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PHYSICAL REVIEW A VOLUME 57, NUMBER 6 JUNE 1998

Scaled-energy Floquet spectroscopy in a strong electric field:
A semiquantal calculation of the recurrence spectrum

Vladimir Kondratovich and John B. Delos
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187
(Received 25 September 1997

We consider a hydrogen atom in a strong static electric field with a weak parallel radio-fredderiigid.
We compute the photoabsorption spectrum by calculating the spectrum of Floquet states, including their
guasienergies and their oscillator strengths. Our calculation is based upon “semiquantal” formulas: we calcu-
late the discrete spectrum of quasienergy states by using a quantum adiabatic approximation combined with
semiclassica{Bohr-Sommerfelfiquantization rules. We express this spectrum in a manner consistent with the
method of scaled-variable spectroscopy, and then calculate the Fourier transform. These calculated absorption
spectra and recurrence spectra are in good agreement with experiments on Li atoms. Additional approximations
show that the recurrence spectrum is approximately equal to the product of the recurrence spectrum in a static
field times an envelope function. That envelope function is the Fourier transform of a cluster of sidebands
surrounding a progenitor level in the rf field. The resulting formula agrees with the low-frequency limit of a
formula obtained from a semiclassical treatm¢stL050-294{8)07406-X]

PACS numbsg(s): 32.60:+i, 32.80.Rm, 03.65.Sq

[. INTRODUCTION rate variables in semiparabolic coordinates and use a WKB
approximation to obtain quantized energy levels in the static
In a recent experimenitl], the absorption spectrum of Li field. We also use a semiclassical formula for the oscillator
atoms was measured in the presence of a combined static agfength of each quantum state. We then consider the effect
oscillating electric field. First the Li was exciteds2:2p  Of the oscillating field on these levels and strengths in an
—3s, and then excited again by a linearly polarized tunableadiabatic approximation. The_ oscillating field splits each en-
laser into high Rydberg states having a principal quantunf'@y level into clusters of sidebands, called “quasienergy
number of approximately 100—130 and magnetic quantun?tates-” The_:n the Fourier transform of this scaled absorption
number m=0 (polarization parallel to the static electric SPECIrUM gives us finally the recurrence spectrum.
field). This absorption spectrum was measured by the scaled- We call this approach "semiquantal” partly 1o distinguish

variables methodvarying the energf and the electric-field it from the semiclassical ideas used in closed-orbit theory. In
strengthF, to keep the scaled energy- E/Fé’z fixed. and the present approach, although we use the WKB approxima-

) ) DY tion, the focus is on quantized energy levels, and on their
plotting absorption versus=F, ™). Similar measurements 5ssociated quasienergy states in the oscillating field. Thus we
(but not using scaled variablebave been made by Zhang see more of quantum mechanics in the concepts and spirit of
etal.[2,3]. the present approach than appears in the implementation of
The absolute square of the Fourier transform of the abelosed-orbit theory.
sorption spectrum is the “recurrence spectrum”; it has peaks The plan of the paper is as follows.
corresponding to the classical actions of closed orbits of the In Sec. Il A, the WKB approximation is used to calculate
electron, and the height of each peak is called the “recurthe quantized energy levels in the static figh and a re-
rence strength” of that orbit. This recurrence spectrum wagently developed semiclassical formdi is used to calcu-
measured with a static field, and then with increasindate the associated oscillator strengths. These static-field lev-
strengths of the oscillating field, polarized parallel to theels are “progenitors” of quasienergy states in the oscillating
static field. With the static field only, the recurrence spec-ield.
trum consists of a sequence of strong, nearly equally spaced In Sec. Il B, quasienergy states are calculated using a “di-
peaks. As the strength of the oscillating field was increasedagonal” approximation, which is most appropriate if the fre-
most of these recurrence peaks were reduced in a systematjoency of the rf field is low compared to the frequencies of
fashion, but certain peaks remained: it was found that recurthe unperturbed systefthese approximations might also be
rence peaks would survive if the return time of the associatedalid more generally The energy of each progenitor oscil-
classical orbit was a multiple of the period of the oscillatinglates sinusoidally in time at the frequency of the rf field, with
field. an amplitude proportional to the dipole moment of that quan-
This phenomenon was given an explanatiofilihby ex-  tum state. This time dependence constitutes a “frequency
tending “closed-orbit theory”[4] to time-dependent sys- modulation” of the time dependence of the quantum state,
tems. We call closed-orbit theory a “semiclassical” theory; which splits the progenitor into sidebands. The sidebands are
in that method we calculate recurrence spectra directly fronequally spaced in energy, and they are weighted by Bessel
three-dimensional classical trajectories. In the present papéunctions. Thus each progenitor is split into a cluster.
we approach the phenomena from a complementary perspec- The spectrum can be calculated in the standard (fizgd
tive, which we call a “semiquantal” framework. We sepa- field strengths, varying energiesor in the scaled-variables
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framework. These calculations are in good agreement withability of Hamiltonian(2.1) in semiparabolic coordinates
the measurementSec. ). 5 5

Further interpretation requires additional approximations u=r+z, v=r—z (2.3
(Sec. V). We show that the scaled-variables absorption
spectrum has an enhanced periodicity compared to the ufrach state can be labeled by two parabolic quantum numbers
scaled spectrurtSec. IV A), and we show that the sidebands (N1,12) (the magnetic quantum number equals zerp The
are again nearly equally spaced in the scaled spectBen. Bohr-Sommerfeld quantization conditions take the form
IV B). If we make the approximation that all of the clusters L
have the same structure, then the absorption spectrum in th _ to _ 1
rf field becomes a convolution of the static spectrum with the ?“(W’ €B)= T fo V2(1+B)+ 2B~ Fou'du=ny + 3,
spectrum of a single clustéBec. IV Q. Therefore the Fou- (2.9
rier transform of the absorption spectrum is a product of the
static Fourier transform times the Fourier transform of a 1 (v
single cluster. Thus the static recurrence spectrum is multi-1,(w,e,8)= — f V2(1- B)+2Ev?+ Fovdv=n,+3,
plied by an envelope function. T Jo

That envelope function contains two parameters: one is (2.5
related to the strength of the sidebands relative to the pro- . _ .
genitor(and to the number of significant sidebapdmd the vvhere Uo.vo) are _the turning points of tha of » motions
other is related to the spacing of the sidebands. The net resdﬂrsizelo of the mtegrqr)d B is the Sepa?ra“o'f‘ constant,
is that those recurrence peaks are preserved that have rett*?rfl\_ﬁ <1. These equations can be rewritten in the scaled
times close to a multiple of the period of the driving field. ©0"™"
Finally, in Sec. IV D we show that the simplified semiquan-

— _ 1
tal formula agrees with the low-frequency limit of semiclas- lu(w,e,8)=wS,(€,8)=n1+3, (2.6
sical theory[1]. )
Some analytical expressions used in these semiquantal l,(W,€,B)=wWS,(€,8)=ny+3 (2.7

calculations are given in the Appendix.
with the scaled energy and scaled variables defined as
Il. FLOQUET SPECTRUM IN STRONG DC
AND WEAK rf FIELDS e=E/\Fy, w=F,4 (2.9

In the presence of an external homogeneous static electr

field F directed along the axis, the Hamiltonian of a hy- fhe scaled action variable, andS, have convenient ex-

pressions through the elliptic integrals of Jac(d@e Appen-

drogen atom takes the form dix)
p2 1 The two quantization condition&.4) and (2.5) lead to
Hstati0=? o +Foz. (2.2 qguantized values of both and g8 (or E and 8). The separa-

tion constant@ has an important physical meaning. If we
Hereafter we use atomic unité=1, e=1, m,=1). If, in W.”te '8”.: COSG“!’ then 6, is the ang.IQ at which the‘th.

o ) ) X , eigentrajectory intersects the nucleus; i.e., an electron ejected
addition, an rf field polarized along the static one is present . )
X S from the nucleus with energly,, at angled, from thez axis

the time-dependent Hamiltonian is e : . .
will find itself traveling on thenth eigentrajectory.
2.2 Figure 1 illustrates the development of a Stark manifold

when the external electric field, increases from zero. For

with F, denoting the amplitude and the frequency of the rf SmallFg, each level in the Stark manifold diverges linearly
field. In order to be as close as possible to the experifilgnt from its pure-Coulomb limit. AsF, increases, we see sig-
on the Li atom, we take the initial state to be theate of  Nhificant curvature. The semiclassical system of ) and
hydrogen, and we consider the case that the electric field d&-7) defines the position of quasidiscrete levels for strong

the laser is also polarized parallel to the static electric fieldexternal fields, when the lineaffirst-order perturbation
so thatm,=L,/A=0. theory approximation does not give reliable results. Each

Stark level ends at a critical electric field strength where it
reaches the top of an effective potential-energy barrier in the
v coordinate. For electric fields greater than the critical value
Consider first the spectrum of the Hamiltonighl). The  (which depends om; andn,), each level broadens rapidly

H(t) =Hgaict F1Z coSs wt

A. Absorption spectrum in a static field

potential energy has a saddle pointzt —1/\F,, E<=  and disappears into the continuum.
—2./F,. Below this saddle energy, the electric fi€lg splits Figure 1 also shows that well above the saddle enEtgy

the unperturbed Coulomb energy levels into manifolds ofand all the way up t& =0, there are many peaks belonging
quasidiscrete levels. Above this enerfyEg, the higher- to the quasidiscrete spectrum. These peaks are a dominant
energy quasidiscrete levels of each manifold survive, but thstructure of the absorption spectrum in this region, and they
lower-energy levels in each manifold are broadened into are the structure that produces the recurrences. Therefore, for
smooth continuum. this paper we can ignore the continuous background, and pay

The quasidiscrete levels can be calculated from semiclagprimary attention to these quasidiscrete lines in the absorp-
sical quantization conditior{$]. This makes use of the sepa- tion spectrum.
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0 B. Absorption spectrum in the oscillating field

Let us consider the case that the frequency of the oscillat-
ing field is low compared to the orbital frequencies of the
electron. Then an adiabatic approximation makes sense. Let
wnlnzpo(q) be an eigenfunction of Eq2.1) with eigenvalue

E(n,,n,,Fg). The adiabatic approximation tells us that the
function

t
had(Q,t) = 'ﬂnlnzF(t)(q)eXF{ —i f E(ny.ng, F(1"))dt’
(2.12

is an approximate solution to the time-dependent Schro
dinger equation with Hamiltonian2.2) [here F(t)=F,
+F, coswt].

If the oscillating field is weak, we may expand the energy
eigenvalue in powers d¥, near the static field strengtfy:

manifold n=108,m=0

E(ny,n,,F(t"))=E(ny,n,,Fp+F; coswt’)

~E(ng,nz2,Fo)
-5
JE(nq1,n5,Fp) .
+ TFl coswt’.
(2.13
-6 1 . .
5 10 15 20 75 The derivative
j aE(nlanIF)/aFE?(nlynZyF) (214)

FIG. 1. Energies of a manifold of Stark states as a function of
electric field strengtisee Sec. Il A The levels are cut off when is the static polarizability of the,,n, level. One might be
they start to rapidly broaden. Two lines of fixed scaled enargy tempted to replace it by its value Bt=0, but for the rela-
=E/\JF are shown. The energy of the saddle point corresponds ttively strong fields considered here, this approximation is not
e=—2. Most of the present calculations and measurements weraccurate(it gives errors up to 409 The Bohr-Sommerfeld
made neare=—0.4, where only a few "uphill” states survive. quantization conditions allow us to find an analytical expres-
Egelrgy E is given in 10° a.u. and static field strength, in  sjon for this static polarizability in a strong electric field:
a.u.

JE(N;,np,F)  a(ly,l,) /[ aly,ly)
oF ~ WF.B)/ 4E.B)
(2.1

?E?(nlanvF):

5

All derivatives entering Eq(2.15 have convenient expres-
: sions as Jacobi elliptic integrals, which allow easy and rapid
Dfstaid E)= > fo, n,0(E=En), (2.9 calculation. These expressions can be found in the Appendix.
" Substituting Eq.(2.13 into Eq. (2.12), we obtain a sin
function in an exponent, which can be expanded in a Fourier

The oscillator-strength densiyf for the transition from
an initial statei to the Stark state=(n,,n,) by z-polarized
light is given by the formula

where the oscillator strength is defined as

series[3],
finl,nZIZ(En_Ei)|<¢n|D|¢i>|2 (2.10 _ re _
exp(—i(FiZlw)sin wt)= >, J,(F1z/w)exp —il ot),
|=—
with D denoting here the dipole operator. (2.16
In another paper, we show that this oscillator strength can
be written in a different form, where, as usuall|(x) denotes the Bessel function.

Now we make an additional approximation. We propose
that the adiabatically adjusting functio,tihlnzF(t)(q) can be

replaced by the eigenfunction in the static fiez}glnzpo(q).

We can justify this because we will only use the eigenfunc-
where|)(6)|? is the function defined in closed-orbit theory tions to calculate dipole overlap integrdis,n,F(t)|z]i) in
as the angular distribution of outgoing wavé4], Eq. Eq.(2.10. These overlap integrals depend upon the form of
(5.13b. This function is evaluated at the quantized ejectionthe eigenfunction in a small region~(10ay) around the
angle of thenth eigentrajectory. nucleus. The adiabatic eigenfunctions might change substan-

i Jd(B,E
fhl,n2=8w<En—Ei>‘%|y<an>|2, (211
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tially near their outer turning points, but they do not change =
very much in this small region near the nucleus. Df,(E;F)=8m >, (E—Ei)Jf(—lj
It follows that each adiabatic eigenfunction, together with 1.2
its phase, can be interpreted as a superposition of quasien- (E,B)
ergy states, — 2
)% ‘&(Iu,lv) |y(‘9nl,n2,l)|
+o ><5{E—[E(n1,n2,|:0)+|w]}. (222

Yad A0 = (D) 2 Ii(FiZlw) _ _ _
I=-= The sum over the progenitor and sidebands gives us the
X exp{—i[E(ny,ny,Fo) +lw]th. (2.17 oscillator-strength density in the presence of the rf field,

+ o

The superposition consists of a “progenitor” stdtbe one Df+(E)= E Df|(E). (2.23
with 1=0) and a set of sidebands#0, equally spaced in 1=

guasienergy. In our approximation, the progenitor and the i . _ .
sidebands all have the same spatial dependence. The side- 1Ne final formula(2.23 gives a very simple picture of the

bands are weighted compared to the progenitor level by thguasidiscrete absorption spectrum in presence of the com-
Bessel functions, bined dc and rf fields. We just have to superimpose the spec-

tral scan for the static field with equivalent scans that have

) ) been shifted along the energy axis by a multipleiaf and
Ji(q):J5(a). (2.18  then properly weight the peaks. The weights primarily de-
pend onl, the label of the sideband, but they have a slight

. . . — . dependence ony, n, andF through Eq.(2.15 and through
This ratio is determined by the parametprF,z/%w, in the dependencel Cﬁnzl,nz,l onng,n,.

other words, by the ratio of the maximal energy of a static ; .
. . —. L The procedure for calculating the scaled-variable absorp-
dipole with moment in the static field of strengtk, to the

. ) ) tion spectrum is, then, the followindi) Fixing e, find w
energy intervaliw between sidebands. For weak rf fields the,and BS: cos6, satisfying the quantgation c?)nditior(Q.GI;

amplitudes of sidebands are low, having the order of magn'énd(Z.?); these are the progenitor levels) For each, evalu-

tudeq/2'[1|1 whereas for higher rf field strengths the pro- . — . .
genitor level may even disappear. However, all intensitie(€ Z(N1.N2,Fo) using Eq.(2.15 and the Appendix. Also

tisfy th 167 evaluate|d(E,B)/d(1,1,)| (which is slowly varying and
salisfy the sum rulg7] Y(6,). This data in Eq(2.22 gives the static spectrurfiii)

For1+#0, the quantization conditions are replaced by

2 =1 (219 Wy € (e Wo ) Bo)=N+102,  (2.24

. ” . "(€,Wn,)=€e—lwlw,,. 2.2
for all values ofg. That means that intensifyn particular, €'(ewn)=e~lolWy, (229

the absorption rate or oscillator strengtmoves from the
progenitor to the sidebands gsincreases, but the total in-
tensity is conserved as the parameters of the rf field vary.
It follows that the absorption spectrum is split from the
progenitor level into the sidebands. In the rf field the atom in
the 3s state will absorb a laser photon of frequenty,
=¢&(nqy,n,,l;Fp) —E3s to go into a state of quasienergy

The above equations mean that we find the progenitor of the
Ith sideband at a scaled energlythat differs from the value
e fixed in the scaled spectrufsee Fig. 2

In Eq. (2.22 we artificially broaden thes functions to
model the experimental resolution. Let

Df staid W; €) = Df siaid E(W; €); F (W), (2.26

5(n1,n2,|;F0)=E(n1,n2,Fo)+|w. (22@ Df|(W,E):Df|(E(W,6),F(W)), (227)

+ o
The oscillator strength for this transition is the oscillator

strength for the progenitor weighted by the Bessel functions, Dfﬁ(w;e)=|=§;w Dfi(w:e) (2.28

i _ i 2, o represent the scaled absorption spectrum obtained in this
f ! f“lvnz‘]' (F1Z/w), .29 way. The recurrence spectrum is then the Fourier transform
of Df +(w;€) over a selected range of,

wherefinlynz is the oscillator strength for absorption into the

(nq,n,) state in the absence of the rf field. Rl(s):J e 2mMSWDf, (w; e)dw, (2.29

According to the expression®.21), (2.20, (2.10, and

(2.11) we can introduce the oscillator-strength density of the
Ith sidebandl =0 here gives the strength for the band of dc
progenitor levelsin the external rf field as

ng.ny,

Rstatic(s)zf eizﬁiSWDfstatic(W;f)dW: (2.30
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155.5 1562 1

157W/ W rvf Y
[ |
(105, 6) (105, 7)

(108, 3) (108, 4) (108, 5)
(107, 1) (107, 2
I

(108, 0)

FIG. 3. The absorption spectrum is nearly periodic in the scaled
variablew=F;'*; the period is the spacing between the,0)
and the (;+1,0) states. Here is the static absorption spectfumn
rf field) with two adjacent periods compared. Atomic units used.
F (The upper line on each graph represents the experimental&lata

FIG. 2. Diagram representing the calculation of a scaled SpeCI_ower is our calculation, with peaks artificially broadened to imitate

trum with sidebandgsee Sec. Il B The heavy curve represents a ltg\c;:'vsrxggglr’:ental resolutionQuantum numbers are assigned in the
fixed scaled energy. Four Stark levels are shgsoiid lineg, each ’
with two sidebandgdashed lines Each progenitor intersects the agree so well, but this experiment was not optimized for the
scaled-energy curve at a point marked by a solid dot. The corremeasurement of peak heights.
sponding value ofv=F ~"* gives the location of this progenitor in Both theoretical and experimental spectra are remarkably
the scaled spectrum. At any value B, the (quasjenergy of the  periodic in the scaled variablg. In order to show this, we
Ith sideband is related with the energy of its progenito€asE  superimpose in Fig. 3 two adjacent periods of theoretical and
+lw. Because of the scaling method used, this spacing betweeaxperimental spectra. This periodicity is explained in Sec.
progenitor and sidebands increases vfitlas F¥4. Each sideband |y A.
intersects the scaled-energy curve at a point marked by a hollow The scaled absorption spectra in the presence of the rf
dot. This connection is shown as vertical dashed lines. In scalefle|d are also in good agreement, as shown in Fig. 4. How-
form, it adds another quantization conditipiq. (2.25] to the  ever, we had to shift the experimental spectrum to the right
Bohr-Sommerfeld equation@.24). by sw=0.1 to make it match the theof®].
The experiment was designed for the measurement of re-
, e currence spectra, and we find excellent agreement between
er(S)=f e 2mDf (w;e)dw= >, Ri(s). theory and observatiofFig. 5). As the rf field strengttF,
=== (2.31) increases, most of the recurrences are systematically weak-
' ened; our calculations show this effect quantitatively. Other
(Sometimes it is convenient to put weighting functions Orcompari_sons between the present calcu_latior_ls, gemiclassical
window functions into the Fourier transform, but in the calculations, and measurements were given in Figs. 3 and 4
present case we have not done this.

of Ref.[1].
Computed and measured recurrence spectra are in exc%[]- In Fig. 5, the recurrences that survivegincreases are
lent agreementsee the next sectign

ose for which the return time is a multiple of the rf period.

This observation was given a semiclassical interpretation in

Ref.[1]. The same observation can also be understood in the

ll. COMPARISON OF SEMIQUANTAL CALCULATIONS semiquantal perspective of the present paper. This interpre-
WITH EXPERIMENT tation is developed in the next section.

The comparison of typical statid~¢=0) scaled absorp-
tion spectra is presented in Fig. 3. We see generally good
agreement, especially in the location of the peaks. The The semiquantal interpretation is based on the following
heights of the peaks in theory and experiment do not alwayfacts, which we discuss in the following subsectiofisThe

IV. INTERPRETATION OF RESULTS
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570
13 (105, 6) (
(106,8)5 (106,4) fi | / (106, 5)
(107, 1) (107,2)/
¥
(108, 0)
FIG. 4. The absorption spectrufecaled energg= —0.4) in the 5 10 15 20 25 30

presence of the rf field witfi,=0.005 andw=1/7~0.32. Two
adjacent periods are shown. The experimental f@kdthe upper Recurrence Number

graphg have been shifted byw=0.1 (see Sec. Ill and Ref9]).

Each progenitor has an easily visible pair of sidebands. Again quan- FIG. 5. Recurrence spectfabsolute squares of Fourier trans-

tum numbers are assigned to progenitors and first sidebdrds ( forms of absorption spectraThey are drawn for various values of

+1) in the lower graph. the scaled rf field amplitud§1=F1/F0 (mirror plot: theoretical
peaks are plotted upright and experimen@& are upside dowm.

scaled absorption spectrum is characterized by enhanced pEhe scaled rf frequency=0.32 is in proportion 1:14.5 to the fre-
riodicity in comparison with the unscaled spectru(in) the ~ duency of the parallel orbit. The graph shows the systematic weak-
scaled rf field generates sidebands that are nearly equalff'in9 of most recurrences, but survival of the 1_4_th and 28th peaks
shifted relative to each other in the scaled spectrin; it of t_he static recurrence spectrum. _These repetitions of the parallel
follows that the scaled absorption spectrum is given by é)l’blt allow the rf field to make an integer number of oscillations.
formula that resembles a convolution sufiw) therefore, the This pregervation rule becomes more selective when the rf field
recurrence spectrum is a product of the static recurrenc@trength Increases.

spectrum times an envelope function. This multiperiodicity becomes more precise if the scaled-

variable absorption spectrum is examined, and in a certain
A. Periodicity of scaled spectra limit this spectrum becomes almost exactly periodic. In

In order to illustrate the enhancement of periodicity in thescaled variables, Ed4.1) looks as follows:

scaled spectrum, let us consider the first-order formula for
the energy levels in a static fie]d 0], €=—

w? 3 n(n;—ny)

ﬁ + 2 W2 (42)

E(ny,ny,Fo)=— %4‘ gn(nl—nz)Fo, (4.1  with scaled parametetsandw defined in Eq.(2.9).
The scaled spectrum is the set of allowed, quantized val-
ues ofwnlnz at any specifiede. Consider the set of states
wheren=n; +n,+|m|+1 is the principal quantum number. havingn,=0, n,=n—1~n. For those state¢the highest-

The Stark spectrum has an approximate multiperiodicity: folenergy, or uphill Stark statgsEq. (4.2) becomes
each fixedn, the levels are equally spaced, and the spacing

between successive levels is nearly constant at largg . _ w? 3 n?
These energy gaps correspond to the two frequencies of mo- €7 o2 + 2 w2 (4.3

tion of the electron, and Fourier transformation of the ab-

sorption spectrum as a function of energy would give peak®e can solve this equation fav,(e), and we findw,(e€)

at the corresponding periods. However, both of these periods c(e)n. The uphill states are evenly spaced in the scaled
depend upon the energy, so the periodicities are not exactpectrum.

We see this most clearly if we fir, and varyn,, for then We already mentioned that this first-order form(#al) is
both terms in Eq(4.1) are quadratic im; . insufficiently accurate for the field strengths considered here.
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It simply illustrates the enhancement of periodicity in thefrequencyw and the scaled rf field strengfy :
scaled-variables spectrum, and this enhanced periodicity

holds also in more precise formulas. Specifically, in the

semiclassical quantization conditio2.6)—(2.7), let us set
n,=0, and then make the approximatigg=1. We find
again an evenly spaced set of eigenvalues,

W =(ny+1/2)/S(e.1) (4.4)

=(n,+1/2)/S(e), 4.5

where S;(e€) =S,(€,1) is the scaled classical action of the

uphill periodic orbit.
The above periodicitfwhich would hold exactly ifn,

e=E&(ny,ny,1;Fo)Fo Y2=Fg Y E(ny,n,,Fo) +lw],
(4.10

(4.11)

As the spectral peaks are always recorded at a fixed value of
the scaled energy, Eq. (2.20 can be rewritten, after divi-
sion by JFgq, as

w=0F,¥ Fi=F,/F,.

(4.12

The values of scaled variable that satisfy Eq.(4.12

e=W2E(ny,Ny, W)+ w/w.

were equal to— 1/2) holds also in gOOd approximation for define the positions of the absorption pea‘ﬂ%,an . The

small positiven,. Aw=1/S,(¢) is the largest “wavelength”

in the scaled spectrum. Therefore the Fourier transform has a
“fundamental” ats=S,(e), and “overtones” of this funda-
mental.(In the present case the fundamental happens to

very weak)

In addition, the eigenvalues are approximately evenly

spaced im,. Equation(2.8) implies

e=E(nl,n2,FO)F51’2=Wﬁ1n2E(n1,nz,wgl‘,ﬁz , (4.9

derivative ofwnl,an with respect tol gives the spacing
between the peaks belonging to neighboring sidebands hav-

pAg the same quantum numbersandn,. By the same kind

of reasoning that was used to obtain E4.9), we obtain

ow/ wlw?3 )

aW/&n]_: &E/&nlz wl(ll,lz)zw_”,

(4.13

which is again constant in the scaled spectrum. Therefore the

and if we differentiate the right-hand side of this equationrf field brings a third constant period into the scaled spec-

with respect tan, or n; holding e fixed, we find

) ﬁw+ﬁEo’?F ow _ JE A
Won ToF owoan, om “.7

SO

(9W/(9n2_ aE(nl,nz,F)/anz_ aH(Il,Iz)/alz_ wz(ll,lz)

(7W/(9n1_ (?E(nl,nz,F)/(?nl_ &H(Il,lz)/(ﬂl_ (1)1('1,'2)
48

_ w(11,0) _ w,(11,0)
wi1(11,00 o

4.9

The last approximation holds i, is small. The scaled spec-

trum. The spacing of sidebands is to the fundamental spacing
as the rf frequency is to the frequency of the parallel orbit.
(There is a subtlety here: in E@.13 o, is the frequency of

the parallel orbit not at the selected value efbut at €’

=e—lw/w. In the present case, this difference is negligible.

Combining Eq.(4.13 with the expression4.5 for the
spacing of progenitors, we find that the sideband spacing,
which is w in the unscaled spectrum, is in the scaled spec-
trum given by

a=——=——= = .
(9' Q)||S| TrfS\ SSb

The formula(4.14) represents the main result of this sub-

trum is defined in just such a way that the frequency raticSection. As the scaled action for the parallel oits con-

(4.9 is fixed, independent of; at fixed e. Therefore the
eigenvalues also have nearly constant spacing,ifl1].

In the case considered=—0.4, the ratio(4.9) is 0.5. It
follows that the sequence of statés,,n,=1) lies about

stant in the scaled spectrum, this formula tells us that all
neighbor sidebands are equally displaced alongvihaxis
with the distance between them equalato This new peri-
odicity must show up in the Fourier spectrum at actisgs

halfway between the statés, ,n,=0). These two sequences =S/ Tr/T;. What will it do to the recurrence spectrum?

together give a Fourier peak s&2S;, which is one of the
strongest peaks in the recurrence spectriimsemiclassical

theory, we say that this happens because we are near a 2/1

bifurcation of the parallel orbik.

B. Sideband spacing in scaled spectra

C. Recurrence spectrum

In the previous section we have shown that Itieside-
band is displaced from the progenitor band by a constant
shift equal tola along thew axis. Now we discuss the effect
of these evenly shifted sidebands on the Fourier transform of

The above periodicity is preserved when the rf field isthe scaled spectrum. We will make several approximations

applied, and another important periodicity appears.
The quasienergies of sidebar@(®,,n,,l;F,) are related
with the energies of progenitoEs(n,,n,,Fy) by Eq.(2.20.

In the scaled-variables measuremigiit the laser frequency,

the static electric field strength, the rf frequencyw and the

that will introduce errors up to few percent in the result but
will also allow us to emphasize the qualitative features of the
effect.

Since we deal with states that are stretched along the ex-
ternal field (quantum numbers,<n,), let us substitute for

rf field amplitude are changed simultaneously in order tothe static polarizabilit)ZEq. (2.15 the value?u for the par-
keep fixed the scaled energyof the final state, the scaled rf allel orbit. We will denote the corresponding scaled value as
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Z,, soz,=w?Z, andz, is constant in a scaled spectrum.

In this way we find that the oscillator strength density for
any sidebandf(w;e) (2.22 is approximately the static
density ofDf.iid W; €) shifted by a multiple ofa along the
w axis, and weighted by the appropriate Bessel function:

+ oo

Dfrf(W;f)ZIZm J?

W"Eli” .
- DfStatiC(W_ Ia, 6).

(4.19

The relevant range ofv in the Fourier transform is small
enough that we can replagein the argument of the Bessel
function by its value at the midpoint of the scaled sean
(the range of such a scan is about 10%ngj.

Then the sum ovel has the structure of a convolution

sum. Not surprisingly, the Fourier transform becomes a

product,

Ri#(S) = Rstaiid S)Rsp(S). (4.16

The first factor in this product is the recurrence spectrum

in static fields only. The second factor in this product,

Fi2

RSb(S):.;w JF(wO )ez’ﬂsa', (4.1
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may be interpreted as the Fourier transform of a single clus-
ter of levels composed of one progenitor and its sidebands. FIG. 6. rf field influence on the absorption and recurrence spec-
To see this, suppose the absorption spectrum consisted oft@ (atomic units are usedAt e=—0.11, the static spectruni

single progenitor that we can place arbitrarilyvat0 to-
gether with its sidebands at=1la. The oscillator-strength
density would then be

T:'lzzH

)5(W—Ia), (4.18

+ oo
Dfgy(w)= 2 le(Wo

=0) consists of an almost perfectly periodic sequencensf0
levels. Its recurrence spectrum is a system of equidistant peaks.
When the rf field is turned on, each progenitetate in the static
spectrum gives rise to a cluster of nearly equally spaced sidebands
(the values of, are shown above each recurrence speciriine
sideband spacing is in proportion &g :w;=1:8. AsF, increases

and the sidebands develop, the static recurrence spectrum is multi-

and the Fourier transform of this quantity gives the expresplied by an envelope function. This envelope function is the Fourier

sion (4.17). We can simplify Eq(4.17 by use of the Bessel-
function sum rulg7],

+ oo

Re(5)= 2 _Jf(q)e =3[ 2q sin(7as)]

=J0(2q sin(7s/ssp))=Jo(2q i 7(T, /T)(s/S)]).
(4.19

transform of a single cluster. The envelope preserves recurrences
having return time equal to a multiple of the period of the rf field
(every eighth peak in our case

=F,z,/hw, which appeared earli¢Egs.(2.16),(2.18] and
which governs the population of sidebands. d\increases,
the weights of sidebands increase and the number of signifi-
cant sidebands increases. The second paramesgg=isl/a

=S, T/T,, which is the inverse of the spacing between

That gives for the squared absolute value of the Fouriefidebands and therefore represents the new periodicity that

transform
|R(S)|?= |Retaiid )| 235((2WoF 12, / )
Xsinf mw(s/S)(Ty /Ty D. (4.20

The maximum value of the Bessel function ifcbmpare
with the intensity conservation rul@.19] and the function
is slowly varying ins, so it generates an “envelope func-
tion,” smoothly modifying the static recurrence spectrum.
Most recurrences are weakened with increasihg but
some are preservegFig. 6).

shows up in the Fourier transform &y, and its multiples. At
smallq, only a few sidebands are significantly populated, so
the Fourier transform is a smoothly varying function that is
largest at these values ef Such a process is illustrated by
Fig. 6. It shows the sharpening of the peaks of the envelope
when the amplitude of the rf fieltand the number of side-
bands increases.

For anyq, the Bessel functiod, is near unity if the sin
contained in its argument is near zero; this happens whgn
near any multiple o, or

n(s)=s/S=m(T/T)), (4.21)

The envelope has a multipeaked structure that is governed

by two parameters. The first parameter gs-woF 7, /o

wherem is any positive integer.
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In the present case, all recurrences occur with actions  We have therefore arrived at comparable formulas in two
that are close to integer multiples 8f; therefore we can different ways. These two derivations emphasize different
regardn(s) as an integer. This formula then says thatrie ~ aspects of the physics of the proble@. In the semiclassical
recurrence survives the disturbance by the rf field if framework, the parameter

nTH:mTrf, (422 eF1|Z((1))|TH/ﬁ (428)

i.e., if its return time is a multiple of the rf periodin other  is @ measure of the change of action on the parallel orbit that
words, this recurrence peak coincides with one of thds induced by the rf field. In the semiquantal framework, the
maxima of the envelopg. parameter

One can expect similar effects in an unscaled absorption _
spectrum in the presence of a weak unscaled rf field because q=eFzT,/f (4.29
the sidebands of the unscaled spectrum are exactly equal

| . .
spaced in energy. e}/ppears in Eq(4.16 as the argument of the Bessel function

J,z(q). Thereforeq is connected to the relative strength of
sidebands; whem~I, the Ith sideband makes the largest
contribution.

The argument of the Bessel function in £4.20) is simi- (b) If in Eq. (4.20 we considen(s) to be an integer, then
lar but not identical to Eq(10) of [1], which was derived the same sin function appears in both semiclassical and semi-
from closed-orbit theory. The envelope function obtainedguantal formulas,
from that theory was

D. Comparison with results of semiclassical theory

Sir(ﬂ'nT”/Trf), (43@
e~ |SINNOT/2)| - . . . . .
2| FZy(w)| ——{Tw |. (4.23  and it vanishes for those orbits having return time equal to a
sin(wT,/2) multiple of the rf period. In the semiclassical theory, those

orbits have their action unchanged by the rf field. In the
In this formulaZ,;(w) denotes the time-averaged ac dipole semiquantal theory, if we examine E@..19, the exponen-
moment of a closed orbizlz(1/T1)fglz(r)e*"”dr, with  tial factor is

period T,. Tilde, as usual, means the scaled quanity: e2misal — g2miIn(s)T /Tyt (4.31)
=Z,w~2, T;=T,w 3. In the present notatiorf (-F ). Eq.
(4.23 applies to any individual orbit, but in the present caseAt values ofs such thatn(s)T,/T, is an integer, then the

all orbits are close to the parallel orbit, so we can replage Sidebands all add in phase, and £2.19 tells us that the

by T, andZ,(a 7 (o). .. recurrence survi\_/es the perturbati(_)n. In this way the spgcing
c%sgd-?)?bit %r(]:grsxsz”(w) Then the envelope function in -t e en progenitors becomes unimportéa the progeni-

tors disappear while the nearly constant spacing between

noT /2 sidebands dominates the Fourier transform.
B2 FiZ(w) sinnwT,/2) T,w (4.24) Thus the semiclassical closed-orbit theory and the present
0 sin(wT,/2) semiquantal theory give complementary interpretations of

the observed phenomena, one in terms of the change of ac-
Equation(4.20 is a low-frequency limit of this formula. If tion on closed orbits, and the other in terms of the develop-
the period of the rf field is long compared to the return timement of clusters of quasienergy levels.
of the orbit, then
. . o V. CONCLUSION
siwTf2) = (oT/2)= (7T /Ty), (4.29 _

Following is a summary of the theory developed
and the ac dipole moment of the orbit goes to the statidiere. (1) Energy levels in a static electric field can be cal-
dipole moment, culated from familiar Bohr-SommerfeldKB) quantization

conditions; each level is labeled by quantum numbers
Z(0)—7Z,(0)=Z,. (429  (ny,n;,m)=(n,m). (2) Intensities(oscillator strengthsin
the static field can be calculated from a new semiclassical
If also the measured range wf is small, we can replace formula that we derived recentf6]. (3) With the rf field

W— W, to obtain added, each Stark energy level, which we call a progenitor, is
split into a series of equally spaced sidebands having energy
J%((ZFli,‘/w)sin( anT, /T ) Wo). 4.2 E, =E,t+lfw. These are the quasienergy state@l) The

intensity in each sideband is that for the unperturbed pro-
In this formulan is an integer, referring to theth repetition  genitor times a Bessel functio)y of an argument that de-
of the parallel orbit. In the present case all the recurrencepends onn. (5) These quasienergies and their intensities
occur near reduced actioss which are multiples of5;, s can be calculated in scaled variables.
=nS,, or n=s/S; at a recurrence. Thus we arrive at Eq. The above calculation of the spectrum of quasienergy lev-
(4.20 as a low-frequency approximation to E@.24). [Of  els and their intensitieéin scaled or unscaled variabjeis
the two, we believe that E¢4.24), from closed-orbit theory, what we call the semiquantal method. Calculations show that
is the more accurate and the more general formi®3. ] the resulting absorption spectrum and its Fourier transform
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are in good agreement with experiments, and with semiclas- There exists a very efficient method of the arithmetical-

sical calculations reported iri]. geometrical mean to calculate these integféls
This method, however, does not give much physical in-
sight, and, in particular, we cannot see directly why certain 1. Action variables

recurrences are weakened while others are preserved by the_l_he action variables for bounded motion in the Stark
rf field. Additional approximations are needed to get a physi- | h the f (E 2 2.(2.5- all notation i

cal understanding of the results. With these additional appro_b em have the ornicf. Eqs.(2.4,(2.5); all notation is
proximations, we show the following:(6) The scaled- defined in Sec. ||

variables absorption spectrum is nearly periodigvinStatic 1

energy levels are almost uniformly spacednin and side- Iu=wSu=2— f p,du

bands are almost uniformly spacedin (7) The absorption T Josc
spectrum in the rf field is a superposition of the spectrum of 1 (u
progenitors and the spectrum of sidebands; this sum has the =— f V2(1+ B)+2Eu?—Fu?du, (A3)
form of a convolution. Therefore the recurrence spectrum in mJo

the rf field is a product,

1
Ri#(S) = Rstatid S)Rsu(S)- IU:WSU:E foscpvdv

The first factor is the recurrence spectrum in the static field.
The second factor gives a more-slowly-varying envelope
function, which is the Fourier transform of the spectrum of
sidebands arising from a single progenitor. These classical formulas are easily derived from the quantum

(8) This envelope functiofRs,(s) turns out to be a Bessel Schralinger equation using the Langer-modified WKB ap-
function J, of a complicated argument. The argument is theproximation.
low-frequency limit of that obtained in the semiclassical A simple transformation allows us to express the action
theory. That envelope function contains two parameters: ongariables via elliptic integrals defined above:
is related to the strength of the sidebands relative to the pro-
genitor(and to the number of significant sidebaydand the vz N 5
other is related to the spacing of the sidebands. The spacing Su:;g_ﬂ.['E +2(1+ B (Ve +2(1+ B) — e)K(my)
parametes,, has the effect of selecting recurrences that sur-
vive the perturbation. As the strength paramegéncreases, +2eE(m,)], (AS)
the preservation of recurrences becomes more selective, con-
serving recurrences in an ever narrower band.

(9) The evenly spaced sequence of sidebands produces in
the scaled absorption spectrum a new periodicity that is not
present in the static spectrum. This periodicity of course +eE(m,)], (A6)
shows up in the Fourier transform. Its effect on the recur-
rence spectrum is to preserve those recurrences whose retd

1 v
- foo\/2(1—3)+2Ev2+Fv4dv. (A4)

2
S,=— 5= We—2(1- )~ e[ V&—2(1- HK(m,)

ere

time is a multiple of the rf period. 1
Thus we give a semiquantal explanation of the most strik- m,== ( 1+ £ , (A7)
ing feature of the experimental observations. 2 Jel+2(1+B)
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over the integrals of motiol, 8 and external electric field
APPENDIX strengthF. We list here expressions for these derivatives via

semiclassical functions via complete elliptic integrals of thePOSSible an efficient calculation of Jacobians.
first kind K(m) and the second kin&(m), The separation of motion in parabolic coordinatgsd)

involves the introduction of a new time variabtethat is
w2 related with the real laboratory time by the relationdr
K(m):f (1—m sir? t)~ Y2t (A1)  =dt/r. In parabolic momentg, andp, the combinations
0 2(1+ B) and 2(1- B), respectively, play the role of energy.
That is why the derivatives of the action variabl@s8) and

E(m)=fﬂ/2(1—m sir? t)Y2dt. (A2) (A4) with respect to the separation constghigive, to a
0 constant factor, the “canonical periods” of motigin 7)
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along the parabolic coordinates: laboratory timet=R between closures, it is equal @
=mR,+nR, where, generallynR,#nR,. When the ejec-
/o= T4, (A9 tion angled— 0, the ratio of canonical periods, /7, has a
| 19B=— 7 /4 A10 nonzero limit, but the rati®, /R, tends to zero. Therefore in
Ny lop=—r,l4m (AL0)  that limit, R, is the real return time of the parallel orbit,
with which we callT;.
The derivatives with respect to external electric field
y, 7, W 232K (my) strength can be calculated according to the following formu-
9B An An[ET2(1+ B (All)  Jas:
dl [2+2(1+p)]"
dl T, w 4K(m,) L P i
v v 1 +
W ( (A1 SE=W >3 4e—\e+2(1+B)
JB 47 4 \/ /62—2(1—ﬂ)—6 e
€
i - ———|K(my)—8€eE(m,) |, (A17)
\(/ste)re the parametemrs, and m, are defined by(A7) and 21 2(11 8) (my (my
These quantities do not represent real time, but the quasi- \/ 5
time that is used for regularizing the motion in parabolicdly VVe*—2(1—B)—€ 5
coordinates. Y 67 [(Ve"=2(1—p)—3e)K(m,)
The derivatives of these action variables with respect to
energy are also useful. These derivatives give quantities that  +4eE(m,)]. (A18)
have units of real, laboratory time, and we denote thiem
andR, : 3. Parameters of the parallel orbit
al IE=R /2, (A13) The parallel orbit corresponds to zero ejection angle
=0, B=1). Of course, this orbit by itself does not represent
al,10E=R,/[27 (A14) any quantum state because that would violate the uncertainty
. principle. However, the parameters of this orbit are relevant
with to our calculations because they serve as good approximation
V3 to parameters of the states that are stretched uphill along the
=w3 Je2 field axis(the states witm,=0). So we have
RU W [62+2(1+B)]14[2 € +2(1+ﬁ)E(mu) 2
—(Veo+2(1+B)—e)K(m,)], (A15)
This expression has a very simple limit when-0:
w3 2_ Ay — _
R,= w2\ V= 2(1—B)— e[ K(m,) ~E(m,)]. =371 20,

(A16)

However, these formulas must be interpreted with caution. In As forz,, its expressiori2.15 also becomes more simple
generalR, and R, do not represent the natural periods of wheng=1:
motion. The period associated withu motion is

277/(¢9E/alu),v wherea,, is 27/(JE/Jl ) ;. These are not

equal. where the expressiori#17) and(A15) with 8=1 should be
It follows that there are different rules of operation with ysed. These expressions show that the scaled quantity

canonical periods,, , and “ersatz-real-time-periodsR, , . =le‘2 depends only on the scaled energgnd therefore

If we Qeal with a closed orbit Witmloscillations along the is constant along the scaled scan. Again, in the lignit0
coordinate andh along thev coordinate before closure, we we have a very simple result,

can write thatmr,=nr, and the total canonical time be-
tween the closures is equal eitlrer, ornr, . As for the real z,=0.116. (A22)

7,=—(d1,/9F)IR,(B=1), (A21)
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