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ABSTRACT

Parallelization is key to the computing efficiency and scalability of modern 
applications. In the spectrum of parallelism, at the most challenging end lies the 
category known as “embarrassingly sequential” applications. As suggested by its 
nickname: They are inherently sequential, and hence especially difficulty to 
parallelize.

This dissertation presents three important classes of computations in this 
category and a series of model-based techniques to overcome their 
parallelization challenges. They are: 1)Finite-State Machine (FSM)-based 
computations, which can be formulated as an abstract machine with a finite 
number of possible states and transitions among the states; 2)Just-in-Time (JIT) 
compilation, a key component in compilers for managed programming 
languages, such as Java and JavaScript; and 3)HTML parsing, the step that 
transforms unstructured byte streams into tree-like structures in web browsers. 
Though coming from different domains, they share the same parallelization 
difficulty -  carrying prevalent dependencies with their computations: The next 
state in every FSM transition depends on earlier state(s); Each function to 
compile by JIT compiler depends on previous executed functions; The handling 
of each byte or token by an HTML parser depends on what it has observed.

For the extreme difficulty, parallelizing these applications has been lying beyond 
the reach of existing techniques. This dissertation presents how to overcome the 
difficulties through a principled approach -  the first disciplined way of speculative 
parallelization. The dissertation additionally covers some other recent progress 
and exiting opportunities in program parallelization and optimizations. Together, 
they demonstrate the large potential of the principled approach for advancing the 
state of the art of code parallelization and optimizations. They represent a new 
direction to narrow the gap between modern computing hardware and the 
computing efficiency of software applications.
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1 Introduction

1.1 Motivation

The increasing of CPU frequency has reached a limit since 2004 due to "the Power Wall”. In the 

late 1990’s and early 2000’s, the clock rate was driven by adding more transistors to a smaller 

chip. Meanwhile, according to the power dissipation relation, the dynamic power consumption 

increased linearly. When it goes beyond the capacity of inexpensive cooling techniques, a barrier 

is reached. To overcome this barrier, industry has turned to put several or even many conventional 

cores into a single die, creating multicore and manycore processors. Following this direction, the 

hardware will embrace more and more parallelism. However, on the other hand, has the software 

been ready for running on the increasingly parallel hardware?

The answer depends on the parallelisms that the software can expose. If we consider a line 

representing the parallelization difficulty spectrum. On one end lie the programs that require 

little or no effort to be divided into a number of smaller tasks, which can be executed in parallel 

naturally, such as rendering in computer graphics, matrix multiplication in scientific computing. On 

the other end lie the programs that are extremely hard to parallelize due to the strong inherent 

data dependencies through out the executions of these programs. Examples include Huffman 

decoding, pattern matching, parsing and dynamic compilation.

Without conquering the parallelization challenge, people may have to sacrifice efficiency and 

turn to other alternatives which may enable better scalability, for example, substituting Huffman 

coding with another easy-to-parallelize compression algorithm. We believe this is the last option, 

since it incurs additional costs and suffers long-term low-efficiency. To avoid this, we instead 

challenge parallelization difficulties and let more software applications achieve better scalability, 

such that they could better serve the increasing needs for software efficiency.

The key to this challenge is effectively breaking the dependencies that are inherently carried 

by these computations. Previously, researchers have found that speculative parallelization show 

some promise. As illustrated in Figure 1.1, the basic idea of speculative parallelization is using
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► correct speculation 

£ wrong speculation

Figure 1.1: Illustration of Speculative Parallelization
With prediction, speculative execution can start from a “future” point. If prediction succeeds, it may yield speedup;

Otherwise, it goes back to default sequential execution.

prediction to “guess" the data that will be used, so that certain computations relying on them can 

be initiated or executed earlier, exposing more computation parallelism. However, the prediction in 

general turned out to be very hard [70,98]. A common insight is that it could help the speculation 

if one draws on some Kind of domain knowledge. However, we found that the previous work 

mainly used some simple ad hoc ways to leverage the domain knowledge, leaving some design 

dimensions unexplored. Without systematical exploration, they either perform badly, or suffer 

inconsistent performance gains. Even worse, they might slowdown the applications.

In this research, we introduce principled speculative parallelization which adds rigor to the 

speculative design to realize the full potential of speculative parallelization. More precisely, we 

give its definition as below:

Definition 1. Principled speculative parallelization is a software speculative parallelization paradigm 

that employs rigrous probabilistic models to characterize the inherent relation between specula

tion and parallelization benefits, hence is able to provide statistically optimal configuration for any 

given speculative arallelization design.

To verify this idea, we have looked into a spectrum of computations that play critical roles 

in today’s applications, yet very challenging to parallelize. They are finite state machine (FSM)- 

based computations, HTML parsing, and Just-in-Time (JIT) Compilation. These computations 

have been either widely used cross various domains or serving as key components in modern 

software (e.g., web browsers and runtime compilers). But none of them are easy to parallelize. 

The former is recognized as a typical “Embarrassingly Sequential” dwarf by the parallel computing 

community [20]; while the latter two remain sequential since they have been proposed. So far, 

we haven't seen any systematic explorations to make them run efficiently in parallel. Through 

the deep study on these three types of challenging cases, we obtained some deep insights and 

established principled speculative parallelization as a novel and effective paradigm for automatic 

software parallelizations.

In the following of this dissertation, my research will be grouped into four pieces of work and

Speculative execution

y .
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Example FSM:

Example inpuc ,

• • • 100 1 I 0 1 0 ;  I 10 I 00 I I •••

Figure 1.2: Example FSM 
Each circle represents an FSM state. State A is the initial state (marked by the extra incoming edge), and state D is an 

acceptance state. The symbols on the edges indicate conditions for state transitions.

each of them will be first briefly introduced in this section, and detailed in one of the later sections 

in the same order.

1.2 Principled Speculation for FSM Parallelization

Finite State Machine (FSM) is the backbone of many important applications in various domains. 

It consumes most time in pattern matching [19], XML validation [90], front end of a compiler [12], 

compression and decompression [62], model checking, network intrusion detection [54], and 

many other important applications. The performance of these applications is often critical for 

improving user experienced responsiveness, supporting large-scaled network traffics, or meeting 

the quality of service provided by commercial servers. Given that processors are gaining more 

parallelism rather than higher frequency, it is hence essential to parallelize FSM computations to 

achieve sustained performance improvement.

However, FSM applications are challenging to parallelize — so challenging that they are known 

as “embarrassingly essential" applications [19]. Dependences exist between every two steps of 

the computations of an FSM application. Consider the string matching example, as shown in 

Figure 1.2. On a machine with two computing units, a natural way to parallelize the pattern 

matching is to evenly divide the input string, S, into two segments, and let the threads process the 

segments concurrently, one segment per thread. The difficulty is in determining the correct start 

state to use by the second thread. It should equal the state at which the FSM ends when the first 

thread finishes processing the first segment. In general, such dependences connect all threads 

into a dependence chain, preventing concurrent executions of any two threads.

Driven by the importance and challenges of FSM parallelization, recent years have seen an
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increasing research efforts in enabling high performance parallel FSM executions [58,83,90]. A 

traditional way to parallelize FSM is through prefix-sum parallelization or its variations [65]. A 

recent study [83] shows that a careful implementation of the method on vector units on modern 

machines can produce large speedup.

An orthogonal approach is speculative parallelization [58,90,119]. The basic idea is to take a 

guess of the starting state for every thread (other than the first) such that all threads can process 

their chunks of inputs concurrently. The part of inputs that are processed incorrectly by a thread 

due to the speculation errors will be reprocessed after the correct ending state of the previous 

thread (i.e., the correct starting state of this thread) becomes known.

The quality of state speculation is apparently critical for the performance. It depends on a 

number of design choices, including where to draw hints for speculation, how to use those hints, 

what state to take as the starting state to execute the FSM speculatively, and so on. In our 

work [119], we present a rigorous approach to finding the design that best suits a FSM and its 

inputs. The approach is called principled speculation, which employs a probabilistic make-span 

model to formulate the profits of a speculation, through which, speculations can be customized to 

the probabilistic properties of the FSM and hence maximize the overall performance of its parallel 

executions. As far as we know, this is the first work that employs rigorous model for speculative 

parallelization.

1.3 On-the-Fly Principled Speculation for FSM Parallelization

Although our principled method outperforms previous ad-hoc designs significantly, it is based on 

offline training. Before using the speculative parallelization, users in most cases have to conduct 

some tedious, time-consuming training runs of the FSM to collect some probabilistic properties of 

the states of the FSM and its inputs. The offline training imposes much burden on users. More 

importantly, it limits the applicability of principled speculation to cases in which the real inputs to 

the FSM are similar to the training inputs. Otherwise, the offline collected probabilistic properties 

fail to match with the real inputs, throttling the effectiveness of principled speculation significantly 

(up to 7x in our experiments shown in Section 5.5). In practice, many FSM applications need to 

deal with various kinds of inputs. A compression tool may be used to compress images, videos, 

texts, and other types of data; a compiler may need to scan or parse programs of various sizes, 

complexity, and styles; a network intrusion detector may have to go through all kinds of data pack

ages go through the network. Therefore, the lack of cross-input adaptivity forms a fundamental 

barrier for practical deployment of principled speculation.
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Our research [117] addresses this problem by, for the first time, enabling on-the-fly principled 

speculation for FSM. It proposes a novel static FSM property analysis and two new dynamic 

optimizations for collecting statistical properties of an FSM. By lowering the cost in collecting 

expected convergent lengths by orders of magnitude, it makes the principled speculation able to 

get deployed on the fly, and hence fundamentally removes the input sensitivity issue faced by 

the state-of-the-art design. With the solution, an FSM application can automatically equip the 

speculative parallelization with design configurations that best suite the properties of the FSM 

and its current input. The entire process happens during production runs of an FSM, requiring 

no offline training or user intervention. Experiments show that the technique reduces the time 

needed to collect the statistical properties of an FSM by tens to thousands of times, and improve 

the parallel performance of seven FSMs by up to 7x (1.5x on average).

To our best knowledge, this work is the first that makes on-the-fly principled speculation pos

sible. By removing a fundamental limitation of the basic principled speculation, it eliminates the 

major barrier for practical adoption of principled speculation, and hence opens new opportunities 

for maximizing the performance of real-world FSM applications that deal with data in an increasing 

variety.

1.4 HPar: Enabling Parallel HTML Parsing

Research has long shown that reducing application response time is one of the most important 

variables for user satisfaction on handheld devices [52,85]. Multiple studies by industry have 

echoed the finding in the context of web browsers: Google and Microsoft reported that a 200ms 

increase in page load latency resulted in “strong negative impacts”, and that delays of under 

500ms “impact business metrics” [44,63,76]. One approach to reducing response time that has 

drawn lots of recent attentions is parallelization of web browser activities, which range from the 

creation of web page layout [24, 78], lexing [59], Javascript translation and execution [55], to 

web page loading [106], XML parsing [73,115], and web page decomposing [76]. Industry (e.g., 

Qualcomm and Mozilla) has began designing new browser architectures [34,82] to leverage these 

results and to exploit task-level parallelism.

However, despite all these efforts, an important part of web browsers, HTML parsing, remains 

sequential. The second column in Table 1.1 reports the loading time of a number of popular web 

pages on Firefox 18 on a Nexus 7 tablet. The third column shows the portion taken by HTML 

parsing, measured through a profiler named Speed Tracer {on Chrome 25 on a Macbook Pro as 

no such tool was found on Android 4.2 for Nexus 7). On average, the parsing takes 11.1% of
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Table 1.1: Web Page Loading Time and Percentages of HTML Parsing.

youtube 2357 8.5% 15.7% 27.1%
bbc 3081 5.6% 10.6% 19.2%
linkedin 7950 16.4% 28.2% 44.0%
yahoo 3962 6.3% 11.9% 21.2%
amazon 2476 19.8% 33.1% 49.7%

qq 6198 10.1% 18.3% 31.0%
twitter 3520 11.9% 21.3% 35.1%
taobao 10891 14.1% 24,7% 39.6%
wikipedia 4771 10.4% 18.8% 31.7%
facebook 4209 17.1% 29.2% 45.2%
geomean 4397 11.1% 19.9% 32.9%

The right two columns show the percentages when the non-parsing parts 
of the loading are sped up by a factor of two or four through parallelization.

the total loading time. According to Amdahl’s law, any sequential part will become more critical 

as the other parts become parallel. As the rightmost two columns in Table 1.1 show, when the 

other activities are sped up by two or four times, the portion of the sequential parsing would 

increase to 20% or 33% respectively. Although it is possible that parsing speed may increase 

with new innovations in parsing algorithms and HTML design, being sequential inherently limits 

its enhancement and scalability on modern parallel machines. As web pages become larger and 

more complex, the issue is getting more serious.

The goal of this work is to remove this arguably final major obstacle for realizing a fully parallel 

web browser.

HTML parallel parsing is an open problem. The difficulties come from the special complexi

ties in the HTML definition. In this paper, we focus on the latest definition, HTML5. Unlike most 

other languages, HTML5 is not defined by clean formal grammars, but some specifications with 

many ad-hoc rules. An HTML document often contains scripts written in other languages (e.g., 

Javascript), whose executions during the parsing of the HTML document could add new content 

into the document. Furthermore, the official HTML organizations have imposed some detailed 

specifications on HTML5 parsing algorithms. As Section 4.1 will show, these complex specifica

tions introduce some inherent dependences into the various parsing operations, making parallel 

parsing even more difficult. As a result of all these special complexities, no parallel parsing tech

niques have been successfully applied to HTML parsing.

This paper presents the first effort to remove the obstacles for parallel HTML parsing. It de

scribes a set of novel techniques and parsing algorithms for taming all those complexities. Specif

ically, this paper makes the following major contributions.
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1. It presents the first systematic analysis that uncovers the special complexities in parallel 

HTML parsing.

2. It proposes a set of novel solutions to enable speculative parsing to address the complexi

ties, and to circumvent various data dependences in the parsing.

3. It constructs the first two parallel HTML5 parsers, one using pipelining parallelism, the other 

using data-levei parallelism.

4. It evaluates the parsers on a set of real-world workloads. The results show significant 

speedups (up to 2.4x, 1,73x on average), demonstrating the effectiveness of the (data-level) 

parallel parser.

5. It reveals a set of novel insights in constructing parallel HTML parsers:

(a) Despite being inherently sequential, with a systematic treatment and carefully designed 

speculation, HTML parsing is possible to run efficiently in parallel.

(b) It is difficult for pipelined parsing to generate large speedups for HTML parsing.

(c) The scalability of data-level parallel parsing tends to grow as the web page size in

creases. As web pages continue to get larger [10], more speedups are expected on 

future web pages.

1.5 Call Sequence Prediction and Parallel JIT Compilation

Languages with a managed environment— such as JAVA, Javascript, C#—become increasingly 

popular. Programs in these languages often have a large number of functions, and feature many 

dynamic properties. For them, knowing the upcoming sequence of function calls in a run can be 

helpful. For example, a feature in these languages is dynamic function loading: Some classes 

or functions are loaded from local disks or remote servers during an execution [71]. The loading 

takes time. With the upcoming call sequence known, the delay can be largely hidden through 

prefetching. As another example, the runtime system supporting those languages, especially 

on embedded systems, often uses a small chunk of memory (called code cache) to store the 

generated native code for reuse. Knowing the upcoming call sequence can enhance the code 

cache usage substantially [49]. It can also help the runtime system decide when to invoke JIT 

to compile which function and at which optimization levels [42], and so on. The benefits may go 

beyond the runtime of managed languages. Co-design virtual machines [53], for instance, use
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runtime Binary Code Translation to reconcile disparity between conventional ISA and native ISA. 

Its runtime translation also uses JIT, sharing similar opportunities.

Call sequence prediction is to provide such knowledge through prediction. It is challenging 

for the large scope of prediction. The state of the art is yet preliminary. Most of them have 

concentrated on exploiting statistical patterns in call history [17,68,84], and predicting the next 

one call rather than a sequence of calls. This limited prediction scope does not well suit the many 

needs of runtime systems. Even worse, as the scope enlarges, the regularity diminishes, forming 

a main barrier for existing prediction techniques.

In this paper, we present a new way to enable call sequence prediction. It centers on an effec

tive exploitation of program structures. The rationale is that program structures inherently define 

some constraints on function calling relations, which often cast some deciding effects on function 

call sequences. Conceptually, the key of this approach is in developing an expressive model of 

the relations among function calls to effectively capture those constraints. To facilitate runtime 

call sequence prediction, the model must distinguish call sites, capture calling contexts, incorpo

rate the influence of branches and loops, and finally accommodate the various complexities in 

programs and language implementations (e.g., function dynamic dispatch, function inlining, code 

coverage variations across inputs). Existing models— such as call graphs, call trees, and calling 

context trees [16]— meet some but not all these requirements.

We present Probabilistic Calling Automata (PCA), a new program representation that uses ex

tended Deterministic Finite Automata (DFA) to capture both the inherent ensuing relations among 

functions, and the probabilistic nature of execution paths caused by branches, loops, and dynamic 

dispatch. A PCA is composed of a number of augmented state machines, with each encoding the 

control flows related function calls in a function. The PCA features a return stack and a shadow 

stack for efficiently maintain calling contexts, an a-stack to handle complexities brought by excep

tions and unknown function calls, and the concept of v-nodes and candidate tables for addressing 

calling ambiguities caused by polymorphism, function pointers, and dynamic dispatch. Serving 

as a unified representation for function calls, PCA incorporates static program structures with 

profiling information, supports easy runtime state tracking, and tolerates various complexities in 

practical deployment.

After presenting the definition, properties, construction and usage of PCA in Section 5.1 and 

Section 5.2, we discuss the insufficiencies of existing program representations in Section 5.3, 

introduce some metrics for call sequence prediction in Section 5.4, and then describe an empiri

cal comparison between PCA-based predictors and the extensions of three alternative methods, 

respectively based on Calling Context Trees and statistical patterns. Experiments show that PCA-

8



based predictor achieves 89% on average in a basic accuracy metric, 20-50%  higher than that of 

the other predictors. Through parallel JIT compilation, we demonstrate that a simple usage of the 

PCA-based prediction can lead to performance improvement by up to 32% (15% on average).

Overall, this work makes the following contributions:

•  It introduces PCA, a novel representation of function ensuing relations in a program that 

captures the influence cast by control flows and calling contexts.

•  It shows how PCA can be used to enable effective call sequence prediction with design 

choices and usage study, as well as a systematic comparison with alternatives.

•  It provides a set of metrics for measuring the quality of a call sequence prediction at various 

levels. They may meet the needs of different uses of the prediction.

•  Finally, this work, for the first time, demonstrates the feasibility and benefit of accurate call 

sequence prediction, which opens up new opportunities for dynamic optimizations in various 

layers of the execution stack.
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2 Principled Speculation for 

FSM Parallelization

Finite-State Machine (FSM) applications are important for many domains. But FSM computation 

is inherently sequential, making such applications notoriously difficult to parallelize. Most prior 

methods address the problem through speculations on simple heuristics, offering limited applica

bility and inconsistent speedups.

This work provides some principled understanding of FSM parallelization, and offers the first 

disciplined way to exploit application-specific information to inform speculations for parallelization. 

Through a series of rigorous analysis, it presents a probabilistic model that captures the rela

tions between speculative executions and the properties of the target FSM and its inputs. With 

the formulation, it proposes two model-based speculation schemes that automatically customize 

themselves with the suitable configurations to maximize the parallelization benefits. This rigorous 

treatment yields near-linear speedup on applications that state-of-the-art techniques can barely 

accelerate.

Parallelization is key to the computing efficiency and scalability of modern applications. In the 

spectrum of parallelism, at the most challenging end lies the category of Finite-State Machine 

(FSM) applications, which are also known as “embarrassingly sequential” applications [19].

In these applications, the core computation can be formulated as an abstract machine with a 

finite number of possible states. Transitions among the states follow some predefined mechanism 

that can be represented with a state-transition graph. Each node in the graph stands for a state 

and each transition edge is labeled with the symbol that triggers that transition. Figure 2.1 (a) 

shows the state-transition graph for a pattern-matching FSM, along with an example input to it.

To check whether a string matches the pattern, the FSM starts with the initial state (state A) 

and processes the input character one after one. At each input character, the FSM moves to a 

state specified by the state-transition graph. Its arrival at state D indicates the recognition of a 

string that matches the pattern; such states are called acceptance states.
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Example FSM:

State s A B C D E F
P(s)[% 14.2 28.9 13.9 13.9 14.7 14.4

Expected
Merging
Length
L m {x , v )

A 0 101.00 89.61 59.71 39.12 59.71
B 101.00 0 16.46 81.99 66.94 81.99
C 89.61 16.45 0 70:60.. .51.99" 70.60
D 59.71 81.oa 70.60 0 69.91 1.79..
E 39.12 66.94 51.99 69.91 0 69.91
F 59.71 81.90 70.80. 1.79 69.91 0

p(R  =  0 s) {%) 51.69 51.85 50.72 50.65 50.10 49.10
p(R  =  1 s) (%) 48.31 48.15 49.28 49.35 49.903 50.90

Example input: ,

... I 00 I I 0 I 0; I I 0 I 00 I I
t t t
U t7 ta

(a) Example FSM (b) Attributes of the FSM

Figure 2.1: An FSM for pattern matching and its attributes.
In graph (a), each circle represents an FSM state. State A is the initial state (marked by the extra incoming edge), and 
state D is an acceptance state. The symbols on the edges indicate conditions for state transitions.

The special difficulty for parallelizing FSM applications is as suggested by its nickname: They 

are inherently sequential. Dependences exist between every two steps of their computations. 

Consider the string matching example in Figure 2.1 (a). On a machine with two computing units, 

a natural way to parallelize the pattern matching is to evenly divide the input string, S, into two 

segments as illustrated by the broken vertical line in Figure 2.1 (a), and let the threads process 

the segments concurrently, one segment per thread. The difficulty is in determining the correct 

state for the second thread to start with. It should equal the state at which the FSM ends when 

the first thread finishes processing the first segment. Such dependences connect all threads into 

a dependence chain, preventing concurrent executions of any two threads.

For the extreme difficulty, parallelizing general FSM applications has been lying beyond the 

reach of existing techniques. The problem, however, is hard to circumvent any longer, partially 

thanks to the increasing importance of handheld applications; FSM is the backbone of many of 

them. Take web browsers as an example. FSM-like computations form the core of many activities 

inside a browser, ranging from lexing, to parsing, syntax-directed translation, image decoding. As 

prior research shows, even without counting image decoding, such computations could take about 

40% of the loading time of many web pages [1]. Besides browsers, most applications on hand

held devices use visual or audio media and hence involve media encoding and decoding—which 

both are typical FSM computations. For its appearance on the critical path of the many applica

tions, improving FSM performance is vital for the response time and hence users experience on 

handheld devices. At the same time, FSM is essential to many other domains. It consumes most 

time in pattern matching [19], XML validation [90], front end of a compiler [12], compression and
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decompression [62], model checking, network intrusion detection [54], and many other important 

applications. According to Amdahl's Law, without parallelizing FSM operations, it is infeasible 

for these applications to achieve sustained performance improvement on modern machines, no 

matter how well other parts of these applications are parallelized.

2.1 Overview

This section describes the state of the art in parallelizing FSM computations, with an important 

concept, lookback, explained. It then points out their limitations and gives an overview of this 

work.

State of the Art Among various forms of FSM, Deterministic Finite Automaton (DFA) has been 

the focus in prior studies, thanks to its broad usage and its capability to approximate other forms 

of state machines (e.g., Context-Free Grammars with a limited levels of self-embedding recur

sions [30].) We hence focus our discussion on such FSMs.

A classic approach to parallelizing FSM computations is through variations of the parallel prefix 

sum algorithm [65]. The idea is to treat each character in the vocabulary of an FSM as a function. 

FSM computations can then become a series of associative operations of these functions, which 

can be done in the manner of parallel prefix sum. The method increases the total computation by 

a factor of log N  and incurs 0 ( N * \ S \ )  space overhead, where N  is the length of the input, and |Sj 

is the size of the FSM state set. So the method is beneficial only when the number of processors 

is greater than log N  and the FSM has a small state set1.

Recent studies [58,90] have attempted to address the problem through speculation. As afore

mentioned, the key difficulty for parallelizing FSM applications is to determine the start state for a 

thread. The basic idea of these studies is to guess that state. Letting a thread, say TV, guess the 

correct FSM state for it to start processing segment S7 is equivalent to guessing at which state 

the FSM stops when thread T& finishes processing the preceding segment S6. A random guess 

is subject to large errors. Previous studies [58,90] have found it helpful to do a lookback— that is, 

thread T7 runs the FSM on a number of ending symbols (called a suffix) of the preceding segment 

S6, and uses the ending state as its speculated start state.

For instance, in Figure 2.1, a lookback (from state A) by the second thread on the suffix “1 0" 

stops at state B; the thread will then start processing its segment from state B. Lookback helps 

speculation by offering some context. The context may not completely determine the actual start

1The original paper [65] proposes to represent each function with a boolean matrix, which incurs even a higher time 
and space complexity.
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state, but is often helpful to avoid some impossible states. In our example, the lookback can safely 

avoid picking state A as the start state because the FSM structure determines that no state can 

transit to state A on the end of the suffix, “0”.

Lookback-based speculative parallelization has been the central technique of all state-of-the- 

art FSM parallelizations [58,90]. As Figure 2.2 shows, on an 8-core Intel Xeon E5620 system, 

the approach [58,90] yields almost ideal speedups on the Huffman decoding “huff” and XML 

lexing programs “lexing”. However, its performance is inconsistent. On the other five programs in 

Figure 2.2, it produces speedups less than two. One of the programs, div, even runs slower than 

its sequential execution.

The primary reason for the inconsistent performance is the lack of rigor in existing designs of 

speculation, reflected in multiple aspects. For instance, the length of the suffix to examine by a 

lookback directly affects the parallelization benefits. A longer suffix exposes more context, but at 

the same time incurs more overhead. Previous studies [58,90] select it by simply trying several 

lengths in profiling runs, while leaving the vast remaining space unexplored. Another example is 

the state used for starting a lookback. Previous studies always use the initial state of the FSM 

(state A in Figure 2.1 (a)) for lookbacks. It could seriously limit lookback benefits. For the example 

in Figure 2.1 (a), if the lookback starts from state D rather than A, it would end at the correct state, 

state E. A further example is that all prior studies have used the ending state of a lookback as the 

speculated start state for processing the next segment. Although seeming an intuitive decision, 

does it always maximize the parallelization benefits? If not, is it ever possible to efficiently find a 

state that does?

Answering these open questions, or more generally, creating a rigorous design requires some 

comprehensive understanding of the relationship between speculative parallelization and the tar

get FSM and its inputs. It demands models that are able to capture the effects of various specu

lative parallelizations. Without them, it is hard to determine the design that best fits a given FSM 

problem.

Meeting these demands involves many challenges. Both FSMs and their inputs are of various 

size, structure, and complexity. How to characterize them and capture their features that are 

critical for speculative parallelization? How to formulate the effects of lookback? How to quantify 

the likelihood for a state to be the true state? How to select the best state after a lookback? And 

how to formulate the overall benefits of a speculative parallelization with the effects of its different 

components integrated together? All these questions are important for achieving a principled 

understanding of speculative parallelization, but they all remain open.
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Figure 2.2: Speedups Comparison between the state-of-the-art and ours.
The speedups brought by the state-of-the-art speculation scheme [90] are limited on some complex FSM applications. 
The results are for 8 threads running on an 8-core machine. Details are shown in Section 2.6.
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Figure 2.3: Overview of this work.
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Overview of This Work The goal of this work is to present a rigorous approach to parallelization 

of FSM computations. Our solution comes from the observation that the likelihoods for a state to 

be the actual start state at a speculation point are usually non-uniform: Some states in an FSM 

may be more often to be visited than others, and more importantly, the likelihoods vary from one 

FSM to another and from one context (or input suffix) to another. The principle of our approach is 

to match the design of a speculation scheme with the properties of the target FSM and input.

To that end, we propose a set of techniques, organized into five boxes in Figure 2.3. Specif

ically, we introduce three novel abstractions (Box 0 )  to effectively characterize the stochastic 

properties of an FSM. With the abstractions, we build up a probabilistic performance model to 

quantify the expected performance of a speculatively parallel execution (Box (2).) The model 

unifies the considerations of lookback overhead, misspeculation penalty, and parallelization ben

efits into a single formulae. Based on the probabilistic performance formulation, we develop two 

model-based speculation schemes (Box (3)), which automatically customize themselves to suit 

the probabilistic properties of an FSM and its inputs. For practical deployment, we integrate the 

models into a library named OptSpec with a simple API. An important challenge in characterizing 

an FSM is to capture how its structure influences the effects of a lookback on a speculation, for 

which, through a formal analysis, we uncover the connections between state transitions and the 

probability for a speculation to succeed (Box 0 . )  In addition, as part of the OptSpec library con

struction, we explore the attainment of the FSM properties through both online and offline profiling 

(B o x © .)

The benefits brought by the rigorous treatment are significant. It boosts the parallelization 

speedups by more than a factor of four over the state of the art for most programs as shown in 

Figure 2.2. It yields near optimum performance on five programs, and reverses the slowdown on 

div to a 31% speedup. The unprecedented level of speedup challenges the common perception 

of FSM being “embarrassingly sequential", showing that they are inherently sequential but very 

parallelizable.

Contributions This work makes several contributions:

•  To the best of our knowledge, this work provides the first principled understanding of spec

ulative parallelization of FSM computations, and gives the first rigorous analysis of it.

•  It offers the first probabilistic model of lookback and its influence on speculative paralleliza

tion, and produces the first probabilistic performance model for speculative FSM paralleliza

tion.
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•  The two stochastic model-based speculation schemes, for the first time, enable an automatic 

match between speculative parallelization and the properties of FSM and its inputs.

•  It yields near optimal speedups on FSMs that the state-of-the-art techniques can barely 

accelerate.

•  It sheds insights on the importance of adding rigor into heuristic-based speculative paral- 

lelizations, and gives new understanding to the potential of parallelizing “embarrassingly 

sequential” applications.

A Running Example As most of our explanations will draw on the example in Figure 2.1, we 

provide some more information about it. The FSM was deliberately made simple for illustration 

purpose. The table in Figure 2.1 (b) presents some statistical attributes of the FSM, obtained by 

running the FSM on a typical input consisting of a string of 0 and 1. The second row (P (s )) shows 

the frequency of each of the states reached in the FSM execution. The second section of the 

table shows the expected merging length of the states. For instance, the second number in the 

third row of the table shows that if the FSM processes an input segment in two ways— one starts 

from state A and the other starts from state B— on average (across various input segments), the 

two runs don’t reach the same state until finishing processing 101 characters. This length section 

in the table is symmetric because the expected merging length is apparently a symmetric metric. 

(Section 2.5 will describe how the lengths can be measured efficiently in practice.) The bottom 

two rows in the table show the frequencies in which 0 or 1 follows a particular state of the FSM. 

For instance, the first number in the bottom row shows that during the execution, in 48.31% of 

time when the FSM is at state A, the next input character is 1. These attributes will be used in our 

following discussions.

Chapter Organizations In the following, we explain each component in Figure 2.3. We first 

present the components for enhancing the understanding of FSM properties and their connec

tions with speculative executions (Sections 2.2 and 2.3), and then describe the two speculative 

schemes and the OptSpec library (Sections 2.4 and 2.5.) For the nature of rigorous analysis, 

some formalism and mathematical inferences are hard to avoid in the following description, for 

which, we create some figures and examples to assist understanding. To make the presentation 

especially easy to follow, we also include all the important notations in Table 2.1.
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Table 2.1: Notations

Notation Description
N FSM input length
T number of threads
S, V the state set and vocabulary of an FSM
3 r state s transits to state r  after reading c
P(s) initial feasibility of s
P v (s) state feasibility of s after a lookback 

on suffix v
Sk the feasible state set after a fc-long lookback
ct cost of a state transition
cp,cw cost of a probability update, and workload
X Cp/Ct

workload parameter, ie., Cw/Ct
«(J) Wong lookback overhead
x(v>s) reexecution time when s is speculation state 

after a lookback on suffix v
L m (s, t ) expected merging length between states s and r

^ m («) expected merging length between s and 
all possible real states after a lookback 
on suffix v

E S the expectation make-span
ES( l ) ES when looking back length is I
n the real state at the tth time point
Li,  R, the contexts before and after the ith time point

2.2 Probabilistic Analysis of FSM Speculation

When analyzing the benefits of an FSM speculation scheme, it is important to take a probabilistic 

perspective: A speculative execution is inherently stochastic. The result of a speculation may be 

a success or failure, depending on what will happen in the future.

This section presents a probabilistic formulation for modeling the expected benefits of a spec

ulative parallelization of FSM. The formulation is fundamental as it enables a systematic assess

ment of various designs of speculation, and hence paves the path for creating an effective design.

2.2.1 Essence of Lookback

As lookback is a key operation in FSM speculation, to build up the performance model, we have 

to understand the essence of lookback. To that end, we introduce a term feasibility.

Definition 2. For a speculation point, the feasibility of a state s is the probability for s to be the 

correct state at that point.

Without consideration of contexts, statistically, the feasibility of a state s is the same at every 

speculation point (although the feasibilities of different states may differ), approximately equaling 

the frequency for the FSM to visit that state in its executions. We call these probabilities initial 

feasibilities or context-free feasibilities, denoted with P ( s ) ,  as the second row of Figure 2.1 (b)
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illustrates. We call the feasibilities after an input string v conditional feasibilities, denoted with

Pv(s).

A straightforward way to estimate the conditional feasibility, P v (s) or equivalently P(real state=s 

| left strings), is to count the frequency for s to appear after a string v in profiling runs. But be

cause the value space of v grows exponentially with its length, the approach is generally infeasible.

A key insight exploited in this study is that lookback is essentially a process that tries to use 

context (i.e., a suffix, v) to improve the knowledge about feasibilities. It implicitly exploits the 

property that the conditional state feasibilities, to a certain degree, are dictated by the inter-state 

relations specified by the FSM. For instance, processing a suffix ending with “0” cannot stop at 

states A or C in Figure 2.1 (a). By running the FSM on the suffix, lookback essentially employs the 

state transitions specified by the FSM to help focus the estimation of the conditional probabilities, 

and prune impossible states for speculation.

2.2.2 Formulation of Performance Expectation

With the essence of lookback understood, we are ready to build up a performance model for 

lookback-based speculative parallelization of FSM. We use make-span for performance. The 

make-span of an execution (either sequential or parallel) is the time elapsed from the start to the 

end of the execution. The expected make-span is the statistical mean of the make-spans of all 

executions of an application on various inputs of a given length, denoted as ES.

Specifically, our goal in this section is to come up with a set of formulae that can answer 

the following question: Given an FSM and a speculation scheme to use, what is the expected 

make-span of the speculative execution on an arbitrary input of a given length? Here, we use § 

to represent a speculation scheme, which indicates the lookback length I to use and the state to 

take as the speculation at each speculation point.

Having such a formulae is fundamental as it allows a systematic examination of the design 

space of FSM speculations.

The make-span of a thread in a lookback-based speculative execution is the sum of three 

components: its lookback overhead, the time for processing its own workload, and the reprocess

ing time if the speculation fails, as shown in Figure 2.4. We discuss the calculation of each as 

follows.

1) Lookback Overhead Lookback overhead depends on lookback length L. We denote the 

overhead with w(L). The basic operations during a lookback are the transitions (and associated 

probability update) from one state to another on the suffix.
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Figure 2.4: The make-span of a thread.
In cases of correct speculation (sp =  sr ) and wrong speculation (sp ^ sr), where, sp and sr  are the speculation and real 
states respectively.

2) Workload Processing Time One step in the workload processing by an FSM includes a 

state transition, and often some additional operations to consume the results produced by the 

FSM state transition. In an XML-based database constructor, for example, once an object is 

recognized by its FSM, it is stored into a relational database. We use Cw to represent the average 

time consumed by such an operation. Sometimes, the operations are buffered until the end of 

the FSM processing, in which case, Cw equals the time to do the buffering. If we use Ct to 

represent the time consumed by one state transition, the time taken by one step of the processing 

is (Ct + C w). Let N  be the length of the entire input, T  be the number of threads. An input segment 

is hence N /T  long. The processing time for an input segment is (Ct + C w) - N / T . Both Ct and Cw 

can be easily measured through profiling. Let 0  equal Cw/C t . The processing time for an input 

segment is (1 +  0) • Ct ■ N /T .  We call 0  the workload parameter.

3) Reexecution Time Upon a failed speculation, the data segment needs to be reprocessed 

from the real state, sr. However, often not the entire data segment needs to be reprocessed 

because even though the speculation state sp differs from sr, state transitions starting from them 

tend to converge gradually. For example, when the FSM in Figure 2.1 sees string “0 0 1 1  0”, 

no matter it starts with state B or C, after processing the first three characters “0 0 1 ”, it always 

reaches state C. We call the number of state transitions needed before two states converge the 

merging length of the two states, illustrated by the second section in Figure 2.1 (b).

Typically, reexecution is needed only for the data processed before sp and sr converge. Ap

parently the merging length depends on input strings and what the real state sr is. Recall that 

our goal is to compute the statistical expectation of make-span. So it is natural to use the statis

tical expectation of the merging length across all inputs and all possible true states, denoted as 

L M (sp).

Suppose after a lookback on a suffix v, the feasible states set (i.e., the set of states whose 

feasibilities are positive) is Sv and feasibilities are { P v(s)\s e Sv}. The expected merging length, 

L vM (sp) is computed as follows:
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LvM(sp) =  ^ 2  L M{sp,Si) ■ P v(si), (2.1)
a; es„

where, L M {sp, s/) is the statistical expectation of the merging length of sp and s, on all possible 

inputs. To understand the formula, one only needs to notice that L M {sp, is the reexecution time 

needed if turns out to be the real state, while P v(si) is the probability for that case to happen.

As the actual reexecution length cannot exceed the length of the segment (N/T) ,  m in{LvM (sp), N / T }  

is the expected reexecution length for a given speculation sp. Because a reexecution needs to 

reprocess the workload besides conducting state transitions, the expected reexecution time for a 

thread is

X(v, sp) =  min{LvM (sp), N / T }  ■ (1 +  /?) • Ct. (2.2)

Putting All Together The sum of the three components gives the make-span of a thread. With

out loss of generality, assume that all threads start at the same time. For the make-span of the 

entire execution, it may be tempting to think that it equals the maximum of the make-spans of all 

threads. It is incorrect because all reexecutions have to happen in serial: A thread does not know 

the real state until all the prior threads have completed their needed reexecutions2 The correct 

way to compute the expected make-span of the execution, for a given S, is as follows:

T

ES(S)  =  w(J) +  N / T - ( l  +  0 ) - C t +  Y2 X(v, sp(i)). (2.3)
i=2

where, I is the length of the suffix v, and sp(i) is the speculated state of thread i, specified in S.

The three components on the right side of the formula respectively correspond to the overhead 

of one lookback, the time to process one input segment, and the reexecution time of all threads 

(other than the first as it needs no reexecution). We call this formulae, along with its assistant 

formulas 2.1 and 2.2, the ES Formula.

Example We now show how the ES Formula applies to the example DFA in Figure 2.1. Suppose 

that our goal here is to compute the expected make-span in the following case: The second 

thread looks back at 2 characters. If by the end of the lookback, the thread picks state A as 

its speculated start state, some part of the second chunk of input may have to be reprocessed

as A may not be the real start state r. The length of that part is the expected merging length

between A  and r, denoted as L M (r,A).  The third row of the table in Figure 2.1 (b) gives all the

theoretically speaking, reexecutions can be speculatively parallelized as well. But it adds more complexity.
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lengths. The real state r  could be any of the seven states, but the examination of the suffix “1 0” 

helps refine the probabilities. As explained earlier, the refined probabilities are denoted as P y(s), 

meaning the probabilities for the real state to equal state s {s =  , F )  following suffix v

(i.e., p(r =  s|u = “1 0”)). So if we use L VM (A) to represent the statistical expectation of the merging 

length between A  and all possible real start states after v, according to Equation 2 .1 ,2 f t  (A) can 

be computed as follows:

L U A h Z s e s P v( ^ M ( s , A )

The computation of P v(s) (i.e., p(r =  s|v = “1 0”)) will be explained in the next section. Here, 

we list their values: P v(s)=0 ,0 .4 2 ,0 ,0 .1 4 ,0 .2 9 ,0.15(s =  A , B , - -  ,F) .  The third row of the table 

in Figure 2.1 (b) gives all the values of Lm(s, A).  Together, they give us the follows:

A)=0.42*101 +0.14*59.71 +0.29*39.12+0.15*59.71 =71.

From Formula 2.2, we know that in this case, the expected reexecution time is

x ( “1 0", A) =  min{L£°"(A) ,  N / T } • (1 +  /?) • Ct .

Assuming N  =  400, T  =  2, 0  =  l ,  Ct =  l ,  we get x (“1 0”, A) =  142. The look-back overhead is 

2 • Ct =  2. The time to process the second chunk of input is N / T  • ( l + 0)  • Ct =  200 • 2 • l  =  400. So 

the expected make-span in this case (i.e., when the second thread looks back by two characters 

and picks A  as the speculated start state) is ES(A)  =  2 +  400 +  142 =  544. In the same way, 

we can compute the expected make-span of the second thread when it picks any other state 

as the start state: ES(s)  =  488,487,512,499,512 (s =  B,  • • • ,  F).  State C is hence the best to 

pick as it minimizes the make-span. In the same vein, we can compute the minimum make-span 

when some other length of lookback is used. The results can help select the best lookback length 

(further elaborated in Section 2.4).

Discussion The ES Formula allows us to compute the expected performance of an arbitrary 

speculation scheme. It is fundamental for finding a suitable speculation scheme for an FSM. All 

parameters in the formula— I, sp(i), N, T, 0, Cu L M (sp, s»)— are given by the FSM or S or can 

be measured easily (shown in Section 2.5) from the FSM, except for the conditional feasibilities 

P v(si) that appears in Formula 2.1. We next show how to compute P v(si) from state transitions.

2.3 Computing Conditional Feasibilities

Recall that conditional feasibility P v{si ) is the probability for st to be the correct state following a 

lookback on suffix v. A key insight used in our design is that P v(si ) is essentially a refinement of
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Figure 2.5: Computing conditional feasibilities.
Gradual refinement of conditional feasibilities along with state transitions. The state transitions graph in the middle shows 
all possible transitions allowed by the FSM on the input characters.

the context-free feasibility, P (sj), with the influence of the suffix considered. Given that suffixes 

cast their influence by dictating the FSM state transitions in an execution, the key to computing 

P v(si) is hence to find out the connections between state transitions and conditional feasibilities. 

For convenience, we introduce several notations:

ri. the real state of the FSM at time point U.

Li-, the string processed before the time point U.

Ri'. the string processed after the time point U.

S: the entire set of states in an FSM.

Our analysis centers on the following observation: State transitions essentially lead to an 

incremental propagation of conditional feasibilities, with the conditions enriched gradually.

We will use Figure 2.5 to assist the explanation. The graph in the middle of the figure illustrates 

all possible state transitions upon a string v  =  C \C i • • • Cm. Our goal is to compute the conditional 

feasibility of each state after the m stages of state transitions on the string. It is essentially the 

conditional probability p (rm =  Sj\Lm =  CxCt ■ ■ ■ Cm)— that is, the probability for s, to be the 

true state at time tm given that the segment processed before that point equals C iC 2 ■••Cm. 

0' =  1 ,2 ,-- - , |S |) .

The calculation starts with the context-free feasibilities of all the states, P{sj ) ,  which is the 

p ( r 0 =  Sj) shown in the leftmost column in Figure 2.5. Context-free feasibilities are easily ob

tainable through profiling (Section 2.5); they are considered as given. As the input characters 

are added to the condition of the feasibilities one after one, initial probabilities p(r0 -  Sj) ( j =  

1,2, ■ ■ • ,  |S|) are gradually enriched to the conditional feasibilities p(rm ~  Sj\Lm =  C1C2 • ■ • Cm).

Intuition Let us examine the first stage of state transitions to gain some intuition. At this stage, 

we aim at putting the first input character C\  into the condition of the feasibilities. In another
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word, we try to compute p(rx =  Sj\Lx =  Cx) (j =  l ,  2, • • • , |S|.) We solve it by decomposing the 

computation into two steps. The first step uses p(r0 =  Sj) to compute p(r0 =  Sj\Rq =  C i)— that 

is, the state feasibilities when the upcoming character is C x at time tQ. The second step computes 

p (n  =  Sj\Li =  Ci)  from p(r0 =  s^Ro =  Cx). The first step is a simple application of the standard 

Bayes’ Theorem. It is easy to understand. We describe it later in this section.

We explain the second step here. This step exploits state transitions encoded in the FSM. In 

the transition graph in the middle of Figure 2.5, both and only states sx and s2 transit to sx from 

t0 to t x upon the input character C x. Therefore, for si to be the real state at time t x, either sx 

or s2 must be the real state at time t0. Hence, the feasibility of si at time tx with L x =  C x as 

the condition equals the sum of the feasibilities of sx and s2 at time t0 with C x as the upcoming 

character, that is, p(rx -  s i|L i =  C x) -  p(ro =  s x\Rq =  Cx) + p ( r 0 =  s2\Ro =  C x).

These two steps of context enrichment are called inner-stage update and inter-stage update 

respectively, corresponding to the downward arrow and right upward arrow from time t0 to t x in 

the bottom graph of Figure 2.5. With all P ( r x =  Sj\Lx =  C x) (Sj e S) computed, we can add the 

second character C2 into the condition in the same manner. Continuously doing this leads to the 

ultimate goal, p (rm =  Sj\Lm =  CXC2 ■ ■ ■ Cm).

General Form The formulae in Figure 2.6 express the two types of feasibility update. We 

call them Feasibility Formulae. The inner-stage formula captures the feasibility changes when 

the upcoming character CX is considered, given that all the conditional feasibilities at time t<_i, 

p ( n - X =  Sj \L i -X =  C i...(j_i)), have been computed. The first line of the inner-stage formula 

comes directly from the Bayes’ Theorem. The second line comes from a simple inference on the 

fact that 2 Sje s K r i - i  =  sj \ L i - i  =  Cx...(i-X) , R i - X =  Ct) =  1. The inter-stage formula computes 

the conditional feasibilities at time t, based on the results of the inner-stage update. Its rationale 

is the same as the intuition given by the example in the previous paragraph. The computation 

results of the inter-stage update are then used by the inner-stage update (as they appear on the 

righthand side of the inner-stage formula) of the next stage. In this manner, these two kinds of 

update go hand in hand, leading to the final conditional feasibilities.

As the righthand side of the inner-stage update equation shows, using the formulae needs 

context-free feasibilities and conditional probabilities p(Ri~x =  =  sj , L i- 1 =  Cx...(*_!))

(sj e S.) Context-free feasibilities are easy to obtain through profiling, but conditional ones are 

hard: There are too many variations of the condition to profile. However, notice that even though 

the string before L ^ x, has influence on the probabilities of which character to appear next, 

the influence is largely throttled when the real state at U - X, n - i ,  is given: As a result of L X- x,
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Inner-stage update of feasibilities:

p (ft—1 “  SjjZf2_i — i ) ,R%—i Ci)

p(Li-i=Ci...(i- i),Ri-i=Ci)

~~ S 3,6 S p ( f l< - i= C i | r i_ i= a , i j_ i= C i . . . ( < - i ) ) ,p ( r i_ i= « |L i_ i= C i. . . ( i_ i ) )

Inter-stage update of feasibilities:

p(r i = sj \L i  — L i - l O i )  = Y2 sgS p(Pj-l = s|-£<i-l = Cl - (i-l)i R i—1 = Ci)*
c <. a—

Figure 2.6: Formulae for inner-stage and inter-stage update of state feasibilities.
<?!...(,—!) stands for C i C 2 ■ ■ C t- 1, and {a|s e S'; s Sj} contains all the states that can transit to Sj on input 
character from time t*_i to t,.

r*_i already captures most of its influence. Therefore, p(Ri -  1 =  C i|r i_ i =  s.,) is used as a 

replacement of p(Ri~i =  C i l n - i  =  S j ,£ t - i  =  The probability p(Ri =  C \ r i - i  =  Sj)

(C e V; V  is the FSM vocabulary) can be obtained through profiling as Section 2.5 will show. With 

that replacement, the inner-stage update of p ( n - i  =  -Ri-i =  Ct) becomes

p { R j - i  — C j|rj_ i =  Sj) ■ p (rj_ i =  Sj \Lj~i  =  C j.- .ft-i)) ^

E a e s P ^ *-1  =  cf»lr t - i  = s ) - p ( n - i  =  s \ L i - !  =  C i...(i_ i ) ) '

Example We now show how the formulae can be used to compute the conditional feasibility of 

p(r =  B\v = “1 0") for the example FSM in Figure 2.1. We decompose the computation into four 

steps so that the inner-stage and inter-stage updates of the probabilities can be seen clearly.

Step 1: The calculation starts with using initial probabilities p(r =  s) (s =  , F )  to com

pute the conditional probabilities when the upcoming character is “1”—-that is, p{r =  s\R = “1”). 

This step corresponds to the point t6 in Figure 2.1 (a). When s=A, for instance, the conditional 

probability is computed as follows:

p(r  =  A\R  =  “1”) =

The components of the numerator are attributes of the DFA given in the table in Figure 2.1. 

The denominator equals

Z sesP(R =  “l ” |s) • p(s) and hence can also be computed from the table. The results of this step 

are as follows:

p(r =  s\R = “1”) =  0.14,0.28,0.14,0.14,0.15,0.15 (s =  A , B • ,F) .
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Step 2: We are now ready to compute the conditional probability when the left character is “1 
p(r =  s\L = “1 ”), which corresponds to the point t7 in Figure 2.1 (a). When s=A, for instance, it is 
computed as follows:

p(r — A\L  =  “1”) =  ^  P(r =  s |f l= “l ”)
—IA

=  p(r  =  £)|jR =  “1”) + p ( r  =  F \ R  =  “1” )
=  0.29.

The results from this step are as follows:

p(r =  s \ L =  “1” ) =  0.29,0.14,0.28,0.14,0,0.15 (s =  A , B r -- ,F) .

Step 3: We now add the second lookback character into the condition to compute the prob

abilities p(r =  s\L =  ur , R  =  “0”). This step still corresponds to the point t7 in Figure 2.1 (a). 

When s=A, for instance, the probability is computed as follows based on Formula 2.4:

p ( r  =  A\L =  'tl ”>R =  “O” ) =

The results from this step are as follows:

p(r =  a\ L =  ur , R =  “0”) =  0.295,0.143,0.279,0.139,0,0.145(s =  A,B ,  •• • ,F ) .

Step 4: We are now ready to compute the conditional feasibilities, p(r =  s\L =*1 0”). When 

s=A, for instance, it is computed as follows:

p(r =  A\L  = “1 0”) =  Y ,aeSao,AP(r =  a\L =  “1” , R =  “0”).

As there are no state transiting to A  through “0”, the probability is 0. When s=B, the conditional 

feasibility,

p(r =  B\L  =  “10”) = p ( r  =  B\L  =  “1”, J? =  “0”) + p ( r  =  C\L  =  “1 ” , R  =  “0”) =  0.422.

Discussion With the Feasibility Formulae computing the conditional feasibilities, the ES For

mulae is finally complete for modeling the expected performance of an FSM on a speculation 

scheme. It paves the way for a rigorous design of FSM parallelization. With it, some intuitive de

signs manifest their problems immediately. For instance, at a speculation point, choosing the state
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that is most likely to be the true state (i.e., with the largest P v(.)) may not be the best strategy. As 

Equation 2.1 shows, the reexecution length, when sp is used for speculation, is a weighted sum 

of all feasibilities P v(si), with weights equaling the expected merging length, L M {sp, s{) (st e Si). 

Hence, the most plausible state may result in a long reexecution for certain values of L M (sp, s,). 

We next describe how the performance model helps find the best configurations for some specu

lation schemes.

2.4 Towards Optimal Designs

In this section, we first discuss the major dimensions in designing speculative parallelization of 

FSM. We then demonstrate how the described formulations help appropriately configure specu

lation schemes.

2.4.1 Design Dimensions

There are three main dimensions in configuring a lookback-based speculation scheme for FSM 

computations. The first is lookback length, which has some mixed effects: A long lookback may 

help reduce misspeculation by exploiting more context, but it meanwhile increases lookback over

head.

The second dimension is the set of states for starting a lookback. All previous speculation 

schemes use the default initial state of the FSM as the start state for lookback, which restraints 

the lookback benefit. As we will show, a larger start state set tends to yield a better speculation 

result. The main design questions in this dimension are how large the set should be, and which 

states the set should contain.

The third design dimension is the selection of lookback results for speculation. When the start 

state set of a lookback includes more than one state, the FSM executions from each of them will 

reach a state by the end of the lookback. For example, if we use states C and E as the start states 

for lookback for the FSM in Figure 2.1, on a suffix “1 0”, the two lookbacks will end up at states D 

and F respectively. Choosing the best lookback ending state for speculation is the core question 

in this dimension.

These three dimensions interrelate with one another. For instance, optimal lookback lengths 

depend on what start states the lookback uses. Designs in all these dimensions together deter

mine the quality of a speculation scheme. But it is difficult to compute the optimal values for all 

three dimensions at the same time.
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In this section, we take the following strategy. We fix the configuration of the second dimen

sion (i.e., the set of start states for lookback), and try to find the appropriate configurations for all 

other dimensions. In particular, we concentrate on two configurations of the second dimension. 

One uses the complete state set S as the lookback start state set, the other uses a single state 

(adaptively determined) as the lookback start state set. Our analysis will demonstrate how the 

formalization described in the previous sections makes it possible to configure the two specula

tion schemes effectively. After that, we briefly discuss some other possible configurations of the 

second dimension.

2.4.2 Speculation thrpugh All-State Lookback

In this scheme, the lookback uses the complete state set as the start state set— that is, during 

the lookback, each thread other than the first processes a suffix for |5| times, each time starting

with a different state. The key design questions are how to determine suitable lookback lengths

and how to select a state for speculation. To minimize make-span, the first step in the design is 

to instantiate the form of make-span given by the ES Formulae (Equations 2.1,2.2,2.3). To do so, 

we need to calculate lookback overhead u(l)  and expected reexecution time. We start with u(l).

Lookback Overhead u(l)  Because of the use of all states when a lookback starts, it is easy to 

see that the total number of state transitions throughout a lookback is ]CjLo I5*! ’ where, Sk is the 

set of feasible states after k stages of state transitions since the start of a lookback. In all-state 

lookback, there is an update to the feasibility of a state after every state transition in a lookback. 

Suppose the cost of a state transition is Ct, and the cost of a feasibility update is Cp. Then the 

overhead of an i-long lookback is

i
u(l) =  ( £ \ S k \ ) - ( C t +  Cp). (2.5)

fc=0

Suppose Cp =  X - C u then we have

i
u(.l) = (Y^\Sk\)-(l + V -Ct. (2.6)

fc=o

Both Ct and A can be easily measured (Section 2.5.)

Selecting the Speculation State In this all-state lookback scheme, after a lookback, there 

are typically multiple ending states. Which is selected for speculation determines the expected 

reexecution time. Our selection algorithm is as follows. With state feasibilities computed using
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the technique given in Section 2.3, for a given /, it is easy to use Equation 2.1 to compute the 

expected merging length, L vM (sp), between every sp and the real state— that is, the expected 

reexecution length when sp is selected for speculation. The best speculation state can then be 

selected: It is the one that minimizes L vM (sp) (hence the make-span.) We use s* to represent 

such a state. Based on Equation 2.2, the minimal reexecution cost can be computed as follows:

X(v, s*) =  min{LvM ( s * ) ,N /T }  • (Ct +  Cw). (2.7>

Determining Lookback Length The selection of the appropriate lookback length is based on 

the expectation of make-span (i.e., Equation 2.3.) The first two components of the make-span are 

easy to compute. The third component is the sum of all threads’ reexecution overhead, which is 

unavailable before the execution finishes. It can be approximated by running /-long lookback on 

a number of typical suffixes and then using Equation 2.7 to compute the reexecution overhead of 

each. Let x (L «*) be the average. The expectation of make-span using /-long lookback can be 

calculated as follows:

ES(l )  =  w(Z) +  N / T  • (Ct +  Cw) +  (T  -  1) • X(l, a*). (2.8)

A brute-force way to obtain the best lookback length is to use equation 2.8 to compute the

ES(l )  for all values of / and then find the minimum. It is unappealing because of the need for 

collecting P l (s) for ail / and the corresponding overhead.

We use curve fitting to circumvent the problem. Curve fitting is applied to the first and third 

components of Equation 2.8 individually. These two are the only components relevant to / in the 

formula. Fitting them individually is easier than fitting their summation because their summation 

is often not monotonic while the two components are individually: The lookback overhead U}(1) 

increases as / increases, and the expected reexecution cost (T  -  l )  • x (/,s *) decreases as / 

increases. The monotonicity simplifies curve fitting.

The implementation of the curve fitting is in a standard way. Using many suffixes, it first 

obtains a number of samples of w(Z) and (T  -  l )  • x(Z,s*) at some sample values of / (/ =  2’ ,

i  =  0,1, • • • , K).  It then uses a set of functions of i to fit the points, and finds the functions

producing the least mean square errors for w(Z) and (T  - 1 )  • xJJ/s*) respectively. The best value 

of / is then directly computed as the value that minimizes the sum of the two functions. Please 

refer to our technical report [120] for details.

With the techniques described in this sub-section, we can configure an all-state lookback-
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based speculation scheme to best meet the probabilistic properties of the FSM and inputs. The 

implementation, including the needed profiling, is detailed in Section 2.5.

2.4.3 Speculation through Single-State Lookback

All prior FSM speculation methods use a single state to start lookback. We show that the proba

bilistic analysis can also help such single-state schemes.

In the prior schemes [58,90], the execution by a thread (except the first) starts with a lookback 

using the default initial state as the start state. After that, it uses the ending state of the lookback 

as the start state to process the input segment assigned to it. Reprocessing is done upon a 

misspeculation.

We now show how the scheme can be enhanced through probabilistic models. We start with 

its make-span. If we use lb and lx to represent the lookback length and expected reexecution 

length respectively, we can rewrite the ES Formula (Equation 2.3) to

ES ( lb) =  J6 • (1 +  A) ' C t +  N / T  ■ (1 + 13) ■ Ct +  (T  -  1) • lx ■ (1 +  /3) • Ct . (2.9)

Let s'd represent the start state of a lookback. The ES Formula can be simplified with the 

following lemma:

Lemma 1. For single-state speculative executions, if L°M (sd) >  lb, then lx =  L°M (sd) -  lb, other

wise, lx =  0.

In the lemma, L°M (s'd) is the expected merging length between state sd and all other states 

without looking back. The lemma is proved in our technical report [120].

Putting lx values from Lemma 1 into Equation 2.9, the make-span equation is simplified, from 

which, we get the following theorem:

Theorem 1. For single-state speculative execution (T  > 2  and (3 >  X), the best lookback length 

equals L°M (sd), and the expected make-span equals L°M {sd) ■ ( l  +  A) • Ct +  N /T  • (1 +  /?) • Ct, 

where sd is the lookback start state.

The theorem is proved in our technical report [120].

All parameters in the theorem, including L°M (s) (s e S ), can be obtained through profiling 

(Section 2.5.) Based on this theorem, one can easily compute the minimum expected make-span 

min.em(s) for each s. The suitable state to use for lookback is just the one whose min.em(s)  is 

the smallest; its corresponding best lookback length is the overall best choice of lookback length. 

This gives the configuration that minimizes the expectation of make-span. The theorem has two
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conditions: T  >  2 and /3 >  A. The first says that there are more than one thread in the FSM 

computation, and the second says that the time overhead of a probability update is no greater 

than the average time overhead in workload processing upon a FSM state transition. Both hold in 

a typical parallel FSM execution.

2.4.4 Other Configurations

Besides the all-state and single-state lookback schemes, the configurations can also use a subset 

of S for lookback. The appropriate designs can be obtained in a manner similar to the all-state 

case. One complexity is that the use of a subset of all states leaves some state transitions 

unexamined during the lookback. Some approximations may have to be used as remedy when 

computing conditional state feasibilities. Details are out of the scope of this work.

2.5 Implementation and Library Development

The implementations of the two speculation schemes both consist of a profiler and a controller. 

The controller runs online. By feeding information collected by the profilers to the analytic models 

described in the previous section, it configures the speculation schemes (e.g., lookback length, 

start states, selection of speculation states) on the fly to suite the properties of the FSM and 

inputs.

The profiler collects data needed by the analytic models. The single-state scheme requires 

the following data: context-free state feasibilities P(s) (s € S), expected merging length between 

every pair of states L M (s,r ) (s, r e S) (for computing L°M (s)), overhead parameters A and fi, the 

number of threads T, and the length of the input string N . The actual values of all these param

eters may vary across FSM as well as input strings. The all-state scheme needs the following 

additional data: p(Ri  =  C|r<_i =  Sj) (C  e V") for inner-stage probabilities update, and the values 

of L lM (s*) and w(i) at 17 sampled values of I (2k, k =  0,1, • • • ,  16) for finding the suitable lookback 

length through curve fitting.

The profiler can run either online or offline. We explain the online case first. The online profiler 

has an adaptive switch. It first collects the values of T, N , S, A, and f3, with negligible overhead. It 

then uses these values to estimate the time needed to collect the remaining parameters, based on 

their computational complexities. If the overhead is larger than 10% of the single-thread workload 

processing time, it falls back to the default simple heuristic-based parallelization. Otherwise, it 

collects the other parameters as follows.

The collection of all P(s)  and p(Ri =  C \ r ^ i  -  s3) is through a sequential execution of the
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FSM on the first 2% input. As the execution is normal rather than speculated, the results are 

used as part of the final output of the FSM. As side products of the execution, the two kinds of 

probabilities are estimated based on their occurring frequencies in the execution. The overhead 

of this step is small.

The step to collect all the expected state merging length, L m ( s , t ) ,  is quadratic to |S|. It is 

the most likely cause of the shutdown of the online profiling. The collection runs the FSM on 

an Mong segment of the input string |S| times, with a different state in S used as the start state 

each time. Meanwhile, during each process of the string segment, the FSM is reset to the start 

state after processing every 1/5 input symbols. It ensures that the start state is visited by at least 

5 times during the process. The state sequence in each run is recorded. After all the |S| runs 

finish, the comparison between every two sequences gives at least 5 merging lengths of the 

two corresponding states (say s and r.) The average is used for L M(s,r) .  The whole collection 

process runs in parallel across different states. In our experiments, I is set to 1.6 million or the 

length of the training input if it is less than 1.6 million. Choosing 1.6 million is because it is greater 

than 5 times of largest merging length in our measurements. Such a length also ensures that with 

99% confidence, the distribution of the characters in the training input is no more than 0.0011 off 

(in terms of the proportion of each character) that in the testing input [102], If two states have not 

merged by 100,000 state transitions, their L m  is set to oo.

When online profiling is not affordable, offline profiling is always an option. A shortcoming of 

offline profiling is the input sensitivity issue. But in many uses of FSM applications, the same FSM 

runs on many similar inputs again and again, for example, an XML validator that deals with a large 

collection of XML files from similar sources. Furthermore, most input-sensitive parameters (e.g., 

T, N,  |S|, P(s) ,  p(Ri =  C |rt_ i =  8j)) can still be collected during runtime as they consume little 

overhead.

The space overhead of data collection is max(|S|2, |5| • |V |), negligible for all the tested FSM 

executions (V" for vocabulary.)

To make the model-based speculative schemes easy to use, we develop a library named 

OptSpec which integrates the ail-state and single-state speculative schemes and the online and 

offline profiling procedures together. It is implemented in C and POSIX Threads, detailed in our 

technical report [120].
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Table 2.2: Benchmarks
Name Description SI LM{ s, r ) P(s) L * Input
huff Huffman Decoding 46 4~25 0~0.21 23 209MB
lexing XML Lexing 3 1.0~6.8 0.06~0.5 2 76MB
strl String Pattern Search 496 1 Q~41 K 0~0.037 362 70MB
str2 String Pattern Search 131 2.98~oo 0~0.063 724 70MB
pval Pattern Validation 28 0~oo 0~0.50 0 96MB
xval XML Validation 742 00 0~0.054 229 57MB
div Unary Divisibility 7 00 0.143 0 97MB

Bheuris Hheuris+ S  heuris++ Hmodel-S_on 0  model-A_on Bm odel-S_off ■  model-A_off

Hheuris Hheuris+ Bheuris++ Hm odel-S on Hm odel-A  on Sm odel-S off B m o d e l-A ^ ff

Figure 2.7: The overall speedup when 8 threads used.
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2.6 Evaluation

We evaluate the proposed techniques on seven FSMs listed in Table 2.2. They are developed 

based on the literatures in the web XML processing community (e.g., lexing and xval [116]), 

mathematics (e.g., div[U] ),  classical Huffman decoding (huff[62]), and string pattern matchings 

(strl, pval, and str2 [6].) FSM computations take majority (mostly over 90%) of their execution 

time. They are selected for their wide usage in practice, and the spectrum of statistic features and 

complexities they exhibit as the right columns in Table 2.2 show. The features shown are those 

mostly related with the difficulty for speculative parallelization. The third column shows the ranges 

of state merging lengths (averaged over 100 runs.) The infinities (oo) indicate that some pairs 

of states in that FSM never converge. The P(s)  column shows the ranges of context-free state 

feasibilities. An FSM with flat distribution of state feasibilities, such as div and xval, is usually hard 

to speculate. The L* column shows the lookback length that our approach finds for the all-state 

scheme (/3 =  50.) The rightmost column shows the size of the testing inputs. We collected inputs 

mostly from some public sources. For example, the input to pval, strl and str2 are some novels; 

the input to huff is a 209MB pre-encoded text file; the input to lexing is a large XML file containing 

the information on the students in some college. We used the first about 2% of the collected data 

set as the training input.

Our experiments run on a dual-socket quad-core machine equipped with Intel Xeon E5620 

processors. The machine runs Linux 2.6.22 and has GCC 4.4.1 as the compiler with “-0 3 ” opti

mization flag. All timing results reported are the average of 10 repetitive runs with all runtime cost 

included.

For each benchmark, we compare the results from the following speculative executions: 

heuris: Previous scheme [90]. 

heuris+: Our simple extension to previous scheme [90]. 

heuris++: Our further extension to previous scheme [90]. 

model-S.on: Our single-state scheme with online profiling. 

model-A-on: Our all-state scheme with online profiling. 

model-S-Off: Our single-state scheme with offline profiling. 

model-A_off: Our all-state scheme with offline profiling.

The heuris shows the performance from the state-of-the-art scheme described in recent work [90]. 

It has lookback and other recent techniques incorporated, but relies on simple heuristics and is not 

adaptive to FSM properties or input strings. As the previous work offers no systematic solutions 

for finding the suitable lookback length, we implement the scheme with three lookback lengths,
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32 ,128 ,512 , that are used by the previous study [90] and use the best performance for heuris.

To examine the value of the insights and techniques described in this work, we develop six 

extra versions of speculative parallelization, which exhibit a spectrum of complexity and generality.

The heuris+ version is our simplest extension to heuris. It leverages one of the insights in 

Section 2.2.2: Upon a failed speculation, often only the first part of the data segment needs to be 

reprocessed as state transitions starting from the wrong speculation state and the real state may 

converge. At a failed speculation, the reprocessing of this version stops at the convergence. This 

partial reprocessing has been used before, but only for some special DFA [62],

The heuris++ version extends the heuris+ version by using the state with the largest initial 

feasibility P(s) as the start state for lookback. Similar to heuris, for these two extended versions, 

we try the three lookback lengths and report the best results.

The other four versions are based on the full model presented in this work, with either online 

or offline profiling.

Figure 2.7 reports the overall speedups compared with the sequential performance when 8 

threads are used. Results on 4 threads are similar.

As executions of an FSM may have different workload parameters (/3) in different uses of the 

FSM, we report the results upon two different 0  values, 10 and 50. Figure 2.8 reports the influence 

of input size on the performance of model-A.off with /3=10, where, the “medium” size is the same 

as the testing input in Table 2.2, and the “small” and “large” sizes are five times smaller and larger 

than the “medium”.

Results The speedups differ between FSMs. The following two properties of an FSM are espe

cially critical:

(1) Probability distribution: How biased the state probabilities are determines the difficulty 

for speculating the right state. If there is an extremely popular state, simple speculations would 

suffice as long as it picks that popular state. But if the distribution is flat, finding the right state 

would rely more on effective exploitations of contexts and probabilistic analysis.

(2) Merging length: How fast two states merge determines the cost of a misspeculation. If all 

states merge quickly, a misspeculation causes only a small segment of input to be reprocessed, 

and hence, a simple method may work fine even if it makes lots of wrong speculations.

In our experiments, huff and lexing have much skewed probability distributions and short merg

ing lengths. All methods work well on them. As the FSM gets more challenging, those versions 

start showing disparity in the speedups. The heuris shows less than 20% speedups on all remain

ing five benchmarks, partial reexecution helps heuris+ achieve 5-7X speedups on strl and str2,
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and heuris++ gives more than 7X speedup on one more FSM, pval by exploiting the unconditional 

feasibilities in lookback. The model-A^off version gives significant speedups on all FSMs except 

for the most challenging one, div, demonstrating the generality brought by the principled specu

lation on the full model. The online model-based methods are beneficial to small FSMs only; the 

overhead of online profiling prevents them from taking effect on large FSMs.

Overall, the results show that simple capitalization of partial reexecution and state uncondi

tional feasibilities can significantly improve the effectiveness of speculative speculations, making 

it suffice for most FSMs. But the full model-based method has the greatest generality, and may 

serve for very complex FSMs.

We further examine each individual program to provide a more detailed analysis.

a) huff and lexing. The program, huff, is a Huffman decoding tool. The input is a 209MB 

pre-encoded text file. The program, lexing, is an XML lexing tool, whose FSM contains only three 

states. Its testing input is a 76MB XML file. We include the two programs because they are used 

in prior studies [62,90]. They turn out to be the only programs, on which, the previous technique 

shows speedups comparable to the other extended methods. The observed speedups agree with 

the results reported previously [90]. An examination of the two FSM shows that they have one or 

two very popular states. As a result, all lookbacks lead to those states, yielding 100% speculation 

accuracy, and large speedups.

b) strl, str2. These two programs are both for string pattern searching. The pattern for strl is 

(.*l.*i.*k.*e)6)\(.*a.*p.*p.*l.*e)5', the pattern for str2\s ((.+ , .+ \  •)4I(-+ >)4I(-+ \  -)4)3- The in the 

patterns is for any character, “\ .” for the period, and superscripts for repetitions. They are selected 

to represent some complex cases in string pattern matching. The FSM of str2 has some states 

that never converge, but most do. The ad hoc lookback in the heuris version gives almost entirely 

wrong speculation states. However, because most states in the FSMs have a short merging 

length, partial reexecution is sufficient to exploit the parallelism. The online model-based versions 

are shut down automatically for the required large profiling overhead. The offline model-based 

versions provide comparable speedups with heuris+.

c) pval. The program, pval, validates a binary string pattern, lll([01 ]*00 [0 l]*)10l l l ,  where the 

superscript “10” means that the pattern in the parentheses repeats for 10 times. The speculation 

accuracy of the heuris method drops to 0-27% . In contrast, the all-state methods keep most 

prediction accuracies higher than 70%. Coupled with the minimization of reexecution time, they 

give the near linear speedups shown in Figure 2.7. Similar speedups are obtained by heuris++, 

indicating that exploiting unconditional feasibility and partial reexecution is sufficient for this FSM.

d) xval. The program, xval, checks the validity of an XML file. It has a more complex FSM
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Figure 2.8: “Model-A off” on different input sizes.
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Figure 2.9: Time breakdown of model-A-off with /3=50.
Notations: “lookback" for lookback overhead, “workload” for workload processing time, “reexecution" for reexecution time.

than the previous five, including 742 states to implement an simplified Schema validation algo

rithm [116]. It does both lexical and syntactic validations for XML files containing up to five levels 

of nested tags on college personnel dataset. For this complex FSM, our online methods automat

ically fall back to the basic speculative scheme. Our method-A.off method produces 5.7 times of 

speedup, while hone of the other methods gives any noticeable speedup.

On strl, str2, pval and xval, the heuris method is subject to near zero speculation accuracy, 

while the probabilistic models boost the accuracy to about 50%. Moreover, as the time breakdown 

shows (Figure 2.9), the model-based speculation selects the state that has a small penalty of 

misspeculation. The majority of the speculative execution is hence still valid (except cf/V), yielding 

the much larger speedups.

e) div. This program checks whether an input binary string is 7 divisible. The FSM is a 

classical solution to the problem from the mathematic community [14]. Structure-wise, it is simple, 

containing only seven states, shown in Figure 3.2.

However, it is extremely challenging for speculation. The seven states have exactly the same 

state feasibilities, and any two states never merge regardless of input. Consequently, making

■  reexecution

■  workload

■  lookback

36



0 1

6 )

i

4 )

Figure 2.10: The FSM of div.

speculation is both difficult and risky— a wrong speculation leads to completely useless execution 

by a thread. All of the four model-based approaches select 0 as the lookback length, achieving 

14.4% and 28.8% speculation accuracies and 1.06-1.31X speedups. The heuristic method yields 

0 speculation accuracy but pays 1-5%  overhead.

The offline profiling of the FSMs took less than a minute for most programs and about 10 

minutes for xval for its many states. The cost could be further reduced through a more efficient 

implementation. But as these programs often serve as frequently used utilities for many inputs, 

the one-time training process is acceptable in many practical scenarios.

Summary of Results The results lead to the following conclusions:

(1) State probability distribution and merging length primarily decide the difficulty for specula

tive parallelization.

(2) The basic heuristic method works only on FSMs with a highly skewed state distribution. 

Extending it with partial reexecution and unconditional feasibilities improves it significantly for 

FSMs with short merging lengths.

(3) The all-state model-based speculation, when used with offline profiling, has the greatest 

generality, leading to near linear speedups for most FSMs.

(4) The online version of model-based speculations is effective when the FSM is not large. 

Compared to other methods, it is the only method that can be applied on the fly with no need for 

offline profiling, which makes it potentially more resilient to input sensitivity issues.

(5) FSMs with uniform state probabilities and infinite merging lengths have little potential for 

speculative parallelization. However, if such an FSM contains only a few states, each input seg

ment could be processed from all states in parallel. This method however, increases the amount 

of computation by a factor of |S|, and is hence not scalable nor energy efficient.
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2.7 Related Work

Program parallelization has drawn explorations from language design (e.g. Cilk [48], X10 [36]), to 

hardware support (e.g., TLS [51,101]) and programming models (e.g., STM [11,33]). For lack of 

space, we concentrate on work closely related with FSM and software speculation.

Some studies try to parallelize some specific FSM applications. Jones and others, for instance, 

focus on a browser’s front-end [58]. They introduce lookback (called overlap) for enhancing spec

ulation accuracy, but did not study how to design the scheme to maximize the benefits. Klein and 

Wiseman [62] have designed a parallel JPEG decoder, which explores parallel Huffman decod

ing. Luchaup and others [74] have used hot state prediction in a pattern matching FSM to identify 

intrusions. Other examples include speculative parsing [60] and speculative simulated anneal

ing [109]. These studies shed important insights into parallelizing FSM applications. But they all 

rely on simple heuristics rather than a systematic exploration of the design space.

There have been some studies in implementing parallel Non-deterministic Finite Automata 

(NFA) [121]. Unlike other types of FSM, the non-determinism in NFA inherently exposes a large 

amount of parallelism. There have been many efforts in parallel parsing. They can be roughly 

classified into two categories. The first tries to decompose the grammar among threads [21,22] by 

exploiting some special properties of the target language or parsing algorithm (e.g., LR parsing 

in Fischer’s seminal work [47]). The second tries to decompose the input [73], and can often 

leverage more parallelism than the first approach. They typically use a sequential prescan to 

partition data at appropriate places. Prescan is sequential and can benefit from the parallelization 

proposed in this work. The prescan-based data decomposition is often subject to load imbalance 

because the cutting points can only be the boundaries of certain constructs. Some work tries to 

allow even data partition by leveraging speculation for parallel parsing [115]. Similar to many prior 

speculative parallelizations, they are also based on heuristics and can potentially benefit from the 

rigorous analysis proposed in this work.

There are some efforts on speculatively parallelizing applications beyond a specific domain. 

Prabhu and others [90] proposed two new language constructs to simplify programmers’ job in 

using speculation schemes to parallelize applications. Some other work has used software spec

ulation to selectively parallelize programs with dynamic, uncertain parallelism, either at the level 

of processes [40] or threads [45,94,103]. They are mainly based on simple heuristics exposed in 

program runtime behaviors (e.g., speculation success rate). Llanos and others use probabilities 

of a dependence violation to guide loop scheduling of randomized incremental algorithms in the 

context of speculative parallelization [72]. Kulkarni and others have showed the usage of abstrac
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tion to find parallelism in some irregular applications [64], The pre-computation used by Quinones 

and others for speculative threading [93] shares the spirit with lookback in exploiting some part of 

the program execution for speculation. They construct no rigorous speculation models, but relies 

on subset of instructions to resolve dependences.

2.8 Summary

This work introduces formal analysis into speculative parallelization by formulating FSM specula

tive executions and the connections between the design of speculation schemes and the charac

teristics of FSM and their inputs. It deepens the understanding to speculative execution of FSM 

computations with a series of theoretical findings, including the essence and effects of lookback 

for speculation, the connections between state transitions and conditional feasibilities, and the 

relationship between partial committing and overall running times. It provides a set of model- 

based speculation schemes, with suitable configurations automatically determined. Experiments 

demonstrate that the new techniques outperform the state of the art by a factor of four on most 

programs, showing that “embarrassingly sequential” applications are in fact quite parallelizable. 

The insights, especially the importance of rigor and how to achieve it, could potentially benefit 

speculative parallelization of programs beyond FSM.
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3 On-the-Fly Pincipled Speculation for FSM 

Parallelization

Finite State Machine (FSM) is the backbone of an important class of applications in many do

mains. Its parallelization has been extremely difficult due to inherent strong dependences in the 

computation. Recently, principled speculation shows good promise to solve the problem. How

ever, the reliance on offline training makes the approach inconvenient to adopt and hard to apply 

to many practical FSM applications, which often deal with a large variety of inputs different from 

training inputs.

This work presents an assembly of techniques that completely remove the needs for offline 

training. The techniques include a set of theoretical results on inherent properties of FSMs, and 

two newly designed dynamic optimizations for efficient FSM characterization. The new tech

niques, for the first time, make principle speculation applicable on the fly, and enables swift, au

tomatic configuration of speculative parallelizations to best suit a given FSM and its current input. 

They eliminate the fundamental barrier for practical adoption of principle speculation for FSM 

parallelization. Experiments show that the new techniques give significantly higher speedups for 

some difficult FSM applications in the presence of input changes.

3.1 Background and Problem

In this section, we first present the background of principled parallelization, and then explain the 

key barrier for its practical deployment.

Principled Speculation At the center of principled speculative parallelization is a make-span 

formula, which offers the statistical expectation of the make-span of a speculatively parallelized 

execution of an FSM. Here, make-span means end to end execution time, including all speculation 

overhead and reexecutions upon speculation errors. An important feature of the method is that 

the make-span formula is based on the statistical properties of the given FSM. So if the statistical
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An example input:,

••• 100 1 10J_Q.il 101001  1 •••

Figure 3.1: An FSM for string pattern matching and an example input string to it. Each circle 
on the graph represents an FSM state. State A is the initial state (marked by the extra incoming 
edge), and state D is an acceptance state. The symbols on the edges indicate conditions for state 
transitions.

properties of an FSM are known, from the formula, the method can analytically figure out how 

good a design of speculative parallelization is for that FSM. Through the method, the authors of the 

previous work [119] have shown the feasibility to automatically customize the design of speculative 

parallelization based on the properties of a given FSM such that its parallel performance can be 

maximized.

Barrier for Practical Deployment A challenge for practical deployment of the method is in how 

to obtain the statistical properties of an FSM. These properties include the following:

•  size: the number of states in the FSM

•  state feasibilities: the probability of each of its states to get reached in an execution. For 

instance, if the FSM is at state A  in 10% time of an execution, the state feasibility of state A 

is 10%.

•  character probabilities: the probability for the next input character to be a particular character 

while the FSM is at a given state. For instance, if 20% of time, the next character to the FSM 

is "a” while the current state of the FSM is B,  the character probability is P(a \B ) =  0.2.

•  expected convergent lengths: Consider two copies of an FSM that start processing the same 

input string independently from two states, s, and Sj. If the two FSM copies move into the 

same state after they finish processing /-character of the input string but not before that, we 

say that the two states Si and Sj converge into the same state, and their convergent length 

is I. For instance, no matter whether the FSM in Figure 3.1 starts from state C or E, it always 

moves into the same state A  after processing string “11”. Therefore, the convergent length
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between C and E on that input is 2. For a long input string, two states may have different 

convergent lengths at different sections of the input. The expected convergent length of the 

two states is the average (or statistical expectation) of all those possible convergent lengths, 

denoted as L M (si ,sj ).

Except size, all the other properties are decided by not only the FSM, but also its input. Prior 

work has shown that state feasibilities and character probabilities can be easily obtained through

lightweight online profiling of the execution of the FSM. But expected convergent lengths cannot

for most FSMs due to the large cost of collecting convergent lengths.

The large cost comes from three reasons. First, since L M (si,Sj) =  L M (sj,Si) and L M (si,Si) =  

0, there are N  • ( N  - 1 ) /2  pairs of states needed to profile for an FSM with N  states. Second, for 

each pair of states, it usually requires a number of samples to get a reliable average value. Third, 

to get one sample for a pair of states (si( Sj), it takes (L M (si, Sj) ■ 2) state transitions. Suppose the 

average number of transitions among all state pairs is L, (If some pairs of states never converge 

on the given input, a large number is used, denoted as M A X L E N . )  Let the number of needed 

samples of convergent lengths per pair of states is S A M P L E  (S A M P L E  =  10 in prior work). 

The complexity for collecting all expected convergent lengths for an FSM is 0 ( N 2 • S A M P L E  ■ L). 

Algorithm 1 shows the default algorithm used for profiling the state convergent length.

Algorithm 1 Default Convergent Length Profiling 
1: for each pair of states (sl , sj) do 
2: result[si3[sj].sum = 0
3: result[si][sj].cnt = 0
4: while result[si][sj].cnt <  SAMPLE do
5: I = 0

7: while (s IV  at I I I <  MAXLEN) do
8: c = read()
9: sa = transit(sQ, c), sb = transit^, c)

10: end
11: result[si][sj].sum += I
12: result[si][sJ].cnt++
13: end
14: print result[sj][s.,].sum / SAMPLE
15: end

The actual cost of this default profiling algorithm could range from several seconds to tens of 

minutes (details in Section 3.5). As that is comparable or even longer than the parallel execution 

time of many FSM applications, doing it online is often not affordable. In the prior work, it is 

affordable on only two out of seven benchmarks [119].
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For that reason, convergent length profiling has been mostly done offline on some training 

runs of an FSM. It is acceptable if the inputs in the production runs of the FSM are similar to 

the training inputs. But that condition often do not hold for many real-world FSM applications, 

which often need to process a variety of inputs. As data variety rapidly increases with the trends 

towards “big data”, the issue is a critical barrier for practical usage of the principled speculative 

parallelization for FSM.

3.2 Overview of Solutions

The solution developed in this work addresses the issue by completely eliminating the need for 

offline training. By lowering the cost in collecting expected convergent lengths by orders of magni

tude, it makes the principled speculation able to get deployed on the fly, and hence fundamentally 

removes the input sensitivity issue faced by the state-of-the-art design.

The removal of the high collection cost is through a synergy between a novel static FSM prop

erty analysis and two new dynamic optimizations. With this solution, the speculative parallelization 

runs in this way. At the beginning of a production run, the FSM application calls our static FSM 

analyzer (through an inserted library function call), which examines the FSM and infers some in

herent properties that can hold regardless of what inputs are used. Then, it invokes a lightweight 

online profiling of the FSM on a small portion of the current input. The profiling, guided by the 

properties from the static analyzer and facilitated with two new dynamic optimizations, goes orders 

of magnitude faster than the previous FSM profilings. After obtaining all the statistical properties 

of the FSM, the FSM application automatically equips the speculative parallelization with the best 

suitable design configurations accordingly, processes the input in parallel, and returns the output 

to the user.

The next two sections explain the static analysis and the two dynamic optimizations respec

tively.

3.3 Static Analysis on FSMs

The objective of the static analysis is to infer some inherent properties of an FSM, which may 

guide the online FSM profiling. Specifically, our static FSM analyzer infers two properties of an 

FSM as follows:

•  FSM convergence: whether there is any pair of states in the FSM that are ever possible to 

converge.
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•  Minimal convergent lengths: what is the minimal convergent length of each pair of states in 

the FSM.

The two properties both relate with convergent length collection of an FSM; the first helps 

avoid convergent length profiling at a coarse grain, while the second helps the avoidance at a 

finer grain. If the first property says that no two states in the FSM converge, the convergent length 

collection can be safely skipped entirely; otherwise, if the second property says that the minimal 

convergent length of a certain pair of states is infinity, the collection can simply avoid profiling on 

that pair of states.

The static analysis is based on a series of theoretical results developed in this work. This 

section presents them. For the theoretical nature, the presentation contains some formalism, 

which we find indispensable for the rigorous inference. However, we try to ease the understand

ing efforts through examples and graphs. As Deterministic Finite Automaton (DFA) is the most 

common form of FSM, it has been the focus of recent studies and also this current study on FSM 

parallelization. The following of this section uses the term DFA rather than FSM to be specific.

3.3.1 Preliminaries

Before explaining how the static analysis infers the two properties of FSM, we first introduce 

some concepts and notations to be used in the follow-up explanation. Some concepts have been 

mentioned in earlier sections but in an informal way; for rigor and completeness, we give their 

formal definitions here as well.

A deterministic finite automaton is a 5-tuple (Q, E, (5, qo,F), where Q  is a finite state set called 

states, E is a finite set called the alphabet, 5 : Q x E Q is the transition function, q0 € Q is 

the initial state, and F  c  Q  is the set of accept states. The members of the alphabet are called 

symbols. A string over an alphabet is a finite sequence of symbols from that alphabet. We use a, 

ft, or 7  to denote strings. The set of all possible strings over E is denoted as E*. If a  is a string 

over E, the length of a, written |a|, is the number of symbols that it contains. The string of length 

zero is called the empty string, denoted as e. If a  has length n, we can write a  =  a ia2 • • ■ an, 

where e E. If there exists a transition function from state s and symbol a to state s' in 6, we say 

s transits to s’ on symbol a, denoted as s'.

For convenience, we introduce the following terms and notations.

Definition 3 (State Combination). A k-state combination of M is  a k-element subset of the states 

of a DFA, denoted as c ^ .  The set of all k-state combinations of a DFA is called k-state combination set. 

denoted as Clearly, Cq1} = Q, where Q is the state set of the DFA.
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As c(1) contains only one state, we sometimes use it to also refer to the state it contains.

Definition 4 (State Combination Transition). LetcW  be a k-state combination of a DFA M  and 

c(fc,) be a k'-state combination o f M ,  we say c(fc) transits to on input symbol a, if and only if

c(fc') =  {s'|s s', Vs, s € c(fc)}, denoted as ĉ k K

Note that if c(k) c(k' \  k' must be no greater than k, guaranteed by the deterministic transi

tions in the DFA. Actually, k' could be smaller than k in the cases multiple states in transit to 

a single state on symbol a.

Definition 5 (Convergence). Letc(fe) be a k-state combination of a DFA, if there is a string a  such 

that c(fe> c(1), then we say c(fc) converges on string a , or c(fc) is convergent. The state in is 

called convergence state.

Since c(1) 4  c ^ ,  we consider every c(1) is convergent. According to Definition 5, it is obvious 

that if a fc-state combination c(fc) converges on a, then it converges on any string with a  as the

prefix, that is c(fc) ^  where (3 is any string in £ *.

Definition 6 (Convergent Length). Let c^) be a k-state combination of a DFA that converges on 

a string a , then the convergent prefix of a  is the shortest prefix of a  that c(fc> can converge on, 

denoted as a c. The length o fa c is called the convergent length ofc(k) on a , denoted as La {c{k)).

It is obvious that L a(cW) >  1 for any string a  e £ *, when k >  1.

Definition 7 (Minimal Convergent Length). Let c(fc) be a k-state combination of a DFA, the 

minimal convergent length of c<fc> is the minimum of convergent lengths on all possible strings 

in £*, denoted as L min{c<fc>).

If c(fc) converges on no strings in £ *, we say that its minimal convergent length is infinite, 

denoted as Lmin(c(fc)) =  oo.

Example We illustrate the concepts with the DFA in Figure 3.1. Let’s consider the 2-state com

bination {A , B }. When reading symbol “l ”, it transits to another 2-state combination {B , C ); then 

reading symbol “0" would let it transit to a l-state combination {B }, hence the 2-state combination 

{^ , B } is convergent, and it converges on string “10”.

In the example, since the 2-state combination {A, B } converges on string “10”, but does not 

converge on the prefix “1”, its convergent length on string “10” is 2.

The minimal convergent length for the 2-state combination {A , B } is 2, since it converges on 

string “10”, but converge on neither “1” nor “0”.
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3.3.2 Property I: FSM Convergence

We now present a theorem that allows quick determination of the first property, FSM convergence—  

that is, to decide whether there is any pair of states in the FSM that are ever possible to converge. 

We first introduce the following lemma:

Lemma 2. L e t c a n d  c(fc,) be two state combinations of a DFA, c(fc) 2<^k' \  if there is a string a  

such that c(fc) converges on a , then c(fc,) must also converge on a.

The correctness of the lemma is obvious. On the other hand, even if every C(fc-1) c  c (*0 is

convergent, c(fc) may be not.

Based on the lemma, we have the following theorem:

Theorem 2. Given a DFA M ,  if and only if none of its states has two or more incoming edges 

that carry the same symbol, no state combinations of M  are convergent except single-state com

binations.

P ro o f . It is easy to see that the condition is necessary for the conclusion to hold: If the 

condition is not met, the sources of the two edges must converge on the common symbol. To 

prove that the condition is sufficient, we assume that under that condition, there is still a /c-state 

combination c(fc) that converges on a string a, where l  <  k <  |Q|. That means there is a l-state 

combination c(1) such that c{k) c(1). Then according to Lemma 2, there is a 2-state combination 

c(2) c  c(fe) such that c(2> c(1). Suppose the two states in c(2) are si and s2, and the convergence
*• * xt_ . * aiaa^ 'G i-i # ai i / ai i

prefix of a  is a c =  aia2 • • • ai, then we must have s i ------------ > 4  c1, s2 ------------- ► s2 c1.

According to Definition 6, s[ ^  s'2. Thus, state c1 is the state with two transitions from si and s2 

leading to it, both on symbol au which is contradicts the assumption. □

Figure 3.2: DFA for Testing Divisibility by Seven

Discussion. Theorem 2 tells us that to find out whether states in an FSM are going to ever con

verge, one only needs to check the incoming edges of every state in the DFA. The time complexity 

is 0(\Q \ ■ |£|) since the algorithm only needs to examine each edge once. It may significantly cut
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cost in some existing DFA parallelizations. For example, Figure 3.2 shows a DFA used for test

ing whether a binary number is seven-divisible. Previously, for speculative parallelization, people 

empirically collect the convergent lengths between every pair of its states by running it on many 

inputs [119]. With Theorem 2, all these collection work can be safely saved as it can immediately 

tell that no two states of the DFA are convergent.

3.3.3 Property II: Minimal Convergent Lengths

As aforementioned, directly collecting convergent lengths is time consuming. Even worse, when 

a combination does not merge, the empirical approach is difficult to tell no matter how long the 

profiling runs.

In this section, we give an in-depth study on convergent length, especially, on the computa

tions of the minimal convergent lengths of state combinations of a DFA. We prove that it can be 

computed in polynomial time for a given k by providing a concrete algorithm with 0 (k  ■ \Q\k ■ |E|) 

time complexity. The algorithms leverage the relationships of convergent length among different 

state combinations. They are applicable to all kinds of DFA, including those whose convergent 

lengths of some or all state combinations are infinity.

The minimal convergent length of a state combination reflects how fast these states could 

converge. Our algorithm for computing minimal convergent lengths is based on the following 

lemma.

Lemma 3. Let c(fc) be a k-state combination of a DFA, a n d c b e  the state combination thatc 

transits to on symbol a, a e E, then

L m in ( c « )  < L min( c ^ )  +  1.

Now we describe the algorithm for computing the minimal convergent length of every A;-state 

combinations, L min(c(fc>) for given k, l  <  k <  \Q\.

Step 1. Check whether the condition of Theorem 2 is met. If so, set all L min{6 k)) -  oo and

terminate; otherwise, continue.

Step 2. Construct a graph based on the following rules:

1. For each minimal convergent length of cw , where 1 <  i <  k, create a node;

2. For each fc-state combination c(fc), if there is a symbol a, such that c(fc) c(t), where

c(i) e and 2 <  i <  k, create an edge from c<*> to c(k);
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3. Iterate state combination set from C q  -1) to C q ] \ If an i-state combination cW, 2 <  i <  k  

has at least one outgoing edge and there exists symbol a, such that c(l) A  create an 

edge from d i''> to c ^ ;

Figure 3.3 illustrates such a graph. The nodes are aligned by layers, each layer corresponds 

to a state combination set, with the 1 -state combination set on the top. Based on the discussion 

in Section 3.3.1, edges may exist among nodes in the same layer or from a higher layer to a lower 

layer, but not the other way.

x propagate

Figure 3.3: Minimal Convergent Length Propagation Graph

Step 3. Compute the minimal convergent lengths through propagation:

1. Label all nodes in the graph with unset;

2. Set nodes Lmi„(cW ) =  0, d 1') e and label them with 

SET;

3. Propagate the minimal convergent lengths from top layer to bottom layer: If there is an edge 

from Lmi„ (c « )  to Lmm{c ')  and L min(c?) is unset, then set Lmin{c1')  =  L min(cW) + 1;

4. Check if any Lmin(cw ) is unset, if so, set Lmi„(c(fc)) =  oo.

With this solution, we can compute the minimal convergent lengths for all fc-state combinations 

in for any given k, 1 <  k <  |Q|.

Theorem 3. Let ew  be a k-state combination in a DFA, if the minimal convergent length of c(t) is 

finite, then it is bounded by Y h =2 IC ^  I ■

PROOF. On its convergent prefix, cw  cannot transit to a combination more than once. Oth

erwise, removing the part of the prefix between the two visits to the state would still make cW 

converge. There are only £ , fe= i |C ^ | unique combinations a transit could reach, and for e(fc) to
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converge, it only needs to transit to one c1. Therefore, the length of its convergent prefix can be 

no greater than £ i U  I- n

Corollary 1. Given a DFA, if the minimal convergent length of all the states, that is, c|c?| is finite, 

then it is bounded by 2^1 -  \Q\ -  1.

Theorem 4. The time complexity of the minimal convergent length algorithm is 0 (k  • \Q\k ■ |E|).

P ro o f . The complexity mainly comes from two parts: graph construction in Step 2 and minimal 

convergent length propagation in Step 3. The number of nodes in the graph is £ ; =2 |Cqi)|, which 

is 0(|<2|*). Each node has at most |E| edges, with each corresponding to one unique input 

character. The construction of an edge coming out of a node c(i) requires i  checks to determine 

the target combination, with each check figuring out what target state one state in c(i) connects to 

on the input character in the original DFA. So the graph construction time complexity is bounded 

by 0 {k  • \Q\k ■ |£|). Given that the propagation time cost is bounded by the number of edges, the 

whole algorithm time complexity is 0 (k  ■ \Q\k ■ |E|). □

Algorithm 2 shows the pseduocode of this algorithm.

Algorithm 2 Minimal Convergence Length Computation
1: L min *------1 1" i s  ,V-D min convergence ten. matrix*/
2: I < - 0 "V a lue  of m inim al convergence length*/
3: diagonal(Lmi„) < - 1 
4: I  ++
5: while true do /'lte ra tive ly  com pute new values’ /
6: converge «- true "A n y  new value in last iteration’ /
7: for e in uppertrangular(Lmin) do /*< is an A’ -D vector*/
8: If L m in(e) =  - l  then
9: for c in S do

10: e e' / 'S ta tes  transit on ch a ra c te r,:’ /
11: e " <- sort(e') /'To ascending order*/
12: If L m in(e") =  - l  and Lm in(e") <  i then
13: L m in ( e )  4— I
14: converge <— false
15: break for-loop c
16: If converge =  true then
17: for e in uppertrangular(Lmin) do
18: If  L min {e) =  - 1  then / 'S ta tes  don 't converge’ /
19. T 'm in (e ) =  OO
20: break while-loop
21: end while

Discussion. The minimal convergent length of a state combination provides several insights to 

help reduce the cost and penalty in the speculation-centered DFA parallelization. For example, if 

one state has very long minimal convergent length with every other state, then it would be quite 

risky to select it as the predicted state, since a wrong prediction in this case would cause a very 

large penalty. For the principled speculation in particular, the static inferences of the minimal 

convergent lengths can help avoid spending time in collecting the empirical convergent length 

between two states if the minimal convergent length between them is known to be infinity. Since
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empirical profiling of such cases would not find out that they can never converge, it usually goes 

through the maximum length of the training inputs before it gives up. The savings by the minimal 

convergent length inference hence can be substantial.

Inference of the two properties can avoid the profiling on some if not all combinations of states 

for an FSM in the collection of expected convergent lengths. Next we introduce two dynamic 

optimizations that take place during the profiling of the remaining state combinations. They further 

reduce the profiling cost substantially.

3.4 Dynamic Profiling Optimizations

We introduce two dynamic optimizations to further accelerate the collection of FSM convergent 

lengths. They are both built on some simple observations. However, when used together, they 

cut the overhead by up to thousands of times on our experimented FSMs.

To help analyze the benefits of the optimizations, we first introduce a metric, called transition 

reduction ratio.

Definition 8. Transition Reduction Ratio (TRR) is the ratio of state transitions between the opti

mized profiling and the default profiling.

Apparently, the inverse of TRR reflects the speedup that the optimization can bring: Speedup 

= 1/TRR.

3.4.1 Optimization I: IR Reuse

The first method is called Intermediate Results Reuse, or IR Reuse for short. The basic idea is 

simple: when profiling the convergent length between a pair of states s, and sj on training input 

Strain starting at position 0, the intermediate transition states could be also considered as the 

state pairs on the same training input, but with different starting positions. For instance, suppose 

that the FSM in Figure 3.1, when running on an input “01...” from state pair (A, C), converges 

after I characters, one can infer a convergent length sample for state pair (E , B) as I - 1  because 

the FSM reaches those two states after processing the first input character. In the same vein, we 

get a sample for (F, D )  as I -  2, and so on. In total, the IR reuse helps produce I samples of 

convergent lengths for the FSM through the one profiling on a single pair of states.

We show the implementation of the idea together with the second optimizations later in this 

section.
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Complexity Analysis IR Reuse optimization helps reduce the S factor in the complexity of the 

default algorithm. Since the reuse of intermediate state transitions can potentially contribute to 

the sample collection of some other state pairs, some sample runs for those state pairs could be 

eliminated. The actual reduction of S depends on the FSM, training input and the profiling order 

of state pairs.

The TRR of IR reuse can be expressed symbolically as the following:

T R m  ■ * » )  -  o ^ A M n l L )  °  |3 ,)

where S' is the average number of samples after IR reuse is applied. Since the lower bound of 

the IR reuse optimized profiling is 0 ( N 2 • L), we have 0 (1 /S A M P L E ) <  T R R ( IR reuse) <  1.

3.4.2 Optimization II: Early Stop

The second optimization method is called Early Stop. As the name implies, it terminates state 

transitions before state converge actually happen. The rational of this method is based on the 

conditional correlations among state pairs. Still use the example in Figure 3.1. When it is profiling 

state pair (A, C) on an input “01...”, it notices that the FSM will reach states E  and B  respectively 

after processing the first character. So if the expected convergent length of ( E ,  B )  is already 

known, then it would stop after processing the first character, and infer the convergent length as 

L m (E, B) + 1. We show the implementation of the idea in the next section.

Complexity Analysis Early stop helps reduce the L  factor in the complexity of the default pro

filing algorithm. Since early stop terminates the profiling of a sample before it ends, the averaged 

number of transitions for one sample (i.e., L) could decrease. Similar to IR reuse, the actual 

reduction depends on the FSM, training input and the state pair profiling order.

The TRR of early stop can be expressed symbolically as the following:

_ „ /r_ , „  x O f N 2 ■ S A M P L E  ■ L ')
Stop) ■  ^  s A M p L E  L > -  O ( - )  (3.2)

where L ' is the average number of transitions for profiling one sample when early stop is applied. It 

is straightforward to get the similar conclusion as IR reuse, that is, 0 ( l / L )  <  T R R (Early Stop) <  

1, assuming V  <  L.
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3.4.3 Compound Effects

It is important to note that when the two optimizations are used together, they manifest a com

pound effect, which dramatically magnifies the benefits by the optimizations. On one hand, by 

reducing the transition length (L) for profiling one sample, early stop also reduces the cost of 

“reusing” the intermediate results. On the other hand, by reusing the intermediate results, much 

more samples are generated within a short period, hence more state pairs obtain their convergent 

length quickly. This greatly increases the chance of early stop happening, thus further reduces 

the transition length L. Such an interplay results in more and more powerful optimizations as 

profiling continues.

Algorithm 3 shows how the two optimizations are implemented together. Line 14 and Lines 20 

to 25 correspond to the IR reuse optimization; line 9 to line 11 and line 16 to line 17 correspond 

to the early stop optimization. In actual implementation, an assistance table, ready [N] [N], is 

created to indicate whether a state pair already has enough samples. With it, the checks of 

result [s„] [sb]. cnt >  sample could be more and more efficient table lookup. Since both IR 

reuse and early stop need these checks, and they occurs at every iteration, the benefit could be 

substantial.

Complexity Analysis In terms of complexity, both the factors S and L  can be reduced drasti

cally. The TRR becomes:

Reuse + Early Stop) =  0 ( S A ^ jp £ E  L  )• (3 3)

Thanks to the compound effects, our experiments show that on typical FSMs, S' <  S A M P L E  

and L' «  L. As to the TRR range, we have 0 (1 /S A M P L E -L )  <  TR R (\R  Reuse + Early Stop) <

1.

3.5 Evaluation

We evaluate our techniques using the benchmark suite used in a recent study [119] but with more 

inputs added. Table 5.1 lists their basic information, including the number of states and input sizes 

for training and testing. They come from a variety of communities: XML processing (lexing, xval), 

Decompression {huff), Pattern Searching and Validation($tr1, str2, pvaf) and Mathematics (d/V). 

They also have a spectrum of complexities, ranging from 3 to more than 700 states. This range 

covers the sizes of commonly used FSMs that we have examined, which echoes the observations
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Algorithm 3 IR Reuse + Early Stop
1
2
3

4
5
6
7

8 
g

10
11

12
13
14

15
16
17

18

19
20 
21 
22
23
24

25
26
27

28

for each pair of states (s*, sj) do 
result[si][sj].sum = 0 
result[sJ[sj].cnt = 0 
while result[si][sj].cnt < SAMPLE do 

1 =  0
S q, —  S x j  8 f )  =  S j

flag = false
while (sa ±  sb || I < MAXLEN) do 

/ *  Early stop transitions 7  
If result[sa][si>].cnt > SAMPLE then 

flag = true, break 
c = read()
sa = transit(s0, c), sb = transit(s6, c) 
s ta te s j/] = sa, statesfe[Z] = sb 

end
if flag then

I = result[sa][s6].sum/result[sa][sj,].cnt 
result[.Si][sj].surn += l 
result[sj][sj].cnt++
/*  Reuse intermediate transitions 7  
for (i = 0; i < Z; i++) do

sa = states0[i], sb = states^!] 
result[sa][sfe].sum += I - i 
result[sa][si)].cnt++ 

end 
end
print result[st][-sj]-sum / SAMPLE 

end

from prior studies [83,119]. The default benchmark suite comes with two inputs per program, a 

small one and a large one. The small one is the first 2% of the large one and was used for 

training in the previous work [119]. To test the capability of the FSM parallelizations in dealing 

with different inputs, we added one new small input to each program. The inputs were collected 

from some public sources. For example, the input to pval is a segment randomly extracted from 

a novel; the input to huff is a 1.6MB pre-encoded text file; the input to lexing is a 1.7MB segment 

of an XML file. We kept these inputs of a size similar to the default small inputs in the benchmark 

suite for a direct comparison. Also for the comparison, we use the default large input as the 

testing input in all our experiments. The new small input is used for the offline training of the 

previous principled speculative parallelization to expose its sensitivity to inputs. Our on-the-fly 

method needs no training inputs.

Our implementation is built on the SpecOpt library created by Zhao and others [119] in C 

language. We mainly replaced its profiling component with the new one supported by our static 

analyzer and dynamic optimizations. The interface remains the same. In this way, the existing
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Table 3.1: Benchmarks

Name Description States
Train
Input

Test
Input

lexing XML Lexing 3 1.6MB 76MB
huff Huffman Decoding 46 1.6MB 209MB
pval Pattern Validation 28 1.7MB 96MB
strl String Pattern Search 1 496 1.5MB 70MB
str2 String Pattern Search 2 131 1.5MB 70MB
xval XML Validation 742 1.7MB 170MB
div Unary Divisibility 7 1.7MB 97MB

applications using SpecOpt can transparently upgrade to our new library. GCC 4.8 is used for 

compiling the library. The optimization level is set to 0 3 . The results are collected on a server 

equipped with Intel Xeon E5-4650L CPU (8 physical cores).

Results: Static Analysis Table 3.2 shows the results of the static analysis. The second column 

lists the overall number of state pairs in each of those programs, which ranges from 3 to 274,911. 

The FSM convergence property analysis swiftly recognizes that no state pairs of div converge on 

any inputs. The minimum convergent length analysis further recognizes two other benchmarks 

pval and xval respectively contain 24 and one state pairs that have infinite minimal convergent 

length. The fourth column of the table lists the range of the minimal convergent lengths of the 

FSM state pairs that the analysis finds out. The rightmost column reports the time taken by the 

static analyses. Generally the more state pairs there are, the longer the time is. But it is not 

absolute; the time also depends on the structure of the FSM. For instance, xval has twice as 

many as the state pairs strl has, but the analysis takes only about half of the time. Overall, the 

static analysis takes negligible overhead for those benchmarks.

Table 3.2: Static Analysis Results
total 

state pairs
pairs w/  

infinite len
min converg 

length
exec.
time

lexing 3 0 0-1 <  lms
huff 1035 0 0 -6 1ms
pval 378 24 O-oo 1ms
strl 122760 0 0-42 139ms
str2 8515 0 0-44 19ms
xval 274911 1 O-oo 62ms
div 21 21 00—00 <  lm s

Results: Dynamic Optimizations Table 3.3 shows the FSM profiling cost reduction by the 

proposed dynamic optimizations. The profiling times in the “optimized” column are the ones 

when all the proposed dynamic optimizations in Section 3.4 are applied after the static analysis.
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Comparing to the default profiling, the speedup goes from tens of times to thousands of times. 

The largest speedup is 6381 x, shown on benchmark strl. The FSM has 496 states that have 

much more connections among them than many other FSMs in the suite. The many connections 

offer more chances for both IR reuses and early stops.

Table 3.3: Profiling Time
default (s) optimized (s) speedup

lexing 0.50 0.016 31X
huff 1.03 0.033 31X
pval 4.54 0.023 195X
strl 1353.5 0.212 6381X
str2 16.99 0.069 247X
xval 148 2.272 65X
div 1.84 0.019 98X

The dynamic optimizations, especially the early stop, use expected convergent lengths in the 

inference, which could introduce some differences in the profiling results compared to the results 

produced by the default offline profiling. Table 3.4 reports the convergent length profiles of the 

default and optimized profiling respectively. It shows that the results are quite close in most cases. 

The most significant differences show up on lexing and xval. The former has only three states 

and hence is sensitive to changes; the latter has a complicated FSM with the largest number of 

states but relatively few connections. Even with the differences, the method still shows good help 

to FSM parallel performance as shown next.

Table 3.4: Average Convergent Length
default optimized

lexing 2.9 5.9
huff 19.2 21.3
pval 17002.5 18466.6
strl 77997.9 89139.2
str2 66973.0 69068.0
xval 699.3 342.4
div 85714.3 85714.3

Results: On-the-fly Speculation With the enhancement from static analysis and dynamic op

timization, the profiling costs are greatly reduced, making on-the-fly speculation possible. To 

examine its potential, we evaluate three method:

•  offline: Speculation with the default offline profiling. Profiling cost is not counted in the 

overall time.

• online (naive): Speculation with online profiling but without the static analysis or dynamic 

optimizations. Profiling cost is included.
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• online (optimized): Speculation with online profiling equipped with both static and dynamic 

optimizations. Profiling cost is included.

Table 3.5: Speedups over sequential executions
offline online (naive) online (optimized)

lexing 6.47X 4.46X 6.60X
huff 6.76X 4.05X 6.68X
pval 0.94X 1.53X 6.49X
strl 3.29X 0.01X 3.76X
str2 3.79X 0.39X 3.98X
xval 1.52X 0.12X 3.50X
div 1.26X 1.00X 1.26X

geomean 2.68X 0.49X 4.08X

Table 3.5 reports the speedups produced by the three parallelization methods over the per

formance of the sequential execution of the programs. The offline profiling-based approach 

gives good speedups on lexing and huff. These two programs have been shown before to be 

the simplest to parallelize; even simple heuristic-based speculation can already work well on 

them [90,119]. They feature very short convergent lengths among all state pairs. Hence, even 

though the offline profiling-based approach does not lead to accurate speculation results, the 

FSMs still converge to the correct states quickly and enjoys good speedups. But for the other 

programs, the input sensitivity causes the approach some substantial degrees of loss in the par

allelization benefits. Compared to the offline approach, the optimized online approach gives sub

stantially higher speedups on four out of the five challenging benchmarks. Overall, on average it 

brings 1.4x extra speedups over the offline method, demonstrating the promise of the on-the-fly 

speculative parallelization of FSM enabled by the new techniques.

The comparison between the optimized online approach and the naive online approach high

lights the importance of the static and dynamic optimizations introduced in this work. Although 

the naive online profiling method is also able to adapt to input changes, it suffers from the large 

profiling overhead. With it, most of the parallelized FSMs run even slower than their sequential 

counterpart.

The program div is an extreme case. As none of its state pairs converge, it is not input 

sensitive in terms of the suitable configurations of the speculation. Our static analysis recognizes 

this property and avoids any online profiling. It achieves the same 1.26x speedup as the offline 

approach does. In contrast, without such analysis, the profiling overhead of the naive online 

approach completely cancels the parallelization benefit.

56



3.6 Related Work

There have been many efforts spent on program parallelization. The efforts are from various 

angles, from language design (e.g. Cilk [48], X10 [36]), to hardware support (e.g., TLS [51,101]) 

and programming models (e.g., STM [11,33]). In section, we focus the discussion on the studies 

that closely relate with FSM and software speculation.

Parallelization of FSM To parallelize FSM, a traditional way is through prefix-sum parallelization 

or its variations [65]. A recent study [83] shows that a careful implementation of the method on 

vector units on modern machines can produce large speedup. The approach is however subject 

to large FSMs as the number of threads that conduct useless computations increase linearly with 

the number of states.

There have been some studies on parallelizing some specific FSM applications. An exam

ple is the work by Jones and others on parallelizing a browser’s front-end [58]. They introduce 

the concept of lookback (called overlap) for enhancing speculation accuracy. Other examples 

include the parallelization of JPEG decoder by Klein and Wiseman [62], hot state prediction in a 

pattern matching FSM to identify intrusions by Luchaup and others [74], speculative parsing [60], 

and speculative simulated annealing [109], There have been many efforts in parallel parsing. 

They can be roughly classified into two categories. The first tries to decompose the grammar 

among threads [21,22] by exploiting some special properties of the target language or parsing 

algorithm (e.g., LR parsing in Fischer’s seminal work [47]). The second tries to decompose the 

input [73], and can often leverage more parallelism than the first approach. All these prior stud

ies employ simple heuristics for speculation. Zhao and others [119] introduce the concept of 

principled speculation, which is the first rigorous approach to speculative parallelization. There 

have been some studies in implementing parallel Non-deterministic Finite Automata (NFA) [121]. 

Unlike other types of FSM, the non-determinism in NFA inherently exposes a large amount of 

parallelism and is hence easier to parallelize.

Speculative Parallelization Beyond a specific domain, there are also a number of studies in 

speculative parallelization. Prabhu and others [90] proposed two new language constructs to sim

plify programmers’ job in using speculation schemes. There are some software frameworks devel

oped to speculatively parallelize programs with dynamic, uncertain parallelism, either at the level 

of processes [40] or threads [45,94,103]. They are mainly based on simple heuristics exposed in 

program runtime behaviors (e.g., speculation success rate). Llanos and others use probabilities

57



of a dependence violation to guide loop scheduling of randomized incremental algorithms in the 

context of speculative parallelization [72]. Kulkarni and others have showed the usage of abstrac

tion to find parallelism in some irregular applications [64]. The pre-computation used by Quinones 

and others for speculative threading [93] shares the spirit with lookback in exploiting some part of 

the program execution for speculation. They construct no rigorous speculation models, but relies 

on subset of instructions to resolve dependences.

FSM Static Analysis Finite state machine or finite state automaton, as the abstract machine of 

computing, has been studied for a long time. It is one of the oldest topics in theoretical computer 

science, and has formed its own theory, automata theory. Our discussion here focuses on work 

closely related to this study. One of them is from the system testing community. FSMs are used 

there for testing and discovering the properties of given systems [96,105]. An important concept is 

synchronizing string, which is the input string that can lead a set of states transiting to a common 

state. The length of the shortest synchronizing string is similar to minimal convergent length. 

However, research on synchronizing strings emphasizes on finding synchronizing strings, while 

our static analysis emphasizes the connections with convergent length profiling for speculation, 

and practical algorithms for leveraging the connections.

3.7 Summary

This chapter presents a two-fold solution to remove a key barrier that has been preventing practical 

deployment of principled speculation for FSM parallelization. The solution is a synergy of a series 

of theoretical results regarding the inherent properties of FSMs and two dynamic optimizations 

on effectively reusing state profiling results. Through static analysis, it first examines the FSM 

and infers its inherent properties on state convergence, with which, the profiling space could be 

safely pruned. Second, by exploring the convergence correlations among state pairs, it further 

reduces the cost at runtime via IR reuse and early stop. The synergy and the compound effects 

of the two dynamic optimizations save up to thousands of times of profiling overhead. Together, 

they yield the first approach to enabling on-the-fly deployment of principled speculation, which 

demonstrates substantial improvement in speeding up FSM computations.
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4 HPar: Enabling Parallel HTML Parsing

Parallelizing HTML parsing is challenging due to the complexities of HTML documents and the 

inherent dependences in its parsing algorithm. As a result, despite numerous studies in parallel 

parsing, HTML parsing remains sequential today. It forms one of the final barriers for fully par

allelizing browser operations to minimize the browser’s response time— an important variable for 

user experiences, especially on portable devices. This paper provides a comprehensive analysis 

on the special complexities of parallel HTML parsing, and presents a systematic exploration in 

overcoming those difficulties through specially designed speculative parallelizations. This work 

develops, to the best of our knowledge, the first pipelining and data-level parallel HTML parsers. 

The data-level parallel parser, named HPar, achieves up to 2.4x speedup on quad-core devices. 

This work demonstrates the feasibility of efficient, parallel HTML parsing for the first time, and 

offers a set of novel insights for parallel HTML parsing.

4.1 Challenges of Parallel HTML5 Parsing

In this section, we first provide some background on HTML5, and then describe five classes of 

special challenges it imposes on parallel parsing.

4.1.1 Background on HTML5 and Its Model of Parsing

HTML5 is the latest version of the HTML standard, with enhanced support for multimedia and 

complex web applications. Different from all previous versions, Web Hypertext Application Tech

nology Working Group (WHATWG) and World Wide Web Consortium (W3C) provide some con

crete specifications on the model of HTML5 parsing [2] (hereafter referred as HTML5 spec). 

Previously, the HTML parsers developed by different companies interpreted HTML documents 

differently, causing inconsistent behaviors among browsers. For instance, IE and Opera read 

<foo<bar> as one tag foo<bar, while Firefox and Chrome read it as two tags, foo and bar. 

For that reason, the HTML5 spec includes specifications on the parsing. According to HTML5
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tests [7], major modern web browsers, such as Chrome 23, Safari 5 and Firefox 17, fully support 

HTML5 parsing rules.

Figure 4.1 shows the standard HTML5 parsing model [2], which contains two stages: tok- 

enization and tree construction. An input byte stream that comes from network first flows into the 

tokenization stage, where a tokenizer parses it into tokens. Upon the recognition of a token by 

the tokenizer, a tree builder immediately consumes it and organizes the parsing results in a Docu

ment Object Model (DOM) tree. The HTML5 spec uses finite state machines to track the progress 

of both the tokenization and the tree construction. The states for the tokenization are called the 

tokenization state, and the states for the tree construction are called the insertion modes. After 

parsing, the DOM tree will be passed to the layout engine for web page rendering. When the tree 

builder finds some executable scripts (e.g., Javascript code) embedded in the HTML document, 

the scripts will be executed immediately. The execution may generate some new HTML strings, 

which also need to be parsed by the HTML parser. Hence the path from the Script Engine to the 

input stream.

Script Engine 1

scripts

bytes
Network

tokenization state Insertion mode

DOM TreeHTML5 Parser

Figure 4.1: HTML5 parsing model

4.1.2 Special Challenges for Parallel Parsing

The standard HTML5 parsing model [2] designed by W3C and WHATWG consists of complex 

state machines. The state machines for tokenization, for instance, contains 68 states, and more 

than 250 transitions among those states. The complex parsing model just reflects the tip of the 

iceberg for the development of a parallel HTML parser. There are more inherent complexities 

preventing the HTML parser running in parallel. In this part, we use the example in Figure 4.2 to 

explain these complexities.

Informal language. Unlike many other languages, HTML5 is not defined with some clean, for

mal grammars,1 but a collection of ad-hoc rules and specifications. Most previous work on parallel

1 We are aware of some Antlr grammars for earlier HTML versions, but they do not conform to HTML5 spec.
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parsers [13 ,21 ,22 ,47 ,75 ,100] has targeted formally defined languages (e.g., in a Context-Free 

Grammar) and leveraged the features of the grammars for parallelization. The ad-hoc definition 

of HTML5 makes these techniques hard to be applied to its parsing.

Error-correcting. As many existing HTML documents contain syntax errors, web browsers 

have been tolerating such errors with some kind of automatic error correction. Now, this feature 

is formally integrated into the official HTML5 parsing model. As a result, HTML5 parsers typically 

resolve some common errors to their best knowledge. When validating it with W 3C’s HTML5 

conformance checker, the example in Figure 4.2 contains three syntax errors: missing t i t l e  

element, bad nested tags between < b >  and < i >  in line 8, and a tag name typo < /d t >  in line 

30. Unlike the conformance checker, HTML5 parsers typically do not report errors to end users, 

but try to fix them. For instance, they would ignore the typo tag < /d t >  since no start tag < d t>  

was met before. When the next < td >  is read, they would assume a < / td >  is missing and 

automatically insert it into the token flow. This forgiveness is essential for working with real-world 

HTML documents, but complicates parallel parsing. For instance, suppose the HTML document 

in Figure 4.2 is split into two parts and assigned to two threads to parse in parallel. When the 

second thread encounters < /d t> ,  it does not know whether this unmatched tag is an error or has 

its partner tag < d t>  in the first part of the document that this thread does not see. The parallel 

parsing algorithm has to correctly handle such ambiguities.

Embedded languages. It is common for an HTML5 document to contain some embedded 

code written in other scripting languages (e.g., CSS, Javascript, MathML and SVG.) Theoretically, 

there is no restriction on what language can be used, as long as the embedded codes are marked 

by the < s c r ip t>  tag. In Figure 4.2, a CSS segment is embedded at lines 4 and 5, while a 

Javascript segment is between lines 13 and 18. These embedded languages bring their own 

syntaxes into HTML5 documents, complicating the parsing. Previous work on parallel parsing 

has not considered such complexities.

Dynamic inputs. Another complexity coming with the embedded scripts is that they may alter 

the input HTML5 document. As shown in line 18 of Figure 4.2, the script document.write( )  in

serts extra tags into the HTML5 input stream. The inserted tags may even introduce new errors to 

the HTML document, which will not be detected before the script is executed. In our example, an 

alt attribute in the tag <img> is required by HTML5 spec, but is missing there. This feature intro

duces hazards or dynamic dependences into the parallel parsing of HTML documents, because 

the changes the scripts make to the input document (e.g., generating a new tag) may affect how 

the later part of the document should be parsed.
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<!DOCTYPE html>
< h tm l>
< s t y l e  t y p e = " t e x t /c s s " >  
i { c o l o r i r e d ; }  
li  { c o l o r : b l u e ;>

< / sty  f e >
<body>

< t e < i >  My L is t  < / b x / i >
< o l >

< l i >  random p ic tu re  
< / b r >
< s c r i p t  ty p e = ” t e x t / j a v a s c r i p t " >  
var  t ime -  new D a t e ( ) ;  
i f  ( t i m e . getSeconds ( ) < 30) 

var image = " a . jp g " ;
e lse

var image = "b. j p g "; 
document. w r i te  ( "<img s rc = ”+ i m a g e + ); 
< / s c r i p t >
< i i >  a ta b le  
< t a b l e  bo rder="1">

< th e a d >
< t r >

< th > M o n th < / th >
< th > S a v in g s < / th >

< /  t r >
< / t h e a d >
<tb o d y >

< tr>
< td > J a n u a r y < /d t>
< t d x i > $ l O C k /  i x / t d >

< t — < t r >
< t d > F e b ru a r y < / t d >
< l d x i > $ 80< /  i x / t d >

< /  t r > — >
< / t b o d y >

< / t a b l e >
< /o l>

< /b o d y >
< / h t m l >

Figure 4.2: An HTML5 Example

Strong dependences. As the next section will show, due to the unique features of HTML, cyclic 

dependences exist between tokenization and tree construction, as well as among the processing 

of different parts of the HTML document, making neither pipelining nor data-level parallelization 

directly applicable.

Because of these five special complexities, previous techniques developed for parallel parsing 

other languages have not been applied to HTML successfully. In this work, we address these 

complexities through a carefully designed speculative parallelization, which exploits the special 

features of HTML as well as some insights drawn from the statistical properties of real-world 

HTML files. Our explorations cover both pipelining and data-level parallelism. We next present 

each of them.

4.2 Speculative Pipelining

Pipelining is a parallelization technique in which the execution process is divided into stages, and 

the data go through the stages one by one, so that the stages can run in parallel. This technique
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has been used in various layers of computer systems for performance. In this section, we present 

a lightweight pipelining algorithm for parallel HTML5 parsing.

To form a pipeline, one must first decouple the original task into multiple stages. A data 

element goes through all the stages. The processing of a data element in a stage depends on the 

earlier stages, but different stages may process different data elements concurrently. So a pipeline 

has the potential to produce a speedup up to the number of stages. But the actual speedup is 

often lower than that due to the workload distribution among stages and synchronizations between 

threads [104].

The HTML5 spec suggests that HTML parsing can be naturally decoupled into two stages: 

tokenization and tree construction. Our manual analysis of some typical HTML5 parsers (such 

as jsoup [5] and Validator.nu [9]) shows that these two stages have the least number of depen

dent data structures between them and have a clear interaction interface. Finer-grained ways 

to partition the parsing are possible. But the complex interactions would result in more compli

cated code and tremendous difficulty for later maintenance and extension. We hence focus our 

implementation on this two-stage pipeline.

Even for this natural two-stage partition, directly applying the basic pipelining scheme to them 

cannot expose any parallelism. We next analyze two special challenges for pipelining HTML5 

parsing, and then explain how our speculative pipelining solves those problems.

4.2.1 Pipelining Hazards

Data dependences that prevent a pipeline stage from processing the next item before its following 

pipeline stages finish processing the current item are called pipelining hazards. In the HTML5 

parsing model, there are a series of such hazards that restrain the tokenizer and tree builder from 

running in parallel.

Tokenization State The HTML5 spec requires that the tokenizer cannot start processing new 

data elements before the tree builder finishes consuming the newly recognized token. The reason 

for this requirement is that the tree builder may modify the tokenization state during its consump

tion of the newly recognized token. If the tokenizer continues to generate the following tokens 

regardless of the tree builder’s status, it may start from a wrong tokenization state, leading to 

tokenization errors.

Figure 4.3 shows such an instance happening when the example in Figure 4.2 is parsed. 

In a sequential parsing, when the tree builder sees the start style tag, it expects that the 

following token must be from CSS code and hence correctly switches the tokenization state from
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data to Ravtext. But in a pipelined parsing, if the tokenizer does not wait for the tree builder, it 

would tokenize the following input elements before the tokenization state gets updated, and hence 

produce the wrong tokenization results as Figure 4.3 shows.

tokenization tokens: 
state:

DATA

DATA

Rawtext

<IDOCTYPEhtntf>

<html >1

<stylt type-Text/as‘>

I {colonred}
II (color blue,)

</««!«>
<bxl>Mv Ust</bx/j>

where tree builder 
, Is supposed to set 
the tokenization 
state to "Rawtext"

Incorrect token

Figure 4.3: A failure of naive pipelined HTML parser.
An example showing that the naive pipelined HTML5 parser emits incorrect tokens, marked with underlines.

Based on the HTML5 spec, we identify 10 cases, listed in Table 4.1, when the tree builder 

may change the tokenization state during its processing of tokens. The HTML5 spec puts the 

responsibility of updating the tokenization state on the tree builder because the new state depends 

on both the new token and the insertion mode of the tree builder. For instance, as the first row of 

Table 4.1 shows, when the tree builder receives a token < t i t i e > ,  it would switch the tokenization 

state to r c d a t a  only when the insertion mode of the tree builder is inHead (which means that the 

parser is parsing the region in the scope of head). 2 The tokenization state hence causes cyclic 

dependences between the tokenizer and tree builder.

Table 4.1: Pipelining hazards from tokenization state
Insertion Mode Next Token Switch-to State

in head <title> RCDATA
in head <noframes> RAWTEXT
in head <style> RAWTEXT
in head <script> script data
in body <xmp> RAWTEXT
in body <iframe> RAWTEXT
in body <noembed> RAWTEXT
in body <noscript> RAWTEXT
in body <plaintext> PLAINTEXT
in body <textarea> RCDATA

Self-Closing Acknowledged Flag A more obscure pipelining hazard in HTML5 spec is the 

self-closing acknowledged flag, a global variable in the tokenizer. In HTML, a set of tags are

predefined to be self-closing tags, meaning that they need no separate end tag. The new line

2The insertion mode and next token are not the only conditions that cause the tokenization state to switch; script, flag, 
for instance, can also trigger it.
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tag < b r />  is such an example. A tag with V  at the end is considered as being written in a self- 

closing form; a predefined self-closing tag should be written in such a form, but does not have 

to— another evidence of the flexibility of HTML5 spec.

The self-closing acknowledged flag is used in the parser to assist the check on whether a tag 

written in a self-closing form (i.e., with as its ending symbol) indeed belongs to the predefined 

set of self-closing tags. According to the HTML5 spec, the tokenizer and tree builder must coop

erate to do the check. The global variable self-closing acknowledged flag is set to true initially. 

When the tokenizer recognizes a token, if the ending symbol of it is 7", it pessimistically sets the 

flag to false, otherwise, it keeps the self-closing acknowledged flag unchanged. Then, when the 

tree builder receives this start tag, it will check if this tag is in the predefined self-closing tag set. 

If so, it sets the self-closing acknowledged flag to true. Next, right before the tokenizer attempts 

to process the next symbol in the input, it checks the self-closing acknowledged flag, and records 

an error if that flag is false, indicating that the token just processed is not a self-closing tag but 

is mistakenly written in a self-closing form in the input. So, in a naive parallel processing, if the 

tokenizer continues to generate the next token before the tree builder finishes processing the cur

rent token, it would miss the self-closing error that the tree builder would find when processing the 

current token, leading to wrong parsing results on the following tokens.

The cyclic dependences between the tokenization and tree construction serialize the two 

stages. As a result, a basic pipelining scheme can exploit no parallelism in the HTML parsing.

4.2.2 Speculative Pipelining

To overcome the challenges, an attempting option is to remove all the dependences by redesign

ing the state machines in the tokenizer and tree builder. But the cyclic dependences between 

them are inherent rather than side products of the state machines. For instance, one may let the 

tokenizer rather than tree builder get in charge of the tokenization state update. But that does not 

address the problem because in either design, the update depends on the information from both 

the tokenizer (the next token) and the tree builder (the insertion mode). The same happens to the 

self-closing acknowledged flag update. Even if some dramatic changes to the parser might go 

around these issues, they would likely seriously violate the HTML5 spec.

We instead address the challenges by developing a speculative pipelining scheme. Specula

tive pipelining is a pipelining technique that employs speculation to break the cyclic dependences 

between stages. Its basic structure contains three steps: (1) predict the value of the data items 

that cause the dependences; (2) with the predicted values, process the tasks in pipeline specu
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latively; (3) when the dependent data is produced, verify the prediction, and if the prediction is 

wrong, trace back and reprocess the data from the correct state (called rollback).

Our design is based on some empirical observations. We conduct a systematic measurement 

on how often the tree builder alters the tokenization state. Our measurement on the top 1000 

websites [8] shows that it happens in less than 0.01% of all the operations of the tree builder. 

It suggests that if the tokenizer optimistically assumes that its state won't be altered by the tree 

builder, there is less than 0.01% probability that it has to rollback. Moreover, we find that among 

the 117 HTML5 tags [3], only 18.8% of them are self-closing, suggesting that speculation may be 

sufficient to overcome the self-closing acknowledged flag hazard as well.

Based on these observations, we develop a speculative pipelining framework for HTML5 pars

ing, as shown in Figure 4.4. This framework contains four main components: a predictor that 

predicts the context (including the tokenization state and self-closing acknowledged flag) for tok

enization; a hazard detector that detects the pipelining hazards; a rollback function that recovers 

the context from misspeculation; and a token buffer for passing the tokens from the tokenizer to 

the tree builder. We explain each of the components as follows.

Tokenlztr
HTML

" W  contwrt Rollback 1#   .

Trtt builder

Hazard! Detector.!

DOM Tree

dataflow ■> control flow

Figure 4.4: The speculative pipelining framework for HTML5 parsing.

Predictor Basically, there are two ways to predict the context: One is optimistic prediction, 

in which we expect that no hazards will happen. So the context after emitting the prior token is 

considered as the current context. The other is pessimistic prediction, that is, we do not expect 

the prior context to be a good guess, but use an advanced predictor (e.g., a predictor that exploits 

conditional probabilities based on partial contexts [118]) to gain good speculation accuracy. There 

is a classic tradeoff between prediction overhead and prediction accuracy. In this work, we choose 

the optimistic prediction because of its simplicity and the low probabilities of the hazards. In 

Section 4.4, we will show that the design provides sufficient accuracy.

Hazard Detector To detect pipelining hazards, we use a flag, hazard flag, to indicate whether
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1 c lass  Snapshot {
,? T o k e n iz e r S ta te  s t a t e ;
3 boolean a ck n o w le d g e S e l fC lo s in g F la g ;
4 Token. S ta r tT a g  la s t S t a r t T a g  ;

s }
a b s t ra c t  c lass  Token {

s TokenType t y p e ;
* in f  index;
in Snapshot snapshot;  / *  new * /

13 }
in a b s t ra c t  c lass  T re e B u i ld e r  {
I C h arac te rR ead er  rea d e r ;

T o k e n iz e r  t o k e n iz e r ;
■i p ro te c ted  Document doc;

u: p r iv a t e  Token p re v iou s To ke n ; i t .  new * i

V> . . .
. 3  >

Figure 4.5: Data structures for rollback

some pipelining hazards have occurred. For example, when the tree builder reads a start tag 

whose name is “plaintext”, it switches tokenization state to PLAINTEXT. Right after this, it sets the 

hazard flag to true. The pipelining hazards mentioned in Section 4.2.1 scatter over the entire tree 

construction algorithm. To cover them, we look into the HTML5 spec and identify all sites in the 

algorithm where a pipelining hazard may happen. For each site, we insert a corresponding detec

tion instruction. In this way, the detector is fully integrated into the tree builder, and is automatically 

triggered by any pipelining hazard.

Rollback When a pipeline hazard occurs, the tokenizer may run into some incorrect states. 

To effectively rollback from the incorrect status, two questions need to be answered. The first is 

which place the tokenizer should rollback to? This place should be safe and should be as late 

as possible to minimize the rollback overhead. Our solution meets both criteria by moving the 

tokenizer back to a state where the tree builder just finishes consuming the token that causes the 

hazard. The second question is how to recover the status at the safe point. Our solution is to add 

a Snapshot data structure that encapsulates the data needed for recovering and a previousToken 

variable which contains the needed snapshot, as shown in Figure 4.5.

Our solution introduces a hazard flag. The hazard detector sets the flag once it finds some 

hazards. The tokenizer checks the flag every time before it starts to produce the next token; so 

usually no more than one token is produced between the time the flag is set and the time the 

tokenizer sees it. Once the tokenizer sees that the flag is set, it invokes the rollback, and then 

resets the flag. The overhead of rollback mainly consists of the flag checking and recovery of the 

tokenization state.

Token buffer. The token buffer plays the “pipe” role in this pipelining scheme. Its efficiency 

is important for the pipelining performance. We initially employ a non-blocking concurrent queue,
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which implements an efficient “wait-free” algorithm [80].

In our experiments, we empirically found that the tokenizer and tree builder generally have sim

ilar rates in terms of token buffer operations, i.e. dequeue and enqueue. It suggests that a small 

buffer may be sufficient for performance. We tried a spectrum of buffer sizes. As Section 4.4.2 will 

show, the smallest buffer size, 1, gives similar performance as other sizes. It is hence adopted in 

our design. At a pipeline hazard, the tokens in the queue have to be discarded.

4.3 Speculative Data-Level Parallelization

Data-level parallelization is orthogonal to pipeline parallelization (they could be used together). 

It partitions the input into a number of chunks and distributes them to processors for parallel 

processing. Applying it to HTML5 parsing faces the five complexities discussed in Section 4.1.2 

. This section presents our solution, a speculative scheme that exploits the special features of 

HTML and statistical properties of real-world HTML files.

To ease the explanation, we start with a simpler problem: parallelizing the parsing of docu

ments in LIST, a language that we made up with much simpler features than HTML. The discus

sion offers some important intuitions for parallelizing HTML5 parsers. We then describe how we 

capitalize on those insights for developing our data-level parallel HTML5 parser.

4.3.1 Insights From a Simplified Parsing Problem 

The Problem of Parallel LIST Parsing

Earlier HTML specifications are based on the Standard Generalized Markup Language (SGML). 

These versions of HTML can be defined by Document Type Definition (DTD). LIST is an instance 

of such a DTD-defined languages. Figure 4.6 gives the definition of LIST and one legal input. To 

explore data-level parallelism, our goal is to design a parallel parsing algorithm with three major 

functions: partition () for partitioning the input into smaller units, parallelParsingQ  for running a 

number of parsers on the smaller units, and merge() for merging parsing results into a complete 

one.

Algorithm Design Space

At the core of designing a data-level parallel parsing algorithm for LIST are the designs of the par

titioning function partition () and merging function mergeQ. Based on different emphasis put on 

the two functions, there are two directions: being either partitioning-oriented or merging-oriented.
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<llsts> <list> <llsts> 
I <empty>

<items> <item> <items> 
I <empty>

<ltem> <item> <data> i
I <list> IiI

<data> ::= [a-zA-Z 1*

j <list>
j <item>cartoon</ltem>

<Hst>
<item>Jane Eyre</item> 

j <ltem>Oliver Twist</item>l 
i </llst>
! </llst>
|</list>

Figure 4.6: The LIST language and its example input.

first-level partition

p<ltem>p«n</ltem>

/ <llst>
I <l«m>laptop</ltem> 
/ <ttem>ttblet</ltem> 

^ - j  </li*t>
< /ll*t>  1

I <llit>
I <ltem>c»rtoon</(t«m>

second-level partition

<'<lwm>p.n</lt.m>/A<l,em>tlble,</|,em> 
<llst> j /

< -------   r<ltem>cartoon</Kem>
</llst>
<llst>

< -
</llst>I <llst> « / I I H

L <item>J*ne Eyr*</ltem> 
<ltem>Ollvtr TM»</ltcm>

</list>
</ll»t>

<llst>
<ltem>Jine Eyre</lttm> 
<Rem>Oliver TMst</ltem> 

</li$t>

flexible partition 

<llst>
<n,t> <ltem>laptop</ltem>

<   1 </ll*t>
<llst>

<ltaw>cartoon</ltem> <j|lt>
'  V  <lt*m>Janc Eyra</lt«n>

<lt*m>Ollver TWIst < /ttem>

remaining structure extracted units

Figure 4.7: Partitioning strategies in the partitioning-oriented scheme.
Partitioning results of the input in Figure 4.6 through three different partitioning strategies in the partitioning-oriented 
scheme (bold font for remaining structures and normal font for extracted units).

Partltlonlng-Orlented Scheme. In this scheme, the partitioning function partitionQ  is care

fully designed to take advantage of the structure of input. Before regular parsing, the partitionQ  

makes a quick parse of the input, called preparseQ, to extract the input units from the original 

input by traversing the input up to a certain number of levels of structure. The extraction re

sult is called high-level structure (level zero is the highest). Depending on the number of levels 

that preparseQ considers, there are two partitioning strategies: fixed-level partition, and flexible 

partition, as shown in Figure 4.7.

The fixed-level partition extracts input units from some fixed number of levels of the input 

structure, while the flexible partition extracts an input unit if and only if its size exceeds a given 

threshold. Which one is better depends on the input structure. A good partition should meet two 

criteria: First, the extracted input units can be evenly grouped and distributed to a given number 

of parsers; second, the size of the high-level structure should be small as the extraction step is 

sequential.

After parallelParsingQ, each parser outputs one or more small DOM trees, one for each input
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unit. The parser that parses the high-level structure produces a special DOM tree, which offers 

the guide for merging the small DOM trees into a complete one. In this scheme, the mergeQ 

function is straightforward to implement.

Merging-Oriented Scheme. The merging-oriented scheme follows an opposite design prin

ciple. In this scheme, the partitionQ  is simple, just cutting the input into chunks (almost) evenly. 

Note that the cut may break some pairs of tags. To handle this special kind of unmatched tags, 

the parsers record them during parallelParsingQ, and resolve them during the merging stage.

In this work, we choose the merging-oriented scheme over the partitioning-oriented scheme 

for two reasons:

1. To take advantage of the structure of input, the partitioning-oriented scheme requires a 

preparseQ step, which sequentially scans the entire input. The time complexity is O(n), 

where n is the number of total tokens3. In contrast, the merging-oriented scheme has no 

such requirement. Even though it has a more complex merging process, the merging cost 

is only 0{log2n) as proved later in this section.

2. Compared to the even cut of input in the merging-oriented scheme, the partitioning-oriented 

scheme is subject to load imbalance. When the high-level structure becomes the bottleneck, 

it may further worsen the issue.

Tree Merging-Based Parallel Parsing Algorithm (Temppa)

In this subsection, we introduce Ire e  Merging-Based Parallel Parsing Algorithm ( Temppa) for 

LIST. Temppa is a merging-oriented scheme. Figure 4.9 shows the core of this algorithm. We will 

use the example in Figure 4.6 for our explanation.

At first, the input is partitioned into chunks. The partition tries to be even in size and meanwhile 

avoid breaking tag names. The example input in Figure 4.6 is partitioned into two chunks at the 

point right after “cartoon” at line 8. Then, for each chunk, the parseQ function creates a DOM 

tree, as shown as the left two trees in Figure 4.8. Each non-leaf node in a DOM tree represents 

a construct in the input LIST document. The node hence usually corresponds to the start tag 

and end tag of the construct in the input document. An example is the leftmost “item” node in 

Figure 4.8, whose start and end tags are the first “<item>" and “</item >” in the input shown in 

Figure 4.6.

During parsing, the parseQ function uses a stack to store incomplete tag tokens and pops 

them off when finding their matching tags. Some nodes in the tree remain incomplete to the end.

3Parallelizing the preparse may help reduce the overhead, but only modestly due to the l/O-bound property of 
preparse [115].
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That happens when the input partition separates a pair of tags into two chunks (or errors in the 

input). For instance, the “item” node right above “cartoon" in the first tree is an incomplete node 

without an end tag (called a end-missing node), while the leftmost “item" node in the second tree 

is incomplete for missing a start tag (called a start-missing node). Other incomplete nodes in the 

two trees correspond to the lists enclosing the broken item. Note that all tokens with start tag 

missing are put as immediate children of the root and are always attached as the rightmost node 

(line 21 in Figure 4.9); this helps merging efficiency as discussed next.

|lw>p|lt«bl«j lotftoonl

) laptop] [talbittl Ictrtoonl

0  Node w/o end tag 0  Node w/o start tag O  Complete node

Figure 4.8: An example of Temppa algorithm.
The DOM trees produced and merged by the Temppa algorithm on the input shown in Figure 4.6. The input is partitioned 
right after the word “cartoon". Note that roof is an assistant node and is removed after tree merging.

The mergeQ function merges every tree into the first. The algorithm is designed by leveraging 

the following important property of the DOM trees:

Property 1. Single-path property: For a LIST document with no missing tags, a DOM tree from 

Temppa can have at most one path that contains end-missing nodes.

A path in a DOM tree here refers to a branch spanning from the root node to a leaf node. 

For instance, the branch from “root" to “cartoon” in Figure 4.8 is a path that contains three end- 

missing nodes. We call a path with end-missing nodes an end-missing path. The single-path 

property claims that one DOM tree cannot have more than one end-missing path.

This property can be proved easily. Suppose there are two such paths, and node* and nodej 

are two different end-missing nodes in them respectively. Without loss of generality, assume that 

the start tag of node* appears before the start tag of node, in this chunk of the LIST document. 

There are only three possible cases regarding the end tag of node*: It appears before the start 

tag of nodej, after the end tag of nodej, or in the between. The first case is impossible in our 

setting because nodei would be a complete token as both its start and end tags appear in this 

chunk of document. The second case is not possible either because nodej would be a child of 

nodei (and hence appears on the same path) as its corresponding construct would be embedded
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in that of nodei. The third case is impossible for a legal LIST document because it would violate 

the hierarchical structure of LIST documents. (If it does appear in an illegal LIST file, according 

to the autocorrection rules of HTML, the parser would create an end tag for nodej before the end 

tag of nodei and ignore the later appearance of the end tag of nodei. That would make nodej a 

child of nodei.)

With that property, merging treei to tree0 just needs to check the end-missing path in tree0 

from bottom to top and change a node’s status to complete if its end tag is found in treei. The 

algorithm is shown in Figure 4.9. Here we highlight several features designed for efficiency. First, 

during the check, the algorithm only needs to examine the immediate children of the root in tree{ 

(line 40 in Figure 4.9) because the parseQ function puts all start-missing nodes at that level. 

Second, thanks to the way parseQ attaches nodes into a DOM tree, the left-to-right order of the 

start-missing nodes aligns exactly with the bottom-to-top order of the nodes in the end-missing 

path; both correspond to the inner-to-outer nesting levels of the broken tokens. Two trees are 

connected at line 48 in Figure 4.9. In our example, the top-most list node of the second tree is 

attached as a child of the rightmost list node at the third level of the first tree. After merging, the 

root node of the tree is removed.

Let n be the number of tokens the input document contains. The height of the complete DOM 

tree is 0(log2n), hence the complexity of the merging.

Temppa cannot directly apply to HTML5 due to the special complexities and dependences 

in HTML5 parsing. We next present how we address these complexities by integrating carefully 

designed speculation into Temppa.

4.3.2 HPar: Breaking Data Dependences with Mixed Speculation

In this part, we describe HPar (H  for “HTML"; Par for “Parallel Parsing”), our data-level parallel 

HTML parser. HPar uses the merging-oriented parallel parsing scheme. As known, data de

pendence is the single important barrier for parallelization. The various types of complexities of 

HTML5, as listed in Section 4.1.2, are ultimately reflected by their impact on complicating data 

dependences in parsing. Our description will hence focus on how HPar breaks the many special 

data dependences through a set of effective speculations; the treatment of the many complexities 

of HTML5 is described along the way.

As Section 4.2 has mentioned, the dependences in HTML5 parsing can be categorized into 

tokenization dependences and tree construction dependences. Although they may interact with 

each other, we describe our solutions to them separately for clarity.
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i / /  run by each pa rs ing  thread 
- Node p a rs e ()  { 
a stack  = new S ta ck < N o d e> ();
i c u rre n t « ro o t;
5 w h i le ( t r u e )
.• token = t o k e n iz e ( ) ;

sw itch  ( to k e n , ty p e )
« case s ta r tT a g :
9 / / Node( p a r e n t . da ta .  isComplete)
' node -  new N o d e (c u rre n t .to ken  , fa ls e  );
i c u rre n t .a d d (n o d e);

v i c u rre n t = node;
<3 s ta c k , push (n o d e );
u  b re a k ;

case endTag :
-• if  (s ta c k .to p  == token )
1? c u r re n t .  isC om plete  = t ru e ;
is c u rre n t = s ta c k .p o p () ;
in e lse
,.o node » new N o d e (c u rre n t , token , fa ls e  );
2-1 ro o t ,  add (n o d e );
2.-; b reak ;
or d e fa u lt  :
,4 node = new N o d e (c u rre n t , token , fa ls e  );
25 c u rre n t .a d d (n o d e );
?6 re tu rn  ro o t;
*  }
,16

25 / /  runs on main thread
10 Node m erged  {
31 fo r ( i = 1; i < numThreads; i+ + )
jo root[O J = m e rg e T w o (ro o ttO ), r o o t ( i j ) ;
33 re tu rn  r o o t [0 ] ;
31 }

.is I I  merge two incom ple te  t rees
Node mergeTwo(Node rootO , Node r o o t i )  { 

in endM issingNode »
an getLowestEndM issingNode ( rootO );
io fo r  (c h i ld  in r o o t i . c h i ld r e n )
41 i f  ( c h i ld  . S ta rtM is s in g  «« t ru e )
42 if  (endM issingN ode. name == c h ild .n a m e )
u endM issingNode. EndMissing = fa ls e ;
14 endM issingNode » e n d M iss in g N o d e .p aren t;
io e lse
■io e r ro r  ("m ism atched ta g s " ) ;
ii e lse
is endM issingN ode.add ( c h ild  );
49 re tu rn  rootO ;
50  }

Figure 4.9: The core of the Temppa algorithm.

Tokenization Dependences

Suppose an HTML file has been partitioned into chunks. To let an HTML5 parser process an 

HTML chunk, it needs to know the starting tokenization state. The real starting tokenization state 

depends on the parsing results of previous chunks. So before parallel parsing of HTML chunks, 

only the parser for the first chunk is sure of the real starting state, according to HTML5 spec, the 

DATA state; all the other parsers have to speculate their values. To speculate starting tokeniza

tion states, we employ a series of techniques, and combine them to achieve a high speculation 

accuracy.

a. Smart Cutting. A simple but efficient way to improve the accuracy is to select a good 

cutting point. The policy used in this work and some previous papers [115], is to always cut just
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before (or after) a tag. It starts from an even partitioning point and looks forward until it finds the 

left angle bracket of a tag and uses that point as a cutting point. This strategy guarantees that no 

tags are broken, and limits the prediction targets to these restricted scenarios. As only a subset 

of tokenization states are feasible in these scenarios, the strategy simplifies speculation. It may 

cause some load imbalance, but by at most one token; the effect is typically negligible.

b. Frequency-Based Speculation. A straightforward way to get a statistically good candidate 

is to choose the state with the highest probability. We profiled the top 1000 popular websites [8], 

and collected the tokenization state distribution. In this distribution, the d a t a state has the highest 

probability, 12.3%. In another word, choosing the d a t a state as the starting tokenization state can 

achieve a 12.3% accuracy. However, when we apply the smart cutting to restrict the scenarios to 

predict, the d a t a state appears to be the true state in 92.3% of the cases. So the smart cutting 

and this frequency-based speculation together offer a simple but effective way to achieve a 92.3%  

speculation accuracy.

c. Speculation with Partial Context. The previous two techniques explore static character

istics to help speculation. Although they work in most cases, they cannot handle cases when a 

comment or script is broken by the cutting. Although these two cases do not happen often in the 

parsing of most documents, they appear to be critical for some files where comments or scripts 

are used intensively. We use partial context to address these issues. The method exploits the 

conditional probabilities of partial context— which here refers to the prefix of HTML chunks. We 

explain the two cases as follows.

c.1) Handling Broken Comments. Broken comments happen when different parts of a com

ment are partitioned into different chunks. For example, when an HTML chunk ending with 

<h2>heading” is being parsed, its following input elements “</h2>— > < h i > ” are being 

concurrently parsed. The second parse would mistakenly consider the actually commented-out 

tag “< /h 2 > ” as a normal tag. The cause of this error is that the second parse starts from the 

default tokenization state DATA, while the real state should be Comment. To solve this problem, 

we introduce two new token types: startComment and EndComment, so that the broken comments 

can be recognized individually and merged later. The construction of the StartComment is simply 

triggered by an encounter of while an EndComment token is built when is encoun

tered and this current HTML chunk contains no matching starting comment tag. The parser would 

include all the text from the starting of the chunk to this end comment tag into that EndComment 

token. Note that these two token types are intermediate representations. After merging, they will 

be replaced by Comment nodes.

The above technique has risks and benefits. As it solves the broken comments problem,
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but also brings some side effect. For example, when parsing an HTML tutorial page, a parser 

thread would mistakenly consider the normal text segment “< p > — > ” in text “< p > — >  ends an 

HTML comment’’ as an EndComment. To solve this dilemma, we simultaneously maintain two al

ternative parsing results: normal interpretation and EndComment interpretation. Which one is 

correct depends on the parsing results of previous chunks. Specifically, if the prior chunk has 

a StartComment as its rightmost incomplete node, then EndComment interpretation is correct and 

used; otherwise, the normal interpretation is used. This approach safely avoids rolling back in 

either case.

c.2) Handling Broken Scripts. Another interesting case involves broken scripts. When a 

parser thread starts in the middle of a pair of script tags, it may not realize this until it reads a 

</script> token. During the merging of two incomplete trees, if the first tree has an incomplete 

script node without an end tag, while the first child of the second tree’s root is an incomplete 

script node without a start tag, these two nodes will be merged to form a complete script 

node. But this is not the end of the story. Due to the broken script tags, the script cannot be 

executed until it is complete, hence a delay for its execution results to take effect. As the scripts 

may modify the HTML input and hence the DOM tree, the delay may cause side-effects: changing 

the application scope of the script. As shown in Figure 4.10, the script in the piece of HTML is 

supposed to change only the first two h2 tags, however, since its execution is after parallel HTML 

parsing, it changes the third h.2 tag as well. The key to solving this issue is in remembering the 

application scope of scripts by inserting some anchors into the DOM tree. Each anchor indicates 

the end of the scope for a broken script to take effect. After the execution of a merged complete 

script, if it alters the HTML document, the parser reparses the affected chunks and remerges 

them into the tree. All anchors are removed after the executions of all scripts.

<h2>head 2.1</h2>
<h2>head 2.2</h2>
<script type-"text/javascript’ > 
var el = document.getElementsByTagName('h2'); 
forfvar 1-0; l<el.length; I++) { 

el[i].lnnerHTML='changed head';
}
</scrlpt>
<h2>head 2.3</h2>

changed head changed head
changed head changed head
head 2.3 changed head

correct display wrong display

Figure 4.10: Script scope issue.
An example that shows the application scope of script may be changed by the delay of its execution.
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c.3) Handling Other Broken Tags. There are some other cases that cause the speculation 

to fail. For example, as shown in Figure 4.3, when a pair of style tags are broken, the DATA will 

not be the true tokenization state. This can be easily fixed by cutting just before a tag, instead 

of after a tag, assuming the symbol <  does not appear within style tags. Other cases, such as 

broken svg and math tags, are handled similarly.

Tree Construction Dependences

Besides tokenization dependences, we also need to solve the tree construction dependences. For 

a parser thread to process an HTML chunk, it needs to know the starting insertion mode. In this 

subsection, we show that the dependences can also be addressed through mixed speculations.

a. Before Speculation. Autocorrection is one of the key features in HTML parsing. This 

feature makes the HTML syntax more flexible and tolerant to some errors, but also makes par

allelization difficult. For instance, the Temppa algorithm is supposed to attach the token of an 

unpaired end tag to the root node. But autocorrection may instead regard the tag as “errors” and 

let the parser ignore it. We adopt a simple solution that delays this type of autocorrections until 

the merging stage. The parser always attaches unpaired end tags to the tree, and removes them 

from the tree if it finds no matching start tags for them at the tree merging time.

The other type of errors handled by autocorrection is missing end tags (e.g., missing “</ii>” 

in “<ii> item one. <ii> item two.”). By default, an HTML parser is supposed to autocor- 

rect such errors by inserting some end tags according to some rules in the HTML5 specification. 

What end tags to insert depends on the current insertion mode and the top of an open stack that 

records all start tags not yet matched with end tags. In HPar, the insertion mode is determined 

through speculation as detailed next. As to the open stack, before starting parsing a chunk, a 

parser determines the top of the open stack by finding the last tag in the suffix of the previous 

chunk. If it is a start tag, the parser puts it to the top of the open stack, otherwise, it leaves 

the stack empty. During the parse, it uses the speculated insertion mode and the open stack to 

autocorrect missing end tags. If the autocorrection hits the bottom of the open stack, the parser 

conservatively assumes that the open stack does not contain enough information for the auto

correction, aborts, and waits for the previous parser to reparse this chunk. Our study shows that 

most missing end tags are “</ii>”, which were always fixed by the speculation scheme. No 

autocorrection-triggered abort is observed in our experiments.

b. Profile-Based Speculation. Similar to the tokenization state, we also profiled the distri

bution of insertion mode based on top 1000 popular websites [8]. We find that the inBody mode 

is the dominating mode, with a 51.3% probability. However, directly using InBody as the starting
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insertion mode can cause some side effects, because of missing html, head, and body elements. 

For example, when a pair of head tags is broken, if the InBody mode is used, the parser that 

processes the second piece would mistakenly consider that all tags it encounters are within the 

scope of body, and attach the corresponding elements to body. To avoid this, we instead use the 

initial mode as the starting state for the parsing of each HTML chunk such that the elements 

html, head, and body will be automatically inserted. And right after those insertions, the insertion 

mode will automatically switch into the most probable state, the InBody mode.

c. Speculation with Partial Context. Partial contexts can also help the speculation of inser

tion mode. We explain it by drawing on broken table tags as an example.

In the HTML5 specification, there are a set of insertion modes designed for parsing table- 

related tokens, including inTable, inTableText, inRow, and others. This set of insertion modes 

are important: They cover more than 38% of the insertion modes during the parse of the top 1000 

websites.

When a cutting point is within a pair of table tags, the speculation with InBody as the starting 

insertion mode will fail. The true insertion mode depends on the position of the cutting point within 

the pair of table tags. So we profiled the relations between the relative positions of cutting point 

and the insertion modes, and found an interesting result: In the situations where table tags are 

broken, the correct starting insertion mode strongly correlates with the first table-related token 

in the current HTML chunk, as summarized in Table 4.2. We integrate the table into the parallel 

parser to help the speculation.

Table 4.2: Insertion Mode Prediction

Table-related tokens Starting Insertion Mode
</td> InCell
</tr> InTableText
</th> InCell

</thead> InTableText
</tbody> InTableText
</tfoot> InTableText

For example, suppose a parsing thread starts in the middle of a pair of table tags. At first, 

it does not realize this, and starts with the InBody mode. After processing a number of tokens, 

it reads a token </td> without previously reading any start tag <td>. It realizes that earlier 

speculation fails. Based on Table 4.2, it picks the insertion mode inCeii as the new speculation 

of starting insertion mode, and reparses its HTML chunk.

Even with all the techniques for effective speculation, mistakes can still happen in some cases.

77



Table 41.3: Benchmark size and specula tion accuracy
website youtube bbc linkedin yahoo amazon qq twitter taobao wikipedia facebook average

s ze (KB) 120 152 208 308 320 332 386 476 504 708 352
acc
(%)

pipeline
data-level

gg.g
100

gg.g
ss.g

gg.g
66.7

gg.g
66.7

gg.g
100

gg.g
33.3

100
100

gg.g
88.g

gg.g
85.7

gg.g
77.8

gg.g
77.5

We treat them in an eager manner: As soon as the parser realizes that the speculation is wrong 

(by, for instance, encountering an end tag that is inconsistent with the assumed insertion mode), 

it immediately picks a more plausible speculation state and starts to reparse the chunk of input. 

The refinement of the speculation state can leverage everything the parser has observed so far. 

However, in our exploration, we found that the most useful info is the tag or token the parser 

encounters right before it realizes the error. For instance, if the tag is <m eta>, it would speculate 

that the beginning of the chunk is more likely to be part of a head tag pair (than a body tag pair). 

The refined speculation may still need to be rolled back if it is mistaken. In the worst case, the 

mistake could not get fixed until the finish of the parsing of all previous chunks of input, when the 

correct starting states for parsing this chunk become explicit. But our experiments show that in 

practice, the refinement is quite effective in fixing speculation errors, as shown by the results in 

the next Section.

4.4 Evaluation

We implemented both the pipelining and data-level parallelization (HPar) in jsoup [5], an open- 

source standalone HTML5 parser that implements the HTML5 spec. This actively maintained 

open-source parser is written in Java. It is the most popular open-source standalone HTML 

parser in the community 4.

Benchmarks. We use real HTML pages as our benchmarks. They are downloaded from 

popular websites [8], including youtube.com, bbc.co.uk, linkedin.com, yahoo.com, amazon.com, 

qq.com, taobao.com, wikipedia.org, and facebook.com. From each of them, we collect one page 

that contains some substantial content5. These pages are mostly the first page showing up after 

logging into the web site. Their sizes range from 120KB to 708KB (352KB on average) as shown 

in Table 4.3.

Platforms. We use three types of devices with different degrees of portability: a Linux server, 

a laptop, and a tablet, as listed in Table 4.4.

Methodology. To measure the steady-state performance, we repeated each run for ten times 

after a warm-up run on the Java runtime. We observed some variations among the running

4lts popularity is reflected by the large amount of discussion on it in www.stackoverflow.com.
5The whole set of webpages are accessible at http://www.cs.wm.edu/caps/projects/hpar/.
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Table 4.4: Evaluation platforms
MacBook Pro Nexus 7 Linux Server

CPU
#cores

Last-level shared cache 
OS 

JVM

Intel Core i7 
4 cores 

8MB 
OS X 10.7 

HotSpot Server

Nvidia Tegra 3 
4 cores 

1MB 
Android 4.1 

Dalvik

Intel Xeon E7 
10 cores 

20MB  
openSUSE 12.1 
OpenJDK Sever

times, especially on the portable devices due to the more prominent influence of its many system 

activities. We used the shortest time for all versions (including the baseline sequential version) 

in their repetitive runs. The reason for such a policy is that our focus is on the evaluation of 

the effectiveness of the parallelization techniques. In these runs, the interference from system- 

level noises is minimal; the time can hence better reflect the actual effects of the parallelization 

techniques. All speedups are for the parsers’ execution time.

4.4.1 Speculative Data-Level Parallelization

Figure 4 .11(a) reports the speedups of our speculative data-level parallel parser, HPar, on Mac- 

Book Pro. The baseline is the default sequential parser from jsoup. The rightmost bar reports the 

geometric mean of the results in all benchmarks.

On the MacBook Pro with four cores, HPar achieves speedups as high as 2.4x. Its average 

speedup is 1.73x. Our analysis shows that the sublinear speedup is due to three main resources. 

The first is the tree merging step. As a sequential step, it takes about 5% the overall parse time 

in a eight-thread case on Macbook Pro (and 25% on Nexus 7 with four threads). The second is 

the overhead in the parallelization, including thread creation and communication, and the rollback 

overhead when the speculation fails. Our speculation success rate is 78% on average, shown 

in Table 4.3. The benchmark qq has the largest speculation error because the a majority of the 

cutting points happen to fall into Javascript code embedded in it. Wrong speculations cause 

some part of input to be reparsed, which generates some but not much overhead because the 

parser realizes and fixes the speculation error quite early such that the reparsed segments are 

on average only 4.6% of a chunk of input. Yahoo is an exception. Two chunks of it are entirely 

Javascript code and the speculation errors were not realized until the end. But Javascript sections 

do not need to be reparsed by HTML5 parsers. So the errors did not incur much overhead. The 

third source of overhead is the contention in system resources (e.g., shared cache, memory 

controllers, etc.). As the first two sources typically do not increase much when the input size 

increases, we expect that when the input becomes larger, the speedup would increase as well. It 

is confirmed by the scalability study described next.
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Scalability Study Due to the limited number of cores on current portable devices, we conduct 

the scalability study on a dedicated server equipped with ten cores as listed in Table 4.4. Fig

ure 4.12(a) shows the average speedup of the ten benchmarks as the number of cores grows. 

The peak speedup appears when five cores are used. An analysis of the individual benchmarks 

shows that the facebook benchmark is the one that has the best scalability, with the speedup 

up to 2.93x. Considering that facebook is the largest benchmark of all, we speculate that the 

benchmark size could be an important factor for scalability. To confirm it, we create a series of 

web pages of a spectrum of sizes by duplicating some web pages multiple times. Figure 4.12(b) 

reports the speedups of HPar on these web pages when different numbers of cores are used. 

The scalability increases as the input grows, confirming our speculation. As the trend is that web 

pages are becoming increasingly complex and large, the results suggest that even larger benefits 

of HPar may be expected for future web pages.
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Figure 4.11: HPar speedup.
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Figure 4.12: Scalability of HPar.

The speedup on the Nexus 7 tablet is reported in Figure 4.11 (b). It is relatively modest: up to 

1,24x with an average of 1.13x. System resource contention in the parallel runs is the main reason 

for the speedup to be lower than on the MacBook Pro. To confirm it, we create an artificial scenario 

that has full parallelism and little parallelization overhead by running four standalone copies of the
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sequential parser on the device. We see 2.3x slowdown compared to the performance of the 

sequential parser when it runs alone. The larger impact of resource contention is due to the much 

more limited L1 and L2 cache and memory bandwidth on Nexus 7 than on MacBook Pro (e.g., 

1 MB v.s. 8MB of L2 cache). As handheld devices are evolving rapidly, we expect that the speedup 

will get closer to that on MacBook Pro as these devices become more powerful in the near future.

4.4.2 Speculative Pipelining

We have also measured the benefits of the speculative pipelined HTML5 parser. We found that its 

benefits are much less than HPar. Figure 4.13 shows the speedup (or slowdown when the value 

is lower than 1) on the ten benchmarks. The baseline is also the default sequential parser from 

jsoup. There are three bars for each benchmark. The first one is the speedup on the MacBook 

Pro. There is no speedup but an average 8% slowdown. Load balance is not a main issue as 

the two stages of the pipeline appear to run for a similar amount of time for most benchmarks. 

Speculation error is not an issue either as shown in Figure 4.3. Our analysis show two main rea

sons for the slowdown. First, the pipeline has only two stages and hence has limited parallelism. 

Second, there is some overhead for threads creation and synchronization and scheduling, among 

which, the main overhead turns out to be the data transfer from the tokenization thread to the tree 

builder thread. We tried to change the transfer to a batch fashion rather than in each token, but 

observed no performance benefits. We also tried a spectrum of token buffer sizes to measure its 

impact on the performance. Figure 4.14 shows the geometric means of the parsing times of all 

the web pages when different buffer sizes are used. There is no clear correlation between the 

parsing time and the buffer size, offering the supporting evidence for using 1-token buffer in our 

design.

Figure 4.13: Speculative pipelining speedup

To further analyze the tradeoff between time savings and overhead, on the same platform, we



conduct another set of experiments. The Java runtime on the laptop allows two modes of code 

translation, through either an interpreter or the adaptive Just-in-Time (JIT) compiler. By default, 

the JIT is enabled as it usually provides better code and hence higher performance (as done in 

the experiment described in the previous paragraph.) However, in this experiment, we deliberately 

disable the JIT to see the changes. The second bar in Figure 4.13 for each benchmark shows the 

speedups of the pipelined parser compared to the sequential one when JIT is disabled for both. 

The pipelined parser shows an average 1.29x speedup. Such a dramatic change is because with

out JIT compilation, the parser runs for a much longer time. So the memory accessing overhead 

becomes less critical. In another word, the parsing becomes more CPU bound, and hence the 

savings by the parallelization outweigh the overhead.

7.2 ----------------

1 10 100 
Token buffer size

Figure 4.14: Performance impact of token buffer size.

The comparison between these two scenarios is mainly to confirm that the pipelined parser 

works properly, and to help understand the tradeoffs between its savings and overhead. For 

practice, the results suggest that the pipelined HTML parser is not beneficial on the Macbook 

Pro—despite the speedups when JIT is disabled, the fastest version is still the default sequential 

parser with JIT enabled.

The third bar of each benchmark shows the speedup on the tablet Nexus 7. The Java runtime 

is Dalvik with JIT. As the memory bandwidth of the tablet is even smaller than the Macbook Pro, 

it is expected to see even lower performance of the pipelined parser, given the memory-bound 

property of the program. The results confirm the expectation: greater slowdown are shown in the 

experiments.

Overall, the results indicate that the pipelining parallelization is not a viable way to develop 

parallel parsers for HTML.

4.5 Potential Benefits Beyond Parsing

The benefits of parallel HTML5 parsing go beyond parsing itself. It may open up new optimization 

opportunities for modern web browsers. Here we list two examples.
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Parallel Object Downloading. HTML documents usually contain various objects, such as 

images, stylesheets, Javascript code. These objects are usually not downloaded until the parser 

reaches the links to those objects in the HTML document. In HPar, the parsing threads start at 

multiple points in an HTML document; these objects can hence be detected earlier and down

loaded speculatively in parallel. A complementary approach to enabling early downloading is 

prescan [34], which scans and parses the input at a high level. It has been a sequential process, 

suffering substantial overhead on large webpages. The techniques of HPar may be combined 

with prescan— such as, creating a parallel prescan— to minimize the latency.

Parallel Javascript Execution. In our current implementation, the Javascript code in a web

page is executed in the default manner— typically sequentially. But as multiple pieces of Javascript 

code can now be recognized in parallel and objects embedded in different parts of a webpage 

could be downloaded concurrently, it is possible for several pieces of Javascript code in a web

page to be launched in parallel. There are some complexities in this optimization though. A 

piece of Javascript code may depend on the parsing threads, or another piece of Javascript code. 

Hence, to capitalize on these opportunities, one must not ignore these subtle issues.

4.6 Related Work

4.6.1 Parallel Browsers

Recent years have seen some increasing interest in parallelizing web browsers. Web browsers 

include many kinds of activities. Prior efforts have concentrated on creation of web page lay

out [24,78], lexing [59], Javascript translation and execution [55], web page loading [106], XML 

parsing [73,115], and web page decomposing [76]. Industry (e.g., Qualcomm and Mozilla) has 

began designing new browser architectures [34,82] to leverage these results or better exploit 

task-level parallelism. These studies have not focused on parallelizing HTML parsing, an impor

tant component for the response time of a browser. Integration of HPar into a browser is ongoing 

work.

4.6.2 Parallel Parsing

Many studies have been devoted to parallel parsing between 1970’s and 1990’s. They fall into 

two classes: parallel parse of programming languages or natural languages. For programming 

languages, arithmetic expressions and bracket matching are mostly studied and evaluated. A 

pipeline is used between lexing and parsing [92], or even among lexing, parsing and semantic
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processing [25]. For parsing itself, the parallelism can come from either grammar decomposition 

or input decomposition [13]. Fischer’s seminal work [47] proposes a parallel parsing algorithm 

based on LR parsing. Given a starting point of the string, the algorithm uses a number of se

quential parsers for every possible parsing state, and maintains a parsing stack for each parser. 

Prefix-sum algorithm is also applied to parallel parsing problems to compute the effects of a series 

of stack transitions [100]. These approaches suffer from scalability issues for the rapid growth of 

the possible states and transitions of the stack as the vocabulary and inputs increase. In grammar 

decomposition, the grammar is decomposed such that each processor is in charge of a part of 

the grammar [21,22]. The decomposition exploits limited parallelism compared to input data de

composition. Luttighuis leveraged parallel bracket matching algorithms for parallel parse of some 

special subclasses of context free language [75]. In natural language processing, many efforts 

have been put to CYK [61,113,114] and Earley [43] parsing algorithms. A recent work has exam

ined how to synthesize a parallel schedule of structured traversals over trees, offering some help 

for parallel CSS processing [79]. These previous studies have laid the foundation for this work. 

However, most of them have focused on languages defined with clean formal grammars. They 

have not been able to be applied to HTML successfully, as Section 4.1 has discussed. Natural 

languages are also defined in an ad-hoc manner. But they have a whole set of different complex

ities from HTML. The parallel parsing techniques developed for natural languages have a high 

time complexity, unsuitable for programming languages.

Parallel XML Parsing. The two basic ways of data-level parallel parsing— the partition-oriented 

and the merging-oriented—  have been applied for XML parallel parsing [73 ,86 ,99,115]. The 

work by Lu and others, for example, first extracts the high-level structure of XML documents 

through a quick prescan [73], and parses each part of the document in parallel. The work by Wu 

and others [115] cuts XML documents into chunks, parses them and merges the result together. 

HTML5 parsing has many special complexities compared to XML parsing. In fact, all the major 

complexities listed in Section 4.1.2 do not present in typical XML documents, and hence have 

been ignored by previous studies in XML parallel parsing. For example, none of them handles 

error-correcting, embedding of other languages, and executable scripts that modify the document 

it resides in. As we have discussed in Section 4.3.2, these complexities cause complicated effects 

on the data dependences in HTML5 parsing, and hence the many difficulties for parallelization. 

They prompt our development of the speculative techniques described in this work. In contrast, 

simple methods have been used in prior XML parallel parsing studies. The work by Wu and 

others [115] simply cuts input right after a right angle bracket and let every thread parse their 

chunk from initial state. They do not consider the failing cases, in which the cutting point is actually
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inside a string of comment, in the middle of a piece of Javascript code, or after an erroneous 

ending tag. They do not have the sophisticated speculation designs or error handling schemes 

as we present. Nor do they handle modifications of the document by the scripts it contains. It 

is exactly these special complexities that have been the key barriers for HTML parallel parsing. 

Effectively handling them to enable HTML parallel parsing is the distinctive contribution of this 

current work.

There are some prior studies on using context to help parse languages that allows embed

ding of domain-specific languages [112]. They are for enhancing sequential parsers rather than 

parallelization.

To the best of our knowledge, this work is the first study that systematically investigates the 

special complexities in parallel HTML parsing; by developing a set of speculation-centered solu

tions customized to HTML parsing, it creates HPar, the first practical parallel parser for HTML.

4.6.3 Speculative Execution

A number of studies have explored speculative execution techniques for solving challenging paral

lelization problems, at both the levels of programming languages and compilers [41,46,91,93,95] 

and architecture designs [39,77], To simplify programmers’ task, Prabhu and others proposed 

two new language constructs to parallelize applications with speculation [91]. Some work uses 

software speculation to parallelize certain regions of the applications. This can be implemented 

either at process level [41 ] or thread level [46,95]. These automatic or semi-automatic approaches 

for general application parallelization have their limitations. They usually focus on loops, and the 

dependences that they can deal with are relatively simple. A recent study introduces rigorous 

analysis to DFA speculation [118].

4.7 Summary

This work presents the first systematic study in taming the complexities of HTML5 and developing 

speculation-centered techniques to create parallel HTML parsers. The outcome includes a set 

of insights on effectively parallelizing HTML parsers, and HPar, the first practical HTML parallel 

parser that yields up to 2.4X speedup (1.73X on average) on quad-core devices. This study 

breaks a challenging barrier for fully parallelizing web browsers, improves the efficiency of a critical 

component in modern web browsers, and opens up new opportunities for browser optimizations.
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5 Call Sequence Prediction and Parallel JIT 

Compilation

Predicting a sequence of upcoming function calls is important for optimizing programs written in 

modern managed languages (e.g., Java, Javascript, C#.) Existing function call predictions are 

mainly built on statistical patterns, suitable for predicting a single call but not a sequence of calls. 

This paper presents a new way to enable call sequence prediction, which exploits program struc

tures through Probabilistic Calling Automata (PCA), a new program representation that captures 

both the inherent ensuing relations among function calls, and the probabilistic nature of execution 

paths. It shows that PCA-based prediction outperforms existing predictions, yielding substantial 

speedup when being applied to guide Just-In-Time compilation. By enabling accurate, efficient 

call sequence prediction for the first time, PCA-based predictors open up many new opportunities 

for dynamic program optimizations.

5.1 Problem Definition and Design Considerations

As the problem has not been systematically explored before, we first provide a formal definition 

as follows.

5.1.1 Definition of Call Sequence Prediction

Definition 9. A function call sequence of a program is a sequence of the IDs of the functions 

in the order of their invocations in an execution time window.

Definition 10. Call Sequence Prediction: For a given execution of program P , function call 

sequence prediction at a time point t is to predict the function call sequence of P  in the time 

window that immediately follows t.

The time window is called prediction window. Its length is usually in logical time (e.g., the num

ber of function calls), and may be fixed or vary. Depending on the windows’ length, the prediction
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Figure 5.1: An example program named “PCAExample” and its PCA.

may happen many times during an execution of a program. For a multithreading execution, the 

prediction can be at the whole program level including all threads, or at the level of one or several 

specific threads.

Function call sequences are largely dictated by program,structures. A primary goal of this work 

is to examine how to leverage program structures for call sequence prediction. Conceptually, the 

problem is to develop a representation that is effective in capturing the relevant constraints on call 

sequences coded in a program.

5.1.2 Design Considerations

Ensuing Relations vs. Calling Relations There are some commonly used inter-procedural 

program representations, such as call graphs, call trees and calling context trees. They primar

ily represent calling relations among functions. But a call sequence is about which call follows 

which— and hence an embodiment of a series of ensuing relations.

It is important to note the differences between these two kinds of relations. Calling relations 

are about what functions would be called by what functions, while ensuing relations are about 

what function would be called right after what function calls. Calling relations affect ensuing 

relations. Knowing Y as one of the callees of X, for instance, suggests that Y  will be, with some 

uncertainty in the presence of branches, called after a call to X. But when that call will happen 

is not coded in the calling relation: It could be immediate, several or hundreds of calls later. An 

example is the call of “D()" by “AQ” in the PCAExample code in Figure 5.1 (a). For the loop before 

“D", there could be zero or thousands of “C” being called before “D” is called. Conversely, two 

adjacent function calls in a call sequence, say “V W ”, does not entail that W must be called by 

V: That call to W  could be made by V, its caller, or any of its calling ancestors—  respectively 

illustrated by ”A C" in lines 10 and 12, ”C D” in lines 12 and 14, and "D B” in lines 14 and 6 in the 

PCAExample.

87



Four Basic Properties to Consider So the first consideration in our design of program rep

resentation is that it must capture ensuing relations of function calls. Ensuing relations naturally 

relate with program control flows (e.g., branches, loops), and often differ from one call site to an

other and from one calling context to another. So the representation should also consider these 

factors. In addition, to be used in runtime call sequence prediction, the representation should 

be reasonable in size, resilient to program complexities, and applicable to most executions of a 

program. We put these considerations together as follows, and call them the four basic properties:

•  Ensuing relations: capturing ensuing relations among function calls;

•  Discriminating: discerning different control flows, call sites, and calling contexts1;

•  Generality: being resilient to program complexities, such as ambiguous calling targets in the 

presence of virtual functions, function dynamic dispatch, and so on;

•  Scalability: having a bounded and acceptable size, regardless of the program execution 

length.

Existing representations were designed mainly for program analysis rather than call sequence 

prediction. They center around calling relations, and fall short in some of the four basic properties 

(detailed in Section 5.3). Because of their insufficiency, we propose the following design of PCA.

5.2 Probabilistic Calling Automaton (PCA)

Intuition PCA is in an augmented form of finite state automata. Before defining it formally (in 

Section 5.2.6), we first offer some intuitive explanations. We choose automata as the basic form 

for their natural fit for expressing ensuing relations. For instance, Figure 5.2 shows an automaton 

for code “A ( ); B ( ); A ( ); D ( );”. The four nodes represent four stages of an execution of the code. 

The DFA can easily track the execution through state transitions: Upon the first call of the function 

“A”, it moves to state 1, and then to state 2 after “B” is invoked, and so on. The structure of the 

DFA reflects the ensuing relations of function calls imposed by the control flow in the function— in 

Figure 5.2, a constraint is that "A D” but not any other sequences immediately follows the call of 

“B". With this DFA, call sequence prediction becomes a simple walk over the DFA. For instance, 

suppose the DFA is now at node 1. To predict the remaining call sequence, we can simply walk 

along the DFA from node 1 and output the functions on the edges we bypass (“B A D” in this 

example.)

1 Here, calling context refers to the sequence of functions on the current call stack. A more precise context also Includes 
parameter values, which further complicates the problem. It Is out of the scope of this work.
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Figure 5.2: A DFA for code “AO; BO;  AO;  DO;".

This example is simple, but conveys the basic idea of PCA: Incorporating constraints defined 

by program code into a finite automaton and converting call sequence prediction into a walk over 

the automaton. For the idea to work, there are many challenges, some from program structures 

(e.g., branches, loops), some from language implementations (e.g., function dynamic dispatch

ing), some from compiler transformations (e.g., function inlining and outlining). PCA addresses 

these challenges through a careful design.

To make the explanation easy to follow, we first draw on an example (PCAExample) rather 

than formalism to explain our PCA design and how it addresses various complexities for runtime 

call sequence prediction. After that, we provide a formal, rigorous definition of PCA, along with 

the algorithm to construct it automatically.

5.2.1 Structure of PCA

A PCA consists of a number of finite state automata, and three types of stacks. There is one 

automaton for each non-leaf function in the program. (A function is a leaf function if its code 

contains no function calls; it is non-leaf otherwise.)

Nodes Each node in a PCA automaton corresponds to one call site in the function. If the invoked 

function is non-leaf, we call the node a diamond, otherwise, a circle. Each node carries a label, 

written as (FunctionID, CallSitelD), where “FunctionID” and “CallSitelD" are the ID of the function 

invoked at that call site and the ID of the call site itself. (A unique ID is assigned to every function 

and every call site.) A diamond carries an extra field, recording the address of the entry point of 

the automaton of the function called at the call site represented by the diamond. This field allows 

smooth transitions among automata of different functions.

When the “FunctionID” at a call site is either non-unique or unknown at the PCA construction 

time, is used for that field of the node. Such a node is called a v-node {v stands for virtual 

function). A v-node can be either a diamond or circle. The abstraction of v-nodes is important for 

treating ambiguous function calls as Section 5.2.4 will show.

An automaton has a single entry node, and a Single terminal node. They correspond to no call 

site, just indicating the entry and exit points of the automaton respectively.
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Edges Edges in a PCA represent the ensuing relations among the function call sites contained 

in a function. There is a directed edge from node A to node B in an automaton if after A’s call site 

(i.e., the call site represented by node A) is reached in an execution, node B’s call site could be 

reached before any other call site in that automaton is reached. Note that some call sites in other 

automata could be reached between them. An example is the call of “A” on line 5 and the call of 

“B" on line 6 in Figure 5.1 (a). The latter immediately follows the former and hence there should 

be an edge between their nodes, despite that the callees of function “A" are reached between the 

calls to “A” and “B”.

Each edge carries a label and a weight. The label is the ID of the sink node’s call site. It gives 

conveniences to tracking program state transitions in a call site discriminative manner as we will 

see later. The weight is the probability for the sink to follow the source in the program’s executions. 

An edge flowing into a terminal node can have only “return” or “exit” as the label, indicating the 

exit of the function.

Stacks There are three stacks, associated with the entire PCA of a program. They are the 

return stack, shadow stack, and a-stack. The first two are designed to provide discrimination of 

calling contexts, explained in Section 5.2.2. The third helps handle unexpected function calls for 

practical deployment of PCA, explained in Section 5.2.4.

Example Figure 5.1 (b) shows the PCA of the PCAExample code in Figure 5.1 (a). The top 

part shows the automaton of function “M”. It contains three diamonds, all representing calls of the 

non-leaf function “A” at the bottom. The three dotted lines are not PCA edges, but illustrations 

of the three diamonds’ references to the entry of A’s automaton. Entry and terminal nodes are 

shown as disks. Each node has its ID labeled. For instance, the diamond on top has a label “A,2”, 

meaning that this call site ID is “2” and the call is to function “A”. The edge from node “C,1” to 

“A,2” has label II as it is the ID number of the call site represented by the sink node. Its weight 

“.7” indicates that 70% instances of the call site 1 are immediately followed by a call made at call 

site 2 in function “M”. Weights equaling 1 are not shown for readability. Theoretically speaking, 

the call site ID needs to be labeled only on either the edge or in the sink node. Having the label 

at both places is for conveniences.

5.2.2 Basic Usage for Tracking and Prediction

The design of PCA makes it handy for efficient tracking the state of a program execution and 

predicting its upcoming function calls.
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Tracking Execution State To track the execution state of a program through PCA, we just need 

to let PCA transit to its next state upon every function call in an execution. An exit or return prompts 

a transit to its terminal state. When reaching a diamond node, the transition immediately moves 

to the entry node of the corresponding automaton. For instance, a call at line 3 of PCAExample 

makes the PCA move from state “C,1" to “A,2”, and then immediately to the entry node of the 

automaton of function “A". State transitions when a PCA reaches a terminal state are facilitated 

by the return stack. When the PCA transits from a diamond node to the entry of another PCA, 

the address of the diamond node is pushed into the return stack. When the PCA reaches the 

terminal state, it pops the diamond node address out of the return stack and jumps to that address 

immediately.

The runtime tracking requires some code to be instrumented at function call sites. To minimize 

the overhead, the inserted code only puts the ID of the function and call site (or a predefined 

numerical ID for “return”) into a buffer. At the beginning of a prediction, the buffer is consumed to 

bring the PCA status to date.

Predicting Call Sequences Call sequence prediction by PCA is a quick walk over the PCA 

while outputting the IDs of the functions in the passed nodes. The return and shadow stacks make 

it possible for the prediction to discriminate call sites and calling contexts. When a sequence 

prediction starts, the shadow stack gets a copy of the content of the return stack to attain the 

current program state to work with. When a sequence prediction finishes, the shadow stack is 

emptied.

Figure 5.3 illustrates how the PCA in Figure 5.1 (b) supports the prediction process of PCAEx

ample. The gray color indicates the time when the stacks are inactive. When the program starts, 

both stacks are empty and the PCA is at the starting state, state M. After line 3 (C and A are 

called), the PCA moves to state “A” and the diamond node “A,2" is pushed into the return stack. 

After a call to C on line 12, the PCA gets to state “C,7”. It is assumed that the runtime now starts 

a call sequence prediction. The shadow stack attains a copy of the content of the return stack 

and becomes active, while the return stack pauses its operations. The predictor starts walking 

on the PCA from the current state, state “C,7", which has two outgoing edges. Suppose that 

the predictor takes the backedge (which carries a call to “C”) three times before taking the edge 

(carrying a call to “D”) towards node “D,8”. That walk yields the predicted sequence “C C C D”. 

As node “D,8” leads to a terminal node, the shadow stack pops out node “A,2” and the prediction 

walk immediately jumps to that node. It is assumed that the walk then takes the edge to node 

“C,5” and then to node “A,6” and outputs “C A” as the prediction. It then gets to node “A” again

91



current
PCA return shadow predicted
state stack stack call seq.

cO
after the first call to A  A

call seq. pred. starts 

execution starts Mexecution starts

after a call to  C  C,7

walk reaches node A8! pred. walk reaches node A  Aa A.2 C C C D C A

  the pred. walk finishes A.6

g I ■ execution resumes

pred. walk reaches node D,ll A,6 y u
id lj

C C C D C A C C C C D

C C C D C A C C C C D

Figure 5.3: Illustration of how the PCA in Figure 5.1 (b) supports call sequence prediction. It 
assumes that the prediction starts after execution sees the call sequence “M C A  C” and the goal 
is to predict all remaining function calls.

and continues the prediction. When the prediction finishes, the shadow stack is emptied and the 

return stack becomes active again.

The example touches one type of ambiguity in PCA: A node has more than one outgoing 

edge, as exemplified by nodes “C,1” and “C,7”. We call this edge ambiguity. Edge weights provide 

probabilistic clues on resolving the ambiguity. We experiment with two policies for exploiting the 

hints. The first is the maximum likelihood (ML) approach, which always selects the edge with the 

largest weight. The second is random walk, which chooses an edge with a probability equaling 

the weight of that edge. For a node with k outgoing edges, the approach works like throwing a 

fc-sided biased dice, the biases of which equal the edge weights.

The ML approach seems to be subject to loops: A backedge with a high probability may trap 

the predictor into the loop2. However, when using PCA for call sequence prediction, the runtime 

queries the PCA occasionally. Hence, even though PCA might predict a seemingly-infinite loop, 

continued execution of the real program generally results in escaping the loop. A subsequent 

PCA query would then ask about execution following the loop. In practice, it outperforms random

walk in most cases as Section 5.5 will show.

2lf the edge weights get appropriately updated across iterations, ML may not face such a problem.
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I* a is an array of Animal that has a virtual function “voice()”; * class Animal has subclasses Cat, 
Dog, and Sheep.*/

1: for (i=0;i<N;i++){
2: F();
3: a[i].voice();
4: G();
5 : }

Figure 5.4: An example of dynamic dispatch for polymorphism

5.2.3 Challenges for Practical Deployment

The aforementioned basic usage of PCA for prediction has two implicit assumptions:

1. Known-ID condition: The PCA construction can completely determine the ID of the function 

to be invoked at every call site.

2. Completeness condition: The PCA captures all possible and correct ensuing relations among 

function calls of a program.

The two conditions ensure that all call sequences occurring in an execution would be expected 

(and hence processable) by the PCA. However, in many practical cases, the two conditions do 

not hold due to the complexities in language implementation, compiler optimizations, and PCA 

construction process. We will base our discussion mainly on a managed programming language 

(e.g., Java). Other types of languages (e.g., C/C++) share some of those complexities.

Function Dynamic Dispatch The known-ID condition does not always hold in the presence of 

function dynamic dispatch, with which feature, what function is called at a call site may remain 

unknown until the call actually happens. It often relates with polymorphism. For instance, suppose 

Cat, Dog, and Sheep are all subclasses of Animal, and they all have their own implementation 

of the virtual function “voice()” in Animal. The call to “a[i].voice()’’ at line 3 in Figure 5.4 may 

actually invoke the “voice()” function of any of the three classes, depending on which subclass 

a[i] is. Another common cause of dynamic dispatch is function pointers, whose values may not 

be precisely determined at compile time in a C program. No matter what the implementation 

is, a common property of dynamic dispatch is that the exact function to be invoked at a call site 

sometimes cannot be determined until the call happens. As an analogy to the edge ambiguity 

mentioned earlier, this issue can be regarded as node ambiguity. It is embodied by u-nodes in a 

PCA, the labels of which have “*” as the FunctionlD.
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Compilation Complexities As Section 5.2.6 will show, PCA construction usually happens through 

some training runs with the help of compilers. In a managed environment, the compilation is 

through a JIT compiler, and typically happens in every run. The compilation may differ in differ

ent runs, causing different ensuing relations among function calls, and hence the violation of the 

completeness condition. For instance, function inlining replaces a call site with the code of the 

callee, while function outlining forms new functions in the binary code. So different inlining and 

outlining decisions in different runs could lead to different sets of call sites and ensuing relations.

Furthermore, training runs and production runs may have a different coverage of the code. 

Some functions invoked in a production run may have never been encountered by the JIT compiler 

in training runs, and hence may not appear in the constructed PCA. The training process could 

aggressively apply JIT to all possibly invoked functions, no matter whether they are invoked in the 

training runs. However, due to ambiguity in calling targets, it could end up including too many 

irrelevant functions (e.g., an entire library excluding library calls to JNI, which are not JITed).

Exception Handling Exception handling causes violations to both conditions. In Java, it is usu

ally implemented with static exception tables, which, similar to function pointers, cause fuzziness 

in function calling targets. At the same time, some exceptions (e.g., division by zero) are not 

checked. Similar to signal handlers in C code, there may be no explicit calls to those handlers in 

the code, forming violations to the completeness condition.

Moreover, sometimes users may not be concerned of all functions. They, for instance, may not 

be interested in the invocations of functions in the Java Runtime but only those in the application. 

The bottom line is that some kind of resilience to the incompleteness of PCA and node ambiguity 

would be necessary for a practical deployment of PCA.

5.2.4 Solutions through v-Node and a-Stack

Features of v-nodes help address the issues related to the known-ID condition. Each u-node is 

equipped with a candidates table. Every entry in the table indicates the possibility for that call site 

to be an invocation of a particular function. A threshold K  is used to control the size of the table. 

Only the top K  most likely candidates appear in the table. Figure 5.5 shows the PCA for a variant 

of the “M" function in our PCAExample, in which, the call to “A” at line 3 is replaced with a function 

pointer whose most likely calling targets are functions “A” and “B”. Besides them, there is another 

15% chance for the target to be some other functions. The probabilities of candidate targets are 

obtained through offline profiling, but adjustable at runtime as explained later.

During sequence prediction, the candidate table is used for speculating on the ID of the func-
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Figure 5.5: Example PCA with v-nodes Used.

tion to be invoked at the corresponding call site. The speculation employs the same methods as 

in resolving edge ambiguity (i.e., the ML or random walk method). The speculation happens every 

time when the prediction-oriented PCA walk reaches an ■u-node.

The issues on completeness condition are addressed through a combination of dynamic PCA 

evolvement and a-stack. The dynamic evolvement is done at JIT time. Our examination shows 

that function inlining and outlining are the major reasons for violations of the completeness condi

tion. The dynamic adjustment for inlining and outlining is straightforward. Upon a function inlining, 

the JIT replaces the node of that call site with the automaton of the inlined function; upon a func

tion outlining, the JIT creates an automaton for the newly formed PCA, assigns an ID to the new 

call site, and updates the automaton of the parent PCA accordingly. As outlining happens rarely, 

negligible overhead was seen on the runtime PCA construction. The edge weights of the newly 

created PCA are initiated with some values determined by the compiler (e.g., a policy common in 

compiler construction is to put 0.9 for backedges and 0.5 for normal two-way branches [111]).

As an option, during runtime, edge weights can be refined with the runtime observations 

through weighted average (i.e., new weight = old weights 4- new observations*(1-r), 0.5 >  r  >  0) 

with the decay rate r  set by the user. Such an adjustment can be applied to other existing edges 

as well. (Our experiments did not use this runtime refinement.)

The a-stack addresses the issue of incomplete PCA (i.e. some functions do not have au

tomata built). Initially the a-stack is empty and inactive. At an invocation of a function that has no 

automata built, the ID of the function is pushed into the a-stack, and the a-stack becomes active. 

While the a-stack is active, the ID of an invoked function is automatically pushed into the stack, 

regardless of whether the function has PCA; the top of the stack pops out at each function return. 

The PCA stalls while the a-stack is active. It resumes state transitions as soon as the a-stack 

becomes inactive when it turns empty. For example, suppose that the PCA is now in state “C,1” 

of Figure 5.1 (b) and some unexpected function “X” is then invoked. Assume that “X” calls “Y” and 

“Y” calls “A”. Neither “X” nor “Y” has automaton built. The PCA would stay at node “C,1" until “X"
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returns. It then resumes state transition according to the PCA.

Essentially, the a-stack makes operations on PCA skip functions that do not have automata, 

as well as the functions directly or indirectly invoked by them. Such a design offers a simple way 

to deal with unexpected calls. A more sophisticated design is to skip only functions that have no 

automata (e.g., “X" and “Y” but not “A” in our example). It is potentially doable, but adds much 

complexity: It has to deal with broken chains of states. For instance, when “A” returns, it is unclear 

which state the PCA should return to.

Additional complexities include native function calls and tail call optimizations. Native code is 

ignored. Optimized tail calls become jump instructions and hence are not tracked or predicted.

5.2.5 Properties

We now examine how PCA embodies the four basic properties listed in Section 5.1.

(1) Ensuing relations. PCA is centered on ensuing relations. A transition edge represents what 

function call follows (rather than invokes) another call. For example, in Figure 5.1 (b), “C,5”->“A,6” 

represents that after the finish of “C” on line 7 in Figure 5.1 (a) (represented by node “C,5”), the 

next function call must be a call to “A” at line 8 (represented by node “A,6”), despite that “C” never 

calls “A” in the program.

(2) Discriminating. The structure of PCA encodes both branches and loops. Its edge weights 

facilitate the resolution of ambiguities caused by control flows. With node and edge labels carrying 

call site IDs, PCA naturally distinguishes different call sites. The return stack and shadow stack 

add calling contexts to PCA. For example, suppose the PCA is now at state “C,7” in Figure 5.1 (b). 

The two stacks help the prediction automatically tell whether the call of “A” was from node “A,2”, 

“A,3”, or “A,6” when the PCA walk returns from node “D,8”, and hence produce different prediction 

results. In addition, the PCA structure allows an even deeper level of discrimination: Instead of 

defining an edge weight as a probability given the source node, one could employ conditional 

probabilities as edge weights, with the top k levels of the shadow stack as the conditions. In this 

way, they could further discriminate call sites and calling contexts. Such a model may increase 

the size of the PCA; we leave it to future study.

(3) Generality. The design of w-node and a-stack, along with runtime PCA evolvement, make 

PCA resilient to various complexities in the language implementation, compilation, and other as

pects.

(4) Scalability. Unlike some other representations (e.g., dynamic call tree), the size of a PCA 

is bounded by the number of call sites in a program, independent of the length of an execution.
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Section 5.5 reports the size on some programs.

Besides those, the modular structure of PCA gives good compatibility. If the body of a function 

is changed, except edge weights and that function’s automaton, the structure of the program’s 

PCA needs no change.

5.2.6 Formal Definition of PCA and Its Construction

We now give a formal definition of PCA as follows:

Definition A PCA V  is a tuple

(A i, A 2, • • • , Ak, £ , T, A, r, s, a), where:

A; a finite state machine £ :  input alphabet 

r  : stack alphabet A : exit alphabet 

r  : the return stack s : the shadow stack 

a : the a-stack

State machine At in a PCA is a tuple 

(Nu sit f u d ,  Sh P, Di, Mi),  where:

N i the set of nodes.

Si: a unique entry node. Si e A -  

f i  \ a unique terminal node, fc e Ni. 

e i: a unique error node. et e  A- 

Si: transition relation over N t .

P  \ transition probability over Sj.

Di  the set of diamonds, A  c A-

M i a mapping function from A  to sj, j  ±  i.

Transition relation is a finite set of rules such that: CD for every state S  e ( A  -  /<) and an input 

symbol a e  E, there is a unique rule of the form Si(S, a) T,  where T  e (A  -  /« -  «.): ©  f° r any 

input symbol a e A, there is at least one state S  e ( N i -  fc) such that Si(S,a) -> A  Recursion 

is allowed: a self-recursive call corresponds to a diamond that carries a reference to the entry 

node of its own automaton. Transition probability P  is a function which to every rule Si(S, a) - > T  

assigns its probability P(Si(S, a) -> T) e (0, l] so that for any given S  e N it we have

E P(Si(S, a) T) = 1.
TeNi-.3aMS,a)-yT

There is a special transition: d  -> M i ( d ) ,  Vd e A, which happens every time when d  is
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reached; with the transition, d is pushed into the return stack, r. Another special transition is: 

f i  - *  T(r ) (where r ( r )  is the top of the stack r), which happens every time when is reached; 

meanwhile, r  pops its top off the stack. The shadow stack s gets a copy of r  when call sequence 

prediction starts. During and only during the prediction, s plays the role of r  in dictating the state 

transitions. Like many conventional automata, there is an implicit error state e associated with a 

PCA; Vx e N u x -a e on any unexpected input. Along with such a transition, x is pushed into the 

a-stack. While the PCA is at e, every input belonging to the exit alphabet A makes the a-stack 

pop, while all other inputs are pushed into the a-stack. When the length of the stack becomes 

two, an encounter of input a e  A prompts the transition e r (a )  besides making the a-stack 

pops. After the transition, the a-stack pops again to turn empty.

Construction The construction of PCA involves two main steps: The first builds up the PCA 

structure during compilation; the second trains the PCA by adding weights through profiling. Al

gorithm 4 outlines the procedures.

Algorithm 4 PCA Construction

1: /* Building PCA Structure */
2: 6[F] = control flow graph of function F;
3: F = {};
4: for each function /  do
5: If { / [ / ]  contains function calls then
6: R  = buildRegExp(G[/]);
7: R ' = cleanUp(F);
8: A m regExp2DFA(fl');
9: createCandidateTables(A);

10: F.add (A);
11: connectAutomata(F);
12:
13: addWeights(F); /* Profiling for Weights 7

For the modularity of PCA, the first step can happen on each function individually. Not all 

instructions in a function are relevant to function calls. A compiler goes through the code, ignores 

irrelevant parts, and converts the rest into an automaton. Conceptually, in this step, the compiler 

derives a skeleton of the control flow graph, where, all statements but function calls and branches 

are removed, (leaving some empty basic blocks), while the edges remain. The compiler derives 

a regular expression from the skeleton graph. The vocabulary of the regular expression consists 

of p, representing an empty block in the skeleton graph, a terminal variable and a non-terminal 

variable for each function in the program. The p helps encode the logic of empty blocks into reg

ular expression. The non-terminal variable represents a call to the function. The terminal variable 

represents the entry of the function, which is always the first symbol in the regular expression 

of the function. Branches are represented with the operator, while loops (or backedges) are 

represented with the or “+” operator.
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M -> m C i (A2\ (As B4)) C5 A6
A -> 3 CV^ jDg
B -> b
C y c
D -> d

Figure 5.6: The FCG of the program in Figure 5.1 (a). Every letter represents a function. An 
upper-case letter is a non-terminal variable, and a lower-case letter is a terminal variable, repre
senting the prologue of a function represented with the corresponding upper-case letter, and a 
subscript represents a call site ID.

Next, the compiler simplifies the regular expression in a standard way, which removes all /3s 

as well. Figure 5.6 shows the regular expressions of our PCAExample. We refer to such a set of 

regular expressions as the function calling grammar (FCG) of the program. As a whole, an FCG 

is a Context Free Grammar (CFG). The simple form directly leads to PCA through standard algo

rithms of regular expression-to-automaton conversion. Another advantage of using FCG as the 

intermediate form is that the conversion algorithms, by default, minimize the generated automaton 

and hence the overall size of the PCA. The candidate tables are then built for each v-node in the 

DFA.

The final step adds weights to the edges in the PCA. It uses profiling executions of the program 

to do so. During a profiling run, the PCA runs along with it by updating its state upon each function 

call. A profiler records the number of times an edge is visited if the out-degree of the source is 

greater than one. The weight of an edge is then used to calculate the weights on those edges. 

It puts in the probabilities for the entries in candidate tables in the same manner. An edge that 

has not been encountered in the profiling runs is assigned with an extremely small weight for the 

completeness of the PCA.

What profiling mechanism to use is orthogonal to the proposal of PCA. Besides offline profiling, 

there are many other techniques for efficient online sampling [27,37,57] or cross-run accumulation 

of samples [69]. They could all be used for PCA construction, depending on the usage scenario.

5.3 Comparisons to Existing Representations

Before this work, there are a variety of program representations relevant to program function calls. 

In this section, we examine four most commonly studied ones, qualitatively showing that they are 

ill fit for call sequence prediction for not meeting some of the four basic properties. Section 5.5 

will complement the comparison with some quantitative evidences.

Among existing models of program function calls, the most influential are static and dynamic 

call graphs, dynamic call trees, and calling context trees (CCTs). We use Figure 5.7 to review
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(d) Calling context tree

(c) Dynamic call tree

Figure 5.7: Four other representations of function calls in executions of “PCAExample” in Fig
ure 5.1 (a). In the program, no functions except “M” and “A” contain function calls. In the consid
ered execution, the “if" branch is taken.

them briefly. In a static call graph (Figure 5.7 (a)), each function has a unique node no matter at 

how many call sites it is invoked, and there is an edge directed from function “M” to function “A” if it 

is possible for “M" to call “A". A dynamic call graph (Figure 5.7 (b)) has the same structure, except 

that it is built through a profiling run and there is an edge between two nodes only if that invocation 

actually takes place in that run. A dynamic call tree (Figure 5.7 (c)) also comes from a profiling 

run. It adds calling context information, with each node representing a function invocation, and 

the path to it from the root representing its calling context. A CCT [16] is similar to a dynamic call 

tree except that it uses a single node to represent all calls to a function that have the same calling 

contexts. In Figure 5.7 (d) for instance, all the “C" nodes under “A” in Figure 5.7 (c) are folded into 

one.

All four representations are designed for program analysis rather than call sequence predic

tion. They have some variations. We analyze their properties with their basic forms first, and 

discuss their extensions later. Specifically, we examine them against the four basic properties, 

which qualitatively reveals their limitations for call sequence prediction.

•  Ensuing relations. The four representations are all centered on calling relations rather than 

ensuing relations. For example, Figures 5.7 (a) (b) (c) and (d) all indicate that both “C” 

and “D” are possible callees of “A”, but none encodes the relation that a call to “D” must 

follow calls to “C” if those calls are made by “A”3. The lack of ensuing relations makes them

3Nodes in a dynamic call tree by default have no specific orders. If extended with a time order, the tree may capture 
some ensuing relations.
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fundamentally ill fit for call sequence prediction.

•  Discriminating. Control flows: None of the four representations encodes branches or loops. 

The static call graph in Figure 5.7 (a), for instance, fails to show that function “A” is invoked at 

both branches and “B" is not. The other three representations, on the other hand, completely 

miss the branch that contains “B". Moreover, none of the representations expresses that “C” 

is called inside a loop (the dynamic call tree in Figures 5.7 (c) shows four consecutive calls 

to “C” in “A” but leaves it unclear whether they are caused by a loop or four different call sites 

of “C”.) Missing control flows hinders these representations for call sequence prediction. For 

example, the control flows tell us that if and only if the second call sites of “A” is reached, “B” 

will be called immediately after “A” finishes. None of the four representations captures that 

constraint. Calling contexts: Dynamic call tree and CCT both maintain calling contexts. 

But static and dynamic call graphs do not. In Figures 5.7 (a) and (b), for instance, all calls to 

“C” are aggregated into a single node, despite that they differ in their calling contexts. Call 

sites: None of the representations except dynamic call trees offers a full discrimination of 

call sites. For instance, the two sites of calls to “C” in “M” are folded into a single node in 

Figures 5.7 (a) (b) (d). They hence fail to encode that different call sequences could follow 

the two calls.

•  Generality. Dynamic call graphs, call trees, and CCT all contain only the invocations made in 

some training execution(s) rather than the complete calling relations in the program. Some 

functions (e.g., “B”) absent from them may be called in other runs. It is possible to append 

these newly encountered calls to these graphs or trees at runtime. But there are no ma

chinery in these representations to overcome the incompleteness and the ambiguity (e.g., 

by dynamic dispatch) for call sequence prediction.

•  Scalability. Static and dynamic call graphs are bounded by the number of unique functions 

in the program. CCT is bounded by the number of distinct calling contexts. They all have 

reasonable scalability, although sometimes a CCT could be orders of magnitude larger than 

the program itself. A dynamic call tree, on the other hand, may contain as many nodes as 

the number of function invocations in a run, often too large for practical usage.

Overall, in their basic forms, the four representations all miss some of the basic properties. 

They have some variations, the extra features of which may alleviate some issues, but cannot 

address their inherent limitations. For example, in a call graph with labeled edges, a caller may 

have multiple calling edges connecting to a callee, with each edge corresponding to a distinct call
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site. Similarly, CCT can be made call site-aware as well if different call sites of a function are 

represented with different nodes, even if they have the same calling context [97]. However, these 

variations do not change the inherent nature of these representations of centering around calling 

rather than ensuing relations. Neither do they address the issues on control flows or generality.

Consequently, these representations cannot well capture the relevant constraints defined by 

the program. In Figure 5.7, for example, none of them reflects the constraint that either “B” or “C” 

but not any other functions will follow the first invocation of “D". Neither do they reflect that if “A” 

has been invoked twice by “M” and the current execution point is inside “D”, there will be definitely 

no other function calls by the end of the execution.

The qualitative analysis reveals the high-level limitations of these representations for call se

quence prediction; Section 5.5 confirms them through some quantitative comparisons with PCA.

5.4 Metrics for Call Sequence Prediction

We find no prior definition of metrics for assessing a call sequence prediction. We introduce 

three levels of metrics, which are of different strictness, suitable for different uses of the prediction 

results.

Let Q and Q be the true and predicted call sequences, and U  and U  be the set of unique 

functions in Q and Q. The three levels of metrics are as follows.

•  Set-level: It quantifies the closeness between U  and U. We introduce the following nota

tions: T P  =  \u n U\, T N  =  \u n ~0\, F P  =  \u — u\, F N  =  \0  -  U\; V  and &  are the set 

of functions in the entire program that do not appear in U  or U  respectively. (“T ” for true, 

“F" for false, “N” for negative, “P” for positive.) Following information retrieval theory [50], we 

use two common metrics: recall=TP /|t/|; precis ion=TP/|t/|. They respectively measure 

how much the true set is uncovered and how precise the prediction set is. To integrate them 

into a single metric, we borrow the concept of Matthews correlation coefficient (MCC) [89], 

which takes into account true and false positives and negatives and is generally regarded 

as a balanced measure. It is defined as

MCC'" T P x T N - F P x F N
~  y / ( T P + F P ) ( T P + F N ) ( T N + F P ) ( T N + F N )'

MCC has a value range [-1,1]. We normalize it to [0 ,1 ] as follows: Set accuracy=(MCC + 

1)/2 .

•  Frequency-level: Let nf  and rif  be the numbers of times the function /  appears in Q  and Q 

respectively. The frequency accuracy of Q is
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1 -  average j £ Uuy( \n f  -  ri f \ /max(nf ,rif)).

•  Sequence-level: Let e be the minimum number of atomic editing operations (insertion, dele

tion, or replacement of a single token in Q) needed to change Q  into Q. The sequence 

accuracy of Q  is 1 -  e/max(\Q\,  |Q|). Let Q*  be the sequence of the functions in U  ordered 

in their first occurrences in Q, and Q* be the counterpart for Q. The first-occ sequence 

accuracy is the sequence accuracy of Q* regarding Q*.

The usage of “max” in the frequency accuracy and sequence accuracy ensures that the accu

racy is in the range of 0 and 100%. For instance, the e in sequence accuracy must be no greater 

than max(\Q\,  |Q|) since a naive way to generate Q from Q  is to replace every token in Q with the 

corresponding one in Q and its number of operations is max{\Q\, |Q|).

As an example, assume that the true sequence is “A A B C B D", while the predicted sequence 

is “A A A B E F”, and there are 10 unique functions in the whole program. The measures are 

as follows: TP=2, TN=4, FP=2, FN=2, recall=0.5, precision=0.5, set accuracy=0.58, frequency 

accuracy=0.19, sequence accuracy=0.33, first-occ sequence accuracy=0.5.

Set-level measures are the most relaxed among all. They ignore the order and frequency of 

function calls in the sequences. First-occ sequence accuracy is slightly stronger by considering 

the order of the first-time occurrences of the functions in Q. They are useful when the prediction 

is for guiding early compilation or prefetching.

Frequency accuracy reflects how well the prediction captures the hotness of the functions in 

Q. It is useful for hotness-based optimizations.

Sequence accuracy is the most strict on the difference between two sequences. The usage of 

atomic editing operations in the definition avoids some misleading effects of alternative definitions. 

For instance, Hamming distance— which does pair-wise comparison at token level— is sensitive 

to local differences and cannot precisely measure the similarity of two sequences. For example, 

Q is “A B C D” while Q  is “E A B C”, accuracy based on Hamming distance is 0, even though 

the two sequences share a large subsequence. The definition on atomic operations is not subject 

to the problem. Computing the needed minimum number of operations can be challenging, but 

some existing tools (e.g., the Linux utility “diff”) can be used as the ruler.

5.5 Evaluation

For evaluation, we concentrate on the following questions:

•  Can PCA enable accurate call sequence predictions? What is the time and space cost?
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•  Is the enabled prediction useful?

For the first question, we design a set of experiments to measure the call sequence prediction 

accuracies and overhead; for the second question, we apply the prediction results to help JIT 

decide when to compile which methods for reducing response time. It would be ideal to assess 

these results in the context of existing techniques. But it is difficult as there are no existing work 

directly on call sequence prediction. To circumvent the difficulty, we implement three other call 

sequence predictors by extending most relevant existing techniques.

5.5.1 Three Alternatives

In Machine Learning, there is a problem called discrete sequence prediction [66], but its prediction 

target is still just the next symbol in a sequence. To put our results into a context, we implement 

two representatives of such methods and extend them for call sequence prediction.

Alternative-1: The first is called Pattern method, an extension from the single-call predictor by 

Lee and others [35,68]. It is based on Markov model. Through a Machine Learning engine, it 

derives statistical patterns by examining all the K  +  1-long subsequences of a training sequence, 

based on which, its predictor looks at the K  most recent function calls to predict which function 

will be called next. The authors showed the usage of the prediction for detecting OS security 

issues.

Alternative-2: The second is called TDAG method, which also exploits frequent subsequences 

but in a more sophisticated manner through a classical Machine Learning method called Markov 

Tree [108]. It uses a tree to store frequent subsequences of various lengths and maintains con

fidence for each tree node. With the tree, it intelligently picks the best subsequence (frequent 

enough with strong predictive capability) for each prediction. To avoid tree size explosion, it adds 

some constraints on the nodes and height of the tree [66]. In our implementation, we adopt the 

same parameter values as in the previous publication.

Both methods were originally designed for predicting only the next symbol. We expand the 

prediction target naturally to a sequence of calls. The training process remains the same as in the 

previous work. At a prediction time, the extended methods gives prediction of the next symbol, 

st+ i. based on the previous fc-symbol sequence (st~k+i, s«-fc+2. • • ■. st) in their default manner, 

and then in the same manner, gives prediction st+2 by regarding the sequence (st~k+2. s t -k+3, 

• • •, st+1) as the most recent fc-symbol sequence. Other symbols in the time window are predicted 

likewise. A comparison to these methods helps reveal the benefits of PCA’s capitalization of 

program inherent constraints.
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Alternative-3: Although we are not aware of previous usage of the other representations listed 

in Section 5.3 for call sequence prediction, they can be adapted to do so in a manner similar to 

our PCA. We implement such a predictor on CCT, the most sophisticated representation of all of 

them. It is called CCT-based predictor. There are two extensions. First, we add an edge from 

every node to each of its immediate parents (callers), representing the transition happening when 

the current function returns. Second, we use profiling to add probabilities to all the edges in the 

extended CCT in the same way as in PCA construction. As a program executes, each function 

call triggers one move on the CCT. At prediction time, the predictor walks on the CCT based on 

the directions of its edges, and outputs as the predicted sequence the functions corresponding to 

the nodes it encounters. For a node with multiple outgoing edges, we also experiment with both 

the ML and random walk approaches.

A comparison to CCT-based predictor helps quantitatively assess the benefits of PCA for its 

better treatment to control flows, calling contexts and call sites.

5.5.2 Methodology

All experiments happen on a machine equipped with dual-socket quad-core Intel Xeon E5310 

processors that run Linux 2.6.22; the heap size (”-XmxB) is 512MB for all. We use Jikes RVM [4] 

(v3.1.2), an open-source Java Virtual Machine, as our basic framework. We modify its JIT to 

derive the FCG from a function’s bytecode, and to collect calling sequence for training the edge 

weights on a PCA and a CCT. The Jikes RVM runs with the default JIT (including both baseline 

and optimizing compilation and inlining) unless noted otherwise.

We use the Dacapo (2006) benchmark suite [26]. ( The latest version of Dacapo does not 

work well with Jikes RVM [56].) Two programs, chart and jython, were left out because they fail 

to run on the Jikes RVM-based profiler. Table 5.1 shows the benchmarks, their lines of code, 

the numbers of unique calling contexts, and sequence lengths(i.e., the total numbers of calls a 

program makes in a run) on the small and default inputs coming with the benchmark suite. In our 

experiment, we use small runs for training and default runs for testing. On most programs, the two 

runs differ substantially in both the length of call sequences, as shown in Table 5.1. All executions 

involve a few JNI calls. As Java uses dynamic dispatch, Table 5.2 reports the size distribution of 

the candidate sets of function calls. For all programs except for bloat, the call sites with larger 

than 4 candidate set are less than 5%. We use ten as the upper bound of the candidate table 

size.

Our evaluation concentrates on the startup phase of program executions. Here, the startup
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Figure 5.8: The cumulative compilation curve of benchmark bloat and its knee point.

phase refers to the beginning part of a program execution, by the end of which, a major portion of 

the methods that the whole execution needs have been compiled. Quantitatively, we determine 

the startup phase by finding the knee point on the cumulative compilation curve of an execution. 

Figure 5.8 illustrates the concept by depicting the curve of an execution of benchmark bloat. 

Formally, a knee point on a smooth ascending convex curve is defined as the point where the 

radius of curvature is a local minimum. The cumulative compilation curve of a program execution 

are often not smooth, but its trend (i.e., when local noises are smoothed out) is typically so. In our 

experiments, we draw all the cumulative compilation curves of all executions and manually find the 

knee points through visual examination of the trend of the curves. We observe that the knee points 

of all of the program executions appear before the 700,000th function call in their executions. For 

simplicity, we take the first 700,000 function calls as the approximated startup phases of all the 

programs in our evaluation4. In all those executions, a majority of method compilations happen in 

those startup phases.

For many applications, the end of the startup phase roughly corresponds to the time when 

the application finishes initialization and becomes ready to interact with users. The length of the 

phase, therefore, critically determines the responsiveness of the launches of such applications. It 

is especially so for utility programs, which, unlike server programs, are often utility tools that do 

not have a long-running execution, but whose responsiveness is important for user experience. 

For them, compilation could take a substantial portion of its execution time, especially during the 

startup stage of their executions. In our experiments of the replay runs of the Dacapo benchmarks, 

we observe that method compilations take 7~96%  (65% on average) of their startup times.

All reported timing results are average of ten repetitive measurements. Each reported accu

racy number of a benchmark is computed by averaging the prediction accuracy of all its prediction 

windows. In all experiments, a prediction window is in the unit of the number of function calls. If 

the prediction window size is 20, after a program starts, the predictor is triggered after every 20

4Because the optimizations based on our prediction, as shown in Section 5.5.4, save more time in the startup phase 
than in the stable-running phase due to the more compilations in the startup phase, the true speedups for the startup 
phase could be higher than the reported due to the over approximation of startup phases.
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Table 5.1 : Benchmark Information
Program #code # unique call. Seq. length (x lO 0)

lines contexts (xlO 3) small default
antlr 32263 1006 7 490
bloat 73563 1980 9 6276
eclipse 1903219 4816 18 1267
fop 88846 175 3 44
luindex 8570 374 10 740
lusearch 12709 6 9 1439
pmd 49331 8043 6 2727
xalan 243516 163 33 10084

Table 5.2: Size of Candidate Sets
Program size distribution

1 2 3 4 >5
antlr 73% 10% 9% 4% 4%
bloat 49% 15% 8% 3% 25%
eclipse 65% 22% 8% 2% 3%
fop 65% 18% 8% 8% 0%
luindex 57% 26% 15% 1% 1%
lusearch 51% 31% 6% 9% 3%
pmd 70% 18% 5% 3% 4%
xalan 72% 15% 5% 3% 4%

function calls to output the prediction of what the next 20 function calls will be.

5.5.3 Accuracy

Table 5.3 shows the comparison among the four predictors on all six metrics. In the setting, the 

prediction window length is 20, and the maximum likelihood is employed for both the PCA and 

CCT predictors. (Other settings are shown later.) The rightmost column shows the geometrical 

mean.

PCA results are consistently better than the other predictors, with about 20% higher set accu

racy, 40-50% higher frequency accuracy, about 40% higher first occurrence sequence accuracy, 

and 30-56% higher whole sequence accuracy. As the metrics become stricter, the accuracies of 

all methods except PCA drop sharply to no greater than 30% on average. The PCA results also 

show some considerable drop, but it still keeps the accuracy on half of the benchmarks higher 

than 70% on all the metrics. There are some quite challenging programs. For example, the pro

gram eclipse, for its large number of functions and complex control flows, causes the CCT, TDAG 

and Pattern methods to get near zero frequency and sequence accuracies and less than 62%  

set accuracy. The PCA does not get very high frequency and sequence accuracies either, but it 

manages to still achieve a 79% set accuracy.

It is important to note the connections between prediction errors and the usefulness of the
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Table 5.3: Prediction Accuracy (window size=20)
antlr bloat eclipsdop luin. luse. pmd xalan mean

PCA 0.94 0.96 0.79 0.89 0.90 0.86 0.91 0.92 0.89
Set CCT 0.67 0.77 0.58 0.65 0.79 0.72 0.62 0.65 0.68

accuracy TDAG 0.65 0.79 0.62 0.65 0.78 0.69 0.60 0.65 0.68
Pattern 0.79 0.87 0.51 0.82 0.51 0.86 0.69 0.79 0.72
PCA' 0.92 0.96 0.65 0.84 0.95 0.96 0.85 0.92 0.87

Set CCT 0.69 0.91 0.31 0.66 0.89 0.89 0.52 0.64 0.66
recall TDAG 0.65 0.90 0.50 0.77 0.94 0.84 0.50 0.74 0.71

Pattern 0.63 0.79 0.02 0.66 0.04 0.78 0.40 0.59 0.29
PCA 0.87 0.91 0.56 0.75 0.71 0.58 0.81 0.81 0.74

Set CCT 0.18 0.34 0.09 0.15 0.40 0.23 0.12 0.17 0.19
prec TDAG 0.15 0.42 0.14 0.13 0.35 0.19 0.10 0.15 0.18

Pattern 0.53 0.70 0.01 0.63 0.04 0.68 0.37 0.57 0.25
PCA 0.78 0.87 0.36 0.66 0.52 0.45 0.74 0.77 0.62

Frequency CCT 0.07 0.13 0.05 0.08 0.26 0.12 0.06 0.12 0.10
accuracy TDAG 0.05 0.11 0.05 0.05 0.22 0.08 0.05 0.05 0.07

Pattern 0.44 0.62 0.01 0.49 0.03 0.55 0.27 0.43 0.20
PCA 0.81 0.88 0.37 0.66 0.62 0.55 0.73 0.77 0.65

1 st occ. CCT 0.17 0.34 0.08 0.15 0.38 0.22 0.11 0.17 0.18
Sequence TDAG 0.15 0.40 0.13 0.09 0.35 0.18 0.10 0.11 0.16
accuracy Pattern 0.75 0.88 0.00 0.80 0.28 0.92 0.51 0.69 0.20

PCA 0.77 0.85 0.26 0.63 0.56 0.45 0.70 0.74 0.59
Full CCT 0.01 0.04 0.00 0.05 0.36 0.11 0.02 0.10 0.03

Sequence TDAG 0.00 0.00 0.00 0.00 0.35 0.04 0.00 0.00 0.01
accuracy Pattern 0.73 0.86 0.00 0.79 0.38 0.89 0.51 0.68 0.28

Table 5.4: Size and Training Time
Program Size (M B )  

PCA CCT TDAG Pattern
Training Time (sec) 

PCA CCT TDAG Pattern
antlr 0.55 0.96 0.02 1.7 21 15 1019 325
bloat 0.56 1.77 0.03 83 21 21 1316 6735
eclipse 1.33 1.95 0.11 15 68 39 2710 4385
fop 0.43 0.69 0.05 9.7 19 7 359 1884
luindex 0.23 0.07 0.01 0.92 23 24 1510 145
lusearch 0.20 0.02 0.01 1.1 24 22 1335 175
pmd 0.49 0.73 0.03 51 6 3 78 3724
xalan 0.55 0.24 0.02 46 11 6 477 3146
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Figure 5.9: Comparison of Set Accuracy among different prediction window sizes.

prediction. It is generally true that a more accurate prediction may give a larger benefit for pro

gram optimizations. However, many program optimizations have a certain degree of tolerance 

of prediction errors. For instance, when predicted call sequences are used to trigger function 

prefetching from remote servers, a 80% means that 20% of the prefetched functions may not be 

useful. The prefetching of them may waste some bandwidth and energy. But the prefetching of 

the 80% useful functions may still shorten the execution time of the program substantially and 

considerably outweigh the loss by the 20%. In the next subsection, we will see that the 79% set 

accuracy on eclipse, for example, yields up to a 10% speedup when the prediction is applied to 

code cache management.

Another observation is that the CCT-based approach is overall no better than the Pattern- 

based approach in terms of prediction accuracies. It indicates that although capitalization of 

program structure can be beneficial for call sequence prediction, how to capitalize it and using 

what representation to encode the structure are critical: The lack of support in CCT for various 

levels of contexts leaves its capitalization of program structures ineffective.

Figure 5.9 gives a more detailed report. (TDAG performs the worst and is hence omitted for 

lack of space.) As the prediction scope increases, the difficulty for prediction increases. All three 

methods show a certain degree of reduction in accuracy. On two programs with some frequently 

occurring call sequence patterns (fop and lusearch), the Pattern method performs well, yielding 

set accuracies close to those from the PCA method. But across all window sizes, PCA maintains 

an average accuracy higher than 80%, about a 20% edge over the other methods.

Another dimension of comparison is between the Random Walk and Maximum Likelihood. 

From Figure 5.10, we can see their influence on the PCA method in terms of three types of 

accuracies. For most programs, Maximum Likelihood gives higher accuracies. An exception is 

lusearch, which has a number of loops with a low loop trip-count. Being able to get out of the 

loop early, Random Walk helps the prediction. But overall, the average accuracies show that their 

influence on PCA and CCT does not differ much.

Besides accuracy, we have examined the size, training time, and prediction time of the four
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Figure 5.10: Comparison between maximum likelihood (ml) and random walk (rw). (window 
size=20)

methods. As Table 5.4 shows, the pattern-based predictor can be much larger than the other 

three predictors, when there are many different subsequences (e.g., bloat, pmd, and xalan.) The 

TDAG method successfully reduces the size of the predictor through its constrained tree structure 

(but fails in enhancing the prediction accuracy.) The training time of both Pattern and TDAG are 

several orders of magnitude longer than the other two predictors. PCA predictors are slightly 

larger than CCT predictors; both are quick to train. The time taken to perform a prediction is 

independent of benchmarks. The PCA and CCT predictors take 32us and 8ps to predict a 40-call 

sequence respectively, negligible compared to the time needed to compile the functions by JIT. 

By contrast, the TDAG predictors take 827ps on average, caused by the Markov tree searching 

at each call prediction. The time overhead of state tracking is marginal, no more than 2% for the 

programs.

5.5.4 Uses

The PCA-based call sequence prediction may benefit many uses, such as guiding the replace

ment policy in code cache to reduce cache misses [49], enabling better prefetching to enhance 

instruction cache performance [84], and helping preload remote classes in mobile computing.

In this work, we experiment with parallel JIT compilation. Parallel JIT creates multiple threads 

to compile functions. By default, it compiles a method only after the method gets called. With the 

prediction of upcoming method calls, the compilation of a method could happen earlier, enabling 

better overlap between execution of the program and compilations of to-be-invoked methods. The 

overlap can help prevent some (part of) compilations from appearing on the critical path of the 

program execution. It is especially beneficial for speeding up the startup phase of a program.

In our experiment, we implement a prototype of parallel JIT on JikesRVM. For parallel JIT to 

work well, there are two aspects. The first is to determine the appropriate optimization level to 

use for the target function, the other is to decide the good time to compile the function. There
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Figure 5.11: Speedup when call sequence prediction is used for parallel JIT compilation (Two 
compilation threads are used).

are many studies on predicting the optimization levels [18]. The focus of our experiment is on the 

compilation timing aspect. So to avoid the distractions of the other factor, we use the advice files 

produced by JikesRVM for all experiments. The files record the appropriate optimization level for 

each method based on its importance.

In our experiments, after each prediction window, the JIT invokes the predictor to get the pre

dicted call sequence in the next time window. It then creates compilation events for the methods in 

the predicted sequence that have not been compiled before, and puts those events into the com

pilation event queue in JikesRVM. Compilation threads automatically dequeue the events and 

conduct the compilation.

The number of compilation threads we tested ranges from two to seven. We see diminishing 

gains from parallel JIT when the number is greater than two. As two is the most cost efficient, 

Figure 5.11 reports the speedup in that setting. We chose CCT method as the representative of 

alternatives to PCA for its relative ease to use and having a similar or higher prediction accuracy 

and prediction speed than others.

The baseline in Figure 5.11 is the performance when the default replay mode is enabled, which 

uses the same compilation levels as in the advice files but uses no prediction of call sequences. 

Given that most studied programs are utility programs, their responsiveness rather than steady- 

state performance is what often matters. The performance is based on the end-to-end wall-clock 

time of the startup phase of an execution.

Call sequence prediction not only increases compilation parallelism, but also enables better 

overlapping between execution and compilation. The PCA-based predictions, in all three window 

sizes, lead to more than 20% speedups on three programs, and an average around 15% on all 

seven programs (“xalan” fails working in the default replay mode). In contrast, the CCT-based 

prediction gives only slight speedup on lusearch and pmd. It is due to its low prediction precision: 

an average of 19% versus the 74% of PCA-based approach as Table 5.3 shows. In consequence,
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many useless functions are compiled, which delays the compilation of those useful ones.

Two other observations are worth mentioning. First, a larger prediction window does not al

ways deliver higher speedup. It is because on large windows, the prediction, although finding 

more useful methods to compile, could enqueue more methods that won’t be used in the near 

future. Second, some programs (e.g., bloat) that have high prediction precision and accuracy do 

not show large speedups. It is because the speedup also depends on how much the compilation 

time weight in the overall running time. If it is small, the entire potential of parallel JIT is small.

5.6 Related Work

5.6.1 Program Representations

Besides the work mentioned in Section 5.3, some other studies also relate with calling contexts. 

Program summary graphs by Callahan [32], for instance, use nodes for formal and true parame

ters of functions and edges for their bindings. By showing the flow of values across procedures, 

the graphs facilitate inter-procedural data flow analysis. The probabilistic calling context by Bond 

and McKinley [28] offers an efficient way to collect and represent calling contexts. Later work 

proposes other ways to encode calling contexts precisely [110]. Alur and others [15] analyzed 

Recursive State Machines for representing recursive procedural calls in the context of system 

verification. As Section 5.1 discusses, calling context is only one of the necessary conditions for 

call sequence prediction. Without capturing control flows, call sites discrimination, and ensuing 

relations among calls, calling contexts alone do not suffice for call sequence prediction. Moreover, 

these representations provide no machinery— such as the v-nodes, a-stack in PCA— to overcome 

the various ambiguities (e.g., by dynamic dispatch) for call sequence prediction.

Some previous studies aim at finding hot code or data streams [38,67]. Similar to the pattern 

method implemented in Section 5.5, these methods centered on statistical patterns of sequences, 

and hence suffer from the diminishing regularity as prediction scope increases. Moreover, predict

ing cold call sequences and dealing with local variations (e.g., caused by branches) are essential 

for our call sequence prediction and its usage for startup time reduction.

A previous study uses DFA to record traces found in a binary translation process [88]. It starts 

from traces of function calls and builds automata based on their patterns. Another study that uses 

DFA is to construct object usage models [107]. For each abstract object, it builds an automaton 

with some places in the code as nodes and function calls related to that object as edge labels. 

Neither of the two studies is for predicting function call sequences; the first is for compressing
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traces and the second is for detecting anomalies in object usage. Consequently, their designs are 

not suitable for call sequence predictions. First, they are at the level of either traces or objects, 

rather than the whole program. When the scope goes to the whole program level with potentially 

infinite recursions, it becomes more complex than the pure automata can model. Second, they 

do not have any of the three stacks in PCA. The stacks adds more expressiveness to automata. 

More importantly, the stacks, along with unique call site IDs, inject into PCA the capability to 

discriminate different call sites and calling contexts in the prediction. In addition, their designs 

give no systematic treatment to ambiguous or unexpected function calls.

The probabilities associated with the v-nodes were inspired by some prior work on virtual 

function target prediction [23]. There are many other works trying to predict program behaviors 

beyond function calls, such as function returning values [87], load value prediction [31]. They 

center on leveraging statistical patterns rather than constraints through program representations.

5.6.2 Stochastic Models

In time series related domains, lots of data analysis has been based on probabilistic state ma

chines (e.g., weighted automata [81], probabilistic pushdown automata [29]), or other stochastic 

models (e.g., Markov Model, Markov Tree). PCA can be regarded as an augmented form of prob

abilistic state machines that is specially customized for leveraging constraints coded in programs 

and for accommodating their various complexities, reflected by its design of the three types of 

stacks, diamond and u-nodes, and the edge and node labels. These features make PCA more ef

fective in predicting function call sequences, as exemplified by the comparison with Markov Trees 

in the evaluation.

5.7 Summary

In this paper, we have presented the first systematic study in exploiting program defined con

straints to enable function call sequence prediction. We have introduced PCA, a new program 

representation that captures both the inherent calling relations among functions, and the prob

abilistic nature of execution paths determined by conditional branches and loops. Experiments 

show that the new approach can produce more accurate call sequence predictions than alterna

tives. As a fundamental representation of function calling relations, PCA may open up many new 

opportunities for optimizing the performance of modern virtual machines and beyond.
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6 Conclusion

Modern computing hardware development exposes more and more parallelism to software ap

plications. To harness the increasing hardware parallelism, it is critical that programs can be 

executed in parallel. However, many programs exhibit inherent dependencies, which fundamen

tally prevent their parallel executions.

To fill this gap, this dissertation shows the promise of principled speculative parallelization. It 

offers a systematic and rigorous treatment to the speculation —  the key to such parallelization 

scheme. Its power is demonstrated by parallelizing three important types of computations: finite- 

state machine, a classic mathematical computation model; HTML parsing, a necessary compo

nent in web browsers; and just-in-time compilation, which is commonly seen in many modern 

compilers.

Parallelizing FSM-based Computation FSM executions naturally introduce dependencies among 

state transitions, making it extremely hard to parallelize. This work formulates FSM speculative 

executions and the connections between the speculation schemes design and the characteristics 

of FSM and their inputs. It provides deep understandings to speculative executions of FSM com

putations with a series of theoretical findings. It offers a set of model-based speculation schemes, 

with suitable configurations automatically determined. Experiments demonstrate that the new 

techniques outperform the state of the art by a factor of four on most programs, showing that this 

class of computations are in fact quite parallelizable.

However, the proposed techniques require time-consuming offline profiling, making it hard to 

be adopted online. To address this, we present a two-fold solution to remove a key barrier in the 

offline profiling. The solution utilizes both static analysis and dynamic optimization techniques to 

mininimze the profiling cost. Results show that this solution can save up to thousands of times of 

profiling cost. Finally, through these two phases of study, we provide the first on-the-fly principled 

speculation for FSM paralleliztion.

114



Parallelizing HTML Parsing Parsing HTML is a key step in the front end of modern web 

browsers. However, it has been implemented in a sequential way due to the various complex

ities with HTML files. This work presents the first systematic study in taming the complexities 

and developing speculation-centered techniques to create parallel HTML parsers. The outcome 

includes a set of insights on effectively parallelizing HTML parsers, and HPar, the first practical 

HTML parallel parser that yields up to 2.4X speedup on quad-core devices. This study breaks a 

challenging barrier for fully parallelizing web browsers and opens up new opportunities for browser 

optimizations.

Call Sequence Prediction and Parallel JIT Compilation Runtime compilation has been adopted 

by many today’s popular programming languages, such as Java, C#, JavaScript, and Python. 

However, runtime compilation puts extra costs on the critical path of program execution, especially 

during program startup phase. In this work, we provide a remedy based on a novel technique, 

PCA, that enables function call sequence prediction. PCA captures both the inherent calling rela

tions among functions, and the probabilistic nature of execution paths determined by conditional 

branches and loops. Experiments show that the new approach can produce more accurate call 

sequence predictions than alternatives, and make parallel runtime compilation possible.

Through the deep study on the three types of computations, we have developed a set of 

novel techniques, including two model-based speculation schemes FSM parallelization, a hybrid 

optimization framework for efficient online FSM profiling, PCA-based call sequence prediction 

for parallel JIT compilation and correlation-based speculation for parallel HTML parsing. They 

together form the essence of principled speculative parallelization, advancing the state of the art 

in software parallelization from being ad hoc to being rigorous..

A question remaining open is how to generalize the principled speculative parallelization 

paradigm from the several types of computations into general sequential programs. There are 

some challenges to address. For instance, in our application of the principled speculative par- 

allelizations, we have been drawing on some special properties of FSM, HTML grammar, and 

Just-In-Time compilations. For general programs, such domain knowledge may not be available 

or hard to extract. It yet remains to explore how to automatically discover some relevant prop

erties from a computation, or somehow remove the reliance of the speculation on such domain 

knowledge by, for instance, creating a more general model of speculative executions.
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