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Semiclassical Representation of Width-Weighted Spectra

M. W. Beims, V. Kondratovich, and J. B. Delos
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187

(Received 29 June 1998)

We consider a system having decaying states with complex energiesEj 2 iGjy2, and we define
the “width-weighted spectrum” asDGsEd ­

P
j GjdsE 2 Ejd. We derive a semiclassical formula

for this width-weighted spectrum, a formula which is analogous to the periodic-orbit representation
of the density of states. The formula applies if classical motion is regular and if decay occurs
by tunneling through a barrier. The semiclassical formula involves not periodic orbits or closed
orbits, but action integrals associated with irreducible loops on the “extremal torus,” on which the
particle climbs up the barrier and hangs at the top. Calculations confirm the validity of the formula.
[S0031-9007(98)07690-X]

PACS numbers: 03.65.Sq

Gutzwiller [1] gave a semiclassical representation of
the density of states of a quantum system,rsEd ­P

j dsE 2 Ejd, in terms of a sum over periodic orbits
of the corresponding classical system. An alternative
derivation of the relationship between the quantum den-
sity of states and classical periodic orbits, suitable for
integrable systems with regular spectra, was given by
Berry and Tabor [2]. Later, Du and Delos [3] gave
a semiclassical formula for the photoabsorption spec-
trum of an atom, the oscillator-strength densityDfsEd ­P

j fjdsE 2 Ejd, wherefj is the oscillator strength for
transition from a low-lying initial state into statej. In
this case the semiclassical representation involves a sum
over closed classical orbits of the electron which start
from the nucleus and return to it. Recently, Creagh and
Whelan [4] considered a splitting-weighted density of
statesDDsEd ­

P
j DEjdsE 2 Ejd, where DEj is the

small energy gap between symmetric and antisymmetric
states in a model double-well system. Their semiclassical
representation of this quantity involves a few real periodic
orbits in a chaotic region of phase space, as well as com-
plex orbits to describe the underbarrier motion.

In this Letter we consider a system having quasibound
states with complex energiesEj ­ Ej 2 iGjy2, and we
define the “width-weighted spectrum” as

DGsEd ­
X

j

GjdsE 2 Ejd . (1)

Each quasibound state with real energyE ­ Ej is
weighted by the widthGj , which is related to the decay
time of the state bytj ­ h̄yGj. In the case we consider,
the widthsGj arise because of quantum tunneling through
a potential-energy barrier. We seek a semiclassical
formula for this width-weighted spectrum—a formula
analogous to periodic-orbit or closed-orbit formulas
mentioned previously.

Why might a semiclassical representation of this width-
weighted spectrum be of interest? Periodic-orbit and
closed-orbit representations focus not on individual quan-
tum states, but on the large-scale structure of the spec-

trum. When we examine quantum processes whose rates
are governed by tunneling (such as some chemical reac-
tion rates, some nuclear decay rates, or some conductance
processes in microstructures), it might be difficult to find
the tunneling rate for each individual quasibound state. In
such cases it may be useful to have available a simple rep-
resentation of the averaged or large-scale structure of the
tunneling rate. Thus we pose the following questions. Is
there a semiclassical representation of the width-weighted
spectrumDGsEd? What kind of paths are needed to rep-
resent it? How are those paths weighted?

These questions will be answered in this Letter for a
system with a regular spectrum. Specifically, we consider
the case of the hydrogen atom subjected to an external
electric field. (However, many aspects of our derivation
are valid for other regular systems, and also for spectra
weighted in other ways.)

The hydrogen atom in an electric field is a physical
system which permits a detailed study of the tunneling
through a dynamical barrier. The Hamiltonian is (using
atomic unitsh̄ ­ 1, e ­ 1, me ­ 1)

H ­
p2

2
2

1
sr2 1 z2d1y2 1 Fz , (2)

where F is the strength of the applied electric field.
We consider the cylindrically symmetric states,Lz ­
mh̄ ­ 0. It is convenient to use scaled variables,w ­
F21y4, q ! w22q, p ! wp, ´ ­ EyF1y2. The poten-
tial energy has a saddle point atzs ­ 21, ´ ­ 22. For
energies below this saddle energy, the classical motion
is bounded and the quantum spectrum is quasidiscrete,
with states of long lifetime and quite sharply defined en-
ergy. High-Rydberg states of the pure Coulomb field are
split into regular Stark manifolds. For energies above the
saddle, the classical motion is unbounded if the electron
is ejected from the atom in a “downhill” direction, and
bounded if it leaves the atom going “uphill.” A critical
ejection angleucs´d ­ arccoss1 2 ´2y2d separates these
two motions. Accordingly, above the saddle, the quan-
tum spectrum consists of quasidiscrete levels superposed
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on a smoothly rising continuum. The higher-energy (up-
hill) quasidiscrete levels of each manifold survive, while
the lower-energy (downhill) levels in each manifold are
broadened into the smooth continuum [5].

The Stark Hamiltonian (2) is integrable, and even
separable in semiparabolic coordinates (u, y), and the
corresponding effective Hamiltonians are

Hu ­ p2
uy2 2 ´u2 1 u4y2 ­ s1 1 bd ,

Hy ­ p2
yy2 2 ´y2 2 y4y2 ­ s1 2 bd .

(3)

Motion in theu coordinate is always bound, but for´ , 0
there is an effective (dynamical) barrier in they motion,
which allows the possibility of tunneling. The classical
y motion is bound foŕ , 22, and unbound foŕ $ 0.
Between the saddle and the zero-field ionization threshold,
i.e., for 22 # ´ # 0, the y motion is bound if and only
if b $ bcs´d ­ 1 2 ´2y2. The separation constantb is
related to the angle of ejection of the electron from the
atom byb ­ cosu.

Accordingly, at eachs´, wd, the bound trajectories form
a one-parameter family of tori withbcs´d # b # 1. The
trajectories can therefore also be labeled by their action
variables,Jus´, b; wd, Jys´, b; wd. Quantization of these
action variables identifies “eigentrajectories” or “eigen-
tori,” labeled by quantum numbersn ­ snu, nyd (for more
details see [6]). Standard semiclassical formulas [7], in-
cluding tunneling near the top of a quadratic barrier in the
y coordinate, lead to quantization conditions for the ener-
gies and widths of the quasibound states:

Jus´, b; wd ­ wJ̃us´, bd ­ 2p h̄snu 1
1
2 d ,

Jys´, b; wd ­ wJ̃ys´, bd (4)

­ 2p h̄

√
ny 1

1
2

!
2

i
2

h̄e2Ky h̄ 2 d .

Quantities with a tilde are defined here as scaled quantities,
for example,J̃u, J̃y are the scaled actions.K is the action
integral for a cycle of underbarrier motion in they coor-
dinate,nu ­ 0, 1, 2, . . . and ny ­ 0, 1, 2, . . . are integers
which define the parabolic states andd ­ argfGs1y2 1

iKy2h̄pdg 2 sKy2h̄pd flogsKy2h̄pdg 1 Kyh̄p is the
parabolic-barrier correction. This correction is often
small, but in our case it is needed in order to avoid certain
logarithmic singularities: near the top of the barrier (i.e.,
above the saddle andb ø bc) the derivatives≠Jyy≠´ and
≠Jyy≠b diverge. However, the corresponding derivatives
of Jy 1 d are finite.

If the widths are not too large, they can be determined
from Eq. (4) by the formula

Gn ­
h̄ ≠Ju

≠b

≠sJu,Jyd
≠sE,bd

e2Ky h̄ ­

≠J̃u

≠b

w3 ≠sJ̃u,J̃y d
≠s´,bd

e2wK̃ , (5)

where ≠sJu, Jydy≠sE, bd is the Jacobian of the transfor-
mation from action variablessJu, Jyd to the conserved
quantitiessE, bd. In a one-dimensional system, the cor-

responding formula forG is h̄ times the vibrational fre-
quency times an exponential factor. Our system is sepa-
rable, and tunneling is only in they coordinate, but it is
not equivalent to a one-dimensional system. The tunnel-
ing terms makeE andb complex in such a way thatJu

stays real. Therefore the preexponential factor in Eq. (5)
involves bothJu andJy .

From these quantization conditions (4), we may con-
struct a width-weighted spectrum, Eq. (1), holdingF fixed
and finding (Ej , Gj). The scaled spectrum is obtained by
fixing ´ ­ Ew2 and finding the corresponding (real) val-
ues ofwj; then

DG ­
X
n

GndsE 2 End ­
X
n

G̃n

s22´d
dsw 2 wnd , (6)

where G̃n ­ Gnw3. In this calculation, we include all
resonances which lie below the effective barrier in they

coordinate; thus we include all quasidiscrete states, but we
do not include above-barrier resonances, which may be so
broad that they might better be regarded as background
continuum.

Figure 1 shows an example of a scaled quasidiscrete
spectrum for a scaled energy (´ ­ 21.5) well above
the saddle (at this scaled energybc ­ 20.125, uc .
97.181±). Each point of this figure marks the width
log Gn plotted against its quantizedwn [8]. For example,
at principal quantum numbern ­ nu 1 ny 1 1 ­ 9, we
see states withu, y quantum numbers fromsnu ­ 8, ny ­
0d (the most “uphill” and longest-lived state of the group)
to snu ­ 3, ny ­ 5d (the most “downhill” and shortest-
lived state of the group). In this family, states withny $

6 correspond to trajectories that go over the effective
barrier, so we do not include them. The other states
labeled in Fig. 1 are forn ­ 22; in this family, ny can be
as large as13 before the trajectory goes over the barrier.

10 20 30 40 50
w

-200
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-100

-50

0

50

lo
g(

Γ n)

(8,0)

(3,5)

(21,0)

(8,13)

FIG. 1. Semiquantal result of logGn vs w for the scaled
energy´ ­ 21.5. The parabolic quantum numbers (nu, ny) are
labeled for the most “downhill” (3, 5), (8, 13) and for the most
“uphill” ( 8, 0), (21, 0) states for the principal quantum numbers
n ­ 9 andn ­ 22.
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FIG. 2. Comparison between (a) semiquantal and (b), (c)
semiclassical results for the width-weighted spectrum at scaled
energy´ ­ 21.5. In the semiquantal result, some widths are
labeled by the quantum numbers (nu, ny). The straight line in
(c) is the result from Eq. (7) forMu ­ My ­ 0. The solid
line with few oscillations is the result from Eq. (7) taking the
sum until jMuj ­ jMyj ­ 1, and the dotted line is the result
by the summation untiljMuj ­ jMy j ­ 5. (b) Is the result for
jMuj ­ 300, jMyj ­ 200 [9].

Each state has also a quantized value ofbn; those states
with the largest width (i.e., largerny) have bn closer
to bc. Such states are the most important in a width-
weighted spectrum.

In Fig. 2(a), G̃n is plotted as a function ofw. The
result looks like a quasiperiodic sequence of widths vs
w. This is what we define as a width-weighted scaled
spectrum. Such results of Eq. (5) are what could be
regarded as “quantum results” [10]. More precisely they

should be called “semiquantal”: they use semiclassical
approximations at certain points, but the formulas focus
on energies and widths of individual states. The formulas
developed below we call “semiclassical”: they will be
the analogs of the formulas of periodic-orbit theory or
closed-orbit theory, which give simple representations of
the large-scale structure of the spectrum.

Let us now write the semiclassical formula forDG.
This formula involves properties of the “extremal torus,” or
“last surviving torus” at each scaled energy. As explained
above, the motion is oscillatory iny if b . bcs´d. When
b ­ bcs´d, the y motion ascends the dynamical barrier
and hangs at the top, and we call the associated torus the
extremal torus. For smallerb, the particle goes over the
dynamical barrier and escapes (see Fig. 3).

Action variables of the extremal torus are well defined,
Ĵu ­ J̃us´, bcd, Ĵy ­ J̃ys´, bcd. Derivatives ofJ̃ys´, bd
diverge asb ! bcs´d, but in the formulas below these di-
vergences will be canceled by corresponding divergences
in d.

The semiclassical formula is [11]

DG ­
X

Mu,My

DMu,My
eiwfMuĴu1My Ĵy g, (7)

where

DMu,My
­

1
4p2

s2dMu1My

ft̂Kyt̂u 2 isMu 2 Myt̂yyt̂udg
. (8)

All quantities here must be evaluated atb ­ bc. The
sum overMu and My includes all positive and negative
integers, including zero, so the result is indeed a quasiperi-
odic function ofw: it oscillates as a function ofw with
fundamental frequencieŝJu andĴy , and with all multiples
and combinations thereof. Each oscillation has amplitude
DMu,My

, which is a function of the “canonical periods”

t̂u ­ 2≠J̃uy≠b, t̂K ­ 2≠K̃y≠b ,

t̂y ­ 22≠sJ̃y 1 dywdy≠b ,
(9)

all of which are evaluated atb ­ bc.
Figure 2(c) shows the result of taking more and more

terms in the summation of Eq. (7). The straight line is

ρ

v

u

z

FIG. 3. Electron orbits inuy (upper) orzr (lower). Left: For ejection angle less than the critical angleuc the orbit remains
bound. Right: For larger ejection angles it goes over the effective barrier and escapes. Center: At the critical angle the orbit
approaches an unstable periodic orbit—these orbits lie on the extremal torus.
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FIG. 4. Comparison between (a) semiquantal and (b) semi-
classical results for the absolute square of the Fourier transform
at the scaled energý ­ 21.5. Peaks in the semiclassical re-
sult are located at actionsSMu ,My

, and they are labeled by the
cycle numbers (MyyMu). The needles under these peaks cor-
respond to the values ofjDMu,My

j2.

the result forMu ­ My ­ 0. The solid line with few
oscillations is the result of taking eight more terms in
the sum (i.e.,jMuj ­ jMyj ­ 1), and the dotted line is
for summation untiljMuj ­ jMyj ­ 5. Figures 2(a) and
2(b) compare the semiclassical numerical results from
Eq. (7) (with jMujmax ­ 300, jMyjmax ­ 200) with the
semiquantal results from Eq. (5) for a scaled energy´ ­
21.5. The positions of the maxima for a given statewn
are in good agreement and also the overall behavior of the
peaks is the same. [Of course, the Fourier sum (7) gives
the expected Gibbs’ phenomenon.]

Another way to analyze and understand the width-
weighted spectrum is to look at its Fourier transform,

RGsSd ­
Z

exps2i2pSwdDGswd dw . (10)

jRGsSdj2 should have peaks located at values of scaled
action SMu,My

­ sMuĴu 1 My Ĵydy2p, with heights pro-
portional to jDMu,My

j2. This is exactly what we see
in Figs. 4(a) and 4(b), where the (normalized) absolute
square of the Fourier transform is plotted as a function
of the variableS. For this scaled energy, the value of the
scaled actions of the extremal torus areĴuy2p . 0.237 96
andĴyy2p . 0.389 85.

With the help of the semiclassical representation of the
the width-weighted spectrum, each peak in the Fourier
transform [see Fig. 4(b)] can be identified with a given
irreducible loop on the extremal torus, havingMu u-cycles
andMy y-cycles. We emphasize that these loops do not
in general correspond to closed orbits or to periodic orbits.
For example, we see a large1y1 peak, but the frequencies
of the u and y motions are never equal, and no (1y1)
periodic or closed orbit exists.

The needles under the peaks in Fig. 4(b) correspond to
the values ofjDMu,My

j2. The height of the maxima in
the Fourier transform of the semiclassical results depends
strongly on the parabolic correctiond; this happens
becaused is only a small correction toĴy , but its
derivative is a substantial part of̂ty and therefore of
DMu,My

.
To conclude, in this Letter we define a width-weighted

spectrum, and we give a semiclassical representation of
it. As an example we consider the scaled spectrum of the
hydrogen atom in an electric field. The Fourier transform
of this scaled width-weighted spectrum gives peaks not
at actions of periodic orbits, nor at actions of closed
orbits, but at actions corresponding to fundamental loops
of the extremal torus: The torus corresponding to limiting
motion climbing to the top of the effective barrier.

This research was supported by NSF. M. W. B. thanks
CAPES for financial support.

[1] M. C. Gutzwiller, J. Math. Phys. (N.Y.)11, 1791 (1970).
[2] M. V. Berry and M. Tabor, Proc. R. Soc. London A349,

101 (1976).
[3] M. L. Du and J. B. Delos, Phys. Rev. A38, 1896 (1988);

38, 1913 (1988).
[4] S. C. Creagh and N. D. Whelan, Phys. Rev. Lett.77, 4975

(1996); (to be published).
[5] V. Kondratovich and J. B. Delos, Phys. Rev. A57, 4654

(1998).
[6] V. Kondratovich and J. B. Delos, Phys. Rev. A56, R5

(1997).
[7] M. S. Child, Semiclassical Mechanics with Molecular

Applications(Oxford University Press, New York, 1991).
[8] This is the width for decay by tunneling. These states can

also decay by photon emission, but that is not of inter-
est here.

[9] The scales of the vertical axes in Figs. 3(a)–3(c) are
different because the Fourier representation “converges”
to d functions. They go to infinity, but their integrated
areas are proportional toGnw3

n.
[10] We compared the results of Eqs. (4) and (5) with nu-

merical quantum calculations [12]. We found agree-
ment of positions and widths to within 0.03% and 1.5%,
respectively.

[11] Proof will be given in a future paper.
[12] G. Alvarez, R. G. Damburg, and H. J. Silverstone, Phys.

Rev. A 44, 3060 (1991).

4540


	Semiclassical Representation of Width-Weighted Spectra
	Recommended Citation

	tmp.1615303828.pdf.Dczig

