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Scaled-energy Floquet spectroscopy in a strong electric field:
A semiquantal calculation of the recurrence spectrum

Vladimir Kondratovich and John B. Delos
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187

~Received 25 September 1997!

We consider a hydrogen atom in a strong static electric field with a weak parallel radio-frequency~rf! field.
We compute the photoabsorption spectrum by calculating the spectrum of Floquet states, including their
quasienergies and their oscillator strengths. Our calculation is based upon ‘‘semiquantal’’ formulas: we calcu-
late the discrete spectrum of quasienergy states by using a quantum adiabatic approximation combined with
semiclassical~Bohr-Sommerfeld! quantization rules. We express this spectrum in a manner consistent with the
method of scaled-variable spectroscopy, and then calculate the Fourier transform. These calculated absorption
spectra and recurrence spectra are in good agreement with experiments on Li atoms. Additional approximations
show that the recurrence spectrum is approximately equal to the product of the recurrence spectrum in a static
field times an envelope function. That envelope function is the Fourier transform of a cluster of sidebands
surrounding a progenitor level in the rf field. The resulting formula agrees with the low-frequency limit of a
formula obtained from a semiclassical treatment.@S1050-2947~98!07406-X#

PACS number~s!: 32.60.1i, 32.80.Rm, 03.65.Sq

I. INTRODUCTION

In a recent experiment@1#, the absorption spectrum of Li
atoms was measured in the presence of a combined static and
oscillating electric field. First the Li was excited 2s→2p
→3s, and then excited again by a linearly polarized tunable
laser into high Rydberg states having a principal quantum
number of approximately 100–130 and magnetic quantum
number m50 ~polarization parallel to the static electric
field!. This absorption spectrum was measured by the scaled-
variables method~varying the energyE and the electric-field
strengthF0 to keep the scaled energye5E/F0

1/2 fixed, and
plotting absorption versusw5F0

21/4!. Similar measurements
~but not using scaled variables! have been made by Zhang
et al. @2,3#.

The absolute square of the Fourier transform of the ab-
sorption spectrum is the ‘‘recurrence spectrum’’; it has peaks
corresponding to the classical actions of closed orbits of the
electron, and the height of each peak is called the ‘‘recur-
rence strength’’ of that orbit. This recurrence spectrum was
measured with a static field, and then with increasing
strengths of the oscillating field, polarized parallel to the
static field. With the static field only, the recurrence spec-
trum consists of a sequence of strong, nearly equally spaced
peaks. As the strength of the oscillating field was increased,
most of these recurrence peaks were reduced in a systematic
fashion, but certain peaks remained: it was found that recur-
rence peaks would survive if the return time of the associated
classical orbit was a multiple of the period of the oscillating
field.

This phenomenon was given an explanation in@1# by ex-
tending ‘‘closed-orbit theory’’@4# to time-dependent sys-
tems. We call closed-orbit theory a ‘‘semiclassical’’ theory;
in that method we calculate recurrence spectra directly from
three-dimensional classical trajectories. In the present paper
we approach the phenomena from a complementary perspec-
tive, which we call a ‘‘semiquantal’’ framework. We sepa-

rate variables in semiparabolic coordinates and use a WKB
approximation to obtain quantized energy levels in the static
field. We also use a semiclassical formula for the oscillator
strength of each quantum state. We then consider the effect
of the oscillating field on these levels and strengths in an
adiabatic approximation. The oscillating field splits each en-
ergy level into clusters of sidebands, called ‘‘quasienergy
states.’’ Then the Fourier transform of this scaled absorption
spectrum gives us finally the recurrence spectrum.

We call this approach ‘‘semiquantal’’ partly to distinguish
it from the semiclassical ideas used in closed-orbit theory. In
the present approach, although we use the WKB approxima-
tion, the focus is on quantized energy levels, and on their
associated quasienergy states in the oscillating field. Thus we
see more of quantum mechanics in the concepts and spirit of
the present approach than appears in the implementation of
closed-orbit theory.

The plan of the paper is as follows.
In Sec. II A, the WKB approximation is used to calculate

the quantized energy levels in the static field@5# and a re-
cently developed semiclassical formula@6# is used to calcu-
late the associated oscillator strengths. These static-field lev-
els are ‘‘progenitors’’ of quasienergy states in the oscillating
field.

In Sec. II B, quasienergy states are calculated using a ‘‘di-
agonal’’ approximation, which is most appropriate if the fre-
quency of the rf field is low compared to the frequencies of
the unperturbed system~these approximations might also be
valid more generally!. The energy of each progenitor oscil-
lates sinusoidally in time at the frequency of the rf field, with
an amplitude proportional to the dipole moment of that quan-
tum state. This time dependence constitutes a ‘‘frequency
modulation’’ of the time dependence of the quantum state,
which splits the progenitor into sidebands. The sidebands are
equally spaced in energy, and they are weighted by Bessel
functions. Thus each progenitor is split into a cluster.

The spectrum can be calculated in the standard way~fixed
field strengths, varying energies!, or in the scaled-variables
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framework. These calculations are in good agreement with
the measurements~Sec. III!.

Further interpretation requires additional approximations
~Sec. IV!. We show that the scaled-variables absorption
spectrum has an enhanced periodicity compared to the un-
scaled spectrum~Sec. IV A!, and we show that the sidebands
are again nearly equally spaced in the scaled spectrum~Sec.
IV B !. If we make the approximation that all of the clusters
have the same structure, then the absorption spectrum in the
rf field becomes a convolution of the static spectrum with the
spectrum of a single cluster~Sec. IV C!. Therefore the Fou-
rier transform of the absorption spectrum is a product of the
static Fourier transform times the Fourier transform of a
single cluster. Thus the static recurrence spectrum is multi-
plied by an envelope function.

That envelope function contains two parameters: one is
related to the strength of the sidebands relative to the pro-
genitor~and to the number of significant sidebands!, and the
other is related to the spacing of the sidebands. The net result
is that those recurrence peaks are preserved that have return
times close to a multiple of the period of the driving field.
Finally, in Sec. IV D we show that the simplified semiquan-
tal formula agrees with the low-frequency limit of semiclas-
sical theory@1#.

Some analytical expressions used in these semiquantal
calculations are given in the Appendix.

II. FLOQUET SPECTRUM IN STRONG DC
AND WEAK rf FIELDS

In the presence of an external homogeneous static electric
field F directed along thez axis, the Hamiltonian of a hy-
drogen atom takes the form

Hstatic5
p2

2
2

1

r
1F0z. ~2.1!

Hereafter we use atomic units~\51, e51, me51!. If, in
addition, an rf field polarized along the static one is present,
the time-dependent Hamiltonian is

H~ t !5Hstatic1F1z cosvt ~2.2!

with F1 denoting the amplitude andv the frequency of the rf
field. In order to be as close as possible to the experiment@1#
on the Li atom, we take the initial state to be the 3s state of
hydrogen, and we consider the case that the electric field of
the laser is also polarized parallel to the static electric field,
so thatml5Lz /\50.

A. Absorption spectrum in a static field

Consider first the spectrum of the Hamiltonian~2.1!. The
potential energy has a saddle point atz521/AF0, Es5
22AF0. Below this saddle energy, the electric fieldF0 splits
the unperturbed Coulomb energy levels into manifolds of
quasidiscrete levels. Above this energyE5Es , the higher-
energy quasidiscrete levels of each manifold survive, but the
lower-energy levels in each manifold are broadened into a
smooth continuum.

The quasidiscrete levels can be calculated from semiclas-
sical quantization conditions@6#. This makes use of the sepa-

rability of Hamiltonian~2.1! in semiparabolic coordinates

u25r 1z, v25r 2z. ~2.3!

Each state can be labeled by two parabolic quantum numbers
(n1 ,n2) ~the magnetic quantum numberm equals zero!. The
Bohr-Sommerfeld quantization conditions take the form

I u~w,e,b!5
1

p E
0

u0A2~11b!12Eu22F0u4du5n11 1
2 ,

~2.4!

I v~w,e,b!5
1

p E
0

v0A2~12b!12Ev21F0v4dv5n21 1
2 ,

~2.5!

where (u0 ,v0) are the turning points of theu or v motions
~first zero of the integrand!; b is the separation constant,
21<b<1. These equations can be rewritten in the scaled
form:

I u~w,e,b!5wSu~e,b!5n11 1
2 , ~2.6!

I v~w,e,b!5wSv~e,b!5n21 1
2 ~2.7!

with the scaled energye and scaled variablew defined as

e5E/AF0, w5F0
21/4. ~2.8!

The scaled action variablesSu and Sv have convenient ex-
pressions through the elliptic integrals of Jacobi~see Appen-
dix!.

The two quantization conditions~2.4! and ~2.5! lead to
quantized values of bothe andb ~or E andb!. The separa-
tion constantb has an important physical meaning. If we
write bn5cosun , then un is the angle at which thenth
eigentrajectory intersects the nucleus; i.e., an electron ejected
from the nucleus with energyEn at angleun from thez axis
will find itself traveling on thenth eigentrajectory.

Figure 1 illustrates the development of a Stark manifold
when the external electric fieldF0 increases from zero. For
small F0 , each level in the Stark manifold diverges linearly
from its pure-Coulomb limit. AsF0 increases, we see sig-
nificant curvature. The semiclassical system of Eqs.~2.6! and
~2.7! defines the position of quasidiscrete levels for strong
external fields, when the linear~first-order perturbation
theory! approximation does not give reliable results. Each
Stark level ends at a critical electric field strength where it
reaches the top of an effective potential-energy barrier in the
v coordinate. For electric fields greater than the critical value
~which depends onn1 and n2!, each level broadens rapidly
and disappears into the continuum.

Figure 1 also shows that well above the saddle energyEs ,
and all the way up toE50, there are many peaks belonging
to the quasidiscrete spectrum. These peaks are a dominant
structure of the absorption spectrum in this region, and they
are the structure that produces the recurrences. Therefore, for
this paper we can ignore the continuous background, and pay
primary attention to these quasidiscrete lines in the absorp-
tion spectrum.
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The oscillator-strength densityD f for the transition from
an initial statei to the Stark staten5(n1 ,n2) by z-polarized
light is given by the formula

D f static~E!5(
n

f n1 ,n2

i d~E2En!, ~2.9!

where the oscillator strength is defined as

f n1 ,n2

i 52~En2Ei!z^cnuDuc i& z2 ~2.10!

with D denoting here the dipole operator.
In another paper, we show that this oscillator strength can

be written in a different form,

f n1 ,n2

i 58p~En2Ei!U ]~b,E!

]~ I u ,I v!
UuY~un!u2, ~2.11!

whereuY(u)u2 is the function defined in closed-orbit theory
as the angular distribution of outgoing waves@4#, Eq.
~5.13b!. This function is evaluated at the quantized ejection
angle of thenth eigentrajectory.

B. Absorption spectrum in the oscillating field

Let us consider the case that the frequency of the oscillat-
ing field is low compared to the orbital frequencies of the
electron. Then an adiabatic approximation makes sense. Let
cn1n2F0

(q) be an eigenfunction of Eq.~2.1! with eigenvalue

E(n1 ,n2 ,F0). The adiabatic approximation tells us that the
function

cad~q,t !5cn1n2F~ t !~q!expF2 i E t

E„n1 ,n2 ,F~ t8!…dt8G
~2.12!

is an approximate solution to the time-dependent Schro¨-
dinger equation with Hamiltonian~2.2! @here F(t)5F0
1F1 cosvt#.

If the oscillating field is weak, we may expand the energy
eigenvalue in powers ofF1 near the static field strengthF0 :

E„n1 ,n2 ,F~ t8!…5E~n1 ,n2 ,F01F1 cosvt8!

'E~n1 ,n2 ,F0!

1
]E~n1 ,n2 ,F0!

]F
F1 cosvt8.

~2.13!

The derivative

]E~n1 ,n2 ,F !/]F[ z̄~n1 ,n2 ,F ! ~2.14!

is the static polarizability of then1 ,n2 level. One might be
tempted to replace it by its value atF50, but for the rela-
tively strong fields considered here, this approximation is not
accurate~it gives errors up to 40%!. The Bohr-Sommerfeld
quantization conditions allow us to find an analytical expres-
sion for this static polarizability in a strong electric field:

z̄[ z̄~n1 ,n2 ,F !5
]E~n1 ,n2 ,F !

]F
52

]~ I u ,I v!

]~F,b! Y ]~ I u ,I v!

]~E,b!
.

~2.15!

All derivatives entering Eq.~2.15! have convenient expres-
sions as Jacobi elliptic integrals, which allow easy and rapid
calculation. These expressions can be found in the Appendix.

Substituting Eq.~2.13! into Eq. ~2.12!, we obtain a sin
function in an exponent, which can be expanded in a Fourier
series@3#,

exp„2 i ~F1z̄/v!sin vt…5 (
l 52`

1`

Jl~F1z̄/v!exp~2 i l vt !,

~2.16!

where, as usual,Jl(x) denotes the Bessel function.
Now we make an additional approximation. We propose

that the adiabatically adjusting functioncn1n2F(t)(q) can be

replaced by the eigenfunction in the static fieldcn1n2F0
(q).

We can justify this because we will only use the eigenfunc-
tions to calculate dipole overlap integrals^n1n2F(t)uzu i & in
Eq. ~2.10!. These overlap integrals depend upon the form of
the eigenfunction in a small region (;10a0) around the
nucleus. The adiabatic eigenfunctions might change substan-

FIG. 1. Energies of a manifold of Stark states as a function of
electric field strength~see Sec. II A!. The levels are cut off when
they start to rapidly broaden. Two lines of fixed scaled energye
5E/AF are shown. The energy of the saddle point corresponds to
e522. Most of the present calculations and measurements were
made neare520.4, where only a few ‘‘uphill’’ states survive.
Energy E is given in 1025 a.u. and static field strengthF0 in
10210 a.u.
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tially near their outer turning points, but they do not change
very much in this small region near the nucleus.

It follows that each adiabatic eigenfunction, together with
its phase, can be interpreted as a superposition of quasien-
ergy states,

cad~q,t !5cn1n2F0
~q! (

l 52`

1`

Jl~F1z̄/v!

3exp$2 i @E~n1 ,n2 ,F0!1 lv#t%. ~2.17!

The superposition consists of a ‘‘progenitor’’ state~the one
with l 50! and a set of sidebandslÞ0, equally spaced in
quasienergy. In our approximation, the progenitor and the
sidebands all have the same spatial dependence. The side-
bands are weighted compared to the progenitor level by the
Bessel functions,

Jl
2~q!:J0

2~q!. ~2.18!

This ratio is determined by the parameterq5F1z̄/\v, in
other words, by the ratio of the maximal energy of a static
dipole with momentz̄ in the static field of strengthF1 to the
energy interval\v between sidebands. For weak rf fields the
amplitudes of sidebands are low, having the order of magni-
tudequ l u/2u l uu l u! whereas for higher rf field strengths the pro-
genitor level may even disappear. However, all intensities
satisfy the sum rule@7#

(
l 52`

1`

Jl
2~q!51 ~2.19!

for all values ofq. That means that intensity~in particular,
the absorption rate or oscillator strength! moves from the
progenitor to the sidebands asq increases, but the total in-
tensity is conserved as the parameters of the rf field vary.

It follows that the absorption spectrum is split from the
progenitor level into the sidebands. In the rf field the atom in
the 3s state will absorb a laser photon of frequency\vL
5E(n1 ,n2 ,l ;F0)2E3s to go into a state of quasienergy

E~n1 ,n2 ,l ;F0!5E~n1 ,n2 ,F0!1 lv. ~2.20!

The oscillator strength for this transition is the oscillator
strength for the progenitor weighted by the Bessel functions,

f n1 ,n2 ,l
i 5 f n1 ,n2

i Jl
2~F1z̄/v!, ~2.21!

where f n1 ,n2

i is the oscillator strength for absorption into the

(n1 ,n2) state in the absence of the rf field.
According to the expressions~2.21!, ~2.20!, ~2.10!, and

~2.11! we can introduce the oscillator-strength density of the
l th sideband~l 50 here gives the strength for the band of dc
progenitor levels! in the external rf field as

D f l~E;F !58p (
n1 ,n2

~E2Ei!Jl
2S F1z̄

v
D

3U ]~E,b!

]~ I u ,I v!
UuY~un1 ,n2 ,l !u2

3d$E2@E~n1 ,n2 ,F0!1 lv#%. ~2.22!

The sum over the progenitor and sidebands gives us the
oscillator-strength density in the presence of the rf field,

D f rf~E!5 (
l 52`

1`

D f l~E!. ~2.23!

The final formula~2.23! gives a very simple picture of the
quasidiscrete absorption spectrum in presence of the com-
bined dc and rf fields. We just have to superimpose the spec-
tral scan for the static field with equivalent scans that have
been shifted along the energy axis by a multiple of\v and
then properly weight the peaks. The weights primarily de-
pend onl , the label of the sideband, but they have a slight
dependence onn1 , n2 andF through Eq.~2.15! and through
the dependence ofun1 ,n2 ,l on n1 ,n2 .

The procedure for calculating the scaled-variable absorp-
tion spectrum is, then, the following.~i! Fixing e, find wn
and bn5cosun satisfying the quantization conditions~2.6!
and~2.7!; these are the progenitor levels.~ii ! For each, evalu-
ate z̄(n1 ,n2 ,F0) using Eq.~2.15! and the Appendix. Also
evaluateu](E,b)/](I u ,I v)u ~which is slowly varying! and
Y(un). This data in Eq.~2.22! gives the static spectrum.~iii !
For lÞ0, the quantization conditions are replaced by

I „wn,l ,e8~e,wn,l !,bn,l…5n11/2, ~2.24!

e8~e,wn,l !5e2 l ṽ/wn,l . ~2.25!

The above equations mean that we find the progenitor of the
l th sideband at a scaled energye8 that differs from the value
e fixed in the scaled spectrum~see Fig. 2!.

In Eq. ~2.22! we artificially broaden thed functions to
model the experimental resolution. Let

D f static~w;e!5D f static„E~w;e!;F~w!…, ~2.26!

D f l~w;e!5D f l„E~w;e!;F~w!…, ~2.27!

D f rf~w;e!5 (
l 52`

1`

D f l~w;e! ~2.28!

represent the scaled absorption spectrum obtained in this
way. The recurrence spectrum is then the Fourier transform
of D f rf(w;e) over a selected range ofw,

Rl~s!5E e22p iswD f l~w;e!dw, ~2.29!

Rstatic~s!5E e22p iswD f static~w;e!dw, ~2.30!
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Rrf~s!5E e22p iswD f rf~w;e!dw5 (
l 52`

1`

Rl~s!.

~2.31!

~Sometimes it is convenient to put weighting functions or
window functions into the Fourier transform, but in the
present case we have not done this.!

Computed and measured recurrence spectra are in excel-
lent agreement~see the next section!.

III. COMPARISON OF SEMIQUANTAL CALCULATIONS
WITH EXPERIMENT

The comparison of typical static (F150) scaled absorp-
tion spectra is presented in Fig. 3. We see generally good
agreement, especially in the location of the peaks. The
heights of the peaks in theory and experiment do not always

agree so well, but this experiment was not optimized for the
measurement of peak heights.

Both theoretical and experimental spectra are remarkably
periodic in the scaled variablew. In order to show this, we
superimpose in Fig. 3 two adjacent periods of theoretical and
experimental spectra. This periodicity is explained in Sec.
IV A.

The scaled absorption spectra in the presence of the rf
field are also in good agreement, as shown in Fig. 4. How-
ever, we had to shift the experimental spectrum to the right
by dw50.1 to make it match the theory@9#.

The experiment was designed for the measurement of re-
currence spectra, and we find excellent agreement between
theory and observation~Fig. 5!. As the rf field strengthF1
increases, most of the recurrences are systematically weak-
ened; our calculations show this effect quantitatively. Other
comparisons between the present calculations, semiclassical
calculations, and measurements were given in Figs. 3 and 4
of Ref. @1#.

In Fig. 5, the recurrences that survive asF1 increases are
those for which the return time is a multiple of the rf period.
This observation was given a semiclassical interpretation in
Ref. @1#. The same observation can also be understood in the
semiquantal perspective of the present paper. This interpre-
tation is developed in the next section.

IV. INTERPRETATION OF RESULTS

The semiquantal interpretation is based on the following
facts, which we discuss in the following subsections:~i! The

FIG. 2. Diagram representing the calculation of a scaled spec-
trum with sidebands~see Sec. II B!. The heavy curve represents a
fixed scaled energy. Four Stark levels are shown~solid lines!, each
with two sidebands~dashed lines!. Each progenitor intersects the
scaled-energy curve at a point marked by a solid dot. The corre-
sponding value ofw5F21/4 gives the location of this progenitor in
the scaled spectrum. At any value ofF0 , the ~quasi!energy of the
l th sideband is related with the energy of its progenitor asEl5E
1 lv. Because of the scaling method used, this spacing between
progenitor and sidebands increases withF as F3/4. Each sideband
intersects the scaled-energy curve at a point marked by a hollow
dot. This connection is shown as vertical dashed lines. In scaled
form, it adds another quantization condition@Eq. ~2.25!# to the
Bohr-Sommerfeld equations~2.24!.

FIG. 3. The absorption spectrum is nearly periodic in the scaled
variable w5F0

21/4; the period is the spacing between the (n1,0)
and the (n111,0) states. Here is the static absorption spectrum~no
rf field! with two adjacent periods compared. Atomic units used.
~The upper line on each graph represents the experimental data@8#,
lower is our calculation, with peaks artificially broadened to imitate
the experimental resolution.! Quantum numbers are assigned in the
lower graph.
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scaled absorption spectrum is characterized by enhanced pe-
riodicity in comparison with the unscaled spectrum;~ii ! the
scaled rf field generates sidebands that are nearly equally
shifted relative to each other in the scaled spectrum;~iii ! it
follows that the scaled absorption spectrum is given by a
formula that resembles a convolution sum;~iv! therefore, the
recurrence spectrum is a product of the static recurrence
spectrum times an envelope function.

A. Periodicity of scaled spectra

In order to illustrate the enhancement of periodicity in the
scaled spectrum, let us consider the first-order formula for
the energy levels in a static field@10#,

E~n1 ,n2 ,F0!52
1

2n2 1
3

2
n~n12n2!F0 , ~4.1!

wheren5n11n21umu11 is the principal quantum number.
The Stark spectrum has an approximate multiperiodicity: for
each fixedn, the levels are equally spaced, and the spacing
between successiven levels is nearly constant at largen1 .
These energy gaps correspond to the two frequencies of mo-
tion of the electron, and Fourier transformation of the ab-
sorption spectrum as a function of energy would give peaks
at the corresponding periods. However, both of these periods
depend upon the energy, so the periodicities are not exact.
We see this most clearly if we fixn2 and varyn1 , for then
both terms in Eq.~4.1! are quadratic inn1 .

This multiperiodicity becomes more precise if the scaled-
variable absorption spectrum is examined, and in a certain
limit this spectrum becomes almost exactly periodic. In
scaled variables, Eq.~4.1! looks as follows:

e52
w2

2n2 1
3

2

n~n12n2!

w2 ~4.2!

with scaled parameterse andw defined in Eq.~2.8!.
The scaled spectrum is the set of allowed, quantized val-

ues of wn1n2
at any specifiede. Consider the set of states

having n250, n15n21'n. For those states~the highest-
energy, or uphill Stark states!, Eq. ~4.2! becomes

e52
w2

2n2 1
3

2

n2

w2 . ~4.3!

We can solve this equation forwn(e), and we findwn(e)
5c(e)n. The uphill states are evenly spaced in the scaled
spectrum.

We already mentioned that this first-order formula~4.1! is
insufficiently accurate for the field strengths considered here.

FIG. 4. The absorption spectrum~scaled energye520.4! in the

presence of the rf field withF̃150.005 andṽ51/p'0.32. Two
adjacent periods are shown. The experimental data@8# ~the upper
graphs! have been shifted bydw50.1 ~see Sec. III and Ref.@9#!.
Each progenitor has an easily visible pair of sidebands. Again quan-
tum numbers are assigned to progenitors and first sidebands (l 5
61) in the lower graph.

FIG. 5. Recurrence spectra~absolute squares of Fourier trans-
forms of absorption spectra!. They are drawn for various values of

the scaled rf field amplitudeF̃15F1 /F0 ~mirror plot: theoretical
peaks are plotted upright and experimental@8# are upside down.!

The scaled rf frequencyṽ50.32 is in proportion 1:14.5 to the fre-
quency of the parallel orbit. The graph shows the systematic weak-
ening of most recurrences, but survival of the 14th and 28th peaks
of the static recurrence spectrum. These repetitions of the parallel
orbit allow the rf field to make an integer number of oscillations.
This preservation rule becomes more selective when the rf field
strength increases.
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It simply illustrates the enhancement of periodicity in the
scaled-variables spectrum, and this enhanced periodicity
holds also in more precise formulas. Specifically, in the
semiclassical quantization conditions~2.6!–~2.7!, let us set
n250, and then make the approximationb.1. We find
again an evenly spaced set of eigenvalues,

wn1
5~n111/2!/Su~e,1! ~4.4!

[~n111/2!/Si~e!, ~4.5!

where Si(e)5Su(e,1) is the scaled classical action of the
uphill periodic orbit.

The above periodicity~which would hold exactly ifn2
were equal to21/2! holds also in good approximation for
small positiven2 . Dw51/Si(e) is the largest ‘‘wavelength’’
in the scaled spectrum. Therefore the Fourier transform has a
‘‘fundamental’’ ats5Si(e), and ‘‘overtones’’ of this funda-
mental.~In the present case the fundamental happens to be
very weak.!

In addition, the eigenvalues are approximately evenly
spaced inn2 . Equation~2.8! implies

e5E~n1 ,n2 ,F0!F0
21/25wn1n2

2 E~n1 ,n2 ,wn1n2

24 !, ~4.6!

and if we differentiate the right-hand side of this equation
with respect ton2 or n1 holding e fixed, we find

2w
]w

]ni
1

]E

]F

]F

]w

]w

]ni
52

]E

]ni
w2, ~4.7!

so

]w/]n2

]w/]n1
5

]E~n1 ,n2 ,F !/]n2

]E~n1 ,n2 ,F !/]n1
5

]H~ I 1 ,I 2!/]I 2

]H~ I 1 ,I 2!/]I 1
5

v2~ I 1 ,I 2!

v1~ I 1 ,I 2!
~4.8!

.
v2~ I 1 ,0!

v1~ I 1 ,0!
[

v2~ I 1 ,0!

v i
. ~4.9!

The last approximation holds ifI 2 is small. The scaled spec-
trum is defined in just such a way that the frequency ratio
~4.9! is fixed, independent ofI 1 at fixed e. Therefore the
eigenvalues also have nearly constant spacing inn2 @11#.

In the case considered,e520.4, the ratio~4.9! is 0.5. It
follows that the sequence of states~n1 ,n251! lies about
halfway between the states~n1 ,n250!. These two sequences
together give a Fourier peak ats52Si , which is one of the
strongest peaks in the recurrence spectrum.~In semiclassical
theory, we say that this happens because we are near a 2/1
bifurcation of the parallel orbit.!

B. Sideband spacing in scaled spectra

The above periodicity is preserved when the rf field is
applied, and another important periodicity appears.

The quasienergies of sidebandsE(n1 ,n2 ,l ;F0) are related
with the energies of progenitorsE(n1 ,n2 ,F0) by Eq. ~2.20!.
In the scaled-variables measurement@1#, the laser frequency,
the static electric field strengthF, the rf frequencyv and the
rf field amplitude are changed simultaneously in order to
keep fixed the scaled energye of the final state, the scaled rf

frequencyṽ and the scaled rf field strengthF̃1 :

e5E~n1 ,n2 ,l ;F0!F0
21/25F0

21/2@E~n1 ,n2 ,F0!1 lv#,
~4.10!

ṽ5vF0
23/4, F̃15F1 /F0 . ~4.11!

As the spectral peaks are always recorded at a fixed value of
the scaled energye, Eq. ~2.20! can be rewritten, after divi-
sion byAF0, as

e5w2E~n1 ,n2 ,w!1 l ṽ/w. ~4.12!

The values of scaled variablew that satisfy Eq.~4.12!
define the positions of the absorption peakswn1 ,n2 ,l . The

derivative of wn1 ,n2 ,l with respect tol gives the spacing
between the peaks belonging to neighboring sidebands hav-
ing the same quantum numbersn1 andn2 . By the same kind
of reasoning that was used to obtain Eq.~4.9!, we obtain

]w/] l

]w/]n1
5

ṽ/w3

]E/]n1
5

v

v1~ I 1 ,I 2!
.

v

v i
, ~4.13!

which is again constant in the scaled spectrum. Therefore the
rf field brings a third constant period into the scaled spec-
trum. The spacing of sidebands is to the fundamental spacing
as the rf frequency is to the frequency of the parallel orbit.
~There is a subtlety here: in Eq.~4.13! v i is the frequency of
the parallel orbit not at the selected value ofe, but at e8

5e2 l ṽ/w. In the present case, this difference is negligible.!
Combining Eq.~4.13! with the expression~4.5! for the

spacing of progenitors, we find that the sideband spacing,
which is v in the unscaled spectrum, is in the scaled spec-
trum given by

a5
]w

] l
5

ṽ

ṽ iSi

5
Ti

TrfSi
[

1

ssb
. ~4.14!

The formula~4.14! represents the main result of this sub-
section. As the scaled action for the parallel orbitSi is con-
stant in the scaled spectrum, this formula tells us that all
neighbor sidebands are equally displaced along thew axis
with the distance between them equal toa. This new peri-
odicity must show up in the Fourier spectrum at actionsssb
5SiTrf /Ti . What will it do to the recurrence spectrum?

C. Recurrence spectrum

In the previous section we have shown that thel th side-
band is displaced from the progenitor band by a constant
shift equal tola along thew axis. Now we discuss the effect
of these evenly shifted sidebands on the Fourier transform of
the scaled spectrum. We will make several approximations
that will introduce errors up to few percent in the result but
will also allow us to emphasize the qualitative features of the
effect.

Since we deal with states that are stretched along the ex-
ternal field~quantum numbersn2!n1!, let us substitute for
the static polarizabilityz̄ Eq. ~2.15! the valuez̄i for the par-
allel orbit. We will denote the corresponding scaled value as
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z! i , so z̄i5w2z! i andz! i is constant in a scaled spectrum.
In this way we find that the oscillator strength density for

any sidebandD f l(w;e) ~2.22! is approximately the static
density ofD f static(w;e) shifted by a multiple ofa along the
w axis, and weighted by the appropriate Bessel function:

D f rf~w;e!5 (
l 52`

1`

Jl
2S wF̃1z! i

ṽ
D D f static~w2 la;e!.

~4.15!

The relevant range ofw in the Fourier transform is small
enough that we can replacew in the argument of the Bessel
function by its value at the midpoint of the scaled scanw0
~the range of such a scan is about 10% ofw0!.

Then the sum overl has the structure of a convolution
sum. Not surprisingly, the Fourier transform becomes a
product,

Rrf~s!5Rstatic~s!Rsb~s!. ~4.16!

The first factor in this product is the recurrence spectrum
in static fields only. The second factor in this product,

Rsb~s!5 (
l 52`

1`

Jl
2S w0

F̃1z! i

ṽ
D e22p isal, ~4.17!

may be interpreted as the Fourier transform of a single clus-
ter of levels composed of one progenitor and its sidebands.
To see this, suppose the absorption spectrum consisted of a
single progenitor that we can place arbitrarily atw50 to-
gether with its sidebands atw5 la. The oscillator-strength
density would then be

D f sb~w!5 (
l 52`

1`

Jl
2S w0

F̃1z! i

ṽ
D d~w2 la !, ~4.18!

and the Fourier transform of this quantity gives the expres-
sion ~4.17!. We can simplify Eq.~4.17! by use of the Bessel-
function sum rule@7#,

Rsb~s!5 (
l 52`

1`

Jl
2~q!e22p isal5J0@2q sin~pas!#

5J0„2q sin~ps/ssb!…5J0„2q sin@p~Ti /Trf!~s/Si!#….

~4.19!

That gives for the squared absolute value of the Fourier
transform

uRrf~s!u25uRstatic~s!u2J0
2
„~2w0F̃1z! i /ṽ !

3sin@p~s/Si!~Ti /Trf!#…. ~4.20!

The maximum value of the Bessel function is 1@compare
with the intensity conservation rule~2.19!# and the function
is slowly varying ins, so it generates an ‘‘envelope func-
tion,’’ smoothly modifying the static recurrence spectrum.
Most recurrences are weakened with increasingF1 , but
some are preserved~Fig. 6!.

The envelope has a multipeaked structure that is governed
by two parameters. The first parameter isq5w0F̃1z! i /ṽ

5F1z̄i /\v, which appeared earlier@Eqs.~2.16!,~2.18!# and
which governs the population of sidebands. Asq increases,
the weights of sidebands increase and the number of signifi-
cant sidebands increases. The second parameter isssb51/a
5SiTrf /Ti , which is the inverse of the spacing between
sidebands and therefore represents the new periodicity that
shows up in the Fourier transform atssb and its multiples. At
smallq, only a few sidebands are significantly populated, so
the Fourier transform is a smoothly varying function that is
largest at these values ofs. Such a process is illustrated by
Fig. 6. It shows the sharpening of the peaks of the envelope
when the amplitude of the rf field~and the number of side-
bands! increases.

For anyq, the Bessel functionJ0 is near unity if the sin
contained in its argument is near zero; this happens whens is
near any multiple ofssb , or

n~s![s/Si5m~Trf /Ti!, ~4.21!

wherem is any positive integer.

FIG. 6. rf field influence on the absorption and recurrence spec-

tra ~atomic units are used!. At e520.11, the static spectrum (F̃1

50) consists of an almost perfectly periodic sequence ofn250
levels. Its recurrence spectrum is a system of equidistant peaks.
When the rf field is turned on, each progenitor~state in the static
spectrum! gives rise to a cluster of nearly equally spaced sidebands

~the values ofF̃1 are shown above each recurrence spectrum!. The

sideband spacing is in proportion tov rf :v i51:8. As F̃1 increases
and the sidebands develop, the static recurrence spectrum is multi-
plied by an envelope function. This envelope function is the Fourier
transform of a single cluster. The envelope preserves recurrences
having return time equal to a multiple of the period of the rf field
~every eighth peak in our case!.
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In the present case, all recurrences occur with actionss
that are close to integer multiples ofSi ; therefore we can
regardn(s) as an integer. This formula then says that thenth
recurrence survives the disturbance by the rf field if

nTi5mTrf , ~4.22!

i.e., if its return time is a multiple of the rf period.~In other
words, this recurrence peak coincides with one of the
maxima of the envelope.!

One can expect similar effects in an unscaled absorption
spectrum in the presence of a weak unscaled rf field because
the sidebands of the unscaled spectrum are exactly equally
spaced in energy.

D. Comparison with results of semiclassical theory

The argument of the Bessel function in Eq.~4.20! is simi-
lar but not identical to Eq.~10! of @1#, which was derived
from closed-orbit theory. The envelope function obtained
from that theory was

J0
2S f̃ Z̃1~ṽ !Usin~nṽT̃1/2!

sin~ṽT̃1/2!
U T̃1wD . ~4.23!

In this formulaZ1(v) denotes the time-averaged ac dipole
moment of a closed orbit,Z15(1/T1)*0

T1z(t)e2 ivtdt, with

period T1 . Tilde, as usual, means the scaled quantity:Z̃1

5Z1w22, T̃15T1w23. In the present notation (f̃→F̃1). Eq.
~4.23! applies to any individual orbit, but in the present case
all orbits are close to the parallel orbit, so we can replaceT̃1

by T̃i , andZ̃1(ṽ) by Z̃i(ṽ). Then the envelope function in
closed-orbit theory is

J0
2S F̃1Z̃i~ṽ !Usin~nṽT̃i/2!

sin~ṽT̃i/2!
U T̃iwD . ~4.24!

Equation~4.20! is a low-frequency limit of this formula. If
the period of the rf field is long compared to the return time
of the orbit, then

sin~ṽT̃i/2!→~ṽT̃i/2!5~pT̃i /T̃rf!, ~4.25!

and the ac dipole moment of the orbit goes to the static
dipole moment,

Z̃i~ṽ !→Z̃i~0![z! i . ~4.26!

If also the measured range ofw is small, we can replace
w→w0 to obtain

J0
2
„~2F̃1z! i /ṽ !sin~pnTi /Trf!w0…. ~4.27!

In this formulan is an integer, referring to thenth repetition
of the parallel orbit. In the present case all the recurrences
occur near reduced actionss, which are multiples ofSi , s
5nSi , or n5s/Si at a recurrence. Thus we arrive at Eq.
~4.20! as a low-frequency approximation to Eq.~4.24!. @Of
the two, we believe that Eq.~4.24!, from closed-orbit theory,
is the more accurate and the more general formula@12#.#

We have therefore arrived at comparable formulas in two
different ways. These two derivations emphasize different
aspects of the physics of the problem.~a! In the semiclassical
framework, the parameter

eF1uZ~v!uTi /\ ~4.28!

is a measure of the change of action on the parallel orbit that
is induced by the rf field. In the semiquantal framework, the
parameter

q5eF1z̄Ti /\ ~4.29!

appears in Eq.~4.16! as the argument of the Bessel function
Jl

2(q). Thereforeq is connected to the relative strength of
sidebands; whenq; l , the l th sideband makes the largest
contribution.

~b! If in Eq. ~4.20! we considern(s) to be an integer, then
the same sin function appears in both semiclassical and semi-
quantal formulas,

sin~pnTi /Trf!, ~4.30!

and it vanishes for those orbits having return time equal to a
multiple of the rf period. In the semiclassical theory, those
orbits have their action unchanged by the rf field. In the
semiquantal theory, if we examine Eq.~4.19!, the exponen-
tial factor is

e2p isal5e2p i ln ~s!Ti /Trf. ~4.31!

At values ofs such thatn(s)Ti /Trf is an integer, then the
sidebands all add in phase, and Eq.~2.19! tells us that the
recurrence survives the perturbation. In this way the spacing
between progenitors becomes unimportant~as the progeni-
tors disappear!, while the nearly constant spacing between
sidebands dominates the Fourier transform.

Thus the semiclassical closed-orbit theory and the present
semiquantal theory give complementary interpretations of
the observed phenomena, one in terms of the change of ac-
tion on closed orbits, and the other in terms of the develop-
ment of clusters of quasienergy levels.

V. CONCLUSION

Following is a summary of the theory developed
here. ~1! Energy levels in a static electric field can be cal-
culated from familiar Bohr-Sommerfeld~WKB! quantization
conditions; each level is labeled by quantum numbers
(n1 ,n2 ,m)5(n,m). ~2! Intensities~oscillator strengths! in
the static field can be calculated from a new semiclassical
formula that we derived recently@6#. ~3! With the rf field
added, each Stark energy level, which we call a progenitor, is
split into a series of equally spaced sidebands having energy
En,l5En1 l\v. These are the quasienergy states.~4! The
intensity in each sideband is that for the unperturbed pro-
genitor times a Bessel functionJl of an argument that de-
pends onn. ~5! These quasienergies and their intensities
can be calculated in scaled variables.

The above calculation of the spectrum of quasienergy lev-
els and their intensities~in scaled or unscaled variables! is
what we call the semiquantal method. Calculations show that
the resulting absorption spectrum and its Fourier transform
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are in good agreement with experiments, and with semiclas-
sical calculations reported in@1#.

This method, however, does not give much physical in-
sight, and, in particular, we cannot see directly why certain
recurrences are weakened while others are preserved by the
rf field. Additional approximations are needed to get a physi-
cal understanding of the results. With these additional ap-
proximations, we show the following:~6! The scaled-
variables absorption spectrum is nearly periodic inw. Static
energy levels are almost uniformly spaced inn1 , and side-
bands are almost uniformly spaced inl . ~7! The absorption
spectrum in the rf field is a superposition of the spectrum of
progenitors and the spectrum of sidebands; this sum has the
form of a convolution. Therefore the recurrence spectrum in
the rf field is a product,

Rrf~s!5Rstatic~s!Rsb~s!.

The first factor is the recurrence spectrum in the static field.
The second factor gives a more-slowly-varying envelope
function, which is the Fourier transform of the spectrum of
sidebands arising from a single progenitor.

~8! This envelope functionRsb(s) turns out to be a Bessel
function J0 of a complicated argument. The argument is the
low-frequency limit of that obtained in the semiclassical
theory. That envelope function contains two parameters: one
is related to the strength of the sidebands relative to the pro-
genitor~and to the number of significant sidebands!, and the
other is related to the spacing of the sidebands. The spacing
parameterssb has the effect of selecting recurrences that sur-
vive the perturbation. As the strength parameterq increases,
the preservation of recurrences becomes more selective, con-
serving recurrences in an ever narrower band.

~9! The evenly spaced sequence of sidebands produces in
the scaled absorption spectrum a new periodicity that is not
present in the static spectrum. This periodicity of course
shows up in the Fourier transform. Its effect on the recur-
rence spectrum is to preserve those recurrences whose return
time is a multiple of the rf period.

Thus we give a semiquantal explanation of the most strik-
ing feature of the experimental observations.
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APPENDIX

In this Appendix we list expressions for some useful
semiclassical functions via complete elliptic integrals of the
first kind K(m) and the second kindE(m),

K~m!5E
0

p/2

~12m sin2 t !21/2dt, ~A1!

E~m!5E
0

p/2

~12m sin2 t !1/2dt. ~A2!

There exists a very efficient method of the arithmetical-
geometrical mean to calculate these integrals@7#.

1. Action variables

The action variables for bounded motion in the Stark
problem have the form@cf. Eqs. ~2.4!,~2.5!; all notation is
defined in Sec. II#

I u5wSu5
1

2p E
osc

pudu

5
1

p E
0

u0A2~11b!12Eu22Fu4du, ~A3!

I v5wSv5
1

2p E
osc

pvdv

5
1

p E
0

v0A2~12b!12Ev21Fv4dv. ~A4!

These classical formulas are easily derived from the quantum
Schrödinger equation using the Langer-modified WKB ap-
proximation.

A simple transformation allows us to express the action
variables via elliptic integrals defined above:

Su5
21/2

3p
@e212~11b!#1/4@~Ae212~11b!2e!K~mu!

12eE~mu!#, ~A5!

Sv52
2

3p
AAe222~12b!2e@Ae222~12b!K~mv!

1eE~mv!#, ~A6!

where

mu5
1

2 S 11
e

Ae212~11b!
D , ~A7!

mv52
Ae222~12b!1e

Ae222~12b!2e
. ~A8!

2. Derivatives of action variables

Some key formulas of this article@see, for example, Eqs.
~2.15! and~2.22!# contain Jacobians of action variablesI u ,I v
over the integrals of motionE,b and external electric field
strengthF. We list here expressions for these derivatives via
elliptic integralsK(m) and E(m). These expressions make
possible an efficient calculation of Jacobians.

The separation of motion in parabolic coordinates~2.3!
involves the introduction of a new time variablet that is
related with the real laboratory timet by the relationdt
5dt/r . In parabolic momentapu and pv the combinations
2(11b) and 2(12b), respectively, play the role of energy.
That is why the derivatives of the action variables~A3! and
~A4! with respect to the separation constantb give, to a
constant factor, the ‘‘canonical periods’’ of motion~in t!
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along the parabolic coordinates:

]I u /]b5tu/4p, ~A9!

]I v /]b52tv/4p ~A10!

with

]I u

]b
5

tu

4p
5

w

4p

23/2K~mu!

@e212~11b!#1/4, ~A11!

]I v

]b
52

tv

4p
52

w

4p

4K~mv!

AAe222~12b!2e
, ~A12!

where the parametersmu and mv are defined by~A7! and
~A8!.

These quantities do not represent real time, but the quasi-
time that is used for regularizing the motion in parabolic
coordinates.

The derivatives of these action variables with respect to
energy are also useful. These derivatives give quantities that
have units of real, laboratory time, and we denote themRu
andRv :

]I u /]E5Ru/2p, ~A13!

]I v /]E5Rv/2p ~A14!

with

Ru5w3
&

@e212~11b!#1/4@2Ae212~11b!E~mu!

2~Ae212~11b!2e!K~mv!#, ~A15!

Rv5w32AAe222~12b!2e@K~mv!2E~mv!#.
~A16!

However, these formulas must be interpreted with caution. In
generalRu and Rv do not represent the natural periods of
motion. The period associated withu motion is
2p/(]E/]I u) I v

whereasRu is 2p/(]E/]I u)b . These are not
equal.

It follows that there are different rules of operation with
canonical periodstu,v and ‘‘ersatz-real-time-periods’’Ru,v .
If we deal with a closed orbit withm oscillations along theu
coordinate andn along thev coordinate before closure, we
can write thatmtu5ntv and the total canonical timet be-
tween the closures is equal eithermtu or ntv . As for the real

laboratory time t5R between closures, it is equal toR
5mRu1nRv where, generally,mRuÞnRv . When the ejec-
tion angleu→0, the ratio of canonical periodstv /tu has a
nonzero limit, but the ratioRv /Ru tends to zero. Therefore in
that limit, Ru is the real return time of the parallel orbit,
which we callTi .

The derivatives with respect to external electric field
strength can be calculated according to the following formu-
las:

]I u

]F
5w5

@e212~11b!#1/4

23/23p F S 4e2Ae212~11b!

2
3e2

Ae212~11b!
D K~mu!28eE~mu!G , ~A17!

]I v

]F
5w5

AAe222~12b!2e

6p
@~Ae222~12b!23e!K~mv!

14eE~mv!#. ~A18!

3. Parameters of the parallel orbit

The parallel orbit corresponds to zero ejection angle~u
50, b51!. Of course, this orbit by itself does not represent
any quantum state because that would violate the uncertainty
principle. However, the parameters of this orbit are relevant
to our calculations because they serve as good approximation
to parameters of the states that are stretched uphill along the
field axis ~the states withn250!. So we have

v i52p/Ri~b51![2p/Ti . ~A19!

This expression has a very simple limit whene→0:

v i53.71/w3. ~A20!

As for z̄i , its expression~2.15! also becomes more simple
whenb51:

z̄i52~]I u /]F !/Ru~b51!, ~A21!

where the expressions~A17! and~A15! with b51 should be
used. These expressions show that the scaled quantityz! i

5 z̄iw22 depends only on the scaled energye and therefore
is constant along the scaled scan. Again, in the limite→0
we have a very simple result,

z! i50.116. ~A22!

@1# N. Spellmeyer, D. Kleppner, M. R. Haggerty, V. Kondratov-
ich, J. B. Delos, and J. Gao, Phys. Rev. Lett.79, 1650~1997!.

@2# Y. Zhang, M. Ciocca, L.-W. He, C. E. Burkhardt, and J. J.
Leventhal, Phys. Rev. A50, 1101~1994!.

@3# Y. Zhang, M. Ciocca, L.-W. He, C. E. Burkhardt, and J. J.
Leventhal, Phys. Rev. A50, 4608~1994!.

@4# M. L. Du and J. B. Delos, Phys. Rev. A38, 1896~1988!; 38,
1913 ~1988!.

@5# The reader can find a review of WKB methods as they apply to
the quantization in strong electric field by C. W. Clark, K. T.
Lu, and A. F. Starace, inProgress in Atomic Spectroscopy,
edited by H. J. Beyer and H. Kleinpoppen~Plenum Press, New
York, 1984!, Part C, Chap. 7.

@6# V. Kondratovich and J. B. Delos, Phys. Rev. A56, R5 ~1997!.
@7# F. Olver, inHandbook of Mathematical Functions, Natl. Bur.

Stand. Appl. Math. Ser. No. 55, edited by M. Abramowitz and

4614 57VLADIMIR KONDRATOVICH AND JOHN B. DELOS



I. Stegun~U.S. GPO, Washington, D.C., 1964!.
@8# N. Spellmeyer and D. Kleppner~private communication!.
@9# N. Spellmeyer~personal communication! tells us that such a

shift is credible. There is an uncertainty of about 10 mV/cm in
the electric field in experiment, and a stray electric field with a
similar size. At w5150, a 20-mV/cm uncertainty gives an
uncertainty in position of a resonance on thew axis of 0.08.

@10# L. D. Landau and E. M. Lifshitz,Quantum Mechanics: Non-
relativistic Theory, 3rd ed. ~Pergamon Press, Oxford, New
York, 1977!.

@11# For the experimental conditions in@1#, we haven1;110, n2

<7; trajectories with largern2 go over the barrier. Therefore
we find that the scaled spectrum is nearly periodic.~In the case

we consider, the spacing of levels inn1 is uniform to about one
part in 106, while the spacing inn2 is uniform to a few per-
cent.!

@12# As a general rule, a semiquantal treatment like the one used
here should be more accurate than a semiclassical treatment
such as closed-orbit theory. However, in the present case, we
have made a number of additional approximations to arrive at
Eq. ~4.20!, the most important of which is an adiabatic ap-
proximation. The closed-orbit formulation that led to Eq.
~4.24! did not use an adiabatic approximation, so we believe
Eq. ~4.24! to be, in principle, more general and more accurate
than Eq.~4.20!.

57 4615SCALED-ENERGY FLOQUET SPECTROSCOPY INA . . .


	Scaled-Energy Floquet Spectroscopy in a Strong Electric Field: A Semiquantal Calculation of the Recurrence Spectrum
	Recommended Citation

	tmp.1615304332.pdf.C0WAJ

