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ABSTRACT

Quantum pumping is a method of transporting particles through a circuit without an 
external applied voltage or chemical potential, but instead with localized time-varying 
potentials. Ballistic quantum pumping has been theorized in mesoscopic solid state sys­
tems, but experimental verifications have been challenging due to the capacitive coupling 
and rectification inherent to electronic systems. Using ultracold neutral atoms to test 
and verify the theoretical predictions of quantum pumping reduces these challenges while 
providing the advantages of easy confinement and manipulation, a high degree of coher­
ence, and bosons as well as fermions. In addition, ultracold atoms allow smooth tunability 
between classical thermal gases and quantum gases. Here, we design, build, characterize, 
and optimize a dual-species experimental apparatus capable of quantum pumping exper­
iments with Bose-Einstein condensates on an atom chip. We produce quasi-pure 87Rb 
Bose-Einstein condensates of ~  104 atoms and successfully laser-cool 39K. We lay the 
experimental groundwork for quantum pumping experiments with ultracold atoms and 
characterize the classical dynamics of the system. These classical dynamics are supported 
with theoretical modeling that we have developed to compare the dramatic differences 
between the classical and quantum results of a double barrier turnstile pump as well as its 
single barrier building blocks.
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EXPERIMENTAL APPARATUS FOR QUANTUM PUMPING WITH A 

BOSE-EINSTEIN CONDENSATE



C H A P T E R  1

Introduction

Electric current is the backbone of the thriving electronics industry and an area of 

intense research in condensed m atter physics. One active study is the flow of charge 

between two reservoirs due to a localized, time-dependent potential or pump within a 

wire [1, 2] rather than an applied voltage bias. There is particular interest in exploiting 

the quantum effects of such a pump to produce highly controlled, reversible, and coherent 

electron transport in mesoscopic systems, potentially on the level of a single-electron [3, 4]. 

Such an adiabatic or ballistic quantum pump was first proposed by Thouless in 1983 as 

a way of creating electric current. Despite some recent experimental success with non- 

adiabatic quantum pumps the adiabatic or ballistic quantum pumps have met significant 

experimental challenges in the forms of spurious capacitive coupling and rectification effects 

[5, 6, 7].

This thesis describes the first steps in developing an alternative method of exploring 

and verifying biasless pumping based on ultracold neutral atoms rather than electrons. The 

utilization of neutral atoms has a number of advantages over the electron counterparts. 

First, it eliminates electromagnetic interactions which often mask the quantum pumping
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signatures in electronic configurations. Second, it allows one to tune between classical and 

quantum regimes such that one can understand the fully classical effects and therefore 

distinguish the fully quantum features of pumping. In addition, ultracold atoms are easily 

confined in ID to 3D potentials, controlled and manipulated with laser and magnetic fields, 

and have tunable interactions, allowing them to mimic their electronic counterparts. They 

also display a high degree of coherence, are available in both bosonic and fermionic species, 

and can be tuned in energy, momentum, and position for spectroscopically probing these 

dependencies.

A schematic for exploring quantum pumping with ultracold atoms is shown in Figure 

1.1. The basic setup consists of two reservoirs of ultracold atoms connected by a ID 

potential. In the center of the ID channel potential, the localized pump is created with a 

dynamically varied potential, shown here as two repulsive Gaussian potentials. The atoms 

are launched towards the pump with an initial momentum, and a current is measured as 

an imbalance in the final number of atoms in each reservoir.

1D channel potential

ultracold atom 
reservoir

ultracold atom 
reservoir

pump

FIG. 1.1: Quantum pumping of ultracold atoms. The basic pumping setup consists of two 
reservoirs of ultracold atoms connected by a ID channel potential. Atoms in each reservoir are 
launched towards the pump with an initial momentum. The pump, for example the double 
barrier turnstile pump, is a localized potential between the two reservoirs tha t is dynamically 
varied in time to create a current without a difference in potential between the reservoirs.

In this thesis, we perform a detailed theoretical study of the classical effects in a
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particular pump referred to as the turnstile pump. In addition, we prepare the key elements 

of an experimental apparatus with neutral ultracold atoms for testing these theoretical 

predictions and modeling quantum pumping in the future. To do so, we have built an 

apparatus dedicated to the study of quantum gases and demonstrated the production of 

Bose-Einstein condensates (BEC) of 87Rb.

1.1 Background and history

While the classical effects of pumping can be studied with a thermal cloud of atoms, 

phase coherence is essential for observing quantum effects. BECs are coherent macro­

scopic quantum states first theorized in 1924 by Bose and Einstein and eponymously 

termed [8, 9, 10]. At that time, physicists had just begun to understand the quantum sta­

tistical differences between integer spin particles (bosons) and half integer spin particles 

(fermions). While Fermi statistics and the Pauli exclusion principle forbid fermions from 

occupying the same state when cooled, Einstein’s theory supposed that an ultracold gas 

of bosons would condense into the same lowest energy state. This phase transition to con­

densation occurs at extremely low temperatures and has the advantage of forming a cloud 

of atoms which all share the same wavefunction. This ’superatom’ is both macroscopic 

and quantum mechanical, providing for the first time a window for probing the nature of 

quantum mechanics with a macroscopic number of atoms.

Despite its early theoretical development, it was not until 1995 that physicists demon­

strated BEC in a laboratory. Indeed, the 2001 Nobel Prize in physics was awarded to Eric 

Cornell, Carl Weiman, and Wolfgang Ketterle for the experimental realization of a BEC of 

rubidium and sodium atoms [11, 12]. These first demonstrations (and two decades worth 

of demonstrations that follow) were only made possible by several preceding advances and 

breakthroughs in laser development, atom cooling and trapping techniques, and ultrahigh
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vacuum (UHV) methods.

Cooling an atom to its ground state first requires complete isolation from its environ­

ment so as to minimize the heating caused by collisions with background gases. This is only 

possible in a UHV environment, typically requiring pressures below 10"10 Torr. Modern 

vacuum technology includes roughing pumps, turbo pumps, ion pumps, titanium subli­

mation pumps, gettering materials, and cleaning and vacuum processing techniques which 

make UHV a relatively straightforward engineering task rather than a physics problem.

Once in a vacuum apparatus, atoms are cooled using a technique called laser cooling. 

This method relies upon the development of narrow linewidth lasers which are used to 

address an energy transition between the ground and excited states of an atom. This 

breakthrough technique of laser cooing was demonstrated first in ions in 1978 [13, 14] and 

later in neutral atoms in 1985 by William Phillips [15] and Steven Chu [16], for which 

they along with Claude Cohen-Tannoudji were awarded the 1997 Nobel Prize in physics

[17]. With this technique, atoms can be cooled to temperatures as low as 10 — 100/rK, 

corresponding to velocities in the range of «  1-100 cm /s depending on the atomic mass 

[16]. Finally, the laser-cooled neutral atoms are moving slow enough to trap.

Cold atoms can be trapped with both optical and magnetic traps. Optical traps take 

the form of far-detuned dipole traps such as those used in optical tweezers experiments

[18] or optical lattices produced by standing light fields [19]. The earliest conservative 

neutral atom traps were magnetic traps produced with current-carrying coils which form 

magnetic field minima. Magnetic traps function on the simple basis of low-field seeking 

Zeeman energy levels. They were discussed as early as the 1950’s, with hints of experi­

mental demonstration by 1975 [20]. While many BEC experiments still rely on the early 

magnetic trap configurations, there is a growing community of physicists developing BEC- 

producing apparatuses based on relatively new ’atom chip’ technology [21, 22, 23, 24, 25]. 

Atom chips are substrates, typically silicon or aluminum nitride, with copper or gold wires
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imprinted on the surface using standard photo lithography techniques. By passing currents 

through the wires, one can produce compact magnetic fields at a distance from the surface 

of the chip where cold atoms can be trapped. Traps produced with the chip fields are more 

tightly confined than their coil counterparts, leading to higher collision rates, lower rether- 

malization times, and generally more efficient evaporation to BEC. In addition, chip-based 

apparatuses are compelling choices for application development due to their potential for 

miniaturization.

1.2 A pplications

Applications for ultracold atoms range from precision sensing and timekeeping to 

quantum information to simulating otherwise intractable models of solid state many-body 

systems. Ultracold atoms have also been elemental in some of the world’s most sensitive 

gyroscopes, magnetic gradiometers, and gravity gradiometers [26, 27, 28]. This is due to 

the coherence of ultracold atoms and their small deBroglie wavelength. The atoms within 

a Bose-Einstein condensate are coherent with one another, meaning they share a common 

phase, similar to photons in a laser. With coherent atoms, one can begin to explore 

applications previously developed only with coherent light, such as interferometry. Light 

interferometers split a coherent wave of light along two paths and then recombine them. 

The interference pattern of the light after recombination gives the user information about 

the path differences. With coherent atoms acting as deBroglie waves, this same concept 

can be applied to measure a large breadth of interactions due to the high sensitivity of the 

atoms. For example, atoms are sensitive to gravitational fields, electric fields, magnetic 

fields, and a host of other fields and corresponding forces. In addition, the deBroglie 

wavelength of cold atoms is tens of thousands of times smaller than optical wavelengths 

making them inherently more precise sensors than their optical wave counterparts.
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Cold atoms are also the basis of today’s most precise atomic clocks. When one con­

siders that the energy spacing between levels in an atom corresponds to a frequency, it is 

easy to see how each individual atom acts as a oscillator. The identical atomic structure 

from one atom to the next makes every atom (of the same species) oscillate at the exact 

same frequency. When isolated from environmental fluctuations and collisions and when 

cooled below the Doppler temperature, the frequency or time associated with these natural 

oscillations between energy levels can be measured very precisely. To date, the most pre­

cise and accurate atomic clocks in the world are laser-cooled neutral atoms held in optical 

lattices and operating on optical transitions (1015 oscillations each second) [29, 30]. These 

clocks operate with a precision on the order of a part in 1018, meaning they lose a second 

only once in every 5 billions years or so.

The energy splitting between ground and excited state and the ability to accurately 

control state preparation and manipulation in cold atoms is also the basis of several quan­

tum information efforts in recent years [31, 32, 33]. In such experiments, a quantum bit of 

information or qubit can be represented by a two-level system. A longer coherence time 

in ultracold atoms means quantum information stored in the atom is preserved longer, 

allowing more time for memory, processing, and read-out.

Perhaps the most appropriate and compelling application of ultracold atoms in the 

context of this thesis is the modeling of solid state systems. Ultracold atoms have already 

been used to study challenging condensed matter physics phenomena and theories such as 

superfluidity, the Bose-Hubbard model, Mott insulators, and superconductivity [34, 35, 36, 

37]. Atoms confined in optical lattices form perfect crystals with easily tuned parameters 

that are otherwise fixed and imperfect in their solid crystal counterparts. This makes 

them ideal for modeling and exploring elusive or difficult physical concepts in solid state 

systems, such as the concept of quantum pumping described above.
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1.3 Structure o f the thesis

Here I present the design, construction, optimization, and performance of a dual­

species apparatus built literally from the ground up for rubidium and potassium ultracold 

atom experiments on a chip. This apparatus has been developed for (among other things) 

the experimental demonstration of the classical and quantum features of quantum pumping 

-  a mesoscopic transport mechanism. For the work in this thesis, I present the theoretical 

findings of the classical aspects of pumping, while demonstrating cooling of atoms to Bose- 

Einstein condensate on an atom chip, and laying the groundwork for future experiments 

in quantum pumping. The use of an atom chip for the final trapping and evaporation 

to BEC makes this apparatus potentially miniaturizable to integrated chip-scale devices, 

making the realization of deployable application solutions a conceivable goal.

The work presented in this thesis has resulted in the following publications:

1. M. K. Ivory, et al., “Ballistic atom pumps” ,Phys. Rev. A90, 023602 (2014).

2. M. K. Ivory, et al., “Atom chip apparatus for experiments with ultracold rubidium and 

potassium gases” ,Rev. Sci. Instrum.85, 043102 (2014).

3. C. Chen, M. K. Ivory, et al., “Dynamical Monodromy”,Phys. Rev. E89, 012919 (2014).

4. T. A. Byrd, M. K. Ivory, et al., “Scattering by an oscillating barrier: quantum, classical, 

and semiclassical comparison” ,Phys. Rev. A86, 013622 (2012).

5. S. Martinez, L. Hernandez, D. Reyes, E. Gomez, M. Ivory, C. Davison, and S. Aubin, 

“Note: Fast, small, and low vibration mechanical laser shutters” ,Rev. Sci. Instrum.82, 

046102 (2011).

This thesis is structured as follows. In Chapter 2, I introduce the relevant theoretical 

background needed for trapping and cooling a cloud of atoms to quantum degeneracy.
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In Chapter 3, I discuss optical dipole traps and optical lattices. Chapter 4 describes 

the design, construction, operation, and performance of the experimental apparatus, with 

emphasis on the components and demonstrations in which I played a significant role. 

Chapter 5 covers the final cooling stage and achievement of BEC in the Aubin lab. Chapter 

6 is a thorough discussion of the classical features of scattering from single and double 

oscillating rectangular and Gaussian barriers necessary for understanding the classical 

and quantum features of quantum pumping. In Chapter 7, I describe the experimental 

infrastructure for a simple demonstration of classical scattering in a scheme we call “The 

Discriminator”. Finally, I conclude with an outlook towards improving the experimental 

demonstration of quantum pumping.
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C H A P T E R  2

U ltracold  atom  th eory

2.1 Introduction

As described in the previous chapter, Bose-Einstein condensates (BECs) make pos­

sible a number of advanced sensing, timekeeping, and navigational applications in which 

quantum mechanics can provide advantages over classical physics approaches. BEC is its 

own state of matter, which occurs as a phase transition when the atomic phase space 

density-i.e. density distribution in both momentum or temperature and position) reaches 

a critical value. Therefore, the phase transition occurs at some related temperature and 

peak atom number density given by the phase space density (PSD):

P S D  =  n \ 3dB (2.1)

where n is the atom density and AdB is the thermal deBroglie wavelength. When the 

deBroglie wavelength approaches the length scale of the atomic separation in the cloud, 

a condensate will begin to form amidst the surrounding thermal atoms. This transition

9



occurs when PSD > 2.612.

The advent of laser cooling made Bose-Einstein condensates an achievable goal in 

alkali atoms. 3D laser cooling of neutral atoms was first demonstrated in 1985 by Phillips 

and Chu [15, 16]. This method of laser cooling was soon paired with a confining magnetic 

field to produce the first magneto-optical trap in 1987 by Chu and Pritchard [38]. Due 

to physical limitations on the achievable temperatures using optical cooling techniques 

(primarily the recoil limit), a number of magnetic trapping techniques were explored. 

These included quadrupole traps using anti-Helmholtz coils, which were the first magnetic 

traps to confine neutral atoms [39]. However, the zero-crossing of the magnetic field is 

problematic for achieving BEC, as the undefined quantization axis at the zero-crossing 

leads to severe Majorana losses [40]. As a solution, Ioffe-Pritchard traps offer magnetic 

confinement without a zero-crossing. Ioffe-Pritchard traps have been produced in both 

macroscopic coil assemblies [41, 42] and microfabricated atom chips [21, 22, 23, 24, 25]. 

The final cooling stage in most BEC experiments is evaporative cooling, which was first 

demonstrated by both Cornell and Ketterle in 1994 [43, 44] and utilized for the first 

demonstration of BEC by Cornell and Weiman in 1995 in 87Rb [45].

In this chapter, I describe the theoretical background for the various stages of cool­

ing and trapping employed for achieving BEC in the Aubin Lab. Creating an ultracold 

quantum degenerate gas in our system is a multi-step process involving laser cooling in 

a magneto-optical trap  (MOT), optical molasses, transfer to a magnetic trap after opti­

cal pumping, a magnetic transport sequence, and finally evaporative cooling in a chip- 

produced magnetic trap. The basic steps which we describe in the following sections are:

1. Magneto-optical trapping,

2. Optical molasses or polarization gradient cooling,

3. Magnetic trapping,
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4. Optical pumping,

5. Atom chip trapping,

6. RF evaporative cooling,

7. Imaging, and

8. Temperature and atom number measurements.

Steps 1-6 are steps towards cold atom preparation, while steps 7 and 8 are destructive 

diagnostic techniques.

For reference, the atomic structure of 87Rb and 39K atoms can be found in Figures

2.1 and 2.2 [46, 47]. In addition, several relevant constants that will be introduced in 

this chapter are summarized in Table 2.1 [46, 47]. Throughout this thesis, we refer to the 

ground levels (nSi/2 ) by F and the excited levels (nP3/2) by F \

TABLE 2.1: 87Rb and 39K constants.

Sym bol 87R b Value 39K Value U n its
L inew idth r/27r 6.065 6.035 MHz
Saturation  In ten sity Eat 1.67 1.75 m W /cm
R esonance C ross S ection <70 0.29 0.28 fim2
W avelength A 780.241 766.701 nm
D oppler T em perature t d 146 145 fiK

2.2 M agneto-optical trapping

As its name suggests, this first cooling step requires both magnetic and optical fields. 

The “optical” refers to the process of laser cooling. The ’’magneto” refers to an external 

magnetic quadrupole field that spatially controls the strength of the optical force. Each 

of these concepts is explored in more detail in the subsections that follow.
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FIG. 2.1: 87Rb D2 line energy diagram. The D2 line of 87Rb is shown above with hyperfine 
levels. The cycling (cooling) and repumping transitions are shown in blue and red, respectively.
The Zeeman levels and splittings of the F=1 and F ’=2 hyperfine levels are also shown.

2.2.1 Laser cooling

When it comes to laser cooling, atomic physicists primarily choose alkali atoms (left­

most column of the periodic table), and have only recently been branching out to other 

more exotic elements such as strontium [48], ytterbium [49], chromium [50], dyspro­

sium [51], etc. The reason for this is the single valence electron in the alkali atoms: 

The D2-line level structure of these atoms can be well-approximated as a two-level sys­

tem, making these atoms well suited for laser cooling techniques. The basic principle of 

laser cooling [52] relies on atomic absorption of a photon from a laser beam and the as­

sociated momentum kick from that photon absorption. We begin with a two-level atom 

with resonant frequency u/0 =  ^ ,  where E0 is the energy difference between the ground
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FIG. 2.2: 39K D2 line energy diagram. The D2 line of 39K is shown above with hyperfine levels.
The cycling (cooling) and repumping transitions are shown in blue and red, respectively.

and excited states and h is Planck’s constant. If a laser beam that is slightly red-detuned 

(a few linewidths) from uj0 is pointed towards a moving atom such that the atom and 

the photons are moving in opposite directions, the laser beam will appear Doppler shifted 

closer to resonance in the frame of the atom (see Figure 2.3). For this reason, laser cooling 

is also known as Doppler cooling. With the laser beam appearing closer to resonance, the 

atom will be more likely to absorb a photon and receive a momentum kick that opposes 

the original velocity of the atom. The photon is then re-emitted in a random direction. 

Meanwhile, the red-detuned laser beam propagating along the same direction as a moving 

atom will appear Doppler shifted even further from resonance (more red-detuned) and 

becomes less likely to be absorbed. The overall effect is that the atom will slow down,
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thereby losing energy and effectively becoming cooler.

2-Level Atom: Lab frame:

"t  ;B, /W A # ' fW x
E Atom frame:

J.
FIG. 2.3: Doppler cooling. In the basic Doppler cooling description, we assume a 2-level 
atom with ground and excited states separated by an on-resonant energy Eq — Hujq (blue).
By applying a red-detuned laser beam (orange), the frequency appears shifted towards (away 
from) resonance for atoms moving toward (away from) the propagating beam in the frame of 
the atom due to the Doppler shift.

Laser cooling is applied using six counter-propagating beams (two along each of three 

spatial axes), producing cooling in all three dimensions. The process is Doppler limited, 

meaning it is limited by the natural linewidth of the atomic transition. In the case of 87Rb, 

the width of the D2 atomic transition is T/2tt = 6 MHz wide (see Table 2.1). Therefore, 

laser cooling can cool rubidium atoms from room temperature to TD =  ĵLj- =  146 pK.

In our experiment we use the F=2 to F ’=3 cycling transition to cool our atoms. While 

this is mostly a closed transition, there is a small chance that atoms will be excited off- 

resonantly to the F ’=2 level. In this case, atoms can decay into the F=1 level, which is 

“dark” since those atoms will not scatter cooling light. W ith only the cooling laser, these 

atoms would be lost. For this reason, we also employ a repump beam in our MOT between 

the F=1 to F ’=2 transition to extract atoms from the F=1 dark level and put them back 

in the F=2 level via the F ’= 2—>F=2 decay channel.
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2.2.2 Spatial confinem ent w ith  a m agnetic field

To produce a MOT, laser cooling beams are overlapped with a weak, spatially- 

dependent magnetic field, allowing the atoms to be spatially confined as well as cooled. 

This combined magnetic confinement and optical cooling is known as the MOT. Typi­

cally, MOTs are capable of reaching temperatures on the order of 100 K and phase space 

densities on the order of 10~6.

The magnetic field is produced with two coils in anti-Helmholtz configuration along 

one of the cooling axes. The coil geometry produces a spatial magnetic gradient that is 

quadrupole in nature. That is, it is zero at the center with a linear non-zero field elsewhere. 

This field Zeeman shifts the atomic hyperfine levels as shown in Figure 2.4.

FIG. 2.4: Magnetic confinement in a MOT. The presence of the magnetic field causes the 
Zeeman levels to  split. This, coupled with the laser detuning, causes atoms with m j  =  — 1 
on the right to  preferentially absorb the cr_ beam, getting a kick towards the trap  center, and 
atoms with m ; =  +1 on the left to preferentially absorb the a + beam.

Figure 2.4 shows the Zeeman shifts in the presence of a quadrupole magnetic field.
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The mp — — 1 level (in orange) is shifted to a lower energy on the right-hand side of 

the cartoon and to a higher energy on the left-hand side of the cartoon. It is important 

that the counter-propagating laser beams along this axis have opposite handed circular 

polarization with respect to the -l-z-axis (however, they have some polarization helicity). 

If the polarizations are chosen appropriately with respect to the direction of the current 

through the coils, an atom at rest on the right-hand side of the cartoon will preferentially 

absorb the beam with o~—polarization. This is because the m F =  — 1 level is shifted closer 

to resonance of the beam. The momentum kick associated with this absorption creates a 

restoring force back towards the zero position. An atom at rest on the left-hand side of the 

cartoon experiences a similar restoring force towards the zero position due to its tendency 

to absorb the cr+—polarization beam. The magnetic quadrupole field does not confine the 

atom on its own, but instead tunes the optical force, thus giving it a spatial dependence.

2.3 Optical m olasses

The presence of polarized light fields has additional cooling advantages when the mag­

netic gradient is absent. This was recognized early on in laser cooling experiments when 

researchers unexpectedly and inexplicably reached temperatures well below the Doppler 

limit [16]. This fortunate phenomena arises from the fact that our atoms are not in fact 

strictly two-level atoms. The hyperfine structure advantageously complicates our previous 

picture.

Here we consider the case of two counter-propagating beams with orthogonal linear 

polarizations (lin _L lin). The resulting polarization of the standing wave produced by the 

overlapping beams varies spatially as shown in Figure 2.5: The electric field polarization 

alternates between left and right circularly polarization. The light field shifts the hyperfine 

atomic levels depending on the polarization via the AC Stark effect. In the cartoon, an
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atom beginning in the mp = —1/2 level at z =  0 will climb the AC Stark potential with 

its initial kinetic energy. When it has traveled a quarter wave, the field is cr+-polarized 

and the atom is preferentially pumped to the mp  =  +1/2  level. From here, if the atom’s 

remaining kinetic energy is sufficient, it will climb the next quarter wave hill until the field 

becomes cr” -polarized and it is pumped back to the mp  =  —1/2 level. This continues 

until the atom no longer has sufficient kinetic energy travel up the optical “hill” . This 

sub-Doppler cooling phenomenon is broadly known as Sisyphus cooling, and is included in 

optical molasses and polarization gradient cooling mechanisms. The experiments described 

in this thesis utilize a sub-Doppler cooling scheme similar to the one described above using 

two counter-propagating beams with orthogonal circular polarizations in our molasses 

stage.

Employing optical molasses can decrease temperatures in the atom cloud to the order 

of 5-30 fiK or so. Importantly, the local magnetic field must be reduced to zero, so that 

the polarization gradient AC Stark effect is the dominant energy shift seen by the atoms. 

Optical molasses cooling can increase the PSD of the atoms to the I0-5 — 10~6 range. In 

order to go colder in temperature and to higher PSD, evaporative cooling in a conservative 

magnetic trap must be employed.

2.4 M agnetic trapping

In the description of the MOT above, a weak magnetic field gradient is used to help 

confine atoms undergoing laser cooling to a region centered around the magnetic zero. For 

certain hyperfine states, magnetic field gradients can also be used without the presence of 

an optical field to hold atoms against gravity and trap them. A common way to do this 

is to use the anti-Helmholtz coils of the MOT operating at a gradient strong enough to 

counter gravity. The field produced by a pair of anti-Helmholtz coils oriented along the
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FIG. 2.5: Sisyphus cooling. The spatial variation of the polarization leads to an additional 
cooling effect known as Sisyphus cooling. An atom beginning in the m p  =  - 1 /2  level at the 
origin travels up the AC Stark potential hill. At the top, the overall polarization is now a +  
and the atom is pumped preferentially into the m p  =  +1/2 level at the bottom of a hill. This 
process repeats until the atom no longer has sufficient kinetic energy to travel up the hill.

z-axis to first order is given by:

B = B ' ( | x + | s - z z )  (2.2)

where x, y, and z, are positions along the three axes x, y, and z, respectively, and B’ is the 

magnetic field gradient along the strong (z-) axis. The potential due to a magnetic field,



as seen by an atom with mass m  and magnetic moment /i, is

UZeeman — fX • B  TfXpQp^tg\B\. (^'^)

Here, gp is the hyperfine Lande g-factor, Hb is the Bohr magneton, and m/r is the magnetic 

quantum number. We seek to magnetically trap 87Rb and 39K atoms in the |F=2,m^=2) 

ground state where Qf = 1/2. To do so, the magnetic gradient B’ must be greater than 

mg/ hb =  15.36 G/cm in the direction of gravity (g=9.8 m /s2). In our case, gravity is 

along a weak axis of the anti-Helmholtz coils. Therefore, we require B’ larger than 30.72 

G/cm to hold atoms against gravity. For sufficiently strong gradients, the |F=2,m F= l) 

and |F = l,m /r= -l) states are also trappable.

2.4.1 O ptical pum ping

The presence of the magnetic field also breaks the degeneracy of the Zeeman sub- 

levels: For 87Rb atoms in the F  =  2 level, there are 5 Zeeman states. Therefore, in 

order to trap as many atoms as possible, we apply a pumping pulse prior to turning on 

the magnetic trap in order to pump the atoms into the desired trapped state. We call 

this optical pumping because it is done with a short optical pulse of light directed along 

a quantization axis created by a magnetic field, and it pumps the atoms preferentially 

into the |F—2,mF=2) ground state. The optical pumping pulse is produced with a single 

circularly polarized beam. Due to the selection rules, an atom absorbing cr+ light will 

undergo a transition with A m p  =  +1, and an atom absorbing a — light will undergo a 

transition with A m p  =  —1. The atom can undergo spontaneous emission transitions with 

A m p  = —1,0, or +1. The net result is that atoms accumulate in the highest positive 

(lowest negative) mp  level for cr+ (cr—) light. Because of this, optical pumping is a sort of 

internal state cooling -  it reduces the entropy of the atoms by placing them in the same
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internal state. A cartoon showing the allowable transitions for the F=2 to F ’=2 levels of 

87Rb is shown in Figure 2.6.

F’=2 mF levels (0.93 MHz/G)

F=2 mF levels (-0.7 MHz/J)

FIG. 2.6: Optical pumping. The F=2 and F ’—2 Zeeman levels are shown for 87Rb. The 
red (blue) lines show allowable excitations for light, while gray dashed lines show allowable 
decays. For a-  light, atoms will accumulate in the |F=2,m /r—-2) level. For cr+ light, atoms will 
accumulate in the |F = 2 ,m f= 2) level.

We pump our atoms to the |F=2, rnF=2) state. The 30 G/cm field is sufficient to 

hold these atoms against gravity, but is not sufficient to hold |F=2, m f= + l)  or |F=2, 

mF= -l) atoms. This allows us to distill the spins and produce a pure spin-polarized cloud 

of 87Rb atoms.

2.4.2 M agnetic transport

Once in the magnetic trap, atoms can be transported between locations using a se­

ries of magnetic quadrupole traps. Our magnetic transport system consists of 7 pairs of 

overlapping anti-Helmholtz coils in an L-shape path covering a distance of about 60 cm 

between the MOT region and the second vacuum chamber containing the atom chip. By
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carefully ramping the currents in the 7 coil pairs, one can create a moving magnetic trap 

so as to translate the atoms. Three coil pairs are powered at any given time to ensure that 

the trap keeps its shape (gradient and aspect ratio) throughout the translation process 

[53, 21, 54].

We use this method to transport the atoms from the MOT region of the vacuum 

apparatus to the science region. The transport process produces little heating and atomic 

population loss (beyond vacuum lifetime losses). At the end of the sequence, we ramp down 

the transport magnetic fields while simultaneously ramping on the atom chip magnetic 

fields to load the atoms onto the atom chip.

2.5 A tom  chip trapping

The atom chip is a silicon wafer with a lithographically deposited copper wire pattern. 

The large trapping frequencies produced by the atom chip trap lead to higher collision rates 

and shorter rethermalization times than their larger-scale optical and magnetic trap coun­

terparts, leading to shorter evaporation times and lowering the trap lifetime requirements. 

(Though recently, hybrid magnetic optical traps have produced fast evaporation times as 

well [55].) By running current through wires on a chip and applying an external magnetic 

bias field, one can create a harmonic magnetic trap located hundreds of microns below 

the chip with very tight confinement. The particular chip we are working with contains 

a Z-wire trap (see Figure 2.7 and 2.8). The current through the center portion of the 

Z creates a magnetic field directly below the wire that is in the plane of the chip but 

perpendicular to the wire. Adding an external magnetic bias field (BHold) in the direction 

opposite the wire-produced field creates a magnetic minimum below the chip. Increasing 

B Hold moves this minimum closer to the chip because it balances a stronger field from the 

wire. Therefore, we can control the vertical positioning of the atoms by varying either
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FIG. 2.7: Atom chip metalization. The left image illustrates the various wire patterns on our 
atom chip generously donated by the Thywissen Lab at the University of Toronto. A zoomed in 
image of the center portion, outlined in black/white, is shown in the upper right corner. Here 
the z-wire, shown in blue, is very evident. Further zooming in shows further structure in the 
bottom  right image. For the work carried out in this thesis, the blue Z-wire trace is used for 
trapping and one of the red U-wires is used for RF evaporation.

BHold or the wire current. In addition, the other legs of the Z-wire have the advantage 

of producing end-caps for our trap, providing axial confinement in addition to the radial 

confinement of the external field.

Our Z-wire consists of two end-caps that are 200 /jm wide and several mm long. The 

central portion of the Z is 50 ^m wide and 2.8 mm long. During the experiment, we apply 

1 A of current to the Z-wire and a Bh m  field of 20 G perpendicular to the central leg of 

the Z-wire. We also add a small field parallel to the central leg of the Z-wire: B/0/ / e=4.9 

G. The presence of this field shifts the trap minimum so that it avoids crossing zero.
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FIG. 2.8: Atom chip fields. Shown are the direction of current Iz  through the Z-wire, as well 
as the directions of the BHold (blue) and B /0/ / e (red) fields required to trap atoms below the 
chip.

This reduces the possibility of Majorana losses due to spin flips in the presence of a zero 

magnetic field. The resulting trap potential can be seen in Figure 2.9.

These magnetic fields B  arc calculated using the Biot-Savart Law for a current carrying 

conductor, given a current I  along direction I at a position r from the conductor:

For metalized traces on the atom chip, we assume a rectangular conductor with width 

Ay =  2/2 — 2/i and length Ax =  x2 — x\  and current running along the length of the 

conductor. The resulting magnetic field along each axis is:

(2.4)

(2.5)

evaluated at the limits x =  x\  to x2 and at y =  2/1 to y2. To model the fields from the
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FIG. 2.9: Atom chip potential. The left image plots the resulting trap  potential along the 
vertical radial axis directly below the Z-wire. The right image plots the resulting trap  potential 
along the axial (blue) and horizontal radial (yellow) axes for a vertical distance of ho from the 
chip. The presence of the Ioffe field has shifted the minimum away from zero.

chip’s Z-wire, we sum the magnetic field from three rectangular conductors (representing 

each leg of the Z) using Equation 2.5.

2.6 Evaporative cooling

Once the atoms are held in the atom chip trap, we begin the final step towards BEC: 

evaporative cooling. At this stage, the |F=2,m^=2) atoms are entirely confined by the 

magnetic fields of the chip in a magnetic bowl (see the cartoon in Figure 2.10). There also 

exist four additional m/r states, three of which are untrapped. The m/r states are separated 

by RF frequencies. In the F=2 ground state of 87Rb, the Zeeman splitting is 0.7 MHz/G 

between m/r states. Evaporative cooling operates by applying an RF field which couples 

the m/r levels of the atoms. If the RF frequency starts high, it will only match the energy 

splitting of the m/r levels at positions far from the center of the trap. Only atoms with 

sufficient kinetic energy to reach those positions will be driven to the untrapped states and 

leave the trap. Therefore, hotter atoms will reach the outer edge of the trap, spin flip, and 

fall away, leaving an overall cooler cloud of atoms behind.
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Typically, experiments achieve evaporative cooling by starting with a high RF fre­

quency (or “RF knife”), and adiabatically sweeping the field to lower frequencies as the 

cloud cools. For example, in the experimental system described in this thesis, we achieve 

evaporative cooling by sweeping the frequency from 20 MHz to 3.3 MHz in approximately 

6 s.

There is no guaranteed formula for a successful evaporative path to BEC. In practice, 

we monitor the temperature, density, collision rate, and phase space density of our atoms 

throughout the evaporative path. Temperature is monitored with standard time-of-flight 

measurements which are described in Section 2.9. Density is a standard atom number 

density measurement which we know from the number of atoms and the volume of our 

trap (estimated from the trap frequencies):

N X ? X ,
"  =  ( 2 ' 6 )

Here, N  is the number of atoms, and X r ẑ is the size of the cloud along the radial or axial 

axes determined from |rat>2 =  ^muzzX ^ z with m  the mass of the atoms, ujTtZ the trap 

frequency, and v the velocity of our atoms (determined from time-of-flight measurements 

in Section 2.9). Collision rate is a measure of the number of atom-atom elastic collisions 

occurring per second:

C R  = (2.7)
2y /2

where as is the scattering length of the atoms. (Values of as for 87Rb and 39K can be found 

in [56, 57, 47, 58], respectively. Conveniently, for 87Rb, as ~  99a0, where a0 is the Bohr 

radius.) Phase space density is calculated from Equation 2.1.

As mentioned previously, evaporative cooling allows experimentalists to reach BEC.
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It should come as no surprise that this technique is capable of reaching temperatures in 

the nK range and phase space densities larger than 2.612.

FIG. 2.10: Evaporative cooling for F=2 ground level. m jr= l,2  atoms are trapped, while m/?=0,- 
1,-2 atoms are untrapped. An RF magnetic field (known as an RF knife) can be swept from 
large frequencies to small frequencies which ejects the most energetic atoms to the untrapped 
states. This results in an overall cooler cloud of atoms remaining trapped.

2.7 B ose-E instein  condensate

Atoms obey both classical and quantum mechanical properties, depending on the 

characteristics of the cloud. At high temperatures, they act as a thermal gas and obey 

Maxwell-Boltzmann statistics. However, as they are cooled, it is useful to think of the 

atoms quantum mechanically as wavepackets with an associated thermal deBroglie wave-

i i Energy

Position
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length, given by:

2rrft2 \ 1/2
(2 .8)

m k g T

Here, kg is the Boltzmann constant and T is the temperature of the atoms. As the atoms

are cooled, the deBroglie wavelength increases until X^b is on the order of the separation of 

atoms. When this happens, the atomic waves overlap and form a Bose-Einstein condensate 

(BEC) for a cloud of bosonic atoms. As a BEC, all of the atoms are in the same quantum 

state and can be described by the same macroscopic wavefunction. This transition to BEC 

occurs when the phase space density, defined in Equation 2.1 exceeds the value 2.6.

Quantum mechanical systems are described by the Schrodinger equation:

In this equation, the potential energy U(r,z,t) =  UeIt =  Uint is the sum of both the 

external trap potential Uext and the atomic mean-field interaction potential Ujnt. In the 

experiments presented in this thesis, ultracold atoms are produced in a harmonic trapping 

potential given by:

where m  is the atomic mass, u r is the radial trap frequency, and uiz is the axial trap fre­

quency. The atomic mean-field interaction potential is given by a non-linear self-interaction 

term:

(2.9)

(2 , 10)

Uint — gN\ii(r, z )|2 (2 . 11)
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where N is the number of atoms and g is an interaction parameter given by g = 47rhas/ m  

with as the scattering length of the atoms [56, 57, 47, 58]. Conveniently, for 87Rb, as ss 

99ao, where ao is the Bohr radius.) Note that the sign of g is determined by the sign of the 

scattering length, g (and therefore the scattering length) must be positive (repulsive) or the 

condensate will implode. Because of this non-linear interaction potential, the Schrodinger 

equation becomes non-linear and is sometimes referred to as the Gross-Pitaevskii (GP) 

equation after its discoverers.

In the stationary case, the GP equation is written:

z) =  ( -  ^ V 2 -I- Uext +  gN\xp(r, z)|2)^ (r , z), (2.12)

given 4/(r, z, t)  =  i^(r, z)e~lflt^h [59]. Here, is defined as the chemical potential or mean- 

field energy of the atoms. For large enough N, we can assume the kinetic energy term 

is negligibly small (Thomas-Fermi approximation), and for a harmonic trap the equation 

reduces to:

Hi’l.r.z) =  ( im f u v V + ^ V )  +gN\n>{r,z)\2) t ( r , z ) .  (2.13)

From this equation, we can solve for the ground state energy distribution/atom number 

density (p(r, 2 )), which is given by:

W (r ,Zr = ' ^ M ^ ± ^ = P(r,z), (2.14)

for /i > Uext and zero elsewhere. Spatially, the Thomas-Fermi distribution is an upside
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down paraboloid with radius:

To determine the chemical potential or mean-field energy //, one need only to integrate 

Equation 2.14 over r and z and solve for //:

Huj 15iVas
®/io

1 2 /5
(2.16)

where aJ =  (u;3̂ ) 1/3 is the geometric mean frequency of the trap and = y  ^  is the 

geometric mean of the harmonic oscillator. Alternatively, if the trapping frequencies ujt%z 

and Thomas-Fermi radii RriZ are known, one can calculate (jl from Equation 2.15.

Below the critical temperature at which atoms begin to condense, the atom distribu­

tion will be bimodal in nature. The thermal atoms will have a Gaussian distribution, and 

the condensed atoms will have the Thomas-Fermi distribution described above. This bi­

modal distribution is one of two signatures of BEC which we seek during the optimization 

of our evaporative cooling.

The second signature is anisotropic expansion after some time-of-flight, which derives 

from the dynamics of the condensate upon being released from the trap. These dynamics 

depend on the aspect ratio of the trap frequencies. The time-of-flight expansion can be 

described by [60]:

ro(t) = r0(0 )\/l -I- t 2 ,
(2-17)

z0(t) =  e_1ro(0)(l -I- c2[r arc tan r — In V l  + r 2]).

Here, r0 and z0 are the radial and axial cloud sizes at time t, e is the ratio ujz/ u)t , and
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T =  UJr t .

Equation 2.17 results in three different time stages [60]:

1. For t  < l/c jr , radial acceleration as mean-field energy is converted to kinetic energy,

2. For 1 / u r < t < u r/uj2, radial expansion but little axial expansion, and

3. For t > u r/ u 2z . radial and axial expansion at asymptotic aspect ratio.

In our system, stage 1 takes place within the first 130 /is of being released from 

the trap, and stage 3 does not begin until 4 s after being released. Therefore, we only 

ever observe the atoms after undergoing stage 1 and in the midst of stage 2. The result 

of this stage is a cloud that nearly maintains its initial axial size but quickly expands 

radially during a typical 5-30 ms time-of-flight period. This anisotropic expansion was 

demonstrated experimentally and can be found in the quasi-pure condensate image in 

Figure 5.6.

2.8 Im aging

Most measurements of cold and ultracold atom samples are usually done by way of 

imaging the atomic cloud. Imaging is done using near- or on-resonant light collected on 

a precisely triggered CCD camera. There are two main varieties of imaging: absorption 

and fluorescence. Absorption imaging is a photon-efficient method that allows users to 

determine atom number without any knowledge of the quantum efficiency of the CCD 

camera. It is best used for denser atom clouds.

For less dense clouds or even single atom imaging [61], fluorescence imaging is often 

used. This method collects photons that have been spontaneously emitted from an excited 

atom when it decays. The signal depends on the collection time and the numerical aperture
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of the collection optics. In order to accurately determine an atom number, one needs to 

know the quantum efficiency of the camera, or the number of photons required to produce 

one count of signal.

In the following subsections, I discuss the physics behind each of these methods.

2.8.1 A bsorption  im aging

Most data for this thesis is acquired with absorption imaging, which essentially looks 

at the shadow produced by a cloud of atoms in a beam of resonant light as it shines into 

the camera. This method requires two images: an image of the shadowed beam with 

atoms (’’atom image” ) and an image of the beam alone after the atoms have fallen away 

or dispersed (” laser image”). You can extract the optical depth OD on a pixel using:

OD = h i f ^ ^ Y  (2.18)
\  atom J

where Ciaser and Cat(m are the detector counts for the laser image and atom image, re­

spectively. The intensity of the light after passing through a cloud of atoms is given by:

I  = I0e~OD (2.19)

where Iq is the initial intensity of the light. Prom Beer’s Law, the OD can also be written

as a function of atom density n(r), the absorption cross section er, and the length A z  of

the atomic medium [52]:

OD = n(r)aAz  (2.20)
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where a is defined as:

( 2 .21 )

In the above equation, cr0 is the on-resonance cross section, A is the detuning from reso­

nance, T is the decay rate, and Isat is the saturation intensity. For absorption imaging, we 

typically use an on-resonance beam with I0 Isat- Therefore, the absorption cross section 

reduces to a  ~  a0, given by:

where A is the wavelength of the imaging light. With this description, we can easily convert 

our absorption images to atoms per pixel. For on-resonant imaging, substituting Equation 

2.22 into Equation 2.20 and applying Equation 2.23 gives the atom number at each pixel:

where Apixei is the area of each pixel. Further image analysis is detailed in Chapter 5.

2.8.2  F luorescence im aging

Fluorescence imaging detects the photons re-emitted by the atoms when an on- 

resonance pulse of light is applied. This method of imaging is better suited for lower 

atom numbers and is fairly straightforward. When on- or near-resonance light is applied 

to the atoms, they scatter (absorb and re-emit) photons, emitting into the full solid angle. 

Placing a camera near the atoms, one can collect a fraction of the scattered photons. In 

principle, one can determine the atom number from fluorescence imaging if one knows the

( 2 . 22 )

Npixei = /  n(f)dz = n(r)Az = In
Jx,y J 0 atom

(2.23)
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collection efficiency of the imaging system and the quantum efficiency of the camera (the 

number of photons corresponding to a single count). An atom scatters photons at a rate 

R given by:

r  _  s ° r / 2  ( 2  24 '

l + 4 ( f ) 2 +  S„ (2'24 '

where s0 is the on-resonance saturation parameter, defined as s0=2|f]|2/F 2= I /I sat. Here, 

Q is the Rabi frequency. In both Equation 2.21 and Equation 2.24, Isat =  Therefore, 

the atom number at each pixel given by the fluorescence imaging method is:

Npixei = —  4  (2.25)pixel & Q t expR  K }

where 0  is the collection solid angle of the imaging system, Q is the quantum efficiency of 

the camera, C  is the number of CCD counts, and texp is the exposure time.

2.9 Tem perature m easurem ent

Throughout the entire MOT to BEC process, we monitor the temperature of our 

atom cloud. Temperature is monitored by way of a process called time-of-flight imaging. 

Essentially, at the point in the experiment at which we would like to know the temperature 

of our atoms, we quickly turn off all optical and magnetic fields and allow our atoms to 

free fall under gravity for a period of a few milliseconds. This period of free fall is known 

as the time-of-flight.

During this period, the atoms expand ballistically. The rate of the expansion is gov­

erned by the thermal momentum distribution. (Note: For this reason, temperature can 

only be measured with the thermal atoms in the cloud -  not with condensed BEC atoms.)

33



Therefore, temperature measurements are made with a series of images of increasingly 

longer times-of-flight. In each of these images, the thermal atom distribution is fit to a 

Gaussian distribution along the vertical and/or horizontal axis. The fitted atom distribu­

tion can either be a slice through the cloud or a summed distribution over some region 

of interest, and is frequently well-described by a Gaussian distribution for thermal clouds. 

The camera image records a Gaussian distribution in the x-y plane given by:

1 ( g - X f l ) 2  1 ( i l - » f l ) 2

n ( y , z )  = n oe 2 e 2 av (2.26)

where n0 is the peak density (atoms per pixel), xo and y0 are the position of the centroid, 

and ax and oy are the widths of the distribution along x and y. We determine the tem­

perature along either the y (z) axis by plotting ax (ay) vs the time-of-flight. The crx,y{t) 

relationship takes the form:

Ox,y(t) = \Jof  -I- v2t2 (2.27)

where <7, is the initial size of the cloud before time-of-flight expansion, v =  / k BT / m  

is the average ballistic expansion velocity, and t is the time-of-flight. It is fun to note 

that for 87Rb, ^-=0.9498 cm2/(s 2̂ K). Therefore, if you wish to know the temperature of 

your cloud in /zK, you need only to square the expansion velocity given in cm /s for an 

approximate temperature in /zK within 5% of the actual value.

The plot of an expansion under time-of-flight takes on the general form in Figure 

2.11. In order to obtain an accurate temperature measurement, it is important to have 

a cloud size from the linear regime. For this reason, in hotter clouds such as the MOT 

and magnetic trap, we usually take several images and reproduce the plot from Figure 

2.11 to determine temperature. An example of this type of temperature measurement is
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shown later in Figure 4.13 in Chapter 4 to compare the temperature of potassium atoms 

before and after a molasses stage was implemented. For colder temperatures, when our 

initial cloud size has significantly smaller a0, we are able to do single image temperature 

measurements after sufficiently long time-of-flight. We use this single image method once 

our atoms have begun to evaporatively cool in the magnetic chip trap.

•o

Initial Cloud Size, O;

Tlme-of-flight, t

FIG. 2.11: Time-of-flight measurements for determining temperature. This is the general form 
of the thermal cloud expansion under time-of-flight, described by Equation 2.27. If a full fit is 
not done, it is important to be in the linear regime before approximating temperatures. The
slope of the linear regime is v =  J
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C H A P T E R  3

O ptical d ipole traps

3.1 Introduction

A single focused red-detuned laser beam can be used to form a dipole trap for ultracold 

atoms. Due to the interaction of the dipole moment of the atom and the electric field of 

the light, the energy levels of the atom will experience a shift known as the AC Stark 

shift. These shifts in energy can produce attractive trapping potentials for ground state 

atoms in a red-detuned beam and repulsive potentials for ground state atoms in a blue- 

detuned beam [62]. Furthermore, the addition of a counter-propagating beam produces 

an optical lattice potential. Each of these has found a multitude of uses in cold/ultracold 

atomic physics laboratories. In general, optical traps are conservative traps that are easy 

to implement experimentally. They are preferred for magnetic field sensing applications, 

since magnetic traps overwhelm and distort the very thing one is trying to measure [63]. 

Blue-detuned beams in a variety of geometries can be used when the experimentalist seeks 

to trap atoms without the presence of the energy shift. Utilizing the blue-detuned repulsive 

potential will cause the atom to seek the low intensity regions where shifts are minimal [64].
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The tight confinement of the optical lattice, which reduces the motion of the atoms and 

provides a more uniform potential site-to-site, is the preferred choice for the most precise 

atomic clock experiments in the world [29].

In this chapter, I introduce the theory behind optical dipole and optical lattice traps. 

I begin with the dressed atom theory, which describes the energy shifts of the atom in the 

presence of a light field. Many of the following calculations have been derived in detail 

in [52]. Here I cover the highlights of the dressed atom theory which lead us to the AC 

Stark shift. I then describe the method of calculating a trap potential from the intensity 

of a light field. Finally, I derive the lattice potential and note some significant differences 

between the lattice and dipole potentials.

3.2 Tw o-level atom  theory for a dipole trap

We begin with the Hamiltonian of the full system as a sum of the field-free Hamiltonian 

Ho for a two-level atom, the Hamiltonian Hem for the electromagnetic field of the laser 

light, and the interaction Hamiltonian Hint describing the coupling between the two. We 

write these Hamiltonians in the basis of the dressed atom theory: \g, N  + 1) and |e, N ). 

In this basis, the ground state |<7, N  +  1) exists when the atom is in the ground state with 

N  +  1 photons available, and the excited state je, N)  exists when an atom has absorbed a 

photon and is in the excited state.

The standard atomic Hamiltonian for a two-level atom can be written as:

0 0 0 0
=  h

0 E0 0 U)0

where E0 = hui0 is the energy difference between the excited and ground state (see Figure

3.1). When we place the two-level atom in a light field, we can consider a very simplified
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|g>

FIG. 3.1: Two-level energy diagram, (left) A two-level atom is assumed to have two energy 
levels: a ground state |g) and excited state |e) separated by energy ftwo- For optical dipole 
trapping, a far off-resonance detuned wavelength is chosen, represented by energy detuning HA. 
(right) A red-detuned beam results in atoms being confined in the high intensity region of the 
beam, often formed simply by focusing the beam. Note that hA  in the left figure is shown with 
hA  < 0 (red-detuning) to  match the right figure.

case where the atom interacts with a single longitudinal mode of the EM field with:

H E M tVbJi
N  + l  0 

0 N
(3.2)

Here, the frequency of the light field mode oji is detuned from the resonance by some 

amount A such that A =  uji — uq and N  represents some number of photons.

Due to the charge q of the single valence electron at position f  from the center of the 

atom (the origin) interacting with the electric field of the EM wave E0 , the dressed atom 

energy states will be coupled by an interaction Hamiltonian given by:

Hint tl (3.3)
Hr 0
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where

Q -  —z{e \ f  ■ E0|<?) n
(3.4)

is defined as the Rabi frequency. Calculating the dipole matrix element (c |r-E 0|g) requires 

explicit knowledge of the atomic wavefunction but has been done for both rubidium and 

potassium [46].

If we redefine the energy origin by subtracting huj[N + ftu0, then we can write the full 

Hamiltonian of the dressed atom as:

Hitotal — H q +  H e m  “I-  H int
A n

2
n*
2 0

(3.5)

Solving the above Hamiltonian, we find eigenvalues E± equal to:

(3.6)

For a far off resonance trap (FORT), we can assume |A| > >  |f2| and approximate the 

square root such that:

E ± = \ h A ± l - h A ± ^ f ^ .  
2 2 4A

(3.7)

The diagonalized Hamiltonian is therefore:

H =
h \ n \ 2 04A

0 ftA + m 2
4A

(3.8)
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Pi|Q|2/4A

FIG. 3.2: Two-level energy diagram of the dressed atom, (left) The shifts of the ground \g) and 
excited |e) states of a two-level atom in a red-detuned (A < 0) light field, (right) The shifts of 
the ground \g) and excited |e) states of a two-level atom in a blue-detuned (A > 0) light field.

One can see that there is an added term to the original energy levels of the ground

and excited states which now gives us the new energy levels in the light field (see Figure

3.2). This term is and is attributed to the action of the light field on the atoms.

Particularly, [Q|2 is proportional to the peak intensity of the light field I. Recall that
i 2I  =  ^ce0E0 , such that rewriting and squaring 3.4 gives us:

|n|2 2Iq2\(e\f\g)\2
ceoh2

(3.9)

Here, c is the speed of light in vacuum and e0 is the permittivity of free space. From

Section 2.8.2, we can also rewrite this as |fl| 2 _  r 2 i  _  3/rA3
2 rs, 2nhc

3.3 C alculating dipole trap potentials

We will now transition from quantum mechanics and atomic energy levels to classical 

optics and Gaussian beams. For calculating the potential from a detuned, focused, Gaus­

sian laser beam, it is convenient to recall that the Rabi frequency in the above derivation
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is proportional to the beam intensity or square of the electric field. Therefore, we will base 

the following calculations on the intensity of the beam rather than the Rabi frequency. 

Far-off resonance traps produce a potential which looks like:

(J (r, z) =  U0I(r, z) (3.10)

In the above equation, f/ 0 is the peak potential and is given by [62]:

" - S r  ( 3 1 1 )

The intensity /(r , z) is the irradiance of the beam as a function of position given by [65]:

I iri z ) = r~y2 exP ( — T I 2 I  (3-12)w(z)2 \  wyzy  J

where Iq =  P  is the power of the beam, r is the radial distance from the center of the 

beam, and w(z) is the spot size of the beam given by [6 6 ]:

w(z) =  iy0(l +  (— 2 )2) 5 (3-13)TTWq

where w0 is the beam waist of the focused beam, A is the wavelength of the beam, and 2  is 

the distance from the focal point along the axis of beam propagation. Knowing the focal 

length of the lens /  and the input beam diameter d, one can calculate the full divergence 

angle of the beam to be 0  =  2  tan - 1  ( 7̂ )  and the beam waist at the focus to be Wq =

We can convert the potential to temperature by:

T  =  U£ ' - Z1 (3.14)
k
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where k is Boltzmann’s constant.

The trapping potentials seen by an 87Rb atom along the r  and 2  axes produced by 

a 1064 nm beam focused to w0 =  60 fj.m with 100 mW of power is shown in Figure 3.3. 

Such a trap has a depth of approximately 1.5 fjK per 100 mW of power.
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FIG. 3.3: Dipole potential, left) The potential produced in the r  direction for a A =  1064 
nm beam focused to wo =  60/xm with P  =  100 mW as seen by 87Rb atoms. The potential is 
computed with Equation 3.10 - 3.12. right) The potential produced in the 2 direction for the 
same beam and atoms.

3.3.1 C alcu lating th e frequency o f oscillation

To calculate the frequency of oscillation along one dimension, for example along the 

r-axis, we expand U(r,z  — 0) about the location of minimum potential, rmtn. This gives 

us an expansion of the form:

U(r,z = 0) =  C0 +  C i(r -  rmin) +  C2(r -  rmin)2 4- C3(r -  rminf  +  ... (3.15)
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with coefficients Co,1,2 ,3 .... If all coefficients are negligible compared to C2, we can equate 

the non-vanishing term to a simple harmonic oscillator potential:

^ m u 2(r -  rmin)2 =  C2(r -  rmin)2 (3.16)

where m  is the mass of the atom (or oscillator), u r is the frequency of oscillation, and 

C2 =  evaluated at r = rmin. This allows us to solve for the frequency of oscillation:

3.4 O ptical lattices

A special case of an optical dipole potential occurs when a laser beam is retro-reflected 

to produce a standing wave. The potential of the standing wave in one dimension as 

experienced by the atoms goes like cos2(kz) where k = is the wave number of the 

beam and 2  is the axis of propagation. The periodicity of this potential produces an 

optical lattice with lattice constant A/2. The ability to tailor the depth, spacing of, and 

number of atoms in each lattice site makes the optical lattice a desirable test bed for 

simulating solid state crystal lattices which tend to have fixed properties and impurities. 

Optical lattices have also proven to be useful in a number of atomic physics applications 

including gravimetry [63], atomic clocks [29], and quantum computing [67]. While making 

an optical lattice was not an aim of the research presented in this thesis, I will still discuss 

them briefly here since they unintentionally caused some complications in alignment of the 

dipole beam.

To understand where the above-mentioned cos2(&2 ) potential comes from, we can use 

the simple model of the electric field E of a plane-wave traveling through free space in the
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z-direction with frequency u>i as:

E =  E0cos (kz — uiit). (3.18)

Keeping in mind that an optical lattice forms with the overlap of two counter propagating 

fields, we can write the sum of both fields simply as:

Etotal =  E0 cos(kz — Uit) -I- v^RE0 cos(—kz  — utf) (3.19)

where the reflection amplitude VR is less than one for a less than 100% reflection. Atoms 

will respond to the intensity of the light rather than the raw electric field, which goes like 

the electric field squared. In addition, the response time of the atom is several orders of 

magnitude slower than one period of the light field so, in fact, the intensity from the 

atoms perspective will appear as the time average of the electric field squared:

£»£ ,..
/  =  — (Eocos2(fc,z — u>it) -I- REq cos2(—kz  — uit) +  2VREoCos(fc2 ~~ Wt)  cos (—kz — uit))t■ £

(3.20)

Some additional simplification using trigonometric identities and time averaging yields:

I  = l 0 +  R I0 +  2y/RI0cos{2kz) = I0 +  R /0 +  2^/RIQ(cos2(kz) -  1). (3.21)

In the straight-forward case of a dipole trap, \/R  =  0 and we are left with I  = Iq. 

Alternatively, for a perfectly reflected beam with V R  =  1, the intensity becomes /  =  

4Iocos2(kz). In this case, the presence of the optical lattices increases the peak intensity, 

and therefore the trap potential, by a factor of 4.

It is also fun to note that the force on the atom due to the potential goes like the
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FIG. 3.4: Dipole and lattice trapping, a) A vertically oriented dipole beam with wq =60 /xm 
beam waist radius creates a potential depth of 5 fxK against gravity with 227 W  of power, b) 
This same power produces a lattice depth on the order of 10 mK. c) Zooming in on a), one can 
see the 5 /xK potential depth more easily, d) Zooming in on b), one can see the lattice wells 
with a spacing of A/2—532 nm.

change in potential over distance, — In addition to having an overall potential difference 

four times greater than the dipole trap, the optical lattice sees that potential difference 

over the distance of a quarter of a wavelength, as opposed to a distance on the order of 

the Rayleigh length. The result is a tremendous force from the optical lattice. To put this 

into perspective, let us consider a vertical beam with a waist radius rco=60 fi m. In order 

to form a dipole trap of 87Rb atoms 5 / i K  deep in the vertical axis against gravity, one 

would need 227 W of 1064 nm laser power (see resulting trap shape in Figure 3.4 a and c). 

In the presence of an optical lattice, this same laser power produced a tremendous lattice
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depth shown in Figure 3.4 b and d. In fact, the same 5 /iK lattice depth can be formed 

with only 100 mW of power (see resulting lattice in Figure 3.5).

1030

1010

I
g  i o o o

Ui M0

970 000 0 1

FIG. 3.5: Low power lattice trapping. A 5/xK lattice depth can be produced with only 100 mW 
of power. The slope is due to the presence of gravity.

For the experiments carried out in Chapter 7, we originally planned to have an elon­

gated dipole trap in which the atoms could slowly slosh back and forth as if in a ID channel. 

Upon aligning the dipole trap and applying a force which was expected to make the atoms 

begin to slosh, we saw no movement of the atoms. Since our glass vacuum cell was not 

anti-reflection coated, it is reasonable to expect 4% reflection per surface. If we consider 

only the inner surface of the glass, with R  =  0.04, the fringes on the cos2{kz) lattice term 

are 40% on top of the single beam dipole trap. This was certainly more significant than 

ever expected, and large enough of an effect to prevent the atoms from sloshing in the 

trap. Realigning the beam to have a small angle of incidence with respect to the glass 

reduces this effect.
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C H A P T E R  4

E xperim ental apparatus

Actually producing ultracold atoms in the lab requires a number of systems integrated 

in space and time in a single apparatus. These systems include the ultra-high vacuum 

(UHV) system with various pumps, laser systems with corresponding locking electronics, 

shutters, frequency modulators, amplifiers, and optical fibers, magnetic field producing 

coils and their associated control electronics, and additional system components such as 

the atomic source, atom chip, and imaging systems. All of these are used synchronously 

and controlled by an overall timing sequencer to produce a magneto-optical trap (MOT), 

followed by optical molasses, optical pumping, magnetic trapping, magnetic transport, 

chip trapping, and RF evaporative cooling. In this chapter, I will describe most of these 

systems in detail, paying particular attention to ones in which I played a significant role 

in designing, building, and optimizing.

A sketch of the full vacuum apparatus with coils and the final laser beams that interact 

with the atoms can be found in Figure 4.1. Here one can see the dual chamber setup with 

horizontal MOT chamber and vertically oriented chip chamber. I played a significant role 

in the following:
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1. Design layout of the lab;

2. UHV system cleaning, assembly, pumping, and baking;

3. Locking the repump laser;

4. Construction and alignment of the Rb and K tapered amplifier (TA) mounts;

5. Alignment of Rb and K laser systems from laser output, through AOMs, shutters,

TAs, and fibers, to the apparatus table, through beam splitting cubes, waveplates, and 

telescopes, to the 3D MOT;

6. Imaging systems, including demonstration of fluorescence and absorption imaging in 

both chambers;

7. Design, construction, installation of bias-coils at the chip;

8. Demonstration of 3D MOTs for Rb and K;

9. Demonstration of Rb molasses;

10. Demonstration of Rb (and K) magnetic trap;

11. Demonstration of Rb optical pumping;

12. Alignment and demonstration of Rb dipole trap  at the chip.

Additionally, in later chapters I will also discuss my work on: Chip trap characterization 

(and discovery of dimple trap); RF evaporation to BEC; and laying the groundwork for 

quantum pumping experiments.

48



Maanetic Coils Laser Beams
©  MOT ^  MOT
©  Transport/Push (P1, P2) OP/Probe
□  Chip Bias — » Chip Imaging

□  DC feedthrough

Dispenser feedthroughs

Inn P u m n  MOT Coils

Pur

SMA feedthroughs 

P2

Atom Chip

Transport
Coils

Shutter

FIG. 4.1: Experimental apparatus. This figure shows the two-chamber vacuum apparatus for 
producing dual-species cold and ultracold atoms. The vacuum system components are shown 
in gray, while magnetic coils and laser beams are shown in color and labeled in the key at the 
top left. In addition to  the vacuum system itself, I payed a significant role in the technology 
development for components shown in red, blue, and green (more detail given in text). This 
figure is a modification of the master apparatus CAD file created by Austin Ziltz.

4.1 Lab layout

One of the unique challenges experienced during my tenure in the Aubin lab was 

building an apparatus from scratch, only to have to move it and associated infrastructure 

to a completely different lab when Small Hall was renovated in 2010. This also served as a 

unique opportunity to re-think the layout of the lab. I was in charge of the layout design, 

one of which can be found in Figure 4.2. This design, nearly final, shows final positions of 

the large optics tables (apparatus table and laser table) and the Unistrut (dark green) that 

supports the electronics ” cloud” over the tables. Also drawn are workbench areas (light
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green) and the desk space/shelving area (orange/brown) (which eventually changed).

overhead (8ft 81 
electrical busway

overhead tights

overhead (8ft 8") 
electrical bus way

overhead (8) tights

overhead (8ft 8”)

overhead (8J tighter

overhead (8fi 8") 
electricalbusway

I overhead (83 tights

FIG. 4.2: Lab layout (post 2010). When Small Hall was renovated in 2010, the Aubin lab 
moved from one location to  another, giving us the opportunity to redesign the layout of the 
lab. Here is a nearly final layout. The left figure shows the positioning of electrical and lighting 
infrastructure. The right figure shows final positions of two large optics tables (apparatus 
table and laser table) and the Unistrut (dark green) th a t supports the electronics ’’cloud” over 
the tables. Also drawn are workbench areas (light green) and the desk space/shelving area 
(orange/brown) (which eventually changed)

Our lab is designed with two optics tables (see Figure 4.2 and 4.3): The frequency 

stabilization and most of the power control occurs on one, while the main vacuum appara­

tus is on the other. Beams for the MOT and probes are sent from one table to the second 

apparatus table via optical fibers. Separate tables give us several advantages. The laser
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control alignment is decoupled from the MOT alignment. The apparatus is magnetically 

and mechanically decoupled from the laser systems and vice-versa. The region of the vac­

uum apparatus is less likely to have stray beams which can significantly affect the lifetime 

of our magnetic trap. The increased distance between the chip and the AOMs reduces 

stray RF. There is also sufficient extra table space to conceivably add additional lasers 

for future experiments. The disadvantage of separate laser tables is the increased risk of 

ground loops, which is minimized by analog and digital isolation.

4.2 Vacuum  system

The vacuum system is comprised of two chambers in an L-shaped geometry. This ge­

ometry was chosen such that the first chamber containing the atomic dispensers would not 

have direct line-of-sight to the second chamber where very low pressures are beneficial for 

BEC production and future atom-surface force measurements are planned (and not part of 

this thesis). The first chamber-the MOT chamber-is a rectangular Pyrex cell measuring 17 

cm long and 6.3 cm in height and width. The MOT chamber is directly attached to several 

additional components including: a residual-gas analyzer (RGA) (ExTorr XT100), a 55 

1/s ion pump (Varian Starlon Plus 55), a titanium-sublimation pump (Gamma Vacuum), 

and an all-metal angle valve which optionally connects a 60 1/s turbo pump (Pfeiffer) for 

initial pump down and bake out. The ion pump continually operates at 7 kV and provides 

the primary pumping for the MOT chamber. The titanium-sublimation pump provides 

occasional additional pumping of about 60 1/s, but in practice is only activated about 

once per year. The RGA typically indicates pressures in the low 10“ 10 range in the MOT 

chamber. In addition, four dispensers (2 x Rb and 2 x K) (SAES and Alvatec) on electri­

cal feedthroughs protrude into the MOT cell and dispense the requested species/element 

when heated by a current. One of the K dispensers is enriched with 40K in anticipation of
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fermionic experiments in the future.

The second chamber the science chamber is a rectangular Pyrex cell measuring 7.7 

cm high by 4.6 cm in width and length. This chamber contains the atom chip where 

the BEC is produced, so better vacuum pressures are desired. This chamber is primarily 

pumped by an additional 60 1/s ion pump connected at the corner of the L. While we did 

not have a vacuum gauge in this chamber to directly measure resulting pressure, we are 

capable of producing magnetic traps with lifetimes above 7 s, more than adequate for BEC 

production.

4.3 Laser system  and locks

The first cooling step towards Bose-Einstein condensation is laser cooling, which con­

sists of a magneto-optical trap (MOT) followed by molasses, optical pumping, and optional 

probing before being loaded into a magnetic trap. The MOT is formed in the first of two 

vacuum cells in our apparatus with six independent counter-propagating beams comprised 

of two near-resonant lasers locked to the cycling and repump transitions of the atoms. Our 

apparatus is capable of cooling 85Rb, 87Rb, 39K, 40K, and 41K, each of which start out in a 

MOT. (Disclaimer: While we have not demonstrated cooling of 40K or 41K, the system we 

have built should be capable of doing so.) The trap laser, which is locked to the cycling 

transition, is red-detuned from resonance using an acousto-optical modulator (AOM) and 

then combined with the on-resonance repump laser to be sent to the MOT. The repump 

laser ” re-pumps” the atoms which have fallen into the dark ground state back into the 

cycling transition. The MOT beams should be large so as to affect a greater number of 

atoms, but the intensity of the trap beam must approach the saturation regime. After 

loading the MOT, there is a brief (5-12 ms) period of molasses followed by a short ( 1 

ms) optical pumping pulse. During the optical molasses stage, the trap laser is further
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red-detuned from resonance with the AOM. The optical pumping pulse is tuned to a reso­

nance and circularly polarized to pump atoms into a single magnetic sublevel for magnetic 

trapping in the next step. (For theoretical details on these stages, please see Chapter 2). 

Our laser system is designed with all of these requirements in mind, as well as sufficient 

probe beams to monitor atoms in both the MOT and atom chip trap, with beams available 

for both absorption and fluorescence imaging at the chip.

Except for our Rb repump laser (which is discussed later), our K and Rb laser systems 

consist of master extended cavity diode lasers (ECDLs) (New Focus) at 767 nm and 780 

nm respectively which seed more powerful diode lasers (see Figure 4.3). The master lasers 

are locked using standard saturation spectroscopy with a lock-in amplifier to generate the 

error signal. The saturating beam is dithered at 99 kHz, achieving a lock stability on the 

order of the laser linewidth. The master trap lasers are injected into respective slave lasers 

after passing through a double pass AOM setup to allow us to make frequency adjustments 

without angular or power alterations of the final beam. These locking schemes also allow 

us to easily choose frequencies for trapping additional species of K and Rb.

Our laser system has a switchyard architecture using a combination of single-pass 

AOMs as well as mechanical shutters to control the presence of the beam at the apparatus 

(see Figure 4.3). Both the trap and repump beams pass through their respective single­

pass AOMs before the first-order deflected beams are combined on a cube and sent to the 

apparatus table via fiber. When the single-pass AOMs are switched off, only the zero- 

order undeflected beams remain, and are not coupled to the MOT fiber. The single-pass 

AOMs allow us to control the beam powers at speeds up to the microsecond time scale, 

or possibly faster. Lab-made mechanical shutters [68] are also strategically placed at the 

focal points of telescopes to provide an additional on/off switch such that the AOMs are off 

for only short periods of time to reduce beam steering associated with AOM temperature 

variations.
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Table 1
Rb 
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Sat Spec 
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Table 2 -  

D1 Apparatus

FIG. 4.3: Laser scheme. Our laser system for the dual-species apparatus consists of 6 lasers, 8 
AOMs, 2 tapered amplifiers, 5 fiber optical cables, and numerous shutters to  produce appro­
priately tuned and timed trap, repump, pump, and probe beams for the experiment spanning 
two optics tables.

The combined trap and repump beams for K and Rb travel via separate fibers to the 

apparatus. The Rb beams are amplified through a TA after passing through the fiber and 

arriving at the apparatus table. The K beams are amplified through a separate TA on the 

laser table, immediately before coupling to the fiber. On the apparatus table, two mirrors
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align each beam to overlap on a single cube, allowing the K and Rb systems to maintain 

some independence from one another. The single resulting beam is split into the six 

counter-propagating beams for the MOT such that the power of the counter-propagating 

beams along one dimension is balanced using a single waveplate. The beams as large as 

possible in order to cool as many atoms as possible, while keeping the beam intensity in the 

vicinity of the saturation regime. The last optic before the vacuum cell is a 1:5 telescope, 

providing approximately 5 cm diameter beams for the MOT.

Our probe beams are generated on the laser table at the beamsplitter cube where the 

trap and repump beam are combined before the main MOT fiber (see Figure 4.3). The 

port of the cube that is not sent to the MOT has both trap and repump present, and this 

light encounters a second beamsplitter cube which splits the beam to produce two probe 

beams. The remaining unused port on this second cube is used to mix both Rb and K trap 

and repump beams for the two probes. The two probe beams are sent to the apparatus 

table and directed at the atom chip via individual fibers. One additional probe beam is 

available and directed at the MOT vacuum chamber for optical pumping, which also has 

the option of containing repump beams.

While the K and Rb systems are very similar in the above-outlined manner, there are 

several key differences which we will discuss below.

4.3.1 R ubidium  laser system

Our rubidium laser system consists of two ECDLs (New Focus Vortex) at 780 nm: 

one trap laser operating on the 5Si/2 F=2 —> 5P3/2 F ’=3 D2 line cycling transition of 87Rb 

and one repump laser for the F=1 —»• F ’=2 transition (see Figure 4.4). The master trap 

laser is locked +125 MHz above the transition line. The locked beam passes through a 

double-pass -110 MHz AOM before seeding the second injection-locked diode laser (Sanyo
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DL7150-201W). This second diode laser has an output of about 50 mW, which passes 

through a +80 MHz AOM before it is combined with the repump beam for amplification.

5 P3/2 “

P  = 3 ‘

F’ = 2 ' 

F’ = 1, 

F’ = O'

Trap Laser 
780.24 nm

5S1/2-

F = 2-

266.65 MHz

L F = 1.

156.95 MHz

: 72.22 MHz 
j L

Repump Laser

6.83468 GHz

FIG. 4.4: Trap and repump level diagram for 87Rb. The trap  laser is red-detuned from the 
5S1/2 F=2 —> 5 P 3 /2  F ’= 3  D2 line cycling transition, while the repump laser is locked to the 
F=1 —> F ’=2 transition. The latter re-pumps atoms th a t may have fallen into F=1 back into 
the cycling/cooling transition. Spectroscopic numbers found in [46].

The repump laser in our Rb laser system is locked with the offset lock scheme shown 

in Figure 4.5. The optical beat note between the trap and repump lasers is converted 

to an electrical signal via a Receiver Optical Sub Assembly (ROSA) (Finisar, HFD6180- 

418). The electrical signal is then converted to a digital signal with a limiting amplifier
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(Hittite, HMC750LP4), divided by eight in frequency (Hittite, HMC363G8), amplified, 

and compared to a known desired frequency (HP Agilent 8657) with a phase frequency 

detector (PFD) (Hittite, HMC439QS16G). The error signal from the PFD is sent through 

proportional-integral (PI) feedback to both current and piezo controls of the ECDL repump 

laser. The locking scheme is sufficiently robust that it rarely, if ever, falls out of lock, 

despite mechanical disturbances and the lock failure of the trap laser. In addition, the 

locking circuit is mostly assembled from evaluation boards, making it a low-cost locking 

solution («  $1500 not including labor). Prior to combining with the trap beam, the 

repump beam also passes through a +80 MHz single-pass AOM. The 80 MHz AOMs used 

for these beams provide fast on/off shuttering and amplitude control.

1 mW

Mirror

8.5 mVpp 
6.8 GHz

■H Amplifier

600 mVpp>
795 MHz

600 mVpp
795 MHz Amplifier

420 mVpp 
'6.8 GHz

l< ♦HlOOmVpp
1 795 MHz Divider

RF Source

FIG. 4.5: Repump lock scheme. The repump laser is offset lock to the trap  laser by overlapping 
the two beams and detecting the beat note The beat note is converted to an electrical signal 
which is digitized, divided, amplified, and compared to the desired frequency with the phase 
frequency detector (PFD). In the figure, B.S. is a non-polarizing 50/50 beamsplitter. The 
polarizations of the master and repump lasers are parallel a t the fiber coupler (F.C.).

The exact frequency offset of the repump laser is dictated by the chosen frequency
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from the RF source. The beat note is the difference between the master laser (which is 

locked 125 MHz to the blue of the F=2 —► F ’=3 transition) and the repump laser. To 

choose the frequency of the RF source, we use:

J r f  = ^ x ( f G S  -  266.65 -  125 -  80) (4.1)

where fa s  is the ground state splitting, Jrf is the RF frequency, and units are in MHz. 

For 87Rb, fa s  is 6.835 GHz, and the F ’=2 to F ’=3 splitting is 266.65 MHz, so we choose 

f u r  around 795.4 MHz. In practice, the optimized MOT occurs for =  796.2 MHz. 

The fast-Fourier transform of the beat note signal, when picked off after the amplifier and 

locked to 794 MHz, is shown in Figure 4.6. Table 4.1 shows calculated values for offset 

locking to other transitions, assuming the master laser is locked to the same transition.
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FIG. 4.6: Fast-Fourier transform (FFT) of the beat note signal. We monitor the divided and 
amplified beat note FFT  signal on an oscilloscope. Typical signals are around 750 mVpp.

TABLE 4.1: Offset lock frequencies.
A tom T ransition Frequency (calc) Frequency (exp) A m p litu d e
87 Rb F=1 to F ’=2 795.4 MHz 796.2 MHz 0 dBm
87 Rb F=1 to F ’= l 775.8 MHz n /a 0 dBm
85 Rb F=2 to F ’=3 338.8 MHz 338.75 MHz 7 dBm
85 Rb F=2 to F ’=2 330.9 MHz 330.5 MHz 7 dBm
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The trap and repump beams are combined on a polarizing beam-splitting cube and 

then coupled to an optical fiber that bridges the two optics tables. Once on the appara­

tus table, the Rb combined trap-repump beam is sent through a tapered amplifier (TA) 

(Eagleyard EYP-TPA-0780-01000). Approximately 15 mW of power are input to the TA, 

and up to 400 mW output are realized with 1.60 A of current across the TA. After beam 

shaping and spatial filtering, approximately 320 mW of power is sent to the MOT, with 

an intensity of 1.4 m W /cm2 in each overlapping beam in the MOT cell.

4.3.2 P otassium  laser system

The K system has one master ECDL laser (New Focus Vortex) at 767 nm which seeds 

two higher power diode lasers (Eagleyard EYP-RWL-0770-00025) for the trap and repump 

beam. The hyperfine splitting of the ground level is small enough that a single frequency 

stabilized master laser can be used and the individual trap and repump frequencies can be 

produced with AOMs for the 4Si/2 —> 4P3/2 cycling and repump transitions of 39K. We use 

a double-pass 80 (320) MHz AOM for the trap (repump) beam before seeding the second 

diode lasers.

Similar to the rubidium laser setup, the combined potassium trap-repump beam is 

amplified with a TA (Eagleyard EYP-TPA-0765-01500). However, the amplification for 

the potassium beam occurs on the laser optics table, prior to being coupled to an optical 

fiber. For this reason, output power from the TA is limited so as not to damage the optical 

fiber. This not only limits the power sent to the optical fiber, but also the power available 

at the K MOT. It should be noted that the beam quality from both the Rb and K TA 

output is not Gaussian (though it is advertised to be Gaussian -  this could be a problem 

with our input coupling to the TA). This makes efficient coupling of the TA output to 

an optical fiber quite challenging. Therefore, the best fiber coupling that I was able to
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achieve was approximately 30%. This led to only «  60 mW of power available for MOT 

beams. Nonetheless, as is shown later in the chapter, this power is sufficient for producing 

a 39K MOT.

4.3.3  Tapered am plifiers

Our laser amplification was done with two Eagleyard TAs with wavelengths centered 

at 780 and 765 nm for Rb and K, respectively. The amplifiers are capable of producing 

up to 1 W of output power with a seed power of only 10-15 mW when operated with 

sufficient current. We purchased the TA, OEM driver (ITC133), display unit (ITC100D), 

and faceplate (ITC100F), and constructed the mount and protection circuit in-house.

Figure 4.7 shows the mount design, based on similar designs by [69]. The mount 

is machined out of copper to provide heat sinking for the TA chip. It is also designed 

to be water cooling compatible, though we found water cooling was not necessary for 

our current implementation. The TA chip is held in the center with a screw and the 

pressure from either side of the mount. Plenty of thermal paste was used to ensure good 

contact between the TA chip and the copper mount. On either side of the TA chip, a lens 

screws into the mount to provide optical coupling to and from the amplifier. While these 

tapped lens holders were designed to allow adjustability of the focal point along the beam 

propagation axis, we found that the taps themselves did not provide sufficient stability 

for smooth adjustments. Therefore, if you change the focal point of an input or output 

lens, significant realigning of the beam to the lens is required for proper coupling with the 

amplifier.

The TA runs at a variable current between 0 and 2.5 A. In practice, we rarely ran 

the TA above 1.6 A. The documentation for the TA specifies that it has zero tolerance 

for reverse voltage, so a protection circuit incorporating a diode was implemented at the
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Output
Lens

Beam

Thermistor

FIG. 4.7: Tapered amplifier mount. The tapered amplifier chips were mounted in a copper 
block which provided both a heat sink and mount for the TA chip and coupling optics.

input to the TA as shown in Figure 4.8.

The controller monitors the temperature of the TA via a thermistor placed directly 

adjacent to it on the mount. The mount itself sits on top of a Peltier thermoelectric 

cooler (TEC) which allows the user to temperature-tune the TA. The gain curve of the 

TA is temperature dependent. We therefore tune the temperature such that our desired 

wavelength is at the top of the gain curve. This not only gives the most power output, 

but also provides the most stability.
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FIG. 4.8: Tapered amplifier protection circuit. The tapered amplifiers were electrically pro­
tected from negative voltage and noise through the implementation of the above circuit. The 
diode (Diodes Inc 6A05) provides a path to ground for reverse current, while the capacitors 
provide a filter for AC noise.

4.4 E xperim ental procedure

4.4.1 M agneto-optical trap and m olasses

Once on the apparatus table, the combined and amplified trap and repump beam 

passes through two linear waveplates and two corresponding polarizing beam splitting

three separated beams is split into two counter-propagating beams with an additional 

polarizing beam splitting cube. Immediately before entering the MOT vacuum chamber, 

the beams pass through a final circular polarizing waveplate (A/4) and a telescope. The 

presence of the telescope as the last element before the vacuum chamber allows us to use 

one inch optics up to that point. The 1:5 telescope expands the input beam to fill the 2 

inch diameter of the telescope.

Initial formation of the MOT was done by retro-reflecting three pencil beams (without

cubes to separate the beam for each of the three cooling axes of the MOT. Each of these
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the presence of the telescopes). Care was taken to ensure the correct circular polarization 

of the beams with respect to one another so that the overall polarity of the magnetic field 

could be easily flipped to match the beam polarization. Since overlapping the quadrupole 

minimum with the small pencil beams was expected to be challenging, we used a hand­

held bar magnet to shift the magnetic minimum when first identifying the MOT. Once we 

were convinced of the retro-reflected beam alignment, we added in the counter-propagating 

beams one at a time, verifying that the MOT was still operational after each addition. 

With the three counter-propagating beams properly aligned, we inserted the six telescopes 

and optimized the alignment and polarization of the beams using the MOT.
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FIG. 4.9: 87Rb MOT temperature. Expansion over time-of-flight gives a tem perature measure­
ment fit in this case of T  =  74pK, v =  8.4 cm/s, and cr0 =  522/xm. Here, a x is given in Equation 
2.27 and the general method is described in Figure 2.11 and Section 2.9.

The 87Rb MOT loads several 108 atoms after 25 s at temperatures around 60 /iK. 

Figure 4.9 shows a typical temperature measurement for a 87Rb MOT. This particular 

measurement gives T  = 74/tK, v = 8.4 cm/s, and a0 = 522/j.m (see section 2.9 for pa­
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rameter definitions). A fluorescence image of a 87Rb MOT produced in our system is 

shown in Figure 4.10. We typically load the MOT using light induced atomic desorption 

(LIAD) [70], which is essentially an assortment of 405 nm LEDs pointing at the MOT 

region. Akin to the photoelectric effect, the UV light causes rubidium atoms which have 

stuck to the walls of the vacuum apparatus to desorb, giving them another opportunity 

to be cooled and trapped by the MOT. The effect on the 87Rb MOT loading rate of the 

LIAD vs using the dispenser for loading vs using neither LIAD nor dispenser are shown 

in Figure 4.11.

39K M O T

FIG. 4.10: Magneto-optical traps. Fluorescence images of a 87Rb MOT (left) and 39K MOT 
(right) produced with our apparatus.

We combine our potassium trap and repump beam with the output from the rubidium 

TA on the apparatus table. This combination occurs before splitting along various MOT 

beamlines. For the polarization of the potassium beams, an additional dichroic linear 

waveplate (A/2 for 767 nm light, A for 780 nm light) is placed before each polarizing beam 

splitting cube. This setup is convenient in that all the alignment of the potassium MOT 

beams is accomplished with only two mirrors. In addition, we can readily switch between 

rubidium, potassium, and combined MOTs simply by shuttering the appropriate lasers. 

Due to the reduced power in the potassium MOT beams, we produce 39K MOTs with 

~  107 atoms after 30 s.
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FIG. 4.11: MOT loading with LIAD. Number of atoms estimated in early (July 2009) 87Rb 
MOTs as a function of loading time. Loading rates are shown with no dispenser or LIAD, with 
only the dispenser, and with only LIAD. Both the loading rate and the final number of atoms 
improves with LIAD over using only the dispenser.

The optical molasses stage of the experiment is implemented by quickly turning off 

the MOT light and magnetic fields. The MOT beams are then switched back on at reduced 

power and additional detuning of 56 MHz (for a total detuning of 71 MHz to the red of 

the F=2 to F ’=3 transition) for a period of 5-12 ms. The repump light is also switched 

on at reduced power.

The optical molasses is more sensitive to alignment and power imbalances than the 

MOT is. Therefore additional care was taken to ensure the molasses beams (which are

x 10

*ji v , i «

Dispenser, No LIAD 
No Dispenser, No LIAD 

• No Dispenser, LIAD
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the same as the MOT beams) were properly aligned. When we first began attempts at 

optical molasses, we started by watching the MOT on a security camera as we switched 

off the MOT coils. Power imbalance causes the MOT cloud to disperse directionally. 

Therefore, we balanced the power of the beams such that the MOT remained stationary 

as we turned off the coils. Prom this point, optimization is done using a long time-of-fiight 

fluorescence image while further adjusting alignment, power balancing, and bias fields 

until the temperature (size of cloud at long time-of-flight) is minimized. The molasses was 

shown to reduce temperatures to as low as 4 pK along one axis in 87Rb when working with 

reduced atom numbers. During typical use, the molasses reached temperatures around 30 

f i K .

::/Rb M O T

FIG. 4.12: Rb optical molasses. Fluorescence images of a 87Rb cloud of atoms left to expand 
for «  10 ms time-of-flight after early molasses demonstration. The left image shows a «  60pK 
MOT expanding, while the right image shows the same cloud expanding after a brief molasses 
period with tem peratures ~  30//K. The cloud on the right shows a denser, more compact cloud, 
indicating cooler temperatures.

Potassium is more challenging to cool to sub-Doppler temperatures due to the smaller 

splitting of the hyperfine structure. If you recall from Figures 2.1 and 2.2, the 87Rb 52P3/2 

hyperfine levels are split over 495.8 MHz, while the 39K 42P3/2 level spread is 33.8 MHz

8/7Rb M O T + 
molasses
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[46, 47]. Nonetheless, following a procedure akin to [71] we were able to significantly 

improve the temperature of our cold potassium cloud. Figure 4.13 below shows the TOF 

temperature measurement documenting an improvement from 1550 fiK to 240 pK during 

my tenure.

—  June 2011 
—“  February 2Q120.25

1 550jjK
§. 0.2
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Time of flight (ms)

FIG. 4.13: K cooling. By implementing a cooling scheme inspired by [71], we were able to 
further cool potassium from temperatures around 1550 fiK  to a tem perature of 240 fiK.

4.4.2 O ptical pum ping, m agnetic trapping, and transport

After the molasses stage, a brief (rs 1 ms) optical pumping pulse is applied to prefer­

entially populate the |F  =  2 ,m f =  2) ground state. The pulse is tuned to |F  =  2, m F =  2) 

resonance, though the energy level is shifted by 5.8 MHz to the red due to the presence 

of a 9.1 G vertical bias field used to create a quantization axis. The polarization and 

alignment of the optical pumping beam is tuned to maximize the number of atoms in the 

magnetic trap. This is done by comparing the number of atoms in the magnetic trap
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when the optical pumping beam is present and blocked. As long as the beam is hitting 

the atoms, there should be some effect from the presence of the beam. At this point, one 

can choose to either maximize or minimize the number of atoms in the magnetic trap. It 

is sometimes easier to optimize towards zero signal rather than a maximum signal. If the 

zero signal case is chosen, after optimizing the polarization and alignment, one needs only 

to switch the polarity of the magnetic field in order to maximize the number of atoms in 

the magnetic trap. Once this is done, further optimization of the beam power, detuning, 

and timing scheme is straightforward.

After the optical pumping pulse, we quickly switch on the magnetic trap. Our mag­

netic trap is a quadrupole trap formed with two anti-Helmholtz coils producing a gradient 

of 80 G/cm. When initially demonstrating magnetic trapping, we followed a spin dis­

tillation scheme to ensure we are only trapping the mp = 2 atoms. In this scheme, we 

rapidly turn on the magnetic trap coils to approximately 30 G/cm on the weak axis for 

500 ms (long enough for untrapped atoms to leave), thus trapping |F=2,m^ =  2) and 

|F=2,mir =  1) atoms. Then, we ramp the gradient to a set point until we see a change 

in atom number before ramping the gradient back up to the maximum 80 G/cm. If we 

plot the atom number vs. that set point, we obtain the plot shown in Figure 4.14. Based 

on this data, we pick a quadrupole coil current such that only |F=2,m f =  2) atoms are 

trapped during the normal operation of our magnetic trap.

With only the mp = 2 atoms in the magnetic trap, and with the optimized optical 

pumping pulse, we are able to load up to 3 x 10® atoms into the magnetic trap at a 

temperature of approximately 50 (j.K and with lifetimes well over 10 s and phase space 

densities on the order of 10“6. Figure 4.15 shows a magnetically trapped cloud of 87Rb 

atoms and a lifetime measurement showing a 14.7 s lifetime. Despite water cooling the 

coils, they can only be left on for ss 30 s before the temperature rises above 46 C (above 

which a temperature sensor attached to the coils turns the current off), which limits the
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FIG. 4.14: Spin distillation of magnetically trapped 87Rb. Number of atoms in the magnetic 
trap as a function of magnetic trap  coil current. We begin at the green dashed line and decrease 
the current until we see no atoms in the trap. We begin again at the green dashed line and 
increase the current until we see an increase of atoms. This increase is the result of trapping 
both m p  — 1 and m p  — 2 atoms in the magnetic trap. Therefore, the region indicated between 
the gray dashed lines produces a gradient sufficient to hold only the m f  =  2 atoms. The error 
bars represent the standard deviation of 3 data points.

accuracy of our long lifetime measurements.

The atoms are transferred from the initial magnetic trap to a magnetic transport 

system which shuttles atoms from the MOT chamber to the chip chamber. The transport 

system consists of 7 pairs of coils in anti-Helmholtz configuration. Current through these 

coils is ramped such that the magnetic minimum is transferred along the 60 cm path over 

the course of 8 s. More details on the magnetic transport system can be found in [54, 21].
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FIG. 4.15: Lifetime of magnetically trapped 87Rb in the |F=2,m /-=2) state. This figure shows 
a lifetime measurement of 87Rb atoms magnetically trapped in the |F=2,rri/r=2) state based 
on fluorescence imaging. The fitted curve shows a lifetime of 14.7 s. The error bars represent 
the standard deviation of three separate data sets. The inset shows a fluorescence image of 
magnetically trapped 87Rb atoms.

4.4.3 Chip trap

At the end of the transport cycle, we transfer over 5 x 106 atoms into the Z-wire chip 

trap. The trap is produced with 1 A of current from a floating High Finesse current driver 

(BCS-5/5) with galvanically isolated analog and TTL controls. A home-built “kill box” 

allows a maximum of 1 A of current through the Z-wire for no longer than 10 s. The chip 

itself is grounded through the chip stack, which is grounded to the rest of the apparatus 

through a braided strip. Current passes through the chip’s Z-wire and an external hold 

field of Bhoid=20 G is applied. A Ioffe field of B/0/ / e=4.9 G raises the trap bottom to 

minimize spin-flip loss. Figure 2.8 in Chapter 2 shows the orientation of these magnetic 

fields with respect to the atom chip. The field calibrations can be found in Table 4.2 below.
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TABLE 4.2: Magnetic field calibration of the chip bias coils.
C oil M agn etic  F ield  (G /A )  Inductance (/iH) Im p ed an ce (O)
Horizontal Bias 2.9 35 0.1
Ioffe 2.66 29 0.036
Vertical Bias 1.64 n /a  n /a

Figure 4.16 shows the hand-off between the magnetic transport trap and the chip 

trap. The chip-trapped atoms have an initial phase space density of 5 x 10-6 and a 

lifetime approaching 7 s (shown in Figure 4.17).

From here, we can evaporatively cool our atoms to quantum degeneracy and/or load 

into a dipole trap. The evaporative cooling stages to BEC are detailed in the following 

chapter.

4.4.4  D ip ole trapping at th e  atom  chip

We efficiently load atoms from the atom chip magnetic trap to an elongated dipole trap 

aligned with the axial direction of the chip trap. This provides sufficient mode matching 

between the two traps that most of the atoms can be transferred with limited heating 

when aligned properly.

We use several alignment tricks to perform the transfer. The dipole beam is formed 

by about 1 W at 1064 nm from a Nova Wave Technologies fiber laser. The beam passes 

through an 80 MHz AOM for amplitude control, a shutter, and a 50 cm achromat lens 

for focusing, before combining it with the pump/probe beam path in the same direction 

on a dichroic mirror (see Figure 4.18). Alignment control is done via two mirrors prior to 

combining on the dichroic mirror.

Alignment is done in the following manner. Initial alignment is done without the 

focusing lens. We simply overlap the dipole beam along the probe path. Next we align 

the lens positioning along the vertical axis and the horizontal axis transverse to the axis
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A t o m s  i n  c h i p  t r a p

A t o m s  i n  t r a n s p o r t

FIG. 4.16: Transport trap  to atom chip trap  transfer. This figure shows one of the first 
demonstration of chip-trapped 87Rb atoms. The large cloud at the bottom left are atoms 
at the end of the transport cycle. The small cloud at the top right is trapped by the atom chip.
Here the chip is horizontally along the top of the image, but out of the fram of the image in 
order to capture the atoms in transport in the field of view. Photo courtesy of Austin Ziltz.

of propagation so as to overlap the dipole trap with the atom cloud. This is done by 

first ensuring that the radial camera is well focused on the position of the atoms in the 

magnetic chip trap, and then recording this position with a cursor on the screen. With 

the experiment off, the camera free-running, and the dipole beam amplitude extremely 

low, we insert the lens and overlap the position of the focused dipole spot onto the camera 

position where the atoms were previously recorded. In a similar manner, we then adjust 

the lens along the axis of propagation: The dipole beam spot size imaged by the camera 

will appear smallest when the focal point of the beam overlaps with the focal plane of the
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FIG. 4.17: Chip lifetime measurement. This figure shows a lifetime measurement of our atoms 
in the chip trap. The exponential curve drawn shows a lifetime of 6.7 s, fitted to the data points 
a t Hold Time = 2, 3, 5, and 7 s. The steep decline in atom number in the first points is a 
product of free evaporation in the trap. Error bars drawn here are the standard deviation of 
3-5 data points.

camera imaging system, and which also corresponds with the location of the atoms. The 

idea is that this process will get the alignment close enough to at least see a small signal 

of dipole trapped atoms when the magnetic chip trap has been switched off for some time. 

Fine tuning of the alignment adjustments can be done to optimize this signal.

We estimate a dipole beam waist radius of 60 [im and a trap depth of 20 //K. We load 

the dipole trap from a relaxed magnetic chip trap. This is done such that the magnetic 

chip trap is far from the chip («465 //in) which allows us to 1) avoid alignment tragedies 

like burning out a chip wire with a high intensity beam, and 2) avoid clipping the dipole 

beam on the chip which would detract from good dipole beam quality. We also turn on 

the dipole beam slowly over the course of 100 ms in order to minimize heating. As you
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Probe

FIG. 4.18: Dipole laser scheme. The dipole trap  is formed with a 1064 nm laser beam focused 
to a 60 pm waist radius and directed along the axial direction of the chip trap. The lens is a 50 
cm achromat lens, Ml and M2 are mirrors, and DM is a dichroic mirror (Thorlabs DMSP1000) 
that reflects the dipole trap  beam while passing the pum p/probe beam. Note: This figure is a 
schematic only and does not indicate the actual layout or order of the optical elements.

can see from Figure 4.19, these methods allow for successful loading into the dipole trap.

Here I will take a moment to warn experimentalists of the importance of anti-reflection 

coatings on glass cells. Later, we explain that we dipole trap  the atoms to produce a ID 

channel in which the atoms can travel. The idea is to pull the atoms to one end of 

the elongated trap and then sling-shot them to the other end. When we attempted to 

implement this, the atoms did not budge. This was due to unanticipated reflections from 

the glass cell producing a small but powerful lattice potential (recall Chapter 3). Note that 

uncoated glass typically reflects 4%. This was sufficient to immobilize atoms at < 5/xK 

temperatures. It was only after tilting the input beam several degrees so as to minimize 

the overlap of the incident and spuriously retro-reflected beam that the lattice was weak 

enough to allow the atoms to translate along the long axis of the dipole trap.
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Atom chip
465 mn

2.45 ms TOF

FIG. 4.19: Dipole trapped atoms. We trap  approximately 6 x 104 87Rb atoms in this image 
at a distance of approximately 465 pm from the surface of the chip. Atoms are loaded from 
the magnetic chip trap  after some initial evaporative cooling stages. The image was taken after 
2.45 ms time-of-flight.

4.5 Im aging system s

At the atom chip, our apparatus is designed with several imaging choices, including 

both fluorescence and absorption imaging along both the axial and radial directions. In 

Figure 4.20, the imaging axes are defined such that axial imaging allows one to image from 

the side such that the entire length of the cigar-shaped trap can be resolved, while radial 

imaging looks "down the barrel” of the cigar-shaped trap. While radial absorption imaging 

is useful in initial chip trap loading due to the higher signal from the larger optical density 

of the atoms along that axis, you will see in the following chapter that axial imaging allows 

us to gain additional information about the spatial uniformity of our cloud in the atom 

chip trap. Figure 4.20 depicts these axes with respect to the chip region of the apparatus. 

The green arrows represent the circular polarization of the beam. We also apply a small 

magnetic field as a quantization axis: For radial (axial) imaging, we use the round Ioffe
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(square hold) coils in Figure 4.20.

FIG. 4.20: Imaging axes at the chip. Our system is capable of both absorption and fluorescence 
imaging along both the radial and axial axes of the cigar-shaped chip trap. Radial imaging 
images ’’down the barrel” of the cigar, providing higher optical density for imaging at higher 
temperatures. Axial imaging shows the length of the cigar and is useful at colder temperatures 
for detecting the bimodal distribution signature of BEC.

Most of the data acquired in this thesis was taken using absorption imaging. In prac­

tice, we apply two very short (0.1 ps) pulses of on-resonance light for absorption imaging. 

The first pulse produces the atom image, and is usually taken after some reasonable (2-20 

ms) time-of-flight. The second pulse produces the laser image, and is applied after the 

atoms have had enough time to fall out of the frame of the image (typically 200-500 ms). 

We apply Equation 2.23 from Chapter 2 to determine the OD, and then divide by the 

atom-photon cross-section a0 to determine the atoms per pixel.

We also have the ability to image atoms with fluorescence in each of the chambers.
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In the MOT chamber, we use the MOT beams to excite the atoms and collect the emitted 

photons with a nearby camera. The beams and shutter can be left on for 10’s of ms if 

needed.

The imaging system itself is a CCD camera (Unibrain) that has had the on-chip 

window of the CCD removed (to reduce laser imaging fringes). Each of these cameras 

are 12-bit and are connected to the desktop computers using the Firewire communication 

standard IEEE 1394b. The properties of the chip radial and axial cameras as well as the 

MOT camera can be found in Table 4.3. The chip cameras are each attached to a lens tube 

that houses a single achromat lens pair (Thorlabs MAP10100100-B) at two focal lengths 

away from both the CCD and the atoms to be imaged (see the 2f-2f imaging configuration 

in Figure 4.21). The MOT camera has two achromat lenses set-up in the style of the 

Thorlabs MAP lens pair. The properties of the imaging systems can be found in Table 

4.4. Magnification, and depth-of-focus provided by Anuraag Sensharma.

TABLE 4.3: Camera properties.
C am era M odel N um ber o f  P ix e ls  P ix e l Size (/un)
Chip Radial Unibrain Fire-i 530b 640 x 480 7.4 x 7.4
Chip Axial Unibrain Fire-i 701b 1280 x 960 4.65 x 4.65
MOT Unibrain Fire-i 530b 640 x 480 7.4 x 7.4

TABLE 4.4: Imaging System properties. 
C am era Focal L ength M agnification  R eso lu tion
Chip Radial 5 cm -1.00 6.1 ^m
Chip Axial 5 cm -1.00 6 .1 /um
MOT 3.75 cm -0.489 unknown

D ep th  o f F ield
±  0.5 mm 
±  0.5 mm 
±  0.76 mm
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FIG. 4.21: Imaging system camera. We image atoms by way of a CCD camera (blue) with a 
lens tube housing a single achromat lens (cyan) and any necessary filters (gray hash).
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C H A P T E R  5

P roduction  o f  B ose-E in stein  

condensates

This chapter covers the production and observation of BEC in our atom chip trap. 

In our system, we use radio frequency (RF) evaporation to cool our ultracold 87Rb atoms 

while varying the atom chip trap potential. I provide details about the various trapping 

frequencies used for the loading, compression, and decompression stages, along with the 

RF sweep properties. I also outline the characterization of the chip trap (including an 

unexpected dimple trap), as well as image analysis methods for determining atom number, 

temperature, and phase space density. Finally, I describe the three defining signatures of 

BEC that we use: 1) bimodal distribution, 2) anisotropic expansion, and 3) phase space 

density > 2.612.

79



5.1 Evaporative cooling

The final cooling method for achieving BEC is evaporative cooling (recall Section 

2.6). Our evaporative cooling takes place in the atom chip Z-wire trap using an RF field 

through an adjacent U-wire for the RF magnetic field (see Figure 2.7). Both the RF 

magnetic field and the trap  itself can be adjusted for optimization. We evaporate using 7 

RF knife sweeps in 4 different chip traps. Once the 87Rb atoms axe loaded into the Z-wire 

trap, we apply our RF knife and sweep it from larger to smaller frequencies, first in the 

initial chip loading trap, then in a compressed trap, then in a final trap in which we do 

the imaging, and finally in a “dimple trap” which is discovered as atoms are further cooled 

(see Section 5.2). While sweep parameters (initial and final RF values, times for sufficient 

rethermalization, etc) could be estimated using various trap parameters, this is a complex 

optimization problem. In practice, optimization is always done via trial and error.

We begin our evaporative cooling by applying a 20 MHz RF knife to our atoms 

confined in the trap into which they are initially loaded. During a period of free evaporation 

(i.e., no RF sweep, but atoms are ejected simply because the trap is not deep enough), we 

also compress the trap. Once the trap is fully compressed, we perform three RF sweeps 

over 6 s before decompressing into our final “maging trap”. In this decompressed trap, two 

additional RF sweeps bring us to condensation. A summary of the chip current, BHold, 

Bi0f f e., axial and radial trap frequencies, trap depth, and trap bottom can be found in 

Table 5.1. These values are determined by modeling the magnetic trap produced by a 

given wire pattern and current, as in Equation 2.5. In addition, the timing of the RF 

sweeps and the trap compression/decompression can be visualized in Figure 5.1.

Both Table 5.1 and Figure 5.1 are the successful results of much trial and error and 

optimization of the system parameters. Of course when we set out from our initial chip 

trap to begin evaporative cooling, we had to start somewhere. The results of early RF
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TABLE 5.1: Calculated chip trap parameters with I  = 1 A through a rectangular conductor, 
as given by Equation 2.5.

Trap B Hoid B ioffe cjrad (H z) u ( H z )  D istan ce
Initial 20 G 4.9 G 27rxl040 27tx9.1 91 /rm
Comp 46.4 G 9.2 G 27rx281 0 27tx5.7 22 /im
Final 20 G 4.9 G 27rxl040 27rx9.1 91 //m

TABLE 5.2: Measured chip trap  parameters with I  = 1 A through a rectangular conductor, 
by fitting the density images described in Equation 5.1 (’’Image Fits” ) or by using the sloshing 
method described in Section 5.2 and Figure 5.4 (’’Sloshing”).

Trap M eth od  cjrad (H z) u;ax (H z)
Final Image Fits n /a  27rx8.5
Dimple Image Fits n /a  27tx51
Dimple Sloshing 27tx1034 27tx53

evaporation paths were unsuccessful. We also needed a way to diagnose our progress, as 

well as a basic figure of merit for charting our progress towards BEC. Our method of 

diagnosing the success and efficiency of our RF evaporation path was by plotting phase 

space density as a function of atom number. Evaporative cooling will naturally decrease 

the number of atoms in the trap. The goal is to simultaneously increase the phase space 

density as much as possible for a given atom number loss.

We also monitor temperature, density, and collision rate of our atoms as an addi­

tional diagnostic tool, given from the time-of-flight temperature measurements described 

in Section 2.9 and Equations 2.6 and 2.7. Generally one would seek an evaporation path 

in which temperature continuously decreases and density and collision rates continually 

increase. When choosing an evaporative path, there is a trade-off between a slow efficient 

evaporation and a fast lossy evaporation. At first glance, slow efficient evaporation sounds 

preferred. However, recall there is a limited lifetime in the chip trap due to the quality of 

the vacuum, so we use a less efficient but quicker evaporation. Similarly, it would seem 

that as large a density as possible would be desired. However, for large enough density, 

one will begin to experience three-body losses leading to an atom number decrease without
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FIG. 5.1: RF sweeps and trap  ramps. The final RF values (red) and mean trapping frequency 
(blue) as a function of time. The dimple trap  parameters (described later in Section 5.2) are 
shown as the dashed blue line.

an increase in phase space density.

Within the first few months after loading atoms onto the chip, we made significant 

efforts to efficiently evaporate to BEC. Much to our frustration, our evaporation paths 

looked like the example path in Figure 5.2. As you can see in this figure, our climb in PSD 

plateaus around a phase space density on the order of PSD «  10-1. The data for this plot 

was taken by radial absorption imaging. It was not until we decided to image the cloud 

axially that we discovered the reason behind our plateau.
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evaporation stages, showing an efficiency slope8af 3.65.



5.2 D im ple trap

Although we expect an evaporative path through atom number and phase space den­

sity to have the steep linear progression in Figure 5.2, the kink visible when PSD reaches 

KT1 is an obvious sign of problematic behavior. It is important to note that the data for 

Figure 5.2 was entirely taken with the radial imaging system, which looks down the barrel 

of the cigar-shaped atom cloud. Data was initially taken with this imaging system due to 

the higher optical density along this axis which gives larger signal-to-noise ratios for the 

hotter atom clouds that tend to be more dispersed after a short time-of-flight due to the 

higher temperatures. However, at the PSD near the kink, it was reasonable to assume we 

would have sufficient density and signal-to-noise to view the atoms with the axial imaging 

system which views the cigar-shaped atom cloud from the side, so as to see the entire 

length of the cigar. W hat we discovered can be seen in Figure 5.3 below.

In this image, we determine the trap potential from the density distribution of our 

atoms. Bagnato et a-1. show that the trap potential along the longitudinal axis (z-axis in 

Figure 4.20) is a function of temperature, deBroglie wavelength, and atom number density 

n [72]:

U(z) = - k BT\og(X3dB) -  kBT  log(n(z)). (5.1)

Therefore, if we know the temperature of our atoms, we can convert the atom number 

density plots to trapping potential plots such as the ones given in Figure 5.3. Not only 

does this method help to identify the trap frequencies of the dimple, it also helps us to 

characterize laser-induced potential barriers introduced in the remaining chapters of this 

thesis.

The presumably smooth spatial distribution of atoms in the trap was not so smooth
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FIG. 5.3: Dimple trap, a-c) Absorption images of 87Rb atoms in a dimple chip trap and d-f) 
corresponding potential plots, a) Atoms in the chip trap with no additional bias, b) Atoms 
in the chip trap  with an additional magnetic field gradient to center the atoms on the dimple, 
c) Atoms centered on the dimple after additional evaporation, d-f) Plots of the trap potential 
based on the atom number density from the images in a-c).
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at all, as is shown in Figure 5.3. The energy potential is shown below the absorption image 

with atom column density from which it is calculated. A very clear dimple is visible in the 

potential, causing the atoms to gather together while breaking up the cloud somewhat. 

This is problematic for the evaporative cooling because it reduces the collision rate and 

rethermalization and results in independent atomic clouds with different temperatures and 

PSD.

However, with clever use of our coils, we can shift the trap minimum such that it 

is centered on the dimple and use it to our advantage. The shift is done by applying a 

magnetic gradient to push the atoms into the dimple using the quadrupole magnetic field 

of the last transport coil.

The trap  frequency in the dimple is larger than the measured and predicted axial 

trap frequency without the dimple. We can exploit this larger trap frequency at lower 

temperatures when the atoms fall into the dimple to obtain larger collision rates and more 

efficient evaporation times. You can see that with a small magnetic gradient, we can do 

just this. From the fitted curves in this figure, we can extract the measured trap frequencies 

of u>z = 7T x 8.5(4) Hz and ujdimpie =  27r x 51(3) Hz.

We also verify the trap frequencies by intentionally inducing sloshing of the atoms in 

the trap and measuring their oscillation frequency. The sloshing is induced by applying 

a magnetic gradient using the bias coils to push the atoms up the wall of the trap. We 

then quickly turn off the gradient, allowing the atoms to roll down the side of the trap 

and slosh. We vary the amount of time the atoms are held in the trap, and then image 

the atoms and track their position. These results are shown in Figure 5.4 for both the 

axial and radial axes. The atoms used for this data are condensed and have been pushed 

into the dimple, therefore, the frequencies measured are the frequencies of the dimple trap. 

The fitted axial frequency in Figure 5.4 is 27r x  53(1) Hz, and the fitted radial frequency 

is 27r x 1034(6) Hz.
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FIG. 5.4: Dimple trap  frequency measurement with the sloshing method. Once sloshing is 
induced in the dimple trap , we plot the position of the condensed cloud as a function of the time 
spent sloshing (hold time). The fitted curves show u z =  2n x 53(1) Hz and uir =  2ir x 1034(6)
Hz.

5.3 B ose-E instein  condensate

Once we apply the magnetic gradient to center our atoms on the dimple, we continue 

with evaporation towards BEC in the tighter trap. As you can see from the evaporation 

path below, this method eliminates the problematic kink which was preventing us from 

efficiently continuing evaporation to BEC. We now have a smooth linear progression to 

a PSD < 2.612 as calculated in Equation 2.1. We calculate the efficiency slope of our 

evaporation to be 2.7. The colored circles behind each data point represent the temperature 

of the atoms from the colorbar inset. Each point is the average of 10 data points, and the 

error bars represent the statistical standard deviation from the mean. This PSD > 2.612 

is one of three signatures of BEC introduced in Chapter 2. The other two (the bimodal 

Gaussian +  Thomas-Fermi distribution and anisotropic expansion) are described below.

Figure 5.6 shows images of the time-of-flight anisotropic expansion of the BEC during 

the very final stages of evaporative cooling and their associated bimodal distributions. The 

Thomas-Fermi distribution can be clearly seen emerging from the Gaussian thermal cloud.
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FIG. 5.5: Successful path to BEC. Phase space density vs atom number plot showing successful 
evaporation to BEC. Here we load the atoms, compress the trap, and then transfer into the 
dimple trap  by applying a push to center the cloud on the dimple potential all the while applying 
RF evaporation. The evaporation path occurs over 6 seconds.
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Only the Gaussian distribution of the thermal atoms is present for temperatures above 

the critical temperature. Slightly below the temperature of «410 nK, one can see the 

more pointed Thomas-Fermi distribution of the BEC begin to emerge from the thermal 

distribution. At even colder temperatures, we almost completely eliminate the presence of 

the thermal distribution to produce a quasi-pure BEC of 13,000 atoms.

It should be noted that one can never guarantee that there are no thermal atoms in 

the cloud. Even when the thermal tail is not visible, there is likely some small percentage 

of thermal atoms in the cloud. Thus, we refer to the BEC as quasi-pure.

Also present in Figure 5.6 is the final signature of BEC: anisotropic expansion. The 

time-of-flight for these axial absorption images is 8.45 ms. The chip is above the top of 

the images shown, with gravity in the vertical down direction. The axial axis of the cigar­

shaped trap lies horizontally across the top of the images for very short times-of-flight. 

You can see in these images, however, that the time-of-flight is sufficient to produce a 

condensate that is instead elongated vertically. In other words, the radial axis of the trap 

(vertical and in/out of the page) has expanded much more rapidly than the axial axis 

(horizontal on the page). This is exactly the kind of dynamic behavior we expect from a 

BEC, as described in Chapter 2, but not from a dilute thermal gas.

5.4 Im age analysis

The images of our BEC are obtained via absorption imaging, described in Chapter 2. 

Here, I will briefly describe the fitting and image analysis from which we determine atom 

number, Thomas-Fermi radii, and temperature.

Our raw data consists of pixel arrays of optical depths (ODs). The array corresponds 

to the user-chosen ’’Region of Interest” (ROI) and stores the ODs based on the pixel 

location on the CCD. Since absorption imaging requires both a laser image (the image of
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FIG. 5.6: Optical density plots of BEC and corresponding absorption images (insets), a) T  >  Tc: 
Thermal cloud of 3.7 x 104 atoms, b) T  <  Tc: The condensate begins to  form, c) T  «  Tc: 
Quasi-pure BEC of 13,000 atoms.
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the laser illuminating the CCD in the presence of zero atoms) and an atom image (the 

image of the shadow in the laser beam produced by the presence of atoms), we have two 

arrays of data. We pull the OD from these images using Equation 2.20 and determine the 

atom number density by dividing the OD by the on-resonance cross section a0 given in 

Equation 2.22.

The 3D density distribution of the condensate will be:

n3D(x ,y ,z )  =  M ax n0 1
x

R l R l
0 (5.2)

Our data is a single array with each element equaling the column atom number density 

of each pixel. The column atom number density along the z-axis (the absorption probe 

laser axis) is obtained by integrating Equation 5.2 with respect to 2  from 0 to z0 and 

multiplying it by 2. The integration is straightforward, so long as one remembers that

zq = R zy j l  -  ( j ^ )2 -  ( ^ ) 2 for a paraboloid, giving:

n2D(x,y) = o
x y 
R l  R l

3/2
(5.3)

Summing (integrating) the array across another axis will give a ID distribution. Once 

again, we integrate with respect to y from 0 to y0 and multiply by 2, remembering that 

yo

7T
n \D{x) = -RzRyUo 1 -  —  

R L
(5.4)

Summing (integrating) along the final axis will give the total atom number:

N
87T

15 R x  R y  R z  n 0 • (5.5)
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In the above Equations, Ri is the Thomas-Fermi radius along the i axis and rj0 is the 

peak atom number density. Since we have a cylindrically symmetric trap, two of the axes 

will have the same Thomas-Fermi radius. By fitting the appropriate density distribution, 

we can determine the peak atom number density and Thomas-Fermi radii. By summing 

the column density at each camera pixel, we can determine the total atom number N. 

Temperature is determined from the Gaussian thermal pedestal distribution via single 

image time-of-flight measurements described in Chapter 2. The thermal atoms can be 

easily fitted using a Gaussian distribution, which is a good approximation of the hot Bose 

gas.

In Figure 5.6, the red curves are a fit to a single slice of data through the middle of 

the corresponding images in the insets:

OD = log Claser\  3 A2 3A2  ‘ -   n(y, z = 0) = ----
Oatom)  2tT 2tt

no}BEC^Rx[ 1

5.5 C onclusion

11
R„

2 2 \  3 /2

H” ^ 0 .thermal^
i (s«r

(5.6)

While the achievement of BEC was a very time-consuming and arduous task taking 

the Aubin group nearly 5 years, the work of 1 professor, 4 graduate students, and (seem­

ingly) countless undergraduate and summer students, it in fact is not the end point but 

the starting line for scientific research. Many of the required tools to this point are en­

gineering tools, and many of the methods implemented to this point are well-understood 

and established in ultracold physics labs around the world. Therefore, it is fortunate that 

throughout the design, construction, and implementation of the BEC apparatus described 

to this point, we were careful to do our more far-sighted theoretical homework in the mean-
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time. While the Aubin group has numerous research goals, some of which were discussed 

previously in the introduction, the first to be seriously pursued was quantum pumping. 

This is the subject of the remainder of this thesis.
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C H A P T E R  6

C lassical asp ects o f quantum  

pum ping

6.1 Introduction

Quantum pumping is a proposed method for generating highly controlled and re­

versible electron transport in mesoscopic systems without applying an external voltage 

bias [1, 2, 73]. Instead, localized time-varying potentials are used to pump an electron 

current through a ID wire and ultimately a circuit.

A basic model for a quantum pump is shown in Figure 6.1: It consists of two reservoirs 

connected by a ID nanowire with a localized potential in the middle for the quantum 

pump. The reservoirs are cooled such as to produce a Fermi sea of electrons in which only 

those at the Fermi level participate in the transport. The reservoirs are held at the same 

chemical potential -  i.e. there is no externally applied voltage, bias, or battery-and yet 

pumping action occurs due to the presence of a time-varying potential in the center of the 

ID nanowire. The desired outcome is that as the electrons at the top of the Fermi sea
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travel back and forth through the connecting ID channel, they encounter the potential in 

such a way that they are preferentially pumped in one direction through the channel over 

the other. This preferential directional flow of electrons is an electrical current.

pump

FIG. 6.1: Quantum pumping of cooled electrons. The basic quantum pumping setup consists 
of two reservoirs of cooled electrons connected by a nanowire. Electrons a t the top of the 
Fermi sea are free to move from the reservoir to the nanowire. A pump, such as the double 
barrier turnstile pump, is a localized time dependent potential between the two reservoirs which 
generates a controlled, reversible current without an applied external voltage bias.

Interest in quantum pumping has arisen on a number of levels. Practically, quantum 

pumping promises a method of producing very controlled and reversible currents, possibly 

down to the single electron level [74]. This is particularly intriguing as applications such 

as quantum computing become more realistic, requiring the shuttling of electrons (or ions, 

or atoms) to various processing regions. Later, if quantum devices and processing matures 

toward early electronics devices, a battery or method of producing current in such a device 

will become necessary. This is also true in atomic quantum devices. Already, significant 

work has been done towards the realization of various “atomtronics” devices which are 

the analogs of their electronics counterparts [75, 76, 77, 78]. On a more fundamental 

level, quantum pumping allows the exploration of symmetry effects on dynamics as well
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as the probing of classical and quantum regimes and the boundary between them. This 

chapter introduces the fundamental concepts for modeling and understanding the classical 

dynamics in a quantum pump in preparation for ultracold atom experiments that will tune 

from a classical thermal gas to a quantum BEC.

Quantum pumping was first conceived by Thouless in 1984 as a way of adiabatically 

transporting charge using a cyclic potential. Non-adiabatic quantum pumping was recently 

observed in 2008 [3]. Though several efforts towards an experimental realization of ballistic 

quantum pumping have been made, spurious capacitive coupling and rectification effects 

complicate the studies in mesoscopic semiconductor and hybrid normal-superconducting 

systems [6, 7, 79].

In addition to these challenges, many signatures of pumping are classical in nature. 

Therefore, in order to understand which pumping effects are entirely quantum, the clas­

sical effects must be fully understood. Ultracold atomic physicists can make significant 

contributions to this study by simulating quantum pumping systems using neutral atoms. 

In addition to avoiding electromagnetic interactions, our ultracold atoms display a high de­

gree of coherence, allowing us to study the quantum aspects of pumping in addition to the 

classical aspects. Ultracold atom experiments also permit smooth tuning between classical 

thermal gases and quantum gases simply by decreasing the temperature of the atoms. Use 

of ultracold atoms also allows precision control of the initial momentum of particles and 

their momentum spread, as well as precision imaging of the transport [80]. Other advan­

tages include choice between bosons and fermions and tuning of atom-atom interactions 

with Feshbach resonances. For this theoretical work, we deal only with non-interacting 

bosons. Finally, we have a variety of cooling, trapping, and manipulation techniques at 

our disposal.

The initial exploration of the work presented in this thesis was motivated by [81, 82] 

which explored quantum pumping mechanisms for ultracold atoms with a double barrier
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turnstile pump. In these works, the authors discovered that significant classical pumping 

mechanisms were present in the study, in addition to the quantum mechanisms. Therefore, 

we set out to fully model the purely classical behavior of a turnstile pump, only to find 

the classical dynamics of the system to be quite rich and interesting on their own. In this 

chapter, we present the classical dynamics of a turnstile pump with both rectangular and 

Gaussian barriers. Then, in order to understand the quantum dynamics, we first compare 

classical and quantum results of scattering from a single oscillating barrier and then from 

the full double barrier turnstile pump.

This chapter is structured as follows. In section 6.2 we present the physical model that 

we use for the rectangular barrier studies as well as the Gaussian barrier studies. We in­

clude notes on our chosen scaled units as well as our methods of quantifying pumping, tools 

for examining classical dynamics, a symmetry theorem, and a description of our numerical 

methods. In section 6.3 we study the single rectangular barrier, a double rectangular bar­

rier system with barriers flush against one another, and finally a double rectangular barrier 

system with spaced barriers. Section 6.4 uses similar methods and builds upon what we 

learn in the previous section to study the single and double Gaussian barrier cases. At this 

point, we have a clear grasp of the classical dynamics of the system, so we are prepared 

to make a comparison between the classical and quantum cases. Section 6.5 describes the 

analogous quantum results for single and double Gaussian barrier systems. We conclude 

with possible applications and an outlook to the experimental demonstration which will 

be covered in the next chapter.

6.2 M odel

A number of pumps have been previously proposed for the simulation of this phe­

nomenon in both solid state and ultracold atomic systems, including the snowplow or
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translating barrier, paddle wheel, appropriately timed rising and falling delta barriers, 

and double-barrier turnstile pumps [83, 82, 84]. These pumps rely upon scattering from

pump, which consists of two potential barriers with amplitude oscillations that are 7 t /2  

out of phase with one another. These pumps display a rich variety of complicated classical 

dynamics including signatures of chaos.

We begin modeling a double-barrier turnstile pump with a simplified case using rect­

angular barriers. The rectangular barriers are defined by:

where Uq is the maximum height of the barrier, u  is the frequency of the amplitude 

oscillation, </> is an additional phase term, x0ief t,right is the center of the left or right

is shown in Figure 6.2 with Uief t (t — 0) drawn in blue and Uright{t = 0) drawn in red.

This is a simplified case for two reasons: 1) challenges associated with producing an 

actual rectangular potential in the lab make it unrealistic for experimental demonstrations, 

and 2) analytic modeling is easily accessible since there are no spatially varying potentials. 

Due to the first reason, we also examine the case of a double Gaussian barrier turnstile 

pump. Gaussian potentials are straightforward to produce in the lab with focused laser 

beams in comparison to rectangular potentials. Recall from Chapter 3 that a light field de­

tuned from atomic resonance will produce a potential experienced by the atoms. Detuned

one or more time dependent potential barriers. In this thesis, I focus on the turnstile

U0(l +  cos (cot)), for x0l e f t  -  W /2 < x < x 0ieft + W/2

elsewhere
( 6 .1 )

Ur igh t  ( t )
U0( 1+  COS (cot +  0 ) ) ,  for X 0right  ~  W /2 <  X  <  X 0r ight  +  W /2

elsewhere
(6 .2)

barrier, and W  is the full width of the barrier. A schematic of the rectangular barrier case
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u
2U,

FIG. 6.2: Rectangular barrier schematic. Uief t (t ~  0) is drawn in blue centered on location 
xoieft■ Uright{t =  0) is drawn in red centered on location xoright- The barriers oscillate 7r/2 out 
of phase with one another with maximum height 2Uq.

Gaussian light fields are readily available with the lasers in the lab.

For the case of the Gaussian turnstile pump, we model the resulting potential as 

follows:

Ulef t {x , t )  =  U0{ 1 +  cos (uit)) exp(— — 5M LL) (6.3)
Z  (7

Uright(x, t) =  UQ( l  +  cos (u t  + (j>)) e x p ( - ^ ^ — gopgftt) ) (6.4)

where, in the Gaussian case, a2 is the variance of the Gaussian distribution. In order to

ease the leap between rectangular and Gaussian barriers and to make the results more

relate-able, I refer to the full-width half-max (FWHM) of the barriers rather than the 

variance a2. These two are related as follows: FWHM =  2\/2 In 2a.

Pumping action for a particular initial momentum is expected due to the tt/2  phase 

shift between the left and right barriers. The time-lapse below is helpful to see the relative
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height of the barriers over one cycle.

2Ur
t= 0 t=TT/2

2U
t=3n/2t=TT

Position

FIG. 6.3: Time-lapse of double Gaussian barriers. The barriers oscillate 7r/2 out of phase 
with one another in order to break the spatial symmetry and induce pumping for particular 
momenta. The arrows indicate the direction of amplitude change.

6.2.1 Scaled units

For simplicity’s sake, we employ a theoretical unit convention throughout this chapter 

based on selecting an arbitrary frequency unit oju and related length unit lu — y j with 

h= 1.054 xlO 34 J s. The corresponding energy unit is Eu = fkou, while the mass unit 

is that of the particle, m u =  m. We obtain these units by reducing the ID Schrodinger 

equation to a dimensionless form.

Practically speaking, these theoretical units need to be converted to real units to 

do anything of use in the lab. The conversion of the dimensionless theoretical units to 

real units is the following: Our length scale lu is set by the ratio of the experimental 

barrier width to the theoretical barrier width; W ith this ratio, we can then calculate 

the experimental ujexp = —pUJth in units rad/s; The experimental barrier height can be
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determined by Uexp =  E uUth in units of J; Finally, the experimental momentum can be 

found by pexp =  f^Pth in units of kg m/s.

6.2.2 M ethods

Here I introduce our methods for quantifying pumping, examining the surface of 

section, considering symmetry roles, and numerically calculating results.

Q uantifying pum ping

First, we quantify pumping by simply determining the net particles pumped (and the 

direction) and the net momentum or energy pumped (and the direction). This is done by 

launching atoms from both sides of the pump and waiting until all the atoms have exited 

the pumping region. Then, we calculate the difference in number that end up on one side 

vs the other.

This can be determined from several distributions of atoms. For the classical cal­

culations, we either use a distribution in position and momentum, or we use a position 

distribution at a single momentum. The initial distribution in position and momentum 

will be a block of non-interacting particles launched with momentum ranging from 0 to 3. 

The initial launch times to of the particles are chosen such that for a given momentum, 

a line of evenly distributed particles arrives at the first edge of the first barrier over the 

course of a full period. We choose the initial position of the particles to be far enough 

away that the barrier potential drops to 0.0001 of its maximum Uq.

For the quantum calculations, the initial distribution has a single momentum. We 

model atoms in the ID ’’nanowire” channel as a wave packet consisting of a plane wave of
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initial momentum p0 with a longitudinal Gaussian envelope of width /3 given by:

ip(x,t = 0 )=  1 , e~* eipoX (6.5)
(27r) 4

We consider initial packets of atoms with a sufficiently broad position envelope such that 

it takes several oscillations of the barrier for the entire packet to encounter the barrier.

We determine the overall current of our system by the following: 1. Launch a distri­

bution of particles from left-to-right and look at the number of transmitted and reflected 

particles, as well as the final momentum of each particle. 2. Launch the same distribution 

of particles from right-to-left and look at the number of transmitted and reflected particles, 

as well as the final momentum of each particle. 3. Sum the results of each of these to look 

at the net particle current and momentum current for every initial momentum and time. 

4. Average over all initial phase (which can be thought of as initial positions or initial 

times).

Surface o f section

Due to the oscillatory nature of the barrier, atoms can end up with a final momentum 

greater than or less than their initial momentum, depending on the time and phase of a 

barrier when they encounter it. The surface of section or Poincare map is a useful tool for 

visualizing the complexity of the dynamics in phase space. These tools plot the particles 

in phase space (position and momentum) as the system is strobed once every pump cycle. 

A surface of section plot for a single oscillating Gaussian barrier can be found in Figure

6.4. In this figure, particles that begin in the upper left quadrant (red, pink, and orange 

lines) are launched left-to-right. Particles that begin in the lower right quadrant (blue, 

cyan, and green lines) are launched right-to-left. Particles with larger initial momentum 

(red and blue) will pass over the barrier to the upper right or lower left quadrant. The
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oscillations in the momentum in these final quadrants are a product of the oscillatory 

nature of the barrier. Similarly, particles with very small initial momentum (orange and 

green) will be reflected from the barrier with changes in their final momentum due to the 

oscillating barrier. Particles with momenta that fall between these categories (pink and 

cyan) will experience some transmission and some reflection, depending on their initial 

position.

FIG. 6.4: Surface of section for a single oscillating Gaussian barrier. This surface of section plot 
for atoms launched towards a single oscillating Gaussian barrier with Uq — 1, w =  1, FWHM=2, 
located at x  =  0. The shaded region indicates the FWHM size of the Gaussian barrier in the 
plot.

It is also important to note from Figure 6.4 that the results are symmetric as x goes to 

-x and p goes to -p. The symmetry of the single oscillating barrier prevents any pumping
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from occurring.

Sym m etry

Less intuitively, symmetry will also prevent pumping in certain conditions for the 

double barrier turnstile pump we have described. This is counter-intuitive because of the 

phase shift between the barriers (in our case, the right barrier Uright is shifted Stt/2  from 

the left barrier Looking at Figure 6.3, one can see that Uright lags behind U[ef t ,

similar to a leftward moving wave. One might expect then that this particular pump would 

produce an overall particle current from right to left.

Theorem: Due to the symmetry of the pump (barriers with equal width and height), 

a case considering a uniform distribution of all possible initial energies and positions, will 

have a particle ending on the right for every particle ending on the left. Therefore, the 

symmetry, even with the phase shift between the barriers, prevents any pumping in this 

case. This is explored in more detail in [85].

Fortunately for us, the quantum pumps which we are trying to simulate in our neutral 

atom system do not employ uniform distributions of particles with all possible energies 

and positions. Rather, they begin with particles with a narrow band of initial momentum 

representing electrons at the top of the Fermi sea. Therefore, it is perfectly reasonable 

to anticipate pumping in our simulations using particles with a narrow band of initial 

momenta.

N um erical m eth od s

In the case of Gaussian barriers, I have developed a numerical code to calculate the 

position and momentum as a function of time using MATLAB. The code calculates the 

force on particles due to potential barriers over a very short time-step, i.e. the Euler 

method. Given an initial position x 0 and momentum p0 of a particle and initial phase u)t0
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of the system, I calculate the potential due to the barriers at the position of the particle 

after a time step St:

U(x = X 0 , t  = Q  = Uieft(x = x 0,t  = tf0) + Uright{x = x0,t  = t'0) (6.6)

where Uief t (x,t)  and UTight{x,t) are given in Equation 6.3 and 6.4 with x  =  x0 and t = 

t'Q = t0 + St. The force F  (and therefore acceleration since m = l) can easily be calculated 

to be:

F (x  =  Xo.t =  t'„) = X° Uujt(x = x0, f =  t'0) +  —— X̂ T'9h‘ Urlgu (x  =  Xo.i =  t'0).

(6.7)

From here, I use basic kinematic equations to determine the new position x'0 and momen­

tum p'0 after the time step St (remembering that in our units, mass m — 1):

Xq = Xq T p0St +  \ f {x  = x0, t = t'Q)St2
2 (6 .8) 

Po = Po +  F (x  = x 0, t  = t'0)St

I then begin again with the new x0 =  x'0, p0 =  p'0, and t0 = t'Q, looping through this process 

until the particle has exited the pumping region.

The accuracy of this method depends on the time step St chosen. I evaluated the 

accuracy by monitoring the resultant particle current as a function of St. By decreasing 

St until the particle current converged, I was able to determine the size of St required 

for minimizing the effect of numerical errors. I also compared my numerical results with 

results obtained using MATLAB’s built-in ODE solvers. Several of the solvers returned 

splotchy or erroneous results, while others returned results that matched my own. The 

latter of these validated the correctness of my code, and I chose to continue using my own
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code out of familiarity, stubbornness, and pride.

6.3 R ectangular barrier(s)

As mentioned previously, rectangular barriers represent a very simple potential that 

we can analytically model. For pedagogical reasons, we begin with these more simplistic 

models and build up to the Gaussian turnstile pump. The most simple case we examine 

is a single oscillating rectangular barrier.

6.3.1 C lassical single rectangular barrier

The physics of a single oscillating rectangular barrier is the most straightforward to 

understand. An incident particle will either reflect off or transmit over the barrier. If the 

particle has enough energy to transmit over the barrier, it can gain or lose energy during 

the time it spends in the barrier region due to the time oscillations of the barrier. We call 

the process of gaining or losing energy in the region of the barrier the ” elevator effect” . 

Due to this effect, a particle with very small momentum that reaches the barrier when 

it is at its minimum can hop onto the barrier and gain a large momentum boost from 

the barrier. The opposite can also happen. If a particle makes it onto the barrier as the 

barrier is decreasing in amplitude, the particle will lose energy as it crosses the barrier. 

This effect causes the final momentum to be extremely dependent upon initial conditions, 

especially for those particles that barely have sufficient energy to make it onto the barrier.

We analytically calculate the height of the barrier versus the momentum of the particle 

to determine on which side the particle ends and with what final momentum. For this case, 

we assume only Uief t is present and centered at rro/e/t =  0. Since the barrier is rectangular, 

the particles will only experience acceleration at the barrier boundaries and will travel with 

constant velocity at all other regions, including the flat top region of the barrier. Therefore,
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it is straightforward to calculate the total energy of the particles and compare it to the 

height of the upcoming barrier. For example, a particle beginning to the left of the barrier 

is launched left-to-right with initial momentum p0. The particle arrives at the leftmost

particle is reflected from the barrier with p/mai =  ~Po- Otherwise, the particle transmits 

over the barrier with momentum

With this momentum, we can calculate the time at which the particle will reach the 

opposite edge of the barrier:

and the corresponding Uief t(ta) and the final total energy of the particle given by:

The results of this calculation for particles scattering from a single oscillating rectan­

gular barrier with W  = 1, u  = 1, C/0 =  1, and x 0uft =  0 are shown in Figure 6.5. Each 

pixel in the plots represents a single particle with initial momentum p0 on the y-axis and 

arriving at the edge of the first barrier at initial phase coto on the x-axis. p0 has an even 

distribution ranging from 0 to a momentum sufficiently large that all particles transmit 

over the barrier -  in this case we choose 3, as the maximum barrier height is 2. t0 ranges 

from 0 to to cover a full period of the pump. In Figure 6.5, the color corresponds to

edge of Uieft at time to- We know the height of the barrier f/;e/t(fo) from 6.1 and the total 

energy of the particle is Etotai(to) =  \p i  (m ass=l in our units). If Etotai(to) > U[ef t(t0), the

(6.9)

W
(6 .10)+  to

Pa

(6 .11)
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FIG. 6.5: Final side of particles scattered from single rectangular barrier. The results of a
grid of particles with initial momentum po =  0 to 3 and launched over uto — 0 to 27t. The
color of each pixel corresponds to the final side (left or right) of a particle at the particular 
initial position and launch time. The left (right) surface plot represents particles launched from 
left-to-right (right-to-left). Red (blue) correspond to particles which end on the right (left) side 
of the pump. In this case, W  — 1, uj =  1, Uq =  1, and the barrier is centered at xoieft — 0.

the side of the pump on which the particle ends up. Red (blue) means the particle ends 

up on the right (left).

There are several features of which to take note. First, particles with p0 > 2 will 

always transmit over the barrier. This is because the maximum achievable height of the 

barrier is Uief t = 2. Second, based on our definition of Uief t in Equation 6.1, the barrier 

starts and ends at its maximum height at u t0 =  0, 2n. At out0 = n, the barrier will be at

its minimum zero height. This is all evident in Figure 6.5 in the boundary between the

particles with positive and negative final momentum. This boundary indeed traces out the 

height of the barrier over time. The point at u t0 — tt shows that when the barrier height 

is zero, even particles with minimal momentum can transmit if they arrive at the barrier 

at u t0 =  TT- Finally, the left and right plots are the opposite of one another, displaying the 

symmetry that prevents any pumping from occurring in this case.
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FIG. 6.6: Final momentum of particles scattered from single rectangular barrier. The results 
of a grid of particles with initial momentum po =  0 to 3 and launched over cuto =  0 to 2ir.
The color of each pixel corresponds to the final momentum of a particle a t the particular initial 
position and launch time. The left (right) surface plot represents particles launched from left- 
to-right (right-to-left). Red and warm (blue and cool) shades correspond to particles which end 
with positive (negative) final momentum. In this case, W  — 1, u) =  1, Uq =  1, and the barrier 
is centered at xoieft  =  0.

Figure 6.6 is the corresponding final momentum plot to the final side plot in Figure

6.5. The same features are present, but the pixel colors are scaled to represent their final 

momentum. Dark red and blue correspond to large momenta, and green corresponds to 

zero momenta. Particles that are reflected from the barrier see only a sign change in 

momentum. Particles that transmit over the barrier, however, experience a change in 

the momentum, evidenced by the color scheme in this figure. Near the boundaries, there 

are more dense fluctuations in momentum, as these are the particles with barely enough 

energy to hop on the barrier, so they experience strong dependency on initial conditions. 

This dependence will play an even more significant role in the next sections.
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6.3.2 C lassical double rectangular barrier tu rn stile

We now proceed to the double rectangular barrier case, first with barriers that are 

touching one another, |xort<?ta| +  \x oieft\ — and then with some space between. We once 

again calculate analytically on which side of the pump particles end up and with what final 

momentum when we launch uniform distributions of particles in position and momentum 

from both sides of the pump.

R ectangular barriers w ith  no space b etw een

We first examine the simplest of turnstile pumps - two rectangular barriers given by 

6.1 and 6.2 with no space between them. The physics of this case is straightforward. An 

incident particle will either reflect off the first barrier, reflect off the second barrier, or 

transmit over both of them.

The final position of the particles is determined with the same algorithm as the single 

rectangular barrier case above. The calculations for the first barrier the particle encounters 

is the same. A particle will either transmit over the first barrier with momentum given 

by Equation 6.9, or it will reflect with momentum — p0. Those particles which transmit 

over the first barrier will also transmit over the second barrier if Etotai(ta) > Uright(ta)- 

Otherwise, they will be reflected from the second barrier with p =  — pa, spend another 

time y  transmitting over and finally fall off C/je/t onto the left-hand side of the pump

with

(6 . 12)
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The particles that transmit over the second barrier will do so with momentum

(6 .13)

Again, we can calculate the time at which the particle will fall off the second barrier:

W
(6.14)tf, —  h £,a

Pb

and the corresponding Uright(tb), to determine

P final (6.15)

A similar algorithm is followed for particles beginning on the right of the pump with 

negative initial momentum, keeping in mind that they will first encounter the rightmost 

barrier and then, given sufficient energy, the leftmost barrier.

The results of our simulations for barriers with W  =  1, ui = 1, Uq =  1, 0 =  ^f, 

x oleft — —1/2, and x 0right =  1/2 are shown in Figures 6.7 and 6.9. Once again, each pixel 

represents a single particle with initial momentum p0 on the y-axis and arriving at the 

edge of the first barrier at initial phase ut,Q on the x-axis. po has a uniform distribution 

ranging from 0 to a momentum sufficiently large that all particles transmit over the barrier 

- we again choose 3. to ranges from 0 to to cover a full period of the pump. In Figure 

6.7, the color corresponds to the side of the pump on which the particle ends up. Red 

(blue) means the particle ends up on the right (left).

There are obvious similarities and differences between this double rectangular bar­

rier case and the previous single rectangular barrier case. First, the region in the plot 

representing the particles that immediately reflect from the first encountered barrier (in
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FIG. 6.7: Final side of particles scattered from double rectangular barrier. The results of a 
grid of particles with initial momentum po =  0 to 3 and launched over uto — 0 to 27r. The 
color of each pixel corresponds to the final side (left or right) of a particle at the particular 
initial position and launch time. The left (right) surface plot represents particles launched from 
left-to-right (right-to-left). Red (blue) correspond to particles which end on the right (left) side 
of the pump. In this case, W  =  =  \ , U q — and the barriers are centered at xo left =  —1/2
and xoright — 1/2.

the previous case, the only barrier) remains the same. The lowermost blue region in the 

left plot and red region in the right plot are defined by the results of a single leftmost or 

rightmost barrier, respectively. This blue (red) region represents the particles approach­

ing from the left (right) that do not make it over the initial leftmost (rightmost) barrier. 

Without the second barrier, the region above this lowermost boundary would be entirely 

red (blue). However, for the particles that formerly transmitted smoothly to the opposite 

side of the ’’pump” , there is now a protruding lobe of particles that do not transmit. This 

lobe is due entirely to the presence of the second barrier.

The second major difference is that there is no longer a clear boundary between the 

transmitted and reflected particles. In fact, zooming in on the region near p0 =  0 and 

uto = 7r, as in Figure 6.8, shows evidence of extreme dependence on initial conditions. 

This dependence produces stripes of red and blue near the boundary from Figure 6.6. The
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FIG. 6.8: Rectangular double barrier - “Elevator Effect” . As we zoom in on the region near 
p0 =  0 and ujto — it, we see tha t the side of the pump on which a particle ends has a clear 
fractal behavior. This dependence manifests as stripes of red and blue near what was a clear 
boundary in Figure 6.6. This is because particles that barely have enough energy to  transmit 
over the first barrier will ride the first barrier over several cycles with very small momentum 
until they reach the second barrier. We call this the ’Elevator Effect’. The white box in the 
leftmost plot shows the region of the middle plot. The white box in the middle plot shows the 
region of the rightmost plot.

reason for these stripes is what we call the ’Elevator Effect’. Particles just beyond this 

boundary have barely enough energy to transmit over the first barrier, and will do so with 

very small momentum. Therefore, the barrier oscillates at timescales much faster than the 

particle translates. The particle may ride the elevator for several cycles before reaching 

the second barrier. This causes the resultant side (red or blue) to be extremely sensitive 

to initial conditions.

For this same simulation, we can also examine the final momentum of the particles. 

This is shown in Figure 6.9. The color scheme is similar to that in Figure 6.6. However, 

due to the second barrier, a lobe exists in each of the plots and the right-to-left plot is 

no longer obviously symmetric to the left-to-right plot as in the single barrier case. It 

now becomes feasible to consider what happens if we sum these plots to look at the net 

momentum gained or lost at each pixel.

This sum is shown in Figure 6.10. The plot on the left shows the sum of the two plots

113



U)to

FIG. 6.9: Final momentum of particles scattered from a rectangular double barrier. The results 
of a grid of particles with initial momentum po — 0 to 3 and launched over u>to =  0 to  2ir. The 
color of each pixel corresponds to the final momentum of a particle at the particular initial 
position and launch time. The left (right) surface plot represents particles launched from left- 
to-right (right-to-left). Red and warm (blue and cool) shades correspond to particles which end 
with positive (negative) final momentum. In this case, W  — 1, uj =  1, t/0 =  l, and the barriers 
are centered at xoieft =  - 1 /2  and x0right =  1/2.

in Figure 6.9. The plot in the middle is the average momentum for each p0 averaged over 

all possible u;f0. The plot on the right is the average particles pumped for each p0 averaged

over all possible u t0. Net momentum is defined by / N  where N is the total
.CJto

number of particles, while net particles pumped simply counts the number of particles on 

the left vs the number on the right for a single value of p0 and normalizes the result with 

respect to N. It is obvious that for regions of po, there can be both momentum and particle 

pumping from the double barrier turnstile. What is not obvious is that integrating the 

right plot over all p0 will yield zero pumping. This is the case only when considering the 

sum of all possible po and u t0 due to the symmetry in the system.

The choice of barrier width is important in these results. Even with no space between 

the barriers, one sees the resulting figures above change as we choose broader or narrower 

barriers. These effects are illustrated in Figure 6.11 for left-to-right launched particles with
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FIG. 6.10: Rectangular double barrier to tal and average momentum and particle pumping.
The left plot shows the sum of each plot from Figure 6.9. The center plot shows the average 
momentum for each p0 on the y-axis summed over all possible uto on the x-axis. The left plot 
shows the average particles pumped for each p0 on the y-axis summed over all possible u t0 on 
the x-axis. Regions of pumping for particular po are obvious (where the color is not green in 
the left plot or where the net momentum or particles are not zero in the center and right plots).

all other parameters unchanged (w =  1, f/0 =  1, 0  =  xoieft = —1/2, and x0right =  1/2). 

The plots begin with barriers quite narrow (W  =  0.1) in the top left and increase in size 

to the largest barriers (W  =  10) in the bottom right. For very narrow barriers, (W — 0.1), 

the lobe begins to trace out the height of the second barrier over time. As the barriers 

become wider, the “Elevator Effect” plays a larger role, as is evidenced by the increased 

striping and sensitivity to initial conditions.

R ectangu lar barriers w ith  space b etw een

Separating the rectangular barriers by some space maintains the qualitative features of 

the above results, while increasing the chaotic region and effects. Since there still exists no 

acceleration in our system except at the barrier edges, a calculation of the final momentum 

is similar to the above case where there is no space between the particles. If a particle
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FIG. 6.11: Rectangular double barrier - effect of width. Resulting momentum of left-to-right 
launched particles as the barrier width W  increases from 0.1 to 10. As the barriers become 
wider, the “Elevator Effect” dominates, shown here with increased striping and sensitivity to 
initial conditions.

beginning on the left of the pump with positive momentum has enough energy to hop onto 

the first barrier, we calculate the momentum of each particle over the first barrier pa and 

the time ta it reaches the end of the first barrier using 6.9 and 6.10. However, at this point, 

the particle falls off the first barrier into the region between barriers with momentum

,N = (-1)"-1 yW/.M + jrf). <6-16)
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where the N in the exponent is a counter which we explain below. At this point, we

consider the particle to be trapped in the region between the barriers. While the particle

is trapped, we will count the number of times it traverses back and forth in the gap, as 

it reflects between the barriers. During the first pass through the gap, our trap counter 

N = l. If when the particle reaches the second barrier at time

t N =  N XOright ~ Xoleft ~ 4fT + ta, (6.17)
Pn

the particle has energy ^p% < UTlghl( t^) ,  then it will reflect from the second barrier and 

N will increment by 1. We continue to compare the kinetic energy of the particle \p\, 
with the height of the encountered barrier - for N=odd, we compare with Uright(tN), and 

for N=even, we compare with Uief t { t^) ,  until the particle has sufficient energy to make it 

over one of the barriers. The remainder of the calculation is straightforward:

Pb = ± ) j 2 ( ^ p %  -  Urighuief t ( tN)), (6-18)

where the (+) corresponds to Uright and the (-) corresponds to Uiej t. Then, the particle 

will spend time

4(7
h  =  Mat (6.19)

Pb

traversing the barrier, after which it will fall off the last barrier with

Pfinal =  ±̂ 2(̂ pf + UrigMU'ftih)). (6‘20)

Once again, the algorithm is similar for particles originating on the right side of the
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pump with negative initial momentum. The results of these calculations for the same 

particles launched previously at the same two barriers (W  =  1, u  = 1, t/0 =  1, 4> = 

but with x0left =  ~ 1 and x0right =  1 are shown in Figure 6.12 below. Several qualitative 

features remain the same. However, we note the presence of a new lobe due to particles 

undergoing one back and forth bounce between the barriers. This complexity is due to the 

dynamics associated with the space between the barriers, allowing particles to bounce back 

and forth between them for significant time before exiting the pumping region. Even more 

so than the previous cases, the outcome is extremely dependent upon initial conditions of 

the particles.

U)to

FIG. 6.12: Final momentum of particles scattered from a rectangular double barrier with space.
The results of a grid of particles with initial momentum po =  0 to 3 and launched over uto =  0 
to 2n. The color of each pixel corresponds to  the final momentum of a particle a t the particular 
initial position and launch time. The left (right) surface plot represents particles launched from 
left-to-right (right-to-left). Red and warm (blue and cool) shades correspond to particles which 
end with positive (negative) final momentum. In this case, W  =  1, uj =  1, Uq =  1, and the 
barriers are centered at xouft =  ~  1 and xqright =  1

In Figure 6.13, we examine the overall effect of the particles launched left-to-right 

while varying the width of the barriers and the space between them. Just as we saw that 

increasing the width of the barriers increased the striping due to the ’Elevator Effect’,
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increasing the space between the barriers also increases the chaotic region producing ad­

ditional sensitivity to initial conditions. Increasing the space adds lobes within lobes and 

noticeably alters the area of the lobe.

6.3.3  R ectangular barrier conclusions

The classical dynamics of the rectangular barrier cases are extremely rich. For the 

single barrier case, particles can either be reflected from the barrier with only a change in 

the sign of the momentum, or they can transmit over the barrier and experience increases 

or decreases in momentum due to the oscillation of the barrier. Particles that hop onto 

the barrier with barely sufficient energy will experience variations in final momentum that 

are extremely dependent on the initial ujt0.

With the addition of a second barrier, this dependence becomes even more noticeable, 

and clear fractal behavior can be seen around the class of particles that barely make it onto 

the first barrier. A lobe also appears which represents particles that transmit over the first 

barrier but reflect from the second. The structure of both the lobe and the fractal behavior 

becomes more complicated as the width of the barriers is increased due to the increased 

number of barrier oscillations that occur as particles transmit over them. Adding space 

between the barriers further complicates the lobe. Increasing this space between them 

increases the chaotic region.

6.4 G aussian barriers

Armed with our foundation of understanding of the rectangular barrier systems, we 

can now examine Gaussian barrier systems. Gaussian potentials are an excellent choice 

for experimental implementations of pumping because they are readily available without 

implementing additional technology such as spatial light modulators. We expect to see

119



W = 0.5 W = 2

-5  0 5

FIG. 6.13: Rectangular double barrier - effect of spacing. As we increase the space between the 
barriers, we also increase the chaotic region. This manifests as lobes within lobes and a further 
increased sensitivity to initial conditions.
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some similarities between the Gaussian and rectangular cases, and relate the differences 

to the barrier shape. Once again, we begin with the single barrier dynamics and build up 

to the double barrier case.

6.4.1 Classical single G aussian barrier

The methods for simulating particles scattering from a single Gaussian barrier were 

described previously in the Numerical Methods section (6.2.2). For the single Gaussian 

barrier case, we assume only one barrier, say Uiej t centered at Xoieft = 0. To maintain 

consistency with the previous sections, we choose a FWHM =  2, u  = 1, and Uq =  1. The 

relationship between FWHM and a  is provided in the Model section previously. We launch 

the same block of atoms (p0 =  0 to 3, u t0 =  0 to 2ir) towards the barrier from either side. 

The resulting final momentum of each particle is shown in Figure 6.14.

3 
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FIG. 6.14: Final momenta of particles scattering from a single oscillating Gaussian barrier. The 
results of a grid of particles with initial momentum po =  0 to 3 and launched over usta =  0 to 
27T. The color of each pixel corresponds to  the final momentum of a particle a t the particular 
initial position and launch time. The left (right) surface plot represents particles launched from 
left-to-right (right-to-left). Red and warm (blue and cool) shades correspond to  particles which 
end with positive (negative) final momentum. In this case, FWHM =  2, u> =  1, Uo — 1, and the 
barrier is centered at x q l e f t  =  0.

2 tt 0
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Similar to the single rectangular barrier case, all particles with p0 > 2 will transmit 

over the single Gaussian barrier. However, the boundary between positive and negative 

final momentum no longer follows the height of the barrier over time. Neither does it dip 

to po =  0 f°r uto =  7r. This is due to the Gaussian shape of the barrier and the fact 

that we launch our distribution from a further distance from the pumping region where 

the Gaussian tail is < 0.000lC/o- Rather than having sharp edges, the Gaussian barrier 

has a smooth spatial distribution that creates a force on the particles at distances beyond 

the FWHM. It is literally an uphill battle for all particles as they approach the barrier. 

This particularly affects the low momentum particles, and no particle with po < 0.8 will 

transmit over the barrier. Note that the two plots are symmetric, though the color scaling 

masks this symmetry a little. Once again, due to the symmetry of this case, there will be 

no resultant pumping.

One can gain a better understanding of the classical dynamics using a surface of 

section plot or Poincare map, as was shown in Figure 6.4. As with every surface of 

section, we begin with several lines of particles in position space each with a single initial 

momentum. For a periodic, time dependent system, we strobe the path through phase 

space once every cycle. The surface of section in Figure 6.4 uses the parameters for the 

case described above, with FWHM =  2, oj =  1, and UQ =  1. As was described previously in 

the Surface of Section section (6.2.2) and description of Figure 6.14, some of the particles 

(for example, the red and blue curves in the plot with p0 =  ±2.5) easily transmit over the 

barrier region. It is also easy to see that particles with p0 = ±0.5 (the orange and green 

curves) are simply reflected from the barrier. The reflection or transmission of particles 

that begin with po =  ±1.5 is dependent on the initial position of the particles, i.e. the 

time at which the particles reach the barrier. Depending on the height of the barrier, 

the particles may or may not have enough energy to transmit, thus the lines for these 

particular initial momenta end up tangled between both the top right and bottom left
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quadrants.

In nearly all cases, when particles scatter off the oscillating barrier, they end with a 

final momentum that is greater than or less than their initial momentum. This change 

in momentum is entirely attributed to the presence of the single barrier. Particles that 

traverse the barrier as it is rising (falling) will end up with greater (less) momentum than 

that with which they began.

A histogram of the final momenta of the scattered particles represents the final mo­

mentum probability distribution. In Figure 6.15, we choose a simple case in the classical 

regime where all particles transmit over the barrier: An initial packet with po = 2.5 will 

give a final momentum distribution between «  2.05 and 2.82. This histogram is a result 

of the red curve in the top right quadrant of Figure 6.4, with parameters FWHM =  2, 

u  =  1,Uq =  1, and £o/e/t =  0. As one can see, there is a very clearly defined classically 

allowed region of final momentum. The boundaries are marked by sharp peaks in the 

histogram of final momentum. The presence of the sharp peaks is due to the sinusoidal 

nature of the barrier oscillations.

6.4.2 C lassical double G aussian barrier turnstile

Next we move to the double Gaussian barrier turnstile, which we expect to show 

the same qualitative features of the single oscillating Gaussian barrier, but with added 

complexity such as the lobes and striping effects we saw in the double rectangular barrier 

turnstile. Due to the shape of the Gaussian barriers, we cannot place the barriers imme­

diately against one another as we first did to the double rectangular barriers. Unless they 

are completely overlapped, there will always be some space between the Gaussian barriers. 

Therefore, we should always expect to see signatures of a chaotic region as we did with 

the spaced rectangular barriers.
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FIG. 6.15: Final momentum distribution of particles scattering from a single oscillating Gaus­
sian barrier. This is a histogram of the final momenta of particles launched with p0 =  2.5 and 
FWHM =  2, u i  — 1, U o  =  1, and xol e f t  =  0. Particles gain or lose energy as the traverse the 
oscillating barrier, giving them a spread of final momenta. This spread has a clearly defined 
classically allowed region, marked by sharp peaks at the boundaries. The sharp peaks are due 
to more particles ending up with the maximum or minimum momentum, a product of the sinu­
soidal nature of the barrier. The y-axis is the probability distribution, or number of particles 
per final momentum value, which is normalized such tha t integrating over all final momenta in 
this plot gives 1.

The results for the double Gaussian turnstile pump with C/*e/< centered at x 0ieft = “ 3 

and Uright centered at xoTight = 3 are shown in Figure 6.16. To maintain consistency with 

the previous sections, we choose a FWHM = 2, =  1, and Uq — 1. We once again launch

the same block of atoms (p0 =  0 to 3, uto =  0 to 2n) towards the barrier from either side.

Sure enough, the once clear boundaries between transmission and reflection are now 

disrupted with lobes and stripes in the double Gaussian case shown in Figure 6.16. This 

should not be a surprise to us, given what we learned in the rectangular barrier case study.
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FIG. 6.16: Final momentum of particles scattered from a double Gaussian turnstile pump. The 
results of a grid of particles with initial momentum po =  0 to  3 and launched over ojto =  0 to 
27r. The color of each pixel corresponds to the final momentum of a particle at the particular 
initial position and launch time. The left (right) surface plot represents particles launched from 
left-to-right (right-to-left). Red and warm (blue and cool) shades correspond to  particles which 
end with positive (negative) final momentum. In this case, FWHM — 2, u  — l,U o =  I, and the 
barriers are centered at x q l e f t  =  — 3 and XQright =  3.
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We should also expect that increasing the barrier width or the barrier spacing will create 

even more complexity as we increase the chaotic region.

We can also see these differences in the surface of section plot for the double Gaussian 

turnstile in Figure 6.17. The presence of the two barriers is marked in the figure with gray 

bars having width equal to the FWHM of the Gaussian barriers. Some features are quite 

similar to the simpler single barrier case from Figure 6.4. Particles with po =  ±2.5 (red 

and blue curves) transmit over both barriers. Particles with p0 = ±0.5 (orange and lime 

green curves) reflect from the first encountered barrier. The transmission or reflection 

of particles with p0 = ±1.5 and ±2 (pink, purple, forest green, and cyan) is extremely 

dependent upon initial position, so those lines end up tangled between the top right and 

bottom left quadrants. The region between the barriers, the so-called chaotic region is 

a new feature in this case. One can see that there is a tangle of trajectories, stemming 

largely from the line of particles with p0 =  —2 (forest green), but also from p0 = ±1.5 

(pink and cyan).

Zooming in on this region in Figure 6.18 shows the complicated nature of this area 

of phase space. In addition to the tangled trajectories of particles entering from the left 

or right of the pump, there are also two concentric rings of particles shown in black and 

gray. These rings represent particles which begin between the two barriers with insufficient 

momentum to ever make it out of the pump. They are forever trapped - ’’islands of stability 

amongst a sea of chaos” [86].

Finally, we can compute the pumping performance of the double Gaussian barrier 

turnstile pump. In Figure 6.19 we plot the sum of the final momentum of particles launched 

left-to-right and right-to-left toward a double Gaussian turnstile pump (rightmost plot), as 

well as the net momentum and particle pumping (center and leftmost plots, respectively).

Once again, net momentum is defined by /N  where N is the total number ofE p / ( P o)
-  wt0

particles, while net particles pumped simply counts the number of particles on the left vs
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FIG. 6.17: Surface of section for a double Gaussian turnstile pump. Particles are launched 
towards a double Gaussian turnstile pump with Uo =  1, uj ==■ 1, FW HM =2, and barriers located 
at x q i e f t  =  —3 and xor i g h t  =  3. The shaded region indicates the FWHM size of the Gaussian 
barriers in the plot.
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FIG. 6.18: Zooming in on the surface of section for a double Gaussian turnstile pump. We 
look more closely at the chaotic region between the barriers of the full surface of section given 
in Figure 6.17. Here we see a significantly tangled trajectories of particles which began with 
Po = —2 (forest green). At the very center are two concentric rings in black and gray representing 
particles which start in between the barriers and do not have sufficient momentum to escape to 
either side.
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the number on the right for a single value of po and normalizes the result with respect to 

N. Given the material in this chapter, there should be no surprises in the resultant plot of 

the final momentum on the left or the net momentum at each po averaged over all u t0 on 

the right. For sufficiently large and small momenta, the averaged momentum goes to zero. 

Averaged over all possible po, the total pumping goes to zero. However, in between the 

large and small momenta, for small ranges of p0, there are certainly regions of pumping.

urto Net Momentum Net Particles

FIG. 6.19: Double Gaussian barrier total and average momentum and particle pumping. The 
left plot shows the sum of each plot from Figure 6.16. The center plot shows the average 
momentum for each po on the y-axis summed over all possible uto on the x-axis. The left plot 
shows the average particles pumped for each p0 on the y-axis summed over all possible wt0 on 
the x-axis. Regions of pumping for particular po are obvious (where the color is not green in 
the left plot or where the net momentum or particles are not zero in the center and right plots).

6.5 T he quantum  picture

The quantum simulations of the scattering from oscillating Gaussian barriers involve 

propagating the wave packet by numerical integration of the Schrodinger equation [85]. 

These calculations have been carried out by AJ Pyle on code written by Kunal Das. The
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results have been confirmed by Tommy Byrd, John Delos, and Kevin Mitchell using semi- 

classical theory. More details can be found in [85] and [87]. Here I focus primarily on the 

results of those detailed analyses and the stark contrast between the quantum and classical 

results.

For this thesis, we choose barriers broad enough to minimize the possibility of quantum 

tunneling through the barrier and a sufficiently elongated wave packet to allow for quantum 

interference effects, which play a key role in the scattering physics. While it is important to 

note that we are ultimately interested in the net current flow of particles, our simulations 

generally run a single packet from one side propagating in a single direction (towards the 

pump). For discussions of net current, we simply sum the results of the same packet from 

opposite sides of the pump. It is trivial to anticipate the net current flow if we were to 

launch packets from opposite directions for the single barrier problem. For the case with 

only one barrier, the system is entirely symmetric, so there will be no net current. For a 

net particle flow, we must somehow break this symmetry.

6.5.1 S ingle G aussian barrier

As in the classical case, we begin simply with a single oscillating Gaussian barrier. We 

examine the scattering of a spatially elongated wavepacket with narrow momentum spread 

by looking at the final momentum distribution as we did in the classical case in Figure 6.15. 

The same parameters in the quantum simulations show a very different final momentum 

distribution than the classical simulations. Figure 6.20 shows the classical distribution 

from Figure 6.15 overlapped with the quantum distribution, plotted as |^ (p ) |2 on the y- 

axis. Rather than one smooth continuous distribution of final momenta, there are discrete 

peaks spaced by A E  = zknhui in energy space which appear as sidebands to a peak at the 

initial momentum. This is a dramatic difference from the continuous distribution in the

130



classical case.
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FIG. 6.20: Quantum and classical results for a single Gaussian barrier. Particles with po — 2.5 
are launched at a single oscillating Gaussian barrier with Uo =  1, lj =  1, FWHM=2, and located 
at xoieft =  — 3 and Xoright — 3. Both the quantum and classical results are overlayed to show 
the stark contrast between the two. In the classical case (green), the distribution is exactly the 
same as tha t shown in Figure 6.15 (scaled by xlOO). The quantum  case (blue) plots |\k(p)|2 
as four visible Floquet states. The state at p /  =  2.5 lies entirely within the classically allowed 
region, and the state a t p / «  2.1 lies approximately half within the classically allowed region. 
Floquet states at pf — 1.5 and ~  2.8 lie beyond the classically allowed region.

The presence of these peaks originates from our choice of a broad position-space wave 

packet and the periodic nature of our system. The peaks can be described by the Floquet 

theorem [88], which is the temporal analogue of Bloch’s theorem in solid state physics [89]. 

Bloch’s theorem describes the spatial wavefunction of a particle in a periodic potential, 

such as an electron in an ordered crystal. In our system, we have a particle in a periodic 

potential in time, so rather than manifesting in the spatial wavefunction, the Floquet peaks 

appear in the Fourier transform.
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A detailed semi-classical study [87] elucidates the physics of the quantum scattering 

process and shows that the evenly spaced momentum peaks are due to constructive and 

destructive interference of scattered waves from different barrier oscillation cycles. This 

can be more clearly understood by examining this particular packet in the surface of 

section plot again. By drawing a horizontal line through the top right quadrant of Figure 

6.4, it is easy to see that there are multiple initial positions within the single-momentum 

wavepacket with po = 2.5 which lead to a given final momentum. It is the interference of 

these multiple paths which create the peaks in the quantum picture. We also note that 

diffract ion (or momentum space tunneling) leads to the appearance of peaks outside of the 

classically allowed region.

Figure 6.20 is a simple case where paths interfere to produce four visible peaks - p0 

and two sidebands, one of which falls on the edge of the classically allowed region, and the 

other which falls just beyond it. Another small sideband is visible at po = 1.5. Figure 6.21 

is a more complicated version for the same system parameters but with po =  1.5. In this 

case, the classically allowed region is broader than in Figure 6.20: It ranges from p f = «  —2 

to ~  2.2 (green). This is a result of particles being both transmitted and reflected by the 

barrier. The Floquet states (blue) also appear across a much broader range, some of which 

have been both transmitted and reflected by the barrier. While the largest Floquet states 

fall within the classically allowed region, there are also peaks which appear beyond this 

region.

6.5.2 D ouble G aussian barrier turnstile

The double Gaussian turnstile consists of two single oscillating Gaussian barriers. In 

the single barrier case, a particle with a single momentum encounters a barrier which 

separates it into several momentum peaks - for example, let us use the case that the single
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FIG. 6.21: Quantum and classical results for a single Gaussian barrier with both transmission 
and reflection. Particles with po =  1.5 are launched at a single oscillating Gaussian barrier with 
UQ — 1, w = 1, FWHM=2, and located at x0(e/t  =  —3 and xonght — 3. Both the quantum and 
classical results are overlayed to show the stark contrast between the two. In the classical case 
(green), the distribution ranges from p /  —2 to as 2.2 (scaled by x50). The quantum case 
(blue) plots \Psi{p)\2 as several visible Floquet states which fall both within and beyond the 
classically allowed region.
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input momentum is separated into three momentum peaks with energies E q — h u j, E0, 

and Eq +  hu. One can consider each of those peaks as a separate input momentum for 

the second barrier, each of which gets split into three additional momenta, as shown in 

the example cartoon in Figure 6.22. In the case of final momentum states that can be 

produced in several ways or paths (e.g. E0 —>■ E q — hu> —» E q , E q —> E q —>• E q, and 

E q —> E q h w  —> E q ) ,  the phases of the different paths must be included and will lead 

to destructive and constructive interference. The double barrier turnstile pump acts as a 

momentum space interferometer.

Position

FIG. 6.22: Conceptual drawing of a momentum interferometer. A basic cartoon momentum 
interferometer would split a wavepacket with a single momentum state into several momentum 
states and then recombine them. Here, an oscillating barrier splits the wavepacket into several 
Floquet states. Each of these Floquet states encounters a second oscillating barrier which splits 
each of these. The resultant peak at the original energy is a recombination of the peaks.

Another application one could imagine is a diode. The diode would operate with one 

fixed barrier and one oscillating barrier as in Figure 6.23. The height of the fixed barrier 

Uq is such that an incoming packet with a kinetic energy E  < U0 does not have sufficient 

energy to transmit over the fixed barrier: Particles approaching from the side of the fixed
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barrier will be reflected. However, the quantum interference effects from the oscillating 

barrier create several Floquet states from the single wavepacket approaching from the side 

of the oscillating barrier. Some of these Floquet states can be sufficiently energetic to 

transmit over the second barrier, permitting pumping in only one direction [85]. (Note 

that transmission will also occur due to classical dynamics associated with the oscillating 

barrier.)

O)

Position

E0+ha)

E0-fiu)

Position Xoieft *0 right

FIG. 6.23: Conceptual drawing of a quantum diode. A quantum diode consists of a single 
oscillating barrier (left) and a fixed barrier (right). The right barrier is high enough tha t a 
wavepacket with energy E  <  E0 is reflected. Therefore particles approaching from the right 
are entirely reflected. Particles approaching from the left first encounter the oscillating barrier, 
which creates Floquet states of higher energy. The higher energy states transmit over the 
stationary barrier. The creates net pumping only in one direction.

A close corollary to the diode is a switch. Again, the switch would operate with 

one fixed barrier and one oscillating barrier, as in Figure 6.24. The momentum of the
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wavepacket is small enough that it cannot transmit over the stationary barrier. However, 

when the oscillating barrier is turned on, the higher energy Floquet states can transmit 

over the stationary barrier. In this way, one can switch on and off the pumping in one 

direction.

>*O)
a>c

111
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Position XOteft x Oright

FIG. 6.24: Conceptual drawing of a quantum switch. Similar to the quantum diode, a quantum 
switch would allow one to  switch a pumping current on or off. Once again, the switch operates 
with one oscillating barrier and one fixed barrier. The fixed barrier has a height which prevents 
the input wavepacket from transm itting over it. However, when the oscillating barrier is turned 
on, the higher Floquet states transm it over the fixed barrier. In this way, pumping only occurs 
when the oscillating barrier is turned on, and no pumping occurs when it is turned off.
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6.5.3  C onclusion

It is clear that pumping can be both a classical and quantum process. Classically, 

there are extremely rich dynamics present which affect the overall pumping of both mo­

mentum and particles. Generally, chaos is detrimental to large pumping regions. In the 

quantum process, interference can play a large role in shaping the resultant final mo­

mentum distributions. The single oscillating Gaussian barrier shows a dramatic difference 

between the classical and quantum results and is an excellent candidate for exploring these 

differences in initial experiments.
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C H A P T E R  7

E xperim ental single barrier 

scattering

7.1 Introduction

Now that we have established the theoretical tools with which to understand this 

scattering problem, we can prepare to study it experimentally with ultracold atoms. As 

was shown in Chapter 5, the apparatus is capable of producing BECs of approximately 

104 87Rb atoms on a chip. We can easily control the final temperature of our atoms by 

choosing a higher or lower RF value during our evaporation. This allows us to smoothly 

transition from thermal atom clouds which follow classical Maxwell-Boltzmann statistics 

(for T  »  Tc, Bose-Einstein statistics approximate to Maxwell-Boltzmann statistics) to 

condensates which are quantum objects in which all of the atoms are in the same state, 

providing an excellent tool for probing both classical and quantum regimes outlined in the 

previous chapter.

In this chapter, we characterize the simple case of scattering from a single oscillating
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Gaussian barrier, which shows obvious differences between the classical and quantum be­

havior. The basic objective of an early experiment is to see quantum peaks emerge as we 

transition from the classical to quantum distribution. Our approach is to launch a cloud of 

atoms at a single oscillating Gaussian barrier and try to detect the resultant peaks. There 

is more than one way of doing this. For example, we initially proposed waiting some suf­

ficiently long time-of-flight to see the peaks manifest in the position space wavefunction. 

The resultant position space probability distribution for the case in Figure 6.20 is shown 

in Figure 7.1 after a t=500 time-of-flight. However, depending on the experimental pa­

rameters, it is possible that by the time the peaks manifest in position space, the cloud 

will have fallen out of the field of view of the camera or there would be no atom density 

signal due to lifetime issues. Therefore, we consider an alternative method.

We instead examine the resultant peaks from a single oscillating barrier using a 

method fondly termed “The Discriminator” , which is similar to the conceptual cartoon 

of a quantum switch shown in Figure 6.24. The basic idea is that a cloud of atoms will 

begin with an initial momentum, scatter from an oscillating barrier giving it a spread of 

final momenta, and then encounter a second static barrier. Depending on the height of 

the second static barrier, the cloud can either transmit, reflect, or be partially transmitted 

and reflected. This second barrier will discriminate or select between low and high final 

momenta.

In this simple case, however, we do not yet have a second barrier in our toolbox. 

Clever use of our trapping potential allows us to demonstrate “The Discriminator” case 

with only a single barrier. The basic idea, depicted in 7.2, is to launch a cloud of thermal 

atoms with initial momentum p0. As the cloud interacts with the oscillating barrier, it 

will acquire a spread of final momentum pj. In the classical case, this spread will be a 

smooth distribution similar to the green curve in Figure 6.20. The quantum case will also 

end with multiple final momentum values, but having Floquet peaks similar to the peaks
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FIG. 7.1: Simulated quantum position space probability density after a long time-of-flight. 
After a sufficiently long time-of-flight (t=500 here), the quantum  peaks manifest in the position 
space probability density. This is the position space probability density which corresponds to 
the position space probability density in Figure 6.20. In the theory units from Chapter 6, the 
parameters are po =  2.5, FWHM =  2, u  =  1, f/o =  T and xoleft =  0. To convert to  experimental 
units, first determine the ratio of the real barrier width to the theoretical barrier width lu. Then 
a /  =  Uq =  tkj'Uo, and p'0
parameters.

Vhmoj'po where the primed units represent the experimental

140



in the blue curve in Figure 6.20. Because our atoms are trapped in a harmonic trap, they 

will interact with the oscillating barrier, reach the top of the harmonic bowl, and then 

reverse directions to interact with the barrier a second time. On the return trip, however, 

we choose a static barrier, which will either fully or partially reflect (and transmit) the 

particles depending on its height.

FIG. 7.2: “The Discriminator” scheme, a) Begin with atoms pushed up the side of the trap, b) 
The atoms slide down the side of the trap, gaining momentum as they approach the oscillating 
barrier, c) After interacting with the oscillating barrier, the atoms continue up the opposite side 
of the trap, now with a larger spread of momentum due to the barrier, d) The atoms eventually 
stop and reverse direction back towards the barrier, e) This time, the atoms approach a static 
barrier, f) Depending on the height of the static barrier, the atoms are reflected or transmitted. 
By measuring the number of atoms reflected or transm itted at varying static barrier height, 
one can determine the momentum spread imparted by the oscillating barrier.

With this method, we can produce plots of transmission of atoms over the barrier as
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a function of barrier height. The transmission curves for the classical and quantum final

momentum distributions from Figure 6.20 are shown in Figure 7.3. These transmission

curves are determined by summing the probability distributions: Transmission =  1 — 
Pf
^(Probability  Distribution).
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FIG. 7.3: Expected transmission curve for “The Discriminator” based on Figure 6.20. The 
transmission of atoms over a barrier with barrier height corresponding to pbar =  \/2Uo for a 
classical case (green) and a quantum case with four visible Floquet states (blue).

Experimental implementation in the lab requires:

1. A packet of atoms held in a quasi-ID conservative trap,

2. A Gaussian potential barrier that can be static or amplitude modulated, and

3. A way of imparting a narrow band of initial momentum to those atoms.
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In this chapter, I detail the design, demonstration, and characterization of each of these 

components in the Aubin lab and show the classical results of a cloud of atoms interacting 

with the static barrier in “The Discriminator” scheme.

7.2 C onservative potential

We have two conservative potentials to choose from in our lab: 1) The magnetic chip 

trap potential, and 2) the optical dipole trap. The motivation behind the demonstration 

of the optical dipole trap described in Chapters 3 and 4 was to use it as the ID potential 

for quantum pumping experiments. However, during my tenure, we became acutely aware 

of the severe impact of stray reflections and the surprisingly deep lattice potentials they 

create. Because of these concerns, we decided to perform the experiment described in this 

chapter in the magnetic chip trap potential .

The specific magnetic chip trap previously described in Chapter 5 is problematic 

for the proposed experiment due to its uneven potential. The dimple that delayed our 

achievement of BEC will also distort the motion of our atomic cloud in this experiment. 

Therefore, we relaxed the trap such that the potential minimum was ~  465//m from 

the surface of the chip. At this distance, the dimple was no longer visible in the trap 

potential. To produce a trap at this distance, we ran 1 A of current through the Z-wire 

with BhoU = 4.64 G and B/0/ / e =  4.92 G. The resulting calculated radial and axial trap 

frequencies are ujt =  x 46.8 and 59.8 Hz in the radial vertical and horizontal directions, 

respectively, and ujz = 2n x  13.9 Hz in the axial direction. We verified the axial trap 

frequency using the sloshing method described in Chapter 5 and measured u r = 2tc x  63(3) 

Hz and u>z = 2tt x  13.5(5) Hz.
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7.3 Gaussian barrier

The Gaussian barrier is produced with a tightly focused blue-detuned Gaussian laser 

beam. The beam is produced with a 532 nm laser (Coherent 532 nm DPSS) generously 

loaned to the Aubin lab by Dana Anderson of JILA for the completion of this work. 

The laser scheme (shown in Figure 7.4) overlaps the green laser with the path of the 

pump/probe beam used for axial imaging. We create a vertical sheet of light that cuts 

through the center of our cigar-shaped trap axially. This is done with a combination of a 

f=60 cm cylindrical lens which focuses the beam in the vertical axis (in and out of the page 

in Figure 7.4) followed by a f=6 cm achromat lens (Edmund 49-329) that collimates the 

vertical axis but focuses the horizontal axis (up/down in Figure 7.4). In order to maintain 

a collimated probe beam, a 1:1 telescope is formed with an additional spherical lens and 

the final f=6 cm achromat lens. The beams are combined on a dichroic mirror that passes 

780 nm light but reflects 532 nm light.

The green beam is directed along the path in Figure 7.4 with a single-mode polar­

ization maintaining fiber. Prior to being coupled to the fiber, an AOM and mechanical 

shutter provide fast switching of the green beam. Once through the fiber, a piece of glass 

is placed along the path of the green laser in order to monitor the power with a photo 

diode. We calibrate the output power with respect to the AOM voltage when the laser 

is in half power mode and full power mode. This allows us to monitor the height of the 

potential barrier. The power vs AOM calibration is shown in Figure 7.5. The amplitude 

control of the RF power to the AOM allows us to modulate the barrier or keep it static as 

desired.

Two mirrors allow us to align our beam to the approximate center of the atom cloud 

with 3 progressively more involved methods. The first method is the most coarse, and 

simply involves using the axial imaging camera in free-running mode to monitor the po-
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FIG. 7.4: Green beam Gaussian barrier scheme. The green beam is delivered to  the system 
through an optical fiber. The beam is combined with the axial imaging pum p/probe beam on 
a dichroic mirror (DM). The blue-detuned focused sheet of light is produced with a cylindrical 
lens tha t focuses the beam in/out of the page followed by a f=6 cm spherical lens tha t collimates 
the beam in/out of the page and focuses the beam up/down on the page. A piece of glass picks 
of a small reflection for monitoring power on a photo diode (PD). Alignment is done with two 
mirrors (M l and M2) and a translation stage under the spherical lens for adjustments of the 
focus along the axis of propagation.
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FIG. 7.5: Green beam power calibration. Green beam power and photodiode voltage at fiber 
output as a function of the AOM amplitude control voltage. The 532 nm laser has two settings: 
half power and full power. The power of the beam is measured with a power meter and 
monitored with a photodetector. Both the power and the photodetector voltage are plotted as 
a function of the AOM voltage.
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sition of the green beam. Once the camera is focused on the atom cloud, we note the 

pixel position of the atom cloud on the camera. We then align the beam to that position. 

This horizontal/vertical alignment is done with the two mirrors. The longitudinal focus 

position is adjusted by translating the final f=6 cm achromat lens along the axis of propa­

gation. We make this adjustment while minimizing the size of the beam’s resultant line on 

the camera. When approximately aligned with this method, the camera shows the beam 

has FWHM =  1.4 pixels =  6.6 /xm along the horizontal axis and FWHM = avertiCai =  40 

pixels =  186 /im in the vertical direction. This alignment method will get us close in the 

longitudinal and transverse axes but not perfect. The camera imaging system we are using 

is designed for 780 nm, and there will be chromatic aberrations at 532 nm. Therefore, we 

expect the position of the focus to need further adjustments.

Now with the atoms present, we turn on the green beam to poke a hole in the cloud. 

The gap be observed visually in the absorption images with a narrow-pass 780 nm filter. 

Again, we adjust the horizontal/vertical alignment with mirrors and make longitudinal 

focus adjustments along the axis of propagation with the lens. The goal is to make the 

hole in the atom cloud as narrow as possible. Figure 7.6a is a typical absorption image of 

the atoms at 56 nK in the chip trap with the barrier on. One can see there is a line cut 

through the center of the atom cloud. That line is due to the presence of the barrier. We 

did our best to center the barrier on the bottom of the chip trap. Figure 7.6 shows the 

beam is displaced a few pixels from the center. This is due to alignment drift over time.

The final alignment tool relies upon the system dynamics to alert us if the atoms 

are sneaking around the barrier in the axis in and out of the camera. While the system 

approximates a ID problem, the actual atom trap is truly 3D. Indeed, if the barrier is 

not focused on the atoms, then a video of sloshing atoms will show some of the atoms 

transmitting when they should be entirely reflecting. This can be corrected by fine tuning 

the focusing lens along the axis of propagation.
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FIG. 7.6: Characterization of the potential barrier produced by the green beam, a) Absorption 
image of the atom  cloud in the presence of the green sheet of light. The green vertical sheet 
is visible as a slice through center of the cloud where no atoms are present, b) Atom number 
density can be converted to trap  potential (recall Chapter 5) to  calibrate the width and height 
of the barrier using a measured atom tem perature of 56 nK. This plot is generated from the 
sum of the pixels in a) along the y-axis. Here, we have fitted to Equation 7.1 with oi =  —141 
nK, x i =  62, <7x =  22 pixels, <Z2 =  92 nK, X2 — 59, <72 = 2.0 pixels, and d =  2.3/iK.
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We use the atom density images such as the one shown in Figure 7.6a to reconstruct 

the potential as was described in Chapter 5. Figure 7.6b shows this potential Tz fitted to 

a double Gaussian given by:

T ^ a i e M ^ p l ) + a 2 e M J j L l I l l ) + d  (7.1)
° 1  a 2

where the first term fits to the trap potential and the second term fits to the barrier 

potential. In this particular image, the barrier has a-2 = 2.0 pixels =  9.3 pm. From the 

average of 5 fits, we determine that our barrier has a2 = 2.2 ±  0.2 pixels =  10.2 ±  0.9pm. 

We can also use this method to estimate the height of the barrier. From these same images, 

we determine that our barrier maximum height (2£/o) is between 70 and 110 nK tall.

Our second method of calibrating the height of the barrier involves launching a cloud 

of atoms with a known velocity at the static barrier and increasing the barrier height until 

half of the atoms transmit over the barrier and half of the atoms are reflected. This is 

shown in Figure 7.7 for an initial velocity 8.6 m m /s (E /k B = 388 nK). The method for 

determining the initial velocity of the atoms is described in detail in Section 7.4. In the 

figure, atoms are launched from right-to-left. Approximately half of the atom cloud is 

reflected and half is transmitted for 58 mW of power. This tells us that 58 mW of power 

from the fiber produces a barrier with a height of approximately 388 nK. Note that a 

quick calculation such as those performed in Chapter 3 will produce a barrier much higher 

(«  2x) than 388 nK with 58 mW of power. Therefore it is important to recall that 58 mW 

is the power output from the fiber. This is not the power that the atoms see. Power will 

be lost due to transmission in the mirrors and reflection at the piece of glass, lenses, and 

cell wall. It is not unreasonable to expect only 70 % of the light at the atoms, assuming 

only 4 % loss per surface along the way.
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FIG. 7.7: Characterizing the height of the potential barrier using the energy of the atoms. A 
cloud of atoms with initial velocity 8.6 m m /s (388 nK) is launched right-to-left at a barrier with 
increasing height. At 58 mW of power, half of the cloud is reflected and half is transmitted, 
indicating a barrier height of approximately 388 nK.

7.4 Initial m om entum

The initial momentum is imparted on the atoms by pushing the atoms up the wall 

of the magnetic chip trap and then releasing them. This push is provided by an external 

z-axis push coil, which produces a magnetic gradient along the z-axis. When current 

passes through the coil, the potential minimum of the chip trap is shifted axially. When 

quickly powered off, atoms find themselves on the side of the chip trap with some potential 

energy which quickly turns to kinetic energy as they slide down the trap wall. If we turn 

off the trap potential when the atoms reach the bottom of the trap, they will continue 

to translate at constant velocity, allowing us to measure that velocity with a series of 

time-of-flight images.

The coil for imparting the initial momentum is placed adjacent to the cell such that 

the strong axis of the coil is aligned to the z-axis (axial direction) of the trap. It is 

positioned around the radial imaging line-of-site, approximately 5 cm from the center of 

the trap. Most of the transmission scattering cases that we are interested in demonstrating
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require an initial velocity v0 >  15 mm/s, recalling that p0 = rnv. For 87Rb, this velocity

corresponds to an energy of 1.63 x 10-29 J or 1.18 pK  (note: this is NOT the temperature

of the atoms, but rather the temperature corresponding to this initial velocity given by 
2

T  = j  = This energy corresponds to a field of 0.0175 G. Given the axial trap

frequency of 2 tt x  13.9 Hz, the coil will need to push the atoms 172 p m  along the z-axis.

A round coil was designed to achieve these goals with an inner radius of 4.8 cm and 14 

turns. We power the coil with one of the transport power supplies using a spare channel 

on the magnetic transport multiplexer. We calibrate the initial velocity produced by the 

coil in the following manner: i) We adiabatieally ramp up the coil current to the desired 

current, ii) We quickly turn off the current and wait until the atoms reach the center of 

the trap. (We do this via trial and error. We know where the unperturbed center of the 

trap is. Therefore, we increase the time the atoms are held in the trap until an image with 

extremely short time-of-flight places them at the center.) iii) When the atoms reach the 

center of the trap, we quickly turn off all fields and measure the velocity by tracking the 

free-fall position of the clouds via time-of-flight. The results of this calibration are shown 

in Figures 7.8 and 7.9.

The points in Figure 7.9 are less linear than one would hope for producing easily 

calculable initial momenta based on current alone. This could be due to a number of 

reasons. For example, we have seen non-uniformity in our trapping potential before, and 

the structure in this data could signify structure in the harmonic trap. It could also be 

trace amounts of sloshing, though care was taken to turn the coil on sufficiently slow to 

minimize sloshing. The bumpiness of this plot should be noted as something that should 

be improved upon in future experiments. For this reason, rather than using the linear fit 

to determine initial momentum for a given coil current, we choose a coil current with a 

measured initial momentum and use the data point itself in the experiments detailed in 

the remainder of this dissertation.
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FIG. 7.8: Initial velocity from push coil. A coil with varying amounts of current provides a 
push along the z-axis to  give the atoms initial momentum. The coil is slowly ramped on, then 
quickly turned off. Atoms will slide down the trap  wall. At the bottom of the trap, all the 
potential energy is converted to kinetic energy and we turn the trap off and watch the atoms 
travel ballistically for a variable time-of-flight.

7.5 Classical experim ental characterization of 

“The D iscrim inator”

A valuable lesson learned early on in attempts to demonstrate the classical momentum 

spread from ’The Discriminator’ was the importance of the trap potential in the classical 

simulations that we attem pt to produce. The simulations in Chapter 6 assume a flat 

potential except for the actual barriers. This is not the case in the experimental system. 

It is obvious from the images in Figure 7.6b that our potential is not flat. We must take 

into consideration the harmonic trap potential if we are to produce accurate simulations.

Adding the harmonic trap potential changes the shape of our final momentum distri­

bution significantly. Figure 7.11 shows the original final momentum distribution without 

the harmonic trap potential in black and the new momentum distribution with the har-
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FIG. 7.9: Initial momentum characterization. The slopes of the fitted lines from Figure 7.8 give 
the velocity of the clouds for a given coil current. Here I plot the velocity dependence on the 
current. The atoms will travel at a velocity of 1.1(2) m m /s per Ampere of current. The error 
bars represent the 95% confidence bounds of the linear fits in Figure 7.8.
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monic trap potential in red. The reason for this change in shape is that we cannot create 

an initial momentum exactly at a single value. There will be some spread. Due to the 

position size of the cloud (on the order of the barrier width), there will be a corresponding 

spread in momentum as we pull it up the side of the harmonic trap for the initial momen­

tum. This issue is depicted in Figure 7.10 which shows the harmonic potential and the 

corresponding phase space diagram. The atoms that have been given an initial momentum 

by being released from the side of the harmonic trap have a significantly larger momentum 

spread than a typical cloud initiated at the bottom of a trap. In the experimental trap, 

the FWHM of our cold atom cloud is «  44/im. Pushing our cloud 264 /im up the axial 

wall gives an initial velocity of 22.4 mm/s. We were expecting the momentum spread to 

correspond only to atom temperature (a few m m /s spread). However, the wall of our trap 

is quite steep at that position, with a slope of about 1.9 m m/s per fxm. This corresponds 

to a spread of several tens of mm/s, much larger than originally anticipated.

We discovered this problem during preliminary characterization of the static barrier 

in “The Discriminator” scheme. We attempted to measure the initial momentum spread 

of our cloud of atoms by repeatedly launching it at the static barrier as we increase 

the barrier height, producing a curve akin to the ones in Figure 7.11. The resulting 

distribution was expected to be narrow, since the final momentum distribution would 

match the initial momentum distribution in this case. However, we instead measured a 

large initial distribution, due to the reasons outlined above. This problem calls for a major 

change in course for future quantum pumping experiments. However, in this thesis, I will 

concentrate on characterizing “The Discriminator” method and the classical dynamics of 

the experimental system. I use these curves to further characterize the initial momentum 

and temperature of our atoms.

In “The Discriminator” measurement method, we measure the transmission of parti­

cles (having already passed through the oscillating barrier) over a static barrier of varying
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FIG. 7.10: Effect of harmonic trap  on initial energy spread of the atoms, (top) Our initial 
momentum scheme of pushing the atoms up the side of the harmonic trap  in order to ensure an 
initial momentum at the bottom of the trap  is shown, (bottom) The phase space diagram of 
a harmonic potential illustrates the expected momentum spread at the bottom of the trap  for 
particles released from the side of the trap. This method results in a larger than anticipated 
spread in momentum when the atoms encounter the barrier.
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FIG. 7.11: Effects of harmonic trap  potential on the final theoretical momentum distribution. 
The original probability distribution vs final momentum plot from Figure 6.15 (black) and the 
resultant probability distribution with the added harmonic trap  potential (red). In the theory 
units from Chapter 6, the parameters are po = 2.5, FWHM =  2, u> =  1, Uq =  1, and xo/e/t =  0. 
To convert to experimental units, first determine the ratio of the real barrier width to the 
theoretical barrier width lu. Then us' — Uq =  hw'Uo, and p'0 =  \Jhmui'po where the
primed units represent the experimental parameters.
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heights. For a low enough static barrier height, we expect that all the atoms will transmit 

over the barrier, while for a high enough static barrier, none of the atoms will transmit. 

The calculated equivalent of this transmission curve, based on the momentum distribution 

in Figure 7.11, is plotted in Figure 7.12. In this figure, the transmission curves for the 

both cases (with and without harmonic trapping potential) are plotted (in red and black, 

respectively). The red curve is the type of curve we reproduce in our experiment. The 

equivalent plot for the quantum picture would create a smoothed step function due to the 

Floquet peaks (recall Figure 7.3).

0.9

0.8

0.7

i°.«
I  0.5 

0.4

.»

§H
0.3

0.2

0.1

2.82.4 2.62.2
Pbar

FIG. 7.12: Calculated transmission over “The Discriminator” as a function of barrier height 
with and without the harmonic trap potential. The classical transmission of atoms over a barrier 
of varying height corresponding to pbar =  \f2Ua with no trap potential from Figure 7.3 (black) 
compared to  the classical transmission curve with a harmonic trap  potential (red). The presence 
of the harmonic trap  potential distorts the expected outcome. In the theory units from Chapter 
6, the parameters are po =  2.5, FWHM = 2, u> =  1, Uq =  1, and xoieft — 0. To convert to 
experimental units, first determine the ratio of the real barrier width to the theoretical barrier 
width lu. Then ui' =  ~ j ju ,  Uq =  fkj'Uo, and p'0 =  Vhnuj'po where the primed units represent 
the experimental parameters.
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We conduct two main studies to characterize the classical dynamics of “The Discrim­

inator” system. First, we study the transmission of the particles over the barrier as a 

function of barrier height as we vary the particle initial momentum. In this study, we 

expect the curve to shift to larger barrier heights as we increase the initial momentum. 

Next, we study the transmission of the particles over the barrier as a function of barrier 

height as we vary the particle temperature from thermal to BEC. Here, we expect the 

transmission curves to cut off more sharply as we decrease the temperature.

We first experimentally reconstruct the transmission curve as we vary the initial mo­

mentum of the particles. The results of this study are shown in Figure 7.13. This figure 

shows the transmission of atoms over a static barrier as the barrier height is increased. 

The height of the barrier is measured using the voltage signal on the photodiode in Figure 

7.4. Each of these curves shows that atoms will fully transmit for low enough barriers, and 

fully reflect for high enough barriers. As the initial momentum of the atoms is increased, 

the barrier must be higher to fully reflect the atoms, as expected. The data points are 

averages of 2-5 experimental runs, with the standard deviation drawn as the error bars.

Here, the photodiode voltage plotted on the x-axis can be converted to energy or tem­

perature using 1 mV =  4.5(2) x 10-31 J. This number is found by recording the photodiode

voltage V50 /5 0  at which the experimental cloud is transmitting 50% and reflecting 50% for
2

each velocity v. We average the conversion for each curve found by 2v̂ 0/50 •

The theoretical curves in Figure 7.13 are drawn as fits to the experimental data, with 

initial momentum values from the fits listed in the legend. Table 7.1 lists the theoretical 

parameters that we use to produce the theory curves to match the experimental data. In 

these theory calculations, we give the atoms zero initial momentum and use the initial 

position on the side of the harmonic potential to impart the potential energy which is 

entirely converted to kinetic energy by the time the atoms reach the barrier. Therefore, 

the sharpness of the cutoff from full transmission to full reflection in Figure 7.13 is due
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FIG. 7.13: Transmission vs initial momentum. Transmission of a cloud of atoms over a static 
barrier with height measured in PD voltage. As the initial momentum of the atoms is increased, 
the transmission curve shifts to  higher PD voltage values. The atoms used here have a temper­
ature of 17 nK. Each data point is the average of 2-5 data runs. The error bars represent the 
standard deviation of those data  runs. The conversion between PD voltage to  energy is 1 mV 
= 4 .5 x l0 -31 J.
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to the initial size of the cloud along the axial direction of the trap. This initial size is 

dependent upon the temperature of the cloud. For the atoms in Figure 7.13, the variance 

of the Gaussian fit to the initially cooled atom cloud is 7.3 pixels or 33.9 /xm.

TABLE 7.1: Parameters for producing theory curves in Figure 7.13. 
C oil current In itia l p osition  Initia l energy Initial ve loc ity
14.85 A 180 fim 1.80 x 10"29 J 15.74 mm/s
18.95 A 230 fjm 2.93 x 10~29 J 20.09 mm/s
21.42 A 260 nm  3.74 x 10~29 J 22.68 mm/s

Next, as we anticipate future quantum pumping experiments that will explore both 

classical and quantum regimes by varying the temperature of the atom cloud, we study 

the transmission of atoms as a function of barrier height as we vary the temperature of 

the atoms. We adjust the temperature of the atoms simply by sweeping the RF knife 

higher or lower during the final evaporation stage. The results are shown in Figure 7.14 

for atom temperatures of 64 nK, 36 nK, 17 nK, and BEC. The initial cloud size at these 

temperatures is given in Table 7.2. The data points arc averages of 2-5 experimental 

runs, with the standard deviation drawn as the error bars. As one would expect, the 

transmission curve is much broader for higher temperatures, indicating a larger initial 

momentum spread.

TABLE 7.2: Initial cloud size as a function of tem perature for producing theory curves in Figure 
7.14.

T em perature Initia l size
BEC 5 pixels =  23 /tm
17 nK 7 pixels =  34 fxm
36 nK 11 pixels =  51 /tm
64 nK 16 pixels =  73 fim

In Figure 7.14, the theory curves are not fits but actual theoretical calculations for a 

cloud with the same temperature and experimental parameters. To produce these theory 

curves, we must convert our calculated transmission curves, which are typically a function
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FIG. 7.14: Transmission vs temperature. Transmission of a cloud of atoms over a static barrier 
with height measured in PD voltage. As the tem perature of the atoms is decreased to BEC, 
the transmission curve becomes sharper, indicating a smaller spread in initial momentum. The 
atoms used here have an initial velocity of 15.47 mm/s. Each data point is the average of 2-5 
data runs. The error bars represent the standard deviation of those data runs. The intersection 
of the fits at 60% transmission (not 50% as one would expect) is likely due to long term 
experimental drift in the alignment of the barrier beam.
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of momentum (recall Figure 7.12), to functions of photodiode voltage. To do so, we use 

the same method as above to match the voltage at which the cloud is transmitting 50% 

and reflecting 50% with the kinetic energy of the cloud. Table 7.3 shows the conversion 

factor for each cloud in the plot above. Though we use the same initial velocity for the 

clouds in this case and only vary temperature, it is clear that there is some drift in V 5 0 / 5 0  

indicating that there are fluctuations in the experiment that we are not controlling.

TABLE 7.3: Conversion factors for producing theory curves in Figure 7.14.
C loud T em perature V  5 0 /5 0 C onversion
64 nK 45 mV 4.6 x IO- 31 J/m V
36 nK 42 mV 5.0 x 10-31 J/m V
17 nK 40 mV 5.2 x 1 0 '31 J/m V
BEC 38 mV 5.5 x 10~31 J/m V

7.6 C onclusion

We understand the classical behavior of the experimental system quite well. We 

observe good agreement between the theory developed in Chapter 6 and the experiment 

described in this chapter. Armed with these tools, we have a much clearer picture of the 

characterization of each of the required tools in ’The Discriminator’ scheme. There are also 

several improvements that can be made to truly probe the classical and quantum features 

of quantum pumping or even scattering from a single oscillating barrier. The realization 

that our initial momentum spread cannot be made as narrow as we require for these future 

experiments has given us the foresight to consider a different scheme for imparting initial 

momentum on the atoms. For that reason, a shift in experimental design began that 

was anticipated to take significant time, and I passed the experimental quantum pumping 

torch to AJ Pyle. In the remaining chapter, I detail some of the unanswered questions and 

potential experimental schemes to improve the setup towards future quantum pumping
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experiments.
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C H A P T E R  8

C onclusion and O utlook

I assisted in the design, construction, testing, characterization, and optimization of 

a dual-species dual-chamber atom-chip apparatus for producing ultracold quantum gases 

from the ground up. The apparatus is capable of producing 87Rb BECs of ~  104 atoms 

in a magnetic chip trap. In anticipation of quantum pumping experiments with ultracold 

neutral atoms, I have laid the groundwork for such experiments with the following steps 

beyond demonstration of a BEC:

•  Characterization of a quasi-ID channel which mimics the nanowire in mesoscopic quan­

tum pumping schemes.

•  Implementation of a Gaussian potential barrier which can be static or amplitude mod­

ulated, and characterization the width and height of that barrier.

•  Development of a method of imparting an initial momentum to the atoms using a 

magnetic field gradient, and characterization of the initial momentum imparted to the 

atoms via this method.
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•  Establishment of a breadth of theory for modeling the classical dynamics of such a 

system and for comparing it to quantum effects in collaboration with John Delos, Kunal 

Das, Kevin Mitchell, Tommy Byrd, and AJ Pyle.

•  Verification of the classical modeling by producing experimental transmission curves 

while varying the initial momentum of the atoms.

•  Verification of the classical modeling and the tunability of the experimental system 

from classical thermal gases to quantum gases by producing experimental transmission 

curves while varying the temperature of the atoms.

In doing so, we have demonstrated excellent agreement between the predicted models from 

Chapter 6 and the experimental results in Chapter 7.

In addition, we have become intimately familiar with the capabilities of the exper­

imental system which we have built and described in Chapters 4 and 5 while gaining 

insight into potential improvements and next steps. Perhaps the largest challenge which 

we have encountered as far as the quantum pumping experiments entail is the shortcom­

ing of our initial momentum method to produce clouds with a sufficiently small spread of 

initial momentum. This is in fact so problematic that we have shifted experimental gears 

entirely for the next implementation. This next experiment will impart initial momentum 

to the atoms not by pushing them up the harmonic wall but instead by dropping them 

and allowing them to accelerate due to gravity. A significant difference between this next 

method and the one presented in Chapter 7 is the lack of a trapping potential while the 

atoms are accelerated. I recommend that care should be taken during these preliminary 

stages to ensure that this does not detrimentally impact the experiments proposed.

Other more complicated methods exist for producing narrower spreads in atom clouds. 

For example, one could push the atoms up the side of the harmonic chip trap with a 

magnetic gradient and then intentionally implement a hybrid magnetic trap -I- ID optical
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lattice trap as shown in Figure 8.1a. The ID optical lattice would confine the atoms to 

discrete lattice sites with lattice spacing ss 532 nm. A single-site (or several-site) lattice 

addressing scheme could then be implemented to keep only the atoms in a narrow band of 

lattice sites. Figure 8.1b shows a field in blue that would preferentially eject atoms from all 

lattice sites but the center one. In this manner, the spatial and momentum spread of the 

cloud is reduced to 532 nm (see Figure 8.1c). Such a scheme is challenging to implement 

and could alone suffice as a dissertation topic. However, schemes such as this have been 

implemented to address atoms held in single lattice sites for applications such as qubit 

registries [90]. In the Aubin Lab, one could potentially use the Zeeman splitting already 

induced by the chip magnetic gradient and microwave potentials

There also exist additional improvements to the more general apparatus (not only 

impacting the quantum pumping experiments) which will enhance the performance of all 

experiments. These improvements primarily involve the stability and reproducibility of 

the system. We were eager to demonstrate an operational BEC-producing apparatus dur­

ing my tenure at William and Mary, and we did so successfully while still developing an 

extremely versatile system with a variety of potential experimental endeavors. This eager­

ness has also left room for tweaking and optimizing in the future. Since my departure, the 

group has already improved the TA coupling and output, leading to larger atom numbers 

in the MOT as well as the BEC. I have no doubt that similar incremental improvements 

will be made throughout the years.

One of the main feats of the apparatus we have developed is the versatility it offers to 

the experimentalist. The apparatus is not only capable of producing magnetic chip trap 

BECs, but it is also capable of dipole trapping with long lifetimes in both the MOT and 

science chamber. This enables all-optical or hybrid m agnetooptical BEC production in the 

MOT chamber [55], and possibly more continuous loading schemes for the science chamber. 

The apparatus is also capable of cooling and trapping several isotopes of rubidium and
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FIG. 8.1: Single-site addressing in an optical lattice for narrower momentum packets, a) We 
push the atoms up the side of the magnetic chip trap, b) We overlap the magnetic chip trap 
with an optical lattice thereby producing a hybrid magnetic trap +  ID optical lattice trap. 
Then we preferentially eject atoms from all but a single lattice site, c) This leaves a cloud of 
atoms with significantly smaller spatial and momentum spread. Single site addressing could be 
done with a scheme similar to one found in [90].
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potassium, and I also initiated preliminary demonstrations of molecular photo-association 

have been performed. With the successful demonstration of BEC in this versatile appara­

tus, the Aubin Lab is well-positioned for pursuing not only quantum pumping experiments, 

but a number of experiments in fundamental physics and application development.
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A P P E N D IX  A

D ynam ical m onodrom y

Dynamical monodromy is a term used to describe a system that, upon evolving around 

a closed path, does not return to its original state. In a collaboration with Professor John 

Delos and his student Chen Chen, I was asked to develop portions of two experimental 

schemes for observing dynamical monodromy. The first scheme is a purely classical re­

alization of the theory using a magnetic puck on an air table. The second scheme uses 

a gas of ultracold atoms in a laser field. This latter scheme offers advantages such as 

the possibility of exploring the role of atom-atom interactions and quantum mechanical 

effects. My primary role in the publication attached below was the laser scheme design 

and early calculations of initial conditions in the second scheme, as well as carrying out 

the experiments on the air table (detailed in the Appendix of the attached paper).
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Integrable Hamiltonian systems are said to display nontrivial monodromy if fundamental action-angle loops 
defined on phase-space tori change their topological structure when the system is carried around a circuit. In 
an earlier paper it was shown that this topological change can occur as a result o f time evolution under certain 
rather abstract flows in phase space. In the present paper, we show that the same topological change can occur 
as a result o f application of ordinary forces. We also show how this dynamical phenomenon could be observed 
experimentally in classical or in quantum systems.
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I. INTRODUCTION

The general goal o f  this type o f  research is to understand 
and control quantum system s by understanding and controlling 
the corresponding classical system s. In recent years there have 
been major advances in classical mechanics; nonlinear dynam­
ics, chaos theory, the “butterfly effect,” new understanding o f  
periodic orbits and their bifurcations and proliferation and 
their organization into fam ilies, chaotic transport and fractals, 
and som e recently uncovered phenomena called “Hamiltonian 
monodromy.” In each case, new understanding o f  classical 
system s has led to new understanding o f  their quantum  
counterparts.

This paper deals with the last-m entioned topic. We display  
new aspects o f  Hamiltonian m onodromy in classical system s, 
and we show how these phenomena might be observed in a 
m acroscopic system  and in a system  o f  ultracold atoms.

The proper name o f  our topic is “dynamical manifestations 
o f  nontrivial monodromy o f  action and angle variables in 
Hamiltonian system s.” Let us just call it “dynamical m on­
odromy.” M onodromy means “once around a closed path”; a 
system  exhibits “nontrivial m onodrom y” i f  when w e g o  around 
a closed path in som e space, the system  does not com e back to 
its original state. The sim plest exam ple o f  functions that have 
nontrivial m onodromy are f ( z )  =  z 1/2 or g(z)  =  log(z) for  
com plex z: On one circuit around the branch point, z =  0, these  
functions change their values. A  function o f  tw o real variables 
(l ,h)  with the same property is a ( l ,h )  =  I tan_1( / i/ ( ) ,  If I 
represents angular m omentum and h represents energy, and 
w e multiply by constants to get the units consistent, then this 
function gives an approximate formula for an action variable 
o f  the system  w e w ill study: It is a multivalued function o f  
(l,h),  and on one circuit around the origin o f  (l,h)  space, it 
changes its value.

A Hamiltonian system  is said to exhibit nontrivial m on­
odromy if  the system  is integrable and action and angle 
variables can be constructed, but they are found to be 
multivalued. A ngle variables are defined in such a way that 
they trace out fundamental loops on tori. For the system s w e  
are considering, the angle variables change sm oothly as (l ,h)  
change, but when (l ,h)  undergo a circuit around the origin, 
the loops change their topological structure. Specifically, a

'Corresponding author.

PACS numbers): 05 .45 .-a , 37.10.Vz, 45.20.Jj

loop that begins entirely on one side o f  a classically forbidden 
region ends by encircling that forbidden region. This is called  
a “static” m anifestation o f  m onodromy because it involves 
sm ooth connections am ong coordinates defined on “static” 
tori.

In Refs. [ 1,2] it was pointed out that this static manifestation  
o f  m onodrom y must have dynamical consequences: If a 
collection  o f  particles is given initial conditions corresponding 
to an initial angle loop on a torus, and those particles are driven 
continuously around a monodromy circuit, then the loop o f  
particles must undergo the sam e topological change that is 
seen in the angle loop.

The purpose o f  this paper is to answer two questions. (1) 
Can this phenomenon be seen using ordinary particles that 
obey N ew ton’s laws o f  motion? (2) Can it be seen under less- 
than-ideal conditions, with particles having a distribution o f  
energies and angular momenta? W e show in this paper by 
computation that the answer to both o f  these questions is “Yes.” 
We also present a design for an experimental measurement 
that would answer another question. (3) What happens in a 
quantum system ? To what extent w ill these phenomena show  
up in an ultracold gas or a Bose-Einstein condensate?

In the next section w e give a general introduction to 
Hamiltonian monodromy, so  that we can pose questions (1) 
and (2) with more mathematical precision. Then in Sec. Ill 
w e establish by computation affirmative answers to questions 
(1) and (2). Finally in Sec. IV and Appendix C w e present 
designs for two experimental implementations o f  the theory. 
O ne is purely classical, involving pucks on a tilting air table, 
w hile the other, an ultracold gas or a BEC, brings forth 
quantum-mechanical issues that are not addressed by the 
com putations presented in this paper.

II. STATIC AND DYNAMICAL MANIFESTATIONS 
OF MONODROMY

A, Tori and torus quantization

Let us begin with the primary theorem on bound integrable 
system s [3]. Given a phase space o f  dim ension 2 N  with coor-
dinates z =  ( z i  Z i n )  =  (<7i Q n . P i  P n )  =  (q.p),
suppose there are N  independent functions (Fa(q,p)|a =  
1 , 2 , . . .  ,N )  “in involution” with each other, i.e., their mutual

1539-3755/2014/89( 1 )/012919( 15) 012919-1
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Poisson brackets all vanish,

[F „ (z ),f> (z )]  =  ^ y d F a / d q M d F ^ / d p i )
i

- i B F a / a P,y(aFp/dq , )  =  o. (i)

We use lowercase letters /„  to represent the values o f  these 
functions, and we call the space o f  values { /O|or =  1 , . . .  , A)  
o f  these functions “spectrum space.”

We exam ine the level sets A  /  o f  these functions— the set 
o f  phase-space points z  such that all F„(z) are constants, /„ :

A /  — (z |F „(z) =  f a , a  =  1......A ) . (2)

The “L iouville-A m old” theorem asserts that any such level 
set that is compact and connected is topologically equivalent 
to a torus [3], Furthermore there ex ists a set o f  action and 
angle variables which make good  coordinates for the tori. Each 
angle variable <pj (z) varies from 0  to I n  when the phase-space 
point z  goes around one o f  the fundamental loops o f  a torus, 
while the action variables / ,( z )  are constant on each torus 
because they depend on z  on ly  through their dependence
on the set o f  functions F(z): /*(z) =  J ^ (F i(z )  FN(z)).
It is presumed that the Hamiltonian function for the physical 
system  depends only on the functions Fa (z); there is presumed 
to be an invertible relationship betw een values f o f  these 
conserved quantities and values i o f  the action functions, so 
the Hamiltonian can also be expressed as a function o f  the 
action variables, H ( z) =  M ’[I(z)\.  It fo llow s that the motion 
o f  any phase-space function g(z) is quasiperiodic (i.e., a 
Fourier transform o f  g[z(t)] show s A  fundamental frequencies 
and all harmonics and com binations), and the fundamental 
frequencies to, are sim ply obtained from the Hamiltonian by 
differentiation, a>j =  )/'<)!,. A lso , good approximations
to quantum eigenvalues and eigenfunctions are obtained by 
exam ining a discrete set o f  tori having appropriately quantized 
values o f  action variables.

These concepts, first formulated by Liouville, carried into 
the old quantum theory by Einstein in 1918, and revived 
starting in the 1970s by Percival [4 -6 ] , Marcus and Noid  
[7 -1 6 ], and Berry [17], are a standard part o f  the repertoire 
o f  sem iclassical physics and chem istry [18]. They have been 
used to study an im m ense variety o f  system s, such as sim ple 
nonlinear oscillators (e.g., the H enon-H eiles system ) [ 19-22], 
m olecular vibrations and rotations [23], excited states o f  
hydrogen in electric and m agnetic fields [24,25], doubly  
excited states o f  helium  [2 6 -2 8 ], spin-orbit coupling [29], 
and excited states o f  nuclei [30], (G oogling the phrase “torus 
quantization” gives over 3000 hits.) Torus quantization also 
arises in problems far afield from atom ic, molecular, and 
optical (AM O ) physics: In a study o f  a Buffon probability 
problem (when a needle is dropped in random positions on 
a tiled floor, what is the probability that the needle intersects 
n o f  the lines between the tiles?), it w as found that torus 
quantization gives a step on the path to the solution [31], 
A nalysis and quantization o f  tori have been w idely studied 
for so many years that it m ight com e as a surprise that 
reexamination o f  the theory w ould lead to new and interesting 
phenomena.

B. Singular points and monodromy

In this beautiful and w ell-known theory, it is  easy to fail to 
notice the little assumption that the functions F„(z) must be 
independent, i.e., their phase-space gradient vectors VzFa (z) 
must be linearly independent. However, in many system s there 
are points z , at which the functions fail to be independent 
(among other things, one or more o f  the gradients might 
vanish). Phase-space points zs at which the rank o f  the A  x  2 A  
matrix D F  =  dFi /'dz j  is less than A  are called singular points, 
and the corresponding values o f  the conserved quantities 
F (zs) =  fs are called singular values. A  value f =  F (z) is 
“regular” only if  no phase-space point z  in its preimage under 
F  is singular, otherwise it is a singular value. A region o f  
spectrum space is called “regular” if  and only i f  all values o f  f 
in that domain are regular.

The importance o f  singular values is that near such singular 
values, the structure o f  the embedding o f  tori in phase  
space might change. A  trivial exam ple is a one-dim ensional 
pendulum, in which H  =  p 1 / 2  — cos q. Phase-space points 
z_  =  (q =  0,p =  0) and z+ =  (q =  Jt ,p  =  0) are singular 
(the gradient o f  H  vanishes there), and the singular values 
are F _  =  H (z _ )  =  — 1, E + — H ( z +) =  1. For E  < — 1 there 
are no tori, w hile for each energy in the interval — 1 <  E  <  1, 
a single torus corresponding to librational motion exists. For 
E  >  1, w e find at each value o f  E  two tori, corresponding to 
rotation in a clockw ise or counterclockwise sense. Thus at each 
o f  the singular points E  =  ± 1 ,  there is a structural change.

More substantial exam ples are given in the book by 
Cushman and Bates [32]. This book exam ines sim ple m e­
chanical system s that appear in undergraduate textbooks (two- 
dimensional harmonic oscillators, tops, spherical pendula, 
etc.) and uses m odem  mathematical artillery to study them—  
Poisson algebras. Lie theory, Ehresmann connections, Morse 
theory, bifurcation theory, and especially global analysis. 
Global analysis focuses on how tori foliate phase space 
smoothly, or how the em bedding o f  tori in phase space can 
change abruptly near a singular value.

Duistermaat [33] (apparently follow ing a suggestion of 
Cushman) was the first to publish a paper discussing nontrivial 
consequences o f  singular values. Consider a system  with two 
degrees o f  freedom  having a Hamiltonian o f  the familiar 
kinetic plus potential energy form, in which the potential 
energy is cylindrically symmetric:

p 2
H ( p , q ) =  y  +  V (p)  =  ft, (3)

p  =  s j x 2 +  y 2, (4)

V(p) =  - a p 2 +  bp4 (a .b  >  0). (5)

The potential-energy function has a w ell to confine particles 
within a certain region and a central potential-energy barrier. 
Conserved quantities are the angular m omentum L  =  x p y — 
yp x, with numerical value L(p,q) =  / and the Hamiltonian 
A(p,q) =  ft. The derivatives o f  both W(p,q) and L(p,q) 
vanish at the origin in phase space ( x , y , p x ,p y ) =  0 , and 
therefore it is a singular point, and the corresponding origin in
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spectrum space (l,h )  =  0 is a singular value, or monodromy 
point.

A closed directed path [/(* ),ft(s)] in spectrum space 
surrounding this singular value is called a monodromy circuit 
(s is a continuous timelike variable representing points along 
the path). If the canonical action functions ./* ( / ,  A) are defined 
so  that they vary smoothly as the system  is carried around 
this circuit, then, when the system  returns to the original (/,/i) , 
one o f  the action functions is changed. One o f  the two action 
functions is always

J?\(l,h) =  £  L(z)d<t> — I,

/ |( z )  =  L (z) =  x p y -  y p x .
(6)

so it does not change when w e carry the system  around the 
monodromy circuit,

tfiS / ( l , h )  =  S U l ,h )  =  l i = l f (7)

(superscripts i and /  mean initial and final). The other action 
variable can initially be taken to be an integral around a 
“p  loop”:

^ { V ' h>) =  i  /  P P( p J , h ) d p .  (8)

However, at the end o f the monodromy circuit, this action 
function has changed to [3 3 -3 5 ]

> / ( / / ,h{) = s u v t f )  -  j?Aif ). (9)

J?2 is therefore a multivalued function o f  (l,h). The conjugate 
angle variables must also change on a passage around the 
monodromy circuit:

4>{ = <t>\ + 02,

=  02 =  02.

( 10)

(ID

It is easy to verify that the transformation from (0 ',,02, / ( ,  /^) 
to (0^,02 , l {  , l { ) is canonical.

In Fig. 1, w e show this static manifestation o f  monodromy. 
The figure in the center is a m onodromy circuit in (l,h )  
space; in this case, any counterclockwise circuit surrounding 
the origin gives the sam e result. The outer figures show  
seven tori corresponding to seven different points in the (l.h )  
spectrum space. The tori are represented in ( x ,y ,p p) space [it 
is convenient to regard ( x ,y ,p p) as orthogonal axes]. W hen  
the system  is carried around such a circuit surrounding the 
origin in (l,h )  space and it returns to the original torus, the 
coordinate system  defined by canonical angle variables on the 
tori changes smoothly into a different one. (The method used  
to calculate angle loops is given in Appendix A.)

On each torus two fam ilies o f  fundamental loops [yi ] (green  
curves online) and [y2] (blue curves online) are shown, and 
they provide a coordinate system  for each torus. Each toroidal 
loop yi (green online) has a constant value o f  canonical angle  
variable 02, w hile 0 i varies from zero to 2n . These loops are 
spaced by fixed steps o f  02- Likewise each poloidal loop  y2  

(blue online) has a constant 0 i , while 02 varies from zero to

27r . Those loops are spaced by fixed steps o f  0 i . One o f  the y2 
loops is stressed by a heavy curve (black online).

The fundamental loops and the associated coordinate 
system s in the tori change sm oothly as / and h change. 
Starting at / =  0 , h =  —35, the stressed yj  (heavy black 
loop) is perpendicular to the toroidal (green online) loops, 
and it is projected into the (x ,v )  plane as a line. M oving  
counterclockwise in the (l,h )  plane, that loop is widened and 
tilted. For h >  0, as I decreases from (l,h )  =  (5 ,6 ) to (0 ,5 ), 
the “doughnut hole” shrinks, and the innermost point o f  any 
poloidal y2 loop approaches the origin in ( x .y ,p fl) space. For 
1 =  0 this ( x ,y ,p p) projection o f  the torus is singular, and the 
Y2 loops all rise vertically through the origin. When / continues 
to decrease for h  >  0, the formerly poloidal (blue online) 
loops all go  around the doughnut hole, and their projections 
into the (jc,v) plane enclose the origin. Continuing around 
the m onodromy circuit, the loops change smoothly; when 
w e get back to the original torus 1 = 0, ft =  —35 the loops 
Y2 , and the associated canonical angle coordinate system , are 
topologically different from the original loops on that torus. 
The originally poloidal loop now goes around the torus in both 
poloidal and toroidal senses.

A lso, exam ining the projections o f  the y2 loops into the 
(x ,y )  plane, wherein there is a classically  forbidden region 
surrounding the origin, the topology o f  the projected loop has 
changed. Initially it is  a “trivial” loop, which in configuration 
space could be shrunk to a point without passing through the 
forbidden region, while at the end it has winding number — 1 
about the forbidden region.

At the top o f  the monodromy circuit, at (/ =  0,h =  5) the 
(x,y,pp) representation o f  the torus is singular. However, 
the torus itself and its basic loops are not singular there. 
To display this, w e show in the top line o f  Fig. 1 a 
representation o f  the tori in another space, (X  =  y +  px, Y = 
y — px, Py =  x +  py), where the tori and the poloidal loops 
(blue and black online) evolve sm oothly from (/ =  5, h =  6) 
to (/ =  —5, h =  4). This change o f  the topological structure o f  
the fam ily o f fundamental loops [y2 ] is a static manifestation o f  
monodromy.

Quantum im plications o f  multivalued action variables were 
first described by Cushman and Duistermaat [36]: The lattice 
o f  allow ed sem iclassical eigenvalues {E nm \, defined such that 
.^ ( m ,E„ m) = (n +  1 /2)ft, « / j (m ) =  m h  has a defect. The 
global perspective was brought into AM O  physics especially  
by Sadovskii, Zhilinskii, and their colleagues. They have used  
the new methods to show the presence o f  monodromy and re­
lated phenomena in the hydrogen atom in perpendicular fields 
[3 7 -3 9 ], the C 0 2 m olecule [4 0 -4 2 ], HCN [43], LiCN [44], 
system s with coupled angular momenta [45,46], and a number 
o f  m odel oscillator system s [47—49], Quasilinear m olecules 
are discussed at length in [5 0 -5 2 ], diatom ic m olecules in 
fields in [53], and the hydrogen atom in tilted fields in [54,55]. 
Experimental observations in a classical swing-spring system  
were made in [56],

C. A dynamical manifestation of monodromy

The above discussion describes the properties o f  angle 
coordinates on each (l,h ) torus, and how those coordinate 
system s change i f  w e compare one torus with another. We call
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FIG, 1. (Color online) A static manifestation o f Hamiltonian monodromy. Explanation is given in Sec, II B.

the phenom enon illustrated in Fig. 1 a static manifestation o f  
m onodrom y because it is a property o f  static coordinate sys­
tem s on static tori. A time variable t never appears in Sec. II B 
above; there is a path variable s for the monodromy circuit 
(l(s),h (s)), but motion in real tim e is not considered. Therefore 
it may seem  that monodromy is an abstract geometrical 
property o f  abstract variables, with no interesting dynamical 
consequences. However, w e now know that monodromy has 
significant dynamical consequences [ 1,2],

What happens i f  in addition to the forces represented by the 
Hamiltonian H (z), w e subject the system  to an additional 
perturbing flow in phase space that changes the angular 
momentum and energy o f  particles in the system ? Such 
additional forces and torques drive particles from one torus 
to another.

Specifically, suppose w e begin with a collection o f  nonin­
teracting particles on an initial torus having (/ =  0, h <  0), 
and suppose that the positions and momenta o f  these particles
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correspond to the initial y i  loop. Suppose then that all particles 
are made to change their angular m omentum and their energy 
simultaneously, so that at every instant all particles have equal 
angular momentum and energy. Suppose furthermore that as 
they are driven from one torus to another, the change o f  
torus leaves the value o f  the angle variables unchanged. (This 
statement requires a definition o f  the origin o f  coordinates on 
each torus, which w e give in Appendix A.) Then the angle 
variables evolve with time as

^  ( 12 )
a t

We may think o f  this evolution as occurring in incremental 
steps. In the first half o f  each step, the particles m ove along  
a static torus with d<p/dt =  o>(/,/i), and in the second half o f  
each step, each particle m oves from a point on one torus to a 
point on an adjacent torus in such a w ay that the numerical 
values o f  the angle variables are unchanged 4(1 ,h) =  <t>(l +  
d l,h  +  dh). We call this process “ideal” evolution. It is ideal 
in two senses: (i) the particles all begin on a single loop  
on a single torus, and that loop has a constant value o f  
the angle variable <p\; (ii) the particles m ove synchronously 
from one loop to another. This process is  one type o f  ideal 
evolution.

Now suppose that the perturbing flow carries the particles 
in this way around a monodromy circuit in real time. In [2] 
w e gave a full description o f  such “ideal” evolution, and w e  
showed that a collection o f  particles distributed around a y i 
loop remains always distributed around a y i loop. At the end 
o f  the monodromy circuit, when all particles have returned to 
the original torus, they occupy the final y i  loop; that is, they 
have gone from a loop that is on one side o f  the potential- 
energy barrier to a loop that surrounds the potential-energy 
barrier. Thus the change in the angle coordinates on the tori is 
m anifested in the dynamical behavior in real time.

The work in those references [1,2] left two important 
questions unanswered. (1) The ideal evolution defined therein 
arises from application o f  a perturbing flow in phase space 
which is (or can be) a Hamiltonian flow, but which cannot be 
derived from a single-valued Hamiltonian function. Can w e  
implement a monodromy circuit by application o f  ordinary 
forces? (2) In any real system , the initial conditions cannot 
be a perfect y i  (poloidal) loop defined on a single torus; 
particles will have a distribution o f  initial angles, initial 
angular momenta, and energies. Can a m onodrom y circuit be 
implemented in a real system ?

III. SIMULATIONS AND RESULTS

In this section, w e show by computation that the answers 
to the two questions given at the end o f  Sec. II are “yes”: (1) 
a monodromy circuit can be achieved by the application o f  
ordinary forces, and (2) it can be achieved under reasonable 
experimental conditions. W e have carried out calculations on 
a variety o f  two-dim ensional circularly symmetric potential 
energies having a w ell and a central barrier, comparable to 
that given in Eq. (5). To change the angular m om enta o f  the 
particles, we apply a torque. A lso, since raising and lowering 
the energy o f  the particles would not be easy to implement in 
an experiment, we instead lower and raise the central barrier

(or equivalently, raise and lower the potential w ell). To answer 
the two questions separately, w e carry out the calculations 
under two sets o f  initial conditions.

Single loop initial conditions (case a). We suppose that 
initially the particles all have the sam e energy and angular 
momentum, so their phase points lie on a single torus; we 
suppose that the particles are uniformly distributed on a single  
initial yi loop on that torus, sim ilar to the stressed (black  
online) loop in Fig. 1. Note that whereas the particles initially 
all have the same angular m omentum and energy, as soon 
as a transverse force is applied, with the sam e force on all 
particles, each particle experiences a different torque, so  their 
angular momenta do not remain equal. A lso  as the potential 
energy changes, they gain and lose different amounts o f  
energy. However, the particles always occupy a single loop  
in phase space. That loop is close to a corresponding loop  
on a single torus, provided that the perturbing forces are 
applied slow ly and gently, so that they do not change much 
during a radial oscillation o f  the particles. This is a kind o f  
adiabatic implementation o f  the m onodromy circuit. In our 
calculations, the entire monodromy circuit is implemented 
in approximately 30 cycles o f  radial oscillation. (Further 
discussion o f  adiabaticity is in Appendix D).

Cold-gas initial conditions (case b). The Heisenberg 
uncertainty principle tells us that we cannot fix both the 
angle and the angular momentum o f  particles, and practical 
experimental limitations tell us that we cannot fix the energy 
exactly. We suppose that the initial conditions involve a range 
o f  initial angles and angular m om enta and energies, so that the 
phase-space points o f  the particles lie  on different tori, but all 
are reasonably close to the initial y i loop o f  case (a). The spread 
o f  angular momenta, angles, and energies is consistent with 
what can be done experimentally for a cold  gas described in 
Sec. IV, so w e call this case “cold-gas initial conditions.” Again  
the applied forces change slow ly compared to the period o f  
radial oscillation. (However, note that i f  the forces change too 
slowly, so that the time required to go  around the monodromy 
circuit is too long, then the gas particles w ill spread because  
o f  their thermal motion, and the change o f  character o f  
the loop will not be visible. Computational experience has 
shown that the topological change is visible when the entire 
monodromy circuit is im plemented in about 30  cycles o f  radial 
oscillation.)

To drive the particles around the m onodromy circuit w e use 
the follow ing five steps. Every step is done sufficiently slowly  
that there are several radial oscillations o f  the particles in each 
step. In computations, w e can start a collection o f  particles 
distributed around a single loop with zero angular momentum  
and fixed energy, or distributed with a broader range o f  initial 
angular momenta and energy comparable to the single-loop  
initial conditions. However, in an actual experiment, it is easier 
to start particles in a small packet near the inner turning point. 
Then after they have m oved to the desired position, the process 
described below is begun.

(1) Keeping the cylindrically symmetric potential un­
changed, add a rotating force F (t) , the same force on all 
particles, to increase their angular momenta. The force is  
turned on and o ff gently and, in case (a), its direction is  kept 
perpendicular to the position vector o f  the center o f  m ass o f  the 
loop o f  particles. A s a result, the force rotates counterclockwise

012919-5

174



C. CHEN, M. IVORY, S. AUBIN, AND J. B. DELOS PHYSICAL REVIEW E 89,012919 (2014)

with a frequency c lose  to 

/ A (I,h) 
r(T,h) '

(13)

r ( l ,h ) and A ( l ,h ) are, respectively, the “radial period” or tim e  
o f  first return, and the angle subtended in that tim e on the torus 
having angular momentum and energy respectively equal to 
(l,h). I and h are the mean values o f  angular momentum and 
energy at the tim e t  (see Appendix A).

(2) Turn o ff  the rotating force and raise the potential w ell 
so as to increase the energies o f  the particles to positive 
values. Equivalently, w e may lower the central barrier; particle 
energies are defined relative to the value o f  the potential energy 
at the origin p =  0.

(3) Keeping the cylindrically symmetric potential fixed at 
the new values, apply the rotating force again the opposite way 
to reduce the angular momenta until they are negative. Again  
that force must rotate counterclockwise at a frequency c lose  
to that given in Eq. (13). In the “single-loop” computations o f  
case (a) w e keep the force perpendicular to the vector from the 
origin to the center o f  mass o f  the fam ily o f  particles.

(4) Turn o ff  the rotating force and lower the well to its 
original depth; this decreases the energy o f  each particle. 
Equivalently, we may raise the central barrier to its original 
height.

(5) Keeping the potential-energy function fixed at the new  
values (equal to the original values), apply the rotating force, 
still rotating counterclockwise with frequency (13), to increase 
the angular momentum o f  the particles, until the average 
angular momentum o f  those particles equals zero. Calculation 
shows that the average energy is then close to the initial energy.

Additional details about the potential energy and the 
perturbations are given in Sec. IV and Appendix B.

Figure 2 shows the resulting monodromy circuit for “single­
loop initial conditions” and for “cold-gas initial conditions.”

-400 -200 0 200 
angular momentum (units of h)

FIG. 2. (Color online) Spectrum-space paths, i.e., paths in angu­
lar momentum— energy space, (l.h). Each line represents the path 
[/(r).fi(r)] of one particle as it travels around the monodromy circuit 
starting at point A and proceeding through A 1, B-F, and back to the 
final point A (called A'). Black lines represent particles with initial 
conditions on a single loop, and gray lines (blue online) are paths 
of particles having cold-gas initial conditions. Particles are driven 
around the monodromy circuit by applying a common force acting as 
a torque to change the angular momentum, and by raising or lowering 
the potential-energy well.

We see that the particles gain different amounts o f  energy and 
angular m omentum as they traverse the monodromy circuit. 
However, they stay adequately c lose  in angular momentum  
and energy.

Figure 3 show s the configuration space and velocity space 
behavior for the single loop and for cold-gas initial conditions. 
Two important things are shown by this simulation. First, it is 
possible to drive a collection o f  particles around a monodromy 
circuit using ordinary forces (rather than by using the ideal flow  
defined in Ref. [2]). Second, while we already know that the 
changed structure o f  the loop in configuration space provides 
a definitive signature o f  monodromy, also the structure in 
velocity space provides another clear signature.

Thus w e have shown by computation that this dynamical 
m anifestation o f  monodromy can be implemented in a real 
system  by application o f  ordinary forces.

IV. EXPERIMENTAL REALIZATION

In this section and in Appendix C, we outline two 
experimental schem es for observing dynamical monodromy. 
The schem e described in the appendix uses motion o f  a 
m agnetic puck on an air table, so it is a purely classical 
realization o f  the theory. The schem e described below  uses 
a gas o f  ultracold atoms to im plem ent dynamical monodromy. 
This experim ent also offers the possibility o f  exploring the 
phenom enon in the presence o f  interparticle interactions, as 
w ell as quantum-mechanical effects such as interference and 
tunneling, which are beyond the scope o f  the theory presented 
in this paper. It is not an easy experiment, but it uses only 
standard tools o f  atomic physics.

A  conclusive observation o f  dynamical monodromy should 
show  experim entally that if  one starts with a loop o f  initial 
condition points in phase space and then varies their energy 
and angular m omentum along a c losed  path in spectrum space 
(such as in Fig. 2), then the initial and final configuration-space 
loops have a topologically different structure relative to the 
forbidden region surrounding the origin— i.e., the final, but not 
the initial loop encloses the energetically inaccessible region. 
The experimental system  requires two main ingredients: (1) 
precision control for producing the initial phase-space loop, 
and for applying the torque and central potential barrier 
m odulations to accurately im plem ent the prescribed spectrum  
space path; and (2) accurate measurements o f  energy, angular 
mom entum , position, and velocity to verify the phase-space 
and spectrum -space coordinates o f  the system  at the start, end, 
and during the monodromy process.

T he ultracold atoms schem e uses a ring-shaped optical 
trapping potential for ultracold 39K atoms. Instead o f  running 
the full loop o f  initial conditions simultaneously, the atoms are 
placed in a short segm ent o f  the loop o f  initial conditions and 
then driven around the ring potential by the application o f  a 
uniform m agnetic force, w hile the height o f  the central barrier 
is appropriately modulated to follow  the monodromy circuit. 
The resulting energy and angular m omentum o f  the atoms can 
then be tracked by both in situ and tim e-of-flight im aging as 
the system  m oves along the prescribed spectrum space path. 
The m onodromy process for the full loop o f  initial conditions 
is reconstructed by com bining the results o f  separate initial
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Velocity spacePosition space

FIG. 3. (Color online) This is a collection of snapshots showing the evolution of the single loop and of the cold gas as the system traverses 
the monodromy circuit. The topological structure of loops of particles in configuration space changes during the monodromy circuit. Single-loop 
initial conditions are represented by the solid (black online) curve, while gas particles are represented by dots (color online). (A) and (A') are 
points marked in Fig. 2. (a) Position space. Each square is a region 400 x 400 fim  (±200 p m about the origin). The inner and outer circles 
are boundaries of the classically allowed region for any single-loop particle that has / =  {/) and h  = (/i). The vectors from the origin (green 
online) represent the applied rotating force. (A) Initially all single-loop particles have the same energy and angular momentum (I = 0,h = h„) 
and they form a line in configuration space (x-y plane) while the “gas particles” have a spread in angle, angular momentum, and energy: 
(h)  = h 0 . A h  > 0, (/) =  0. and AlA<f> =  /i/2. (A l) In the second snapshot, as angular momenta increase, the line evolves into a loop always 
linking the inner and outer boundaries. (B and C) The well is lifted (equivalently, the central barrier is lowered), so the central forbidden region 
is reduced to a size governed by the angular momentum. (C,D,E) With energy of the particles above the central barrier, the angular momentum 
is decreased from positive to negative. At some instant a single-loop particle having zero angular momentum passes over the center point 
x — y =  0; for that particle the central forbidden region has vanished for an instant. When it reappears, it is inside the loop. (E and F) The well 
is lowered (equivalently, the barrier is raised) and the central forbidden region gets larger. (F and A') The angular momentum is driven back up 
to zero. Integration is stopped when (I) =  0, and we find that {h} is close to the initial energy, h 0■ Like the angle loop y 2, the loop of particles 
has evolved into a topologically different loop, (b) Momentum space, (px.p y)- The units of momentum are 1 0 27 Kg m /s. Each square is a 
region 20 x 20, extending from ± 1 0  about p =  0. From points A l-C , the loop does not enclose the origin. At D it touches the origin, and from 
E-A', the winding number about the origin is 1. Initially particles are traveling equally to the left and right. At the end, they are dominantly 
going in a beam like a rotating searchlight.

condition segm ents, so that the new topology of the resulting 
phase-space distribution can be observed.

The experimental im plementation requires a number o f  
lasers to produce a ring potential and several external magnetic 
fields to produce a torque that changes the angular momentum  
o f  the atoms. Figure 4 show s how lasers and magnetic coils  
can be com bined to produce the appropriate optical potential 
and m agnetic force for the atoms, w hich are then detected

by a high resolution im aging system . W e summarize the main 
suggested experimental parameters in Table I. In the follow ing  
paragraphs, w e describe the details o f  the ring trap, the atomic 
packet and its preparation in a segm ent o f  the ring o f  initial 
conditions, the torque force, and how to measure the total 
energy and angular m omentum o f  the atomic packet.

Ring trap. The atoms are confined in a ring trap produced 
by two blue-detuned optical dipole potentials produced by two
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FIG. 4. (Color online) Proposed apparatus and optical potentials for observing dynamical monodromy. (a) Sketch of apparatus for observing 
dynamical monodromy: The atoms are confined in a ring trap formed by the vertical downward-directed blue-detuned laser beams and the 
horizontal laser beam (green online). The ring trap is the light (yellow online) ring in the intersection of these beams. Coils (orange online) 
generate magnetic fields for tuning the interactions to zero and producing the torque force. The camera is used for absorption imaging with an 
upward-directed laser probe beam (up-pointing arrow, orange online), (b) Planar ring-trap potential for the ultracold ,9K atoms. The potential 
consists of a central Gaussian barrier with a waist radius o f 73 / im and an outer Gaussian wall at a radius o f 200 /tm with a waist of 26 / im. 
(c) Trap and release method for producing the atomic packet with total energy 53 pK.

vertically directed laser beams: a focused laser that serves as 
the central barrier and a concentric hollow  laser beam that 
provides the outer wall o f  the trap. H ollow  beam s can be 
generated with a variety o f  optical elem ents such as axicon  
lenses [57], phase plates [58], and spatial light modulators
[59]. Time-averaged doughnut beams can be produced by rapid 
rotation o f a Gaussian beam using two crossed acousto-optic  
modulators [60], The Gaussian ring potential o f  Fig. 4(b) is  
w ell suited for ultracold atom m onodrom y studies and can be 
produced with central barrier and outer wall laser powers o f  0 .4  
and 2.5 W, respectively, at 7 5 0  nm. An additional red-detuned 
laser can be used to form a horizontal sheet o f  light that 
provides vertical confinement, w hile leaving the horizontal 
confinement potentials negligibly affected: For example, a 
10 W  laser beam at 1064 nm focused to horizontal and vertical

TABLE I. Summary of ultracold atom experiment parameters.

Parameter Value

Ring-trap laser power 2.9 W at 750 nm
Vertical trapping laser power 10 W at 1064 nm
Atomic state | f  =  1 ,m F = + 1)

hyperfine state o f 39K
Atomic packet population 4 x 104
Energy of initial atomic packet 53 pK
Peak torque force 0.36 mjfg’
Magnetic Feshbach zero 350 G
Duration of monodromy round trip 100 ms

*I.e. 0.36 times the weight of a potassium atom.

waist radii o f  5 mm and 30 g m , respectively, w ill provide 
harmonic confinement o f  360 Hz along the vertical axis with 
a trap depth o f  roughly 4 pK ,  but with a negligible 2 Hz 
confinement in the horizontal plane. Alternatively, vertical 
confinement can be provided by a one-dim ensional optical 
lattice o f  horizontal “pancake traps” with the atoms spread 
over multiple layers. Based on sim ulations o f  atomic motion 
in the ring potential, the average scattering rate from all o f  the 
far off-resonant trapping light is estimated to be about 1 Hz 
per atom and so  is negligible over the 100 ms duration o f  the 
proposed experiment.

Atom ic packets. The atomic packets consist initially o f  
a noninteracting Bose-Einstein condensate (BEC) o f  39 K 
atoms designed to minimize the expansion o f  the atomic 
packet as it fo llow s the spectrum space path. The BEC  
lim its the expansion o f  the atomic packet to the Heisenberg- 
lim ited spread required o f  all quantum-mechanical system s, 
but must be carefully tailored by choosing an appropriate 
initial packet size: In our case, a 39K BEC with radial and 
tangential half-widths o f  0 .3  and 2.25 p m ,  respectively, will 
expand with respective velocities o f  2 .7  and 0.4 /xm /m s. 
Repulsive atom-atom interactions can also lead to relatively 
large expansion rates, but can be sufficiently suppressed by 
using the |F  =  1, m e  =  + 1) hyperfine ground state o f  39K at 
a m agnetic field o f  350 G, which tunes the s-w ave scattering 
length to zero due to a nearby Feshbach resonance [61]. (A  
slightly attractive interaction may be useful in reducing the 
Heisenberg-lim ited spreading o f  the packet, though simulating 
its precise effects on the atomic packet is beyond the scope  
o f  this paper.) Experimentally, the interactions are difficult to
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FIG. 5. (Color online) Magnetic fields for producing the torque force. The top three panels sketch how the quadrupole magnetic field [panel 
(a), thin arrows, blue online] generated by the anti-Helmholtz coil pair combines with the uniform horizontal magnetic field [panel (b), thin 
arrows, red online] produced by the two Helmholtz coil pairs to produce a magnetic gradient in the direction of the magnetic field [panel (c), 
thin arrows, purple online], whose orientation is determined by the relative currents in the two Helmholtz coil pairs. The magnetic field line 
sketches in panels (a), (b), and (c) are all in the horizontal plane (view from above) and are not to scale: The thick arrows represent the current 
in the coil, while the thick dashed arrows indicate the current in the hidden coil underneath. The two plots (d) and (e) show the magnetic field 
magnitude and its associated effective potential. Along the field direction (d) it is nearly linear (red online) while in the transverse directions 
(e) it is quadratic: Its horizontal variation is represented by the solid (green online) curve, and its vertical variation by the dashed (blue online) 
curve. Note the reversed right axes for the potential energy, since the |F =  1 ,m F =  +1) state is a strong field seeker.

elim inate altogether, but even if  the scattering length is reduced 
to as =  0 .17a0, which for d a J d B  =  O.55ao [61] corresponds 
to a m agnetic field tuning precision o f  A S  =  ± 0 .3  G, then 
interaction-induced spreading is negligible for packets with  
fewer than 8 x  104 atoms. However, the atom number m ust 
also be sufficiently large to allow for high-quality imaging: 
Sim ulations o f tim e-of-flight experim ents, such as in Fig. 7, 
show that atom numbers o f  4  x  104 or more produce final 
atomic packets with optical depths o f  0 .5  or higher, which are 
suitable for absorption im aging methods [62],

Initial conditions. The BEC is inserted into the ring trap 
with a multistep process. A s shown in Fig. 4 (c), the BEC is  
initially trapped by a single-beam  optical dipole trap produced 
by an additional laser that copropagates with the 1064 nm  
laser sheet [not shown in Fig. 4(a)]. The BEC is located at a 
radius o f  25 /zm, which corresponds to a potential energy o f  
53 /zK. Upon turning o ff  this single beam confining potential, 
the BEC is free to oscillate in the ring potential. The specific  
position-velocity combination o f  the ring o f  initial conditions 
for the atomic packet is chosen by applying the torque force at 
the appropriate tim e o f  the oscillation phase. Our sim ulations 
show that a radial positioning error o f  ± 1 .2 5  n m can be 
tolerated. Alternatively, i f  a higher precision m ethod is needed, 
a multiphoton Bragg pulse [63,64] can be used to impart a 
m omentum kick (corresponding to a kinetic energy o f  53 /zK) 
to BEC atoms held at the minimum o f  the ring potential.

Torque force. The torque force can be produced by the 
m agnetic gradient o f  a horizontally oriented quadrupole coil

pair with equal and opposite currents in its two coils, as shown 
in Fig. 4(a). A s illustrated in the top three panels o f  Fig. 5, the 
central symmetry quadrupole field com bines with the 350 G 
horizontal m agnetic field required for suppressing interactions. 
At 350 G, the Zeem an shift o f  the |F  =  1, m ? =  ± 1 )  
hyperfine ground state is —1.33 M H z/G . Modulation o f  the 
torque force as shown in Figs. 6(a) and 6(b) help to reduce 
the width o f  the packet in spectrum space. A  maximum force 
o f  2.3 x  10~25 N  =  0 .36  m g is required, which corresponds 
to a m agnetic gradient o f  2 .6  G /cm . T he combination o f  the 
uniform 350 G field with the weak quadrupole field results 
in a m agnetic gradient along the direction o f  the 350 G field, 
w hile the gradients in the transverse horizontal and vertical 
directions contribute negligibly to the potential over the size 
o f  the ring trap. The orientation o f  the m agnetic torque force 
can be easily rotated in the horizontal plane by changing 
the direction o f  the 350  G field, which is generated by two 
orthogonal H elm holtz-style coil pairs: Sinusoidal modulation 
o f  the coil pair currents (?r/2  out o f  phase from each other) 
rotates the 350 G field and the m agnetic gradient in a manner 
sim ilar to the m agnetic field m odulations in a time-orbiting 
potential (TOP) trap [65]. Figure 6(b) shows the orientation 
o f  the torque force and 350 G field over the course o f  the 
monodromy process: The field maintains an average angle 
o f  roughly rr/2  with respect to the angular position o f  the 
atomic ensem ble and is rotated at rates o f  up to 330 Hz, 
which is substantially slower than in a TOP trap [65], Finally, 
the magnetic gradient produces a negligible variation o f  the

012919-9

178



C. CHEN, M. IVORY, S. AUBIN, AND J. B. DELOS PHYSICAL REVIEW E 89.012919 (2014)

A B C D E F A

O)
o 0.2 cr

co
2 -0-2

100
(31

CO

40 60
time (ms)

100

FIG. 6. (Color online) Torque force and central barrier modula­
tion versus time required for completing the monodromy circuit. 
Top: Torque force magnitude (curve with arrow toward left axis, 
black online) and central barrier amplitude (curve with arrow toward 
right axis, red online) as a function of time. Bottom: Absolute torque 
angle with respect to starting position (arrow toward left axis, red 
online) and torque angle relative to full atomic ensemble center of 
mass (arrow toward right axis, black online). The letters on the top 
axis denote the monodromy circuit transit points of Fig. 2.

scattering length o f  at m ost A a , =  Q.06a() over the roughly 
4 0 0  n m diameter o f  the ring trap.

M easuring the total energy E. The total energy E  o f  the 
atom ic packet can be measured by turning o ff  the outer laser 
barrier o f  the ring trap w hile the atom s are clim bing the inner 
central barrier. The atom s convert all o f  their potential energy 
to kinetic energy as they are pushed away from the central 
barrier and leave the ring potential region, so that their average 
velocity, kinetic energy, and thus total energy can be measured 
by tim e-of-flight im aging.

Figure 7 shows the results o f  a simulation o f  this process. 
The m ethod relies on the com pactness o f  the atom ic packet to 
guarantee that there are no atoms in the outer barrier region 
when it is turned off, and to ensure that a measurement o f  
average velocity is representative for all the atom s in the 
packet. Numerical sim ulations show that the method functions 
w ell for all initial conditions and points along the spectrum  
space path: To measure the total energy E  at som e point along 
the spectrum space path, the monodromy process is stopped 
at the desired point, and the outer barrier is turned o ff as 
the atom s are clim bing the central barrier. Furthermore, the 
instantaneous kinetic energy o f  the atom s can be measured by 
turning o ff  the entire ring potential and then measuring the 
velocity by tim e-of-flight imaging. In practice, the 1064 nm 
optical dipole laser and the torque force m agnetic gradient w ill 
need to be turned o ff  as w ell, since they provide very weak but

1.5

E 1.0 
E

10ucre*•>tn
=5 0.5

(m m )

10
tim e-of-flight (ms)

FIG. 7. (Color online) Time-of-flight method for measuring the 
total energy E. The plot corresponds to a packet that has completed 
the monodromy process and returned to point A (i.e.. A') on the 
spectrum space path of Fig. 2.

sufficient horizontal confinem ent to affect the tim e-of-flight 
measurements.

M easuring the angular momentum L. The angular m om en­
tum o f  the atomic packet can be measured by in situ im aging  
o f  the atom s as they travel around the ring potential. T he inset 
o f  Fig. 8 shows a sim ulated im age o f  the atoms in the ring 
potential, and the radially averaged atom ic population as a 
function o f  angle from which the angular center o f gravity 
o f  the packet can be determined from Gaussian fits o f  the 
distribution. A series o f  such im ages for different holding  
tim es shows the tim e evolution o f  the angular position o f

1.3

1.2
a;eoc a n g le  (rad ian s)

CD

Ore i.i

10o 5 15
tim e (ms)

FIG. 8. (Color online) Angular momentum measurement 
method with in situ imaging. The main plot shows the average 
angular position o f an atomic packet versus time (wiggly curve, blue 
online), along with a linear fit (straight line, red online) that gives the 
average angular velocity. The simulation is for an atomic packet that 
has returned to point A (i.e., A') after completing the monodromy 
circuit o f Fig. 2. Inset: Angular density o f the packet (wiggly curve, 
blue online) and Gaussian fit (smooth curve, red online) versus 
angular position. The fit is used to determine the packet’s average 
angle; the inset also shows a simulated image of the atoms (dots, 
blue online) in the ring potential along with the maxima and minima 
of the radial oscillations (circles, red online).
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the packet. The main plot in Fig. 8 show s the results o f  a 
numerical simulation o f  this process: The average angular 
velocity (0) is the overall slope o f  the angular tim e evolution, 
but the plot also contains a periodic step feature that reflects 
the radial oscillations o f  the atoms. T he angular momentum  
L can be extracted from the time evolution o f  a packet’s 
angular position, such as shown in Fig. 8, by determining 
the angle change A Or over the course o f  one radial oscillation  
period ATradiai and then solving the follow ing integral equation 
numerically for L  [66]:

A 6h
L d r

-  V(r>] -
(14)

where h refers to the total energy o f  the atoms, V (r)  is the ring 
potential, and R„ a n d  Rm„  are the inner and outer turning 
radii, respectively.

Extracting L  requires knowledge o f  all the other quantities 
in Eq. (14). W hile AOr can be determined from the step 
size o f the “staircase” plot o f  average angular position versus 
time, it is more reliably obtained in our sim ulations from the 
relation A 0 j  =  A T rldli|(fl): The average angular velocity (0) 
is the slope o f  a linear fit to the average angular position  
plot in Fig. 8, and the radial period A  Tra<iiai o f  the atomic 
packet in the ring potential can be obtained from a Fourier 
transform o f  the average angular position time series in Fig. 8. 
V (r) can be determined experim entally by in situ  absorption 
imaging o f  a cold thermal gas o f  temperature r,herma) in 
the ring potential: The im age provides the radial atom ic 
density n{r) which can then be used to extract the potential 
through the relation n (r ) S  exp[—V (r )/k ru ,ernlaj ] /A 3, where 
A =  VV2?rm /c Thermal is the thermal de B roglie wavelength  
[67]. The determination o f  the average total energy E  o f  
an atom in a packet was described in the previous section. 
The inner and outer turning radii can be determined from 
knowledge o f  the potential and the total energy or from in 
situ imaging. We find through numerical sim ulations o f  the 
above measurement method that L  can be determined with an 
accuracy o f  5%—10% over the course o f  the entire spectrum  
space path.

V. CONCLUSION

We have shown that a dynamical m onodrom y circuit can 
be implemented by ordinary forces, and w e have described 
two ways to realize a dynamical m onodrom y circuit in a 
physical system — a puck on an air table, and an ultracold gas. 
All our calculations are classical, and presume no interaction 
between the particles, so measurem ents on a co ld  gas would  
raise questions about quantum behavior and about interactions 
between particles that are not addressed in this paper.
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APPENDIX A: NUMERICAL COMPUTATION OF 
CANONICAL ANGLE LOOPS

The method described here can be adapted for use in a 
great variety o f  system s, but w e describe it here in detail 
for cylindrically symmetric system s. Given specified regular 
values o f  angular momentum L (z)  =  / and energy H {z)  =  h 
w e presume that the corresponding torus is unique. For that 
specified (/,A ), we choose a circle p =  p° in the classically  
allow ed region, and we choose an arbitrary point (p ° ,0°) 
on that circle. At that point w e set initial conditions on the 
momenta: p$ =  I by definition, and p°p is chosen as any 
value such that H (p p,p p ,p 0,<j>0) =  h. Starting at that point, 
and time t  =  t° we integrate Ham ilton’s equations until the 
coordinate p (t)  passes again through the circle p  =  p {) in 
the original sense (outward or inward, whichever way we 
started the trajectory), and w e record the tim e o f  first return 
r ( l,h )  =  t — t°  and the subtended angle A (/,/ i)  =  <t> — <t>°, 
defined below. Now w e define an effective Hamiltonian, 
w hich is a function o f  the four phase-space variables and two 
parameters (l,h ),

1,2 -*• R,
(A l)

[ x (U h )H (z )~  A (l,h )L (z ) l
2 Tt

This is regarded as a function o f  the phase-space variables 
z , with I and h treated as fixed parameters. In other words, 
w e derive equations o f  motion by differentiating J i f  with 
respect to each z , , holding / and h fixed. Here it is essential 
to distinguish between [L (z), H (z)], the functions o f  positions 
and momenta, and their numerical values [l,h], which are 
regarded as fixed parameters when H am ilton’s equations are 
computed. In our case,

Ji? (z J ,h )  =  r —I T(l,h) 
2 7t I

r p2p p \
T + 2 ?  +  V{fi).

-  A(l,h)P<p

-  A ( / ,/ i ) j .

(A2)

(A3)

and, for exam ple, denoting a  as the tim elike variable,

d<f> d J f  1 r r ( / ,f i )p 0
d a  dp$ 2n  |_ f

Equations o f  motion for other variables are obtained similarly. 
(For h >  0  it is best to integrate in Cartesian coordinates to 
avoid singular behavior near the origin.) Numerical integration 
o f  this path z(er) from a  — 0 to 2 n  produces a / 2  loop.

A s we change I and h, going from one torus to another, 
w e need to define a connection between angle variables on 
the changing tori such that the transformation between phase- 
space points and variables ((pi,tp2 ,l ,h )  is a differentiable and 
invertible transformation. To do this, we must give a definition 
o f  the origin o f  angle coordinates z°(0,0,/,/t)  such that the 
angles are differentiable functions o f  z, and a definition o f  
A (/,/ i)  such that it is a differentiable function o f  (l ,h ). In the 
present case, w e  may choose the outermost point o f  each torus 
on the x  axis to be the origin o f  angle coordinates.

When w e define A so that it changes smoothly, w e  find that 
it is forced to be a multivalued function o f  (l,h). In our case, 
starting with (I =  0 ,h  <  0), A (l,h ) =  0. Increasing / from
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FIG. 9. (Color online) The angle A(/,/i) must be defined such 
that it changes smoothly with I and h. As I decreases through zero 
with h > 0, A(l,h) must be defined so that it increases smoothly 
through Tt.

there makes A (l,h )  small and positive. Proceeding around 
the monodromy circuit, A (l,h )  increases until at I =  0 ,/i >  0, 
A ( l ,h ) =  n .  A s I goes negative with h >  0, A (l,h )  must be 
defined so that it and all its derivatives with respect to I and 
h are continuous. This is done by defining A (l,h )  as shown 
in Fig. 9. A is therefore a multivalued function o f  (/,/i): The 
m onodromy point (/ — 0 ,/i =  0) is a branch point, and A (/,/i)  
changes from 0 to 2jt on its journey around the monodromy 
circuit.

The resulting y2 loop also evolves smoothly, and displays 
monodromy, as was shown in Fig. 1. This is the method we  
used to create that figure.

The corresponding multivalued action variable y 2(l,h )  can 
be computed by integration around that y 2  loop,

S 2{l,h) =  <f p(s) ■ - j - d s .  (A 4)
2 n  J n  ds

To show that this is all consistent with more familiar 
definitions, let us examine

S i { l \ M )  =  ~  £  p p(p ;l,h )d p , 

■^2(h .h 2) =  ^  £  p p(p \l,h )d p  -  I,

(A 5)

where ( l \ ,h \)  are any values o f  (I,h) on the first ha lf o f  the 
monodromy circuit, (l2,h2) are any values on the second half, 
and

p p( p j , h ) =  { 2 [a  -  ^  ~  V ( p ) j j  P. (A 6)

One easily  shows that defined in Eq. (A 5) is the sam e as 
defined in Eq. (A 4), and

a j ^  _  r (l,h )  
dh 2n

— A (/,/i)
(A7)

31 2 n
Hence w e can write this action variable as a function o f  phase- 
space coordinates z with the notation

h ( z )  =  jr ;(L (z ) ,H (z )) ,  (A 8)

and its derivatives w ith respect to z  are

v̂ te)=(5# ) v̂ ')+(ir h ''“
=  - L [ z (l,h )V zH (z)  -  A (l,h )V zL ( z ) l  (A9) 2jt

The conjugate angle <j>2 is obtained by using /2 as Hamiltonian, 
and a  and range from 0 to 2 n  on the y2 loop.

APPENDIX B: DETAILS OF THE APPLIED FORCES

The formulas for applied forces given below  were obtained 
as a result o f  numerical experiments. We did not use any sys­
tematic optim ization method to obtain these results, but only a 
m odest number o f  trials. For single-loop initial conditions, we 
begin with (V particles, all having angular momenta equal to 
0, and all having the same initial energy, uniformly distributed 
around a y2 loop on the initial torus [/(to) =  0,/i(to) =  ho\. At 
each instant they have a center o f  m ass located at r0(t), where

ro(t) =
Ei mi

=  r0(t)cos <p(t)i +  r0(f)sin tp ( l) j. (B l)

r, (f) and m, are the instantaneous location vector and mass 
o f  the ith  particle, and rH(f) and <p(t) are the instantaneous 
length and azimuthal angle o f  the instantaneous center-of-mass 
vector ro(t). A s m entioned in the main section o f  this paper, the 
m onodrom y circuit is  divided into five steps, with t,_i ^  t  ^  t, 
on the ith  step.

The driving torque that changes the angular momentum  
is applied as fo llow s. The sam e force F ( /)  is applied to all 
particles, and this force is nearly perpendicular to the center- 
of-m ass vector r0(i). The direction o f  the force is such that 
the angular m om entum  o f  the center o f  m ass increases in 
step 1 and in step 5, and such that it decreases in step 3. Thus, 
in steps 1 and 5, F (t)  is n /2  “ahead o f ’ r0(t):

F (t)  =  F (t)c  os

F ( t) i
A (t)

r 2(t)

i +  F (/)s in  <p{t) 4-

—  5Zi Wi?( 0 
Ef mi

(B2)

(B3)

r 2(f) is  the mean square distance from the origin to the 
instantaneous location o f  each particle, and A (f) is a chosen  
average rate o f  increase o f  angular momentum. It is made to 
increase and decrease smoothly, as below. In steps 2 and 4,
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(B 4)

A (/) =  0, w hile in steps 1 and 3,

A(r) =  c, A 0Se c h [ ( ^ ^ ) ( ;- i :- 7 +  ^

A 0 is a constant value which w e take to be 0 .9 , and c, =  
1, — 2, and 3, respectively, in steps 1, 3, and 5. The negative 
sign in step 3 makes the force rotate in the sam e sense as the 
center o f  mass, but 7r/2  “behind,” so the angular momentum  
is reduced in this step. Equation (B 4) makes the torque change  
as a C 00 function o f  time.

We found that a slightly different method worked best for 
step 5. We took for t > t4,

F (t)= F 5 cos tp(t4) +  cot +  y j i + F 5s i n ^ ( /4) +  £t>f +  y j  7.

(B 5)

where ip(t4) is the azimuthal angle o f  the center o f  mass at time  
?4, and to is a constant rotation rate chosen to be

(B 6)

where (l(t4),h (t4)) are the average value o f angular momentum  
and energy when t =  t4, and A (l,h )  and r ( l,h )  are defined in 
Appendix A as subtended angle and time o f  first return as 
functions o f  angular momentum and energy. F<, is a constant 
and set to be 0.15.

During steps 2 and 4 , while there is no driving torque, the 
parameters o f  the w ell are changed by changing the height o f  
the central barrier. In our calculations this is done by changing 
the power in the strongly focused laser so that the height o f  the 
central barrier V(r) varies continuously between Vn and V\ as 
follow s.

v u )  =  v0 i f  o  <  t ^  n

=  Vi, +  (V , -  Vo) tanh[(̂ T  ̂XiT̂ T + iT̂ r)]
1

+  2 J 'f  tx <  1 ^  t2 
=  V, if  t2 < t ^  tj,

=  V, 4- (V0

+  2
if  t} <  t ^  t4 

=  V0 if  t4 <  t  <  r5. (B 7)

Integration is stopped when the average value o f  the angular 
momentum returns to zero, and that defines the time t5.

APPENDIX C: CLASSICAL DYNAMICAL MONODROMY 
ON AN AIR TABLE

This schem e is considerably sim pler than the proposed  
ultracold atom implementation, but it is purely classical, and so 
w hile it can illustrate dynam ical monodromy, it cannot address 
the interesting questions associated with quantum system s. In 
this approach, a puck on an air cushion serves as a single test 
m ass which can m ove with negligib le surface friction over a

x

FIG. 10. (Color online) Magnetic confinement potential of the 
puck on the air table. Top: Plot of the magnetic field component 
normal to the air table, B., versus a radial horizontal axis. The 
horizontal confinement potential for the magnetic puck is proportional 
to Bz The three curves plot Bz for central coil currents o f 0 .5 /u, /0, 
and 1.5/o, where /o is the current in the large outer coil. Both coils 
have the same number of turns. Bottom: Side view sketch of the air 
table (horizontal plane, gray online), large magnetic coil (red online), 
and central barrier magnetic coil (blue online). The arrows represent 
the direction of the current in the coils and the magnetic moment of 
the puck. The puck moves in a plane just above the surface of the air 
table.

horizontal planar surface. M agnetic forces are used to provide 
a ringlike confining potential in the horizontal plane, w hile the 
tilt o f  the air table away from horizontal provides an external 
force that exerts a torque on the puck. The motion o f  the puck 
can be recorded by a video camera placed directly above the air 
table. Repeating the circuit with different initial conditions and 
superposing the videos, one can watch the evolution o f  a loop.

Magnetic ring potential. A  m agnetic puck with a vertically 
oriented magnetization axis with m agnetic moment f t  will 
experience a conservative potential in an external magnetic 
field, B . The m agnetic interaction Hamiltonian is —f t  • B  
and so it is proportional to the vertical com ponent o f  B . 
A s shown in Fig. 10, a large diameter m agnetic coil in the 
horizontal plane o f  m otion o f  the puck provides the outer 
barrier o f  the ring potential, w hile a smaller concentric coil 
located below the air table provides the central barrier o f  the 
ring potential. The amplitude o f  the central barrier can be 
dynamically adjusted by varying the current flowing through 
it.

Torque force. The torque is provided by a uniform external 
force derived from Earth’s gravity by tilting the air table by an 
angle & from horizontal, in the desired direction o f  the force. 
The magnitude o f  the com ponent o f  the force on the puck in 
the plane o f  the air table is then m g  sin &, where m  is the 
m ass o f  the puck. A directional and dynam ically controlled  
tilt can be im plem ented by supporting the air table from below  
with a pivot point at its center and two electrically controlled  
actuator legs at adjacent com ers. The height o f  the tw o legs 
can be modulated by independent computer controlled voltage  
signals. For a typical puck m ass o f  0 .2  kg and a m agnetic ring 
potential, such as in Fig. 10, with an outer radius on the order 
o f  0.3 m produced by co ils  with currents on the scale o f  200  
amp-tums, our sim ulations show  that the proper torque force 
can be produced with air table tilts on the order o f  0.5° or less.
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In this case, the equivalent spectrum space monodromy circuit 
can be com pleted on a time scale o f  10-20 s.

Initial conditions. The puck is set in radial motion by 
holding it against the outer m agnetic coil ring and then 
releasing it. The puck w ill travel radially, tracing out the 
ring o f  initial conditions in phase space, and the specific  
initial condition o f interest is then selected by starting the 
monodromy process (i.e., the application o f  the torque force) 
when the puck has the required position and velocity.

Detection. The motion o f  the puck throughout the air table 
ring potential can be recorded by a video camera placed  
directly above the apparatus. The video provides the position  
o f  the puck as a function o f  time, from which the velocity o f  
the puck can be derived. The position o f  the puck can be used  
to determine its magnetic potential energy (in com bination  
with a magnetic field map), w hile the velocity g ives its kinetic 
energy, and thus the total energy. The angular m omentum can  
be derived from the velocity and radial position o f  the puck. 
The spectrum space path can thus be reconstructed from the 
energy and angular momentum o f  the puck.

Following a loop o f  initial conditions. The video would  
show each path q(f) =  [x(f),y(f)]> and superposition o f  the 
videos for different initial conditions w ould show the evolution  
o f  the w hole loop.

APPENDIX D: MONODROMY AND HANNAY ANGLES

We are often asked about the relationship between m on­
odromy and the phenomena associated with Hannay angles. 
There are som e similarities, but there are also som e essential 
differences.

Hannay [68] posed and answered the follow ing question: 
Given an integrable Hamiltonian system; given that the 
trajectory begins on one torus; given that the Hamiltonian 
depends on one or more parameters; given that w e change those 
parameters slowly so that they go around a cycle, returning to 
their initial values; then the adiabatic proposition asserts that 
the action variables w ill remain always constant, and therefore 
the system  will return to its original torus. However, what 
happens to the angle variables?

Hannay showed that the angles evolve with time at 
the frequencies on the instantaneous tori, but with also a 
correction related to the integral o f  a certain 2-form. W hat

are the similarities and differences from our description of 
m onodromy? Both situations involve changes o f  canonical 
angles. In both cases, one com ponent o f  the change is the 
frequency on instantaneous tori. However there are several 
important differences.

Hannay’s theory applies to system s with one or more 
degrees o f  freedom, w hile m onodromy can only appear in 
system s with tw o or more degrees o f  freedom. (2) The Hannay 
angle describes the change o f  position o f  particles along a loop. 
W hen one goes around a circuit in the parameter space, the 
loop returns to its original form, but the particles are not in 
the sam e location. In contrast, in a system  with monodromy, 
not only do particles change their positions around a loop, 
but the w hole loop changes its structure. (3) The correction in 
Hannay’s case is a geometrical integral over an area subtended 
by changing parameters, and it can have any value. However, 
monodromy is a topological phenomenon. The change of 
structure o f  the loop does not depend on an area. When the 
system  goes around any circuit enclosing a monodromy point 
in a given sense w e get a change which is independent o f  path.
(4 ) Hannay’s formulas apply only to adiabatic traversals of 
a circuit. M onodromy is quite different, (a) In our case, we 
drive the system  so that the angular momentum changes— but 
angular momentum is an action variable, so an action is 
changing, so the system  is not undergoing strictly adiabatic 
evolution, (b) Nevertheless, one might argue that w e are 
im posing a kind o f  adiabatic evolution because w e make the 
particles undergo several radial oscillations w hile m oving from 
one torus to another— this helps keep the particles m oving  
together from torus to torus. That is a correct description— our 
im plementation is adiabatic in this sense, (c) However, we 
claim  that in principle, monodromy does not require any 
adiabatic traversal o f  a circuit. The kind o f  ideal evolution 
described in [2] will give the same result whether the system  
g o es rapidly or slowly, (d) On the other hand, in practice, the 
only way w e know how to implement a monodromy circuit in 
a real classical system  with real forces involves a separation 
o f  time scales. In our case, w e want all the particles to have 
nearly equal angular momenta; however, when the same force 
is applied to all particles, the ones at small radius experience 
a sm aller torque and therefore a sm aller change o f  angular 
m omentum. Thus, in principle, monodromy does not require 
adiabaticity, but in actual implementation, it probably does.
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