table II lists the levels calculated using this method
for the commensurable case with Hamiltonian (28) [nor-
mal form (33)]. Comparison is made with semiclassi-
cal'® and quantum?® levels of Noid and Marcus, The
percentage error AE_,, in the correction to the unper-~
turbed energy is in general somewhat higher than it was
for the previous incommensurable case, and for certain
levels, it is very large. However, as indicated by the
percentage error AE,,, the absolute error of these lev-
els is no worse on the average than that of other levels
listed; hence, the seemingly large values of AE_,, do not
in fact represent serious errors. Comparison with the
results for the previous incommensurable case shows
that AE,,, is roughly the same in both cases for the
higher energy levels, but that AE,,, is much lower in
the incommensurable case for the lower energy levels. 2

We also see in Table II that the present semiclassical
method has succeeded in accurately predicting many en-
ergy levels well beyond the energy of transition to pre-
dominantly irregular behavior (E,.,, ~9). These results
are relevant to Percival’s speculations on the existence
of an irregular spectrum. First, we see that, of the
29 levels? with energies between the transition energy
(~9.0) at which irregular trajectories appear and es-
cape energy (13.33), 17 are calculated with good accu-
racy by the fourth degree normal form.

For certain states having low values of / (for example
I=x1, n=0, n,=4), the present method gives no quan-
tum level, because no conditions were found for which
the phase integral (40) satisfied the quantum condition
{though in some such cases the quantum condition could
be approximately satisfied). Two possible explanations
are (i) that this results from errors inherent in the
truncation of the normal form or (i) that this results
from the use of improper quantization conditions (the
conditions used do not properly account for tunneling,
which may be important for librations). However, it
should not be suggested that these levels belong to the
irregular spectrum, because they fall into the pattern
established by the regular spectrum,

There remain ten states (ngy =90-99) which the eighth
degree normal form is not sufficiently accurate to iden-

— ]~
>

J— )

-0.125 o) 0.125

w.
FIG. 3. Same as Fig. 2 for a libration-type trajectory.

J. Chem. Phys., Vol. 71, No. 4, 15 August 1979



R. T. Swimm and J. B. Delos: Vibrational energy levels for nonseparable systems

TABLE II. Energy levels for a commensurable case.

nou l n n, Ep* Equ® Eyy© E ponr AEr © AE g
1 0o o0 o0 1.0 0.9986  0.9947 0.9947  —279%  —0.4%
2, 3 1 1 o 2.0 1.9901  1.9863 1.9862  -39%  —0.2%
4 o 2 1 3.0 2.9562  2.9506 2.9506  ~13%  —0.2%
5,6 2 2 0 3.0 2.9853  2.9815 2.9814  -27% 0.13%
7,8 £1 3 1 4.0  3.9260 3.9233 3.9226 -5%  —0.09%
13 3 3 0 40 ¥ ggi‘; 3.9803 3.9801  -25%  —0.10%
11 0 4 2 5.0 4.8702  4.8573 4.8577  —10%  —0.3%
12, 13 2 4 1 5.0 4.8987  4.9854 4.8954 3%  -0.07%
14,15 s4 4 0 5.0  4.9863  4.9821 4.9821  -31%  —0.08%
16, 17 1 5 2 6.0  5.8170  5.816
ig +3 5 1 6. g:gg:g 5.8713 5.8711 —29  —0.05%
20, 21 5 5 0 6.0  5.9913  5.9869 5.9871  —48%  —0.07%
22 o 6 3 7.0 6.7379  6.7078 6.7098  —11%  -0.4%
23, 24 2 6 2 7.0 6.7649  6.7709 6.7668 1% +0.03%
25, 26 4 6 1 7.0 6.8354  6.8500 6. 8492 8%  +0.2%
z; 6 6 0 7.0 g: gggi 6.9958 6.9951 —482%  —0.05%
29, 30 s1 7 3 8.0  7.6595  7.655
g; 3 7 2 8.0 ;‘;gz; 7.7178 7.7184 0.4%  0.01%
33, 34 5 7 1 8.0  7.8327  7.8289 7.8293 -2%  —0.04%
35, 36 I 8.0  8.0094 8. 0054 8.0058 38%  —0.04%
37 o 8 4 9.0 8.5541  8.4919 8.5003  —12%  —0.6%
38. 39 £2 8 3 9.0  8.5764
40, 41 t4 8 2 9.0  8.6779 8.6717 2% —0.07%
jz 6 8 1 9.0 :::i;g 8. 8084 8.8112 -1%  -0.02%
44, 45 8 8 0 9.0 9.0217 9.0151 9.0192 12%  —0.03%
46, 47 s1 9 4 10 9.444

B
50, 51 5 9 2 10 9.629 9.626 -0.8% —0.03%
52, 53 7 9 1 10 9.794 9.794 0% %

g'; £9 9 0 10 ig: ggg 10.035 1%  —0.005%
56 o 10 5 11 10.305 10.221 —12%  —0.8%
57, 58 2 10 4 11 10.318

59, 60 4 10 3 11 10. 463 10.455 -1%  -0.08%

g; 16 10 2 11 ig:g;g 10.581 -0.1% —0.005%

63, 64 8 10 1 11 10.774 10.779 2% 0.05%

65,66 10 10 0 11 11. 050 11.053 —6% 0.03%

67, 68 #2111 5 12 11.152

gg 3 11 4 12 ﬁ:;gg

71, 72 +5 11 3 12 11.383 11.383 0% 0%
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TABLE I (Continued)
nou i n n, E¢* Eoqu® Eyu® Epenr® AE ., ° AE '
73, 74 +7 11 2 12 11.534 11.536 0.4% 0.02%
75 11.750

9 .
76 + 11 1 12 11.752 11. 764 5% 0.11%
80, 81 +11 11 0 12 12. 065 12.074 -12% -0.07%
7 0 12 6 13 11. 966 11.864 —-10% —-0.9%
78, 79 +2 12 5 13 11.968
82, 83 +4 12 4 13 12.206
84 12,277

6 .
85 + 12 3 13 12.334 12,310 0.6% 0.04%
86, 87 +8 12 2 13 12.480 12,491 2% 0.09%
88, 89 +10 12 1 13 12.712 12.750 13% 0.3%
94 13.077

2 —_—
97 +1 12 0 13 13. 087 13.097 18% 0.1%
91, 92 +1 13 6 14 12,762
90 12.748
93 #3835 u 13.032
95, 96 +5 13 4 14 13. 081
98, 99 +7 13 3 14 '13.233

2Energy of the uncoupled system.
YCalculated by Don Noid. 2°

°Results of Ref. 10(c). TAE 1= {E

tify. It is possible that a higher degree calculation would
give accurate energies for these states, but this is not
certain, because the normal form is known to diverge
in general. To identify these states, we arranged the
quantum energy eigenvalues in a triangular matrix with
n and [ labeling the rows and columns. A pattern of en-
ergy gaps arises which persists up to the highest levels,
and which, together with the pattern of degeneracies,
serves to identify every state quite unambiguously.

(The only two identifications that are even slightly un-
certain are those of the nearly degenerate states 93 and
94, but the identification given most accurately follows
the pattern established by the other states.) Of the 56
states, or 29 “levels” in the region in which irregular
classical motion appears, not one can definitely be said
to fall outside the regular pattern.

IV. CONCLUSION

We have presented a semiclassical method for approx-~
imating the energy eigenvalue spectrum of the Schrd-
dinger equation for nonseparable systems of coupled
oscillators. In this method, the classical problem is
solved approximately by a sequence of canonical trans-
formations which transform the Hamiltonian into the
Birkhoff -Gustavson normal form. Two cases arise.
Taking the zero-order solution to be that of a system of
harmonic oscillators, we find that if the frequencies of
the zero-order Hamiltonian are incommensurable, then
the normal form can be written as a sum of products of
one-dimensional harmonic oscillator Hamiltonians; if
the frequencies of the zero-order Hamiltonian are com-
mensurable, then additional terms which cannot be writ-

%Calculated using present method including terms through T®),
SAE o = (E ponp ~Equ)/Eq—Eqy-
86NF —Equ)/Eqy.

ten as products of one-dimensional harmonic oscillator
Hamiltonians enter into the normal form. The normal
form in the incommensurable case can be quantized
analytically to provide a simple formula for all the ener~
gy levels. In the commensurable case, one degree of
freedom can be quantized anal ytically, and the other is
quantized numerically by a one-dimensional phase inte-
gration., Consequently, a simple formula for the entire
energy spectrum is not obtained, and each energy level
must be generated individually; the numerical effort in-
volved is typical of one~-dimensional WKB methods,
though somewhat complicated by the fact that the new
Hamiltonian I is not quadratic in the new momentum J'.

The method has been applied to two two-dimensional
cases, and it has been found to predict most of the ener-
gy levels accurately.

It is interesting to compare the method given here
with two of the other presently available semiclassical
methods for nonseparable systems. The present meth-
od is quite similar to the much older method of Born, ¢
but these methods differ in two ways: (i) the algebraic
manipulations involved are different; (ii) in Born’s meth-
od, terms in the expansion are collected in powers of a
small parameter, while in the present method terms
are collected in powers of the coordinates and momen-
ta—the two collection schemes are not necessarily the
same,

The methods of Marcus and his collaborators involve
direct numerical integration of the classical trajecto-
ries. These methods give an essentially exact solution
to the classical problem, but they have two principal
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limitations. They are generally more time consuming
than the present method (which is extremely rapid and
efficient), and for highly convoluted trajectories they
can become difficult to apply. More important, how-
ever, these methods cannot be applied in regions of
phase space in which irregular trajectories dominate,
because for such trajectories, action variables cannot
be defined. The present method cannot describe irregu-
lar motion, so it gives invariant tori, action variables,
and regular energy levels even in regions in which the
classical motion is irregular. It is a pleasant surprise
that even these predicted energy levels are reasonably
accurate —sufficiently accurate to establish the exist-
ence of a pattern to all of the quantum energy levels of
the cases studied.
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