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PHYSICAL REVIEW A, VOLUME 61, 053406
Recurrence spectroscopy in time-dependent fields

M. R. Haggerty
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

J. B. Delos
Physics Department, College of William and Mary, Williamsburg, Virginia 23187

(Received 22 September 1999; published 11 April 2000

Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external
fields. We derive an alternative version of closed-orbit theory that applies when the external fields are time
dependent. We compare the results of this theory with experiments on lithium atoms in a weak oscillating
electric field.

PACS numbds): 32.60:+i, 03.65.Sq, 05.45-a

[. INTRODUCTION produces oscillations in the absorption rate as a function of
energyE,,. The phase of the oscillations is related to the
Recurrences are classical orbits of an elecmnquan-  classical action around the orb® which depends on the
tum wave packejsthat go out from an atom and later return. outgoing energy. The absorption r&g(t) is proportional to
They are visible in real time, and they are also visible assin(S#).
peaks in the Fourier transform of the absorption spectrum of Now, because the applied fields are oscillating, the return-
the atom[1—8]. In a recent experiment, the absorption specing orbits likewise oscillate in time, and their classical ac-
trum of the lithium atom was measured, first with a statictions also must oscillate as a function of their arrival time,
electric field[8], then with the static field plus a weak oscil- S=S(Eoy,t). In first order, there is a small shift in the ac-
lating rf field parallel to the static fielfl9]. With the static ~ tion, proportional to the amplitude of the oscillating field:
field only, many strong recurrences were visible. As the fS(Eout:t) = So(Eou) + consiXsin(wt). Then the instantaneous
field was added, these recurrences weakened according tc@sorption ratdR,(t) depends on photon energy and time as
complicated pattern. One might expect that orbits having pe-

riods rationally related to the period of the driving field Ry(Eout, ) Sin S(Egue t)/#]
would be most affected, that they would be destabilized, and _ .
that those recurrences might be most weakened by the rf =Sin{[ Sp(Eou) + consix sin(wt) J/4}.

field. However, the experiment showed that recurrences that

were “in resonance” with the driving field were least af-  The measurement averages over many rf cycles. When we
fected by the driver. _ average the absorption rate over time, its oscillatory depen-
‘Referencd9] showed the experimental results and gave ajence ork,,, is weakened, in proportion to a Bessel func-
brief explanation for the pattern of weakening caused by th@io,  The argument of that Bessel function turns out to be
rf field. Referenc¢10] showed that a study of the weakening proportional to the amplitude of the oscillating field, and to
allows the classical trajectories of the electrons to be recony,e frequency-dependent dipole moment of the closed orbit.
structed from experimental data. In this paper we present g essence, the time-dependent field causes the phase of the
full analysis of this experiment. Starting from the time- retyrning electron wave to be frequency modulated, weaken-
dependent Schainger equation, and proceeding systemati-ing its Fourier component at the frequency corresponding to
cally, we derive formulas for the absorption spectrum aanOm- This phenomenon explains the measurements.
the recurrence spectrum in oscillating fields. _ Our derivation follows in spirit the analysis of recurrences
Here is a summary of the essential ideas. An atom ig, static fields developed earlier by Du and Delag How-
placed in a static field with a Iow-frequenc_y oscillating field, ever, they assumed that the fields imposed on the atom were
and a laser shines on the atom. We consider the total rate Qfatic, and they developed their whole theory from the fixed-
absorption of photons from the laser field, i.e., the total ratgnergy Green's function. Therefore, to examine absorption
of production of electrons in highly excited states. That pro-snecira and recurrence spectra in oscillating fields, we have
duction rateR,(E,t) is an oscillatory function of time and {5 start over from the beginning, and develop the whole

photon energy. theory in a time-dependent framework. The theory can be

The production rate oscillates with photon energy becausgerived from a formula that happened to appear in Réfas
of recurrences. As the laser acts upon the atom it producesE-)q_ (2.163:

steady stream of outgoing electron waves with a fixed out-
going energyE,~=E;+hv. These waves can be followed

by following classical paths of the electron. The paths are | 2me(Ef—E;) » .

turned around by the fields, and some paths return to the Di(Er) = 13 Re 0 (D¢i[K™ (10D )
atom. Paths that arrive at a given final timanterfere with

each other and with the outgoing wave. This interference X expiEst/h) dt.
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In that paper, this formula was mentioned as an “aside”—it
was not really essential to the theory, and the proof of this
equation given in Ref[1] presumed that the applied fields
were time independent. Here we show that a similar formula
also applies to our time-dependent system. The assumptions
used in our derivation are quite general; the primary assump-
tion is that the atom is acted upon by two fields that are far
apart in frequency.

The theory developed in this paper has connections with
other work on a number of other topics in atomic and mo-
lecular physics(1) Real-time recurrencef7]: Recurrences
have also been observed in real time. A short pulse of light FIG. 1. Atoms are excited from an initial state of a sharply
applied to an atom creates an electron wave packet; thidefined energyg; by a steady, coherent laser of a sharply defined
packet moves away from the atom, and it is detectable whefiequencyw, , and electron waves of ener@y —E; +#w_ propa-
it returns to the atom. However, all such measurements tgate outward. A rf field acts upon the outgoing electrons, changing
date have involved only static fields applied to the at@@. their energy within some range. The static and rf fields have little
Two-color excitatior{ 11]: There are many observations and effect on the initial state.
calculations dealing with the excitation of atoms by two co-
herent sources having different frequencies. The experiments p €
discussed here are of the same type. The special features in Hatomic:z_me_ T+V00f<—“)’ (1.13
the present case are thgtone field is very slowrf) and the
other is very fastvisible); and (ii) the excitation is to high- but we shall neglect the ter,,. due to the ionic core.
Rydberg states, corresponding to principal quantum numbekpplied to the atom is a static electric field on thexis,
around 110.(3) Microwave ionization[12]: In the experi-
ments of Bayfield, Koch, and their groups, hydrogen atoms H static= Hatomic T € FoZ, (1.1b
were excited to states around-30—60, and then the excited
atoms were passed through a microwave cavity. In the exd

2 2

nd a weaker rf field: also polarized parallel to thaxis;

periments of Gallagher, sodium atoms in the ground state H(t) = H oo+ H ot 11
entered a microwave cavity, and there the laser excited them (U= Hsaict (L), 19
to high states(The different order of events is significant. H (1) = eFyz sin( ot). (1.10

The experiments considered h¢fg are similar to this sec-

ond case—the laser excitation occurs within the oscillating ririnally there is a laser field, also polarized parallekthav-
field. However, these experiments have a number of newhg a high frequency, :

aspects{i) high resolution is achievedji) the laser is co-

herent on a time scale which is long compared to a cycle of H (t)=2eF. coqw t+ vy, )D,

the rf field, and, more important, long compared to the return Zi(wt+ )

times of many orbits of the electron; arfii) the experi- —eF e MUD,. (1.1e

ments are done by the scaled-variable metfvabich is op- D, is the dipole operator describing the laser’s polarization.

timal for recurrence spectroscopyTherefore recurrences . o :
P opy In the experiment, the laser is linearly polarized alongzhe

can be observed, and their actions and strengths can be Me& 0D —7 As usual since we are onlv interested in
sured quantitatively. ’ z— 4 ' y

excitation, we keep only the “positive-energy” term of the
cosine. The phase of the laser relative to that of the rf field is
o _ S v, which will be shown later to be unimportant. Our as-
To avoid inessential complications, we develop a theorysymptions are as follow&ig. 1).
for a “pseudohydrogen” atom: spin is ignored; the atom has (1) nitially, atoms are prepared in a low-energy eigen-
just one active electron; in the excited states we ignore quangate ofH
tum defects and their associated phase shifts; and the initial
state is a product of a radial factor times a spherical har- Hatomid ¥i) = Ei| ). 1.2
monic. The method for describing real lithiuigwith its
phase shifts and core scatterirgas been given elsewhere At laboratory field strengths, these compact states are negli-
[3], and we do not need to be distracted by those details. Igibly affected by the external fields. In our particular case,
the experiment, static, rf, and laser fields are all orientedhe electron has been prepared in tlsesate of lithium, so
along thez axis; therefore, the system is cylindrically sym- #;(q) is the radial 3 wave functionRsq (r)/(47)Y2. (For
metric. Moreoverm=_0 throughou{13]. Therefore the azi- true hydrogen atoms, the static field would break the degen-
muthal angle¢ is ignorable, and the spatial variables are eracy of the atomic states, and the appropriate initial states
=(r,0). would be eigenfunctions dfl;. such as 8+2p.) (2) We
The Hamiltonian has a number of terms, which weassume that the low-frequency figit};(t) has a negligible
present in their approximate order of importance. The atomieffect on the initial state. In particular, we assume that it is
Hamiltonian is not strong enough to cause transitions directly into or out of

A. Physical picture

atomics
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the initial state(3a The laser has a well-defined frequency and will show thatR,(t) oscillates at the frequency of the rf
o, wWhich is of course much larger than the rf frequenrey field. Then we will averagdR,(t) over a rf cycle to obtain

(in our case 18 compared to 1DHz). Furthermore, the laser the theoretically predicted average excitation fiaje
frequency is sharpdw <w, so the laser is coherent on a

time scale that is long compared to the cycles of the rf field. — 1 (T

This is important because this type of recurrence spectros- RX:T_rf fo Ry(t) dt.

copy involves the observation of interference between out-
going and returning waves: therefore, the laser must be co-
herent on a time scale longer than the return time of classical

orbits. (3b) We further assume that, (t) is “weak,” and  The physics near the atom is dominated by the Coulomb
can be treated in first-order time-dependent perturbatioRtraction and the effect of the laser; the external fields are

theory. A consequence will be that it steadily pumps electrorhegiligible. We treat this regime quantum mechanically.
probability from the initial state to the high-energy states,

and that de-excitation is neglected.

To formulate equations with good time limits, we idealize S ) )
the experiment to the fo”owing sequence of eve(]'ts]'he The laser field is a weak perturbat|0n which can be treated
atoms begin “at rest,” with the electron prepared in a low- using standard methods of perturbation theory. The wave
energy initial statey;(q). (i) The rf field is turned on, but function for the electron satisfies the time-dependent Schro
has negligible effectjii) The laser field is turned on, and left dinger equation
on for many cycles of the rf field; it excites some atoms to g
high-energy statesiv) A pulsed electric field is applied that i7i—|W (1) =[H(t)+H ()] P(t)). (2.1
collects all electrons in all high-energy states, and these elec- ot
trons (or the residual ionsare counted(The pulsed field
does not ionize atoms that remain in the initial staféhe . . . _
measurement records the number of electrons collgcid %Eiwﬁ? (ie., the appl|ed. fields have a negllglk_)le effect on
the probability that an electron has made a transition into anitﬁe initial 's:]até, the excnedﬂ—s_tate wave functlolnI'x(t)>
high-energy stajedivided by the time that the laser acts °P€yS an inhomogeneous Scffirgger equation,
upon the electron—that is, one measures the avertgef i%(alot) —HOTW(t
production of high-energy electrons by the laser field. [i7( ) OI¥(0)

(1.6

II. SMALL DISTANCES: QUANTUM REGIME

A. Effect of the laser

To first order inH,_, and using the fact thaH(t)|;)

= (eF)e e llent™ 1D, [yy). 22

B. Excitation rate It can be seen from E2.2) that y, only contributes a
At any timet, there is some probability that the electron constant phase toV,), and can be set to zero. We are left
has survived in the initial state, and some probability that itwith
has been excited. Let us write the full wave function of the

system as the sum of two terms, one representing the initial [i7i(alat) =HO () =[1(1)), 2.3
state and the other representing “all the rest”: where
[P (1)) =e""E )+, (1)). 1.3 1(t))=(eF,)e Eat/iD | y,) (2.4

The label “x” means “excited”; this term represents the is a source function that oscillates with the energy
development of electron probability in the entire band of _
highly excited states. Bou=EithoL, @5
The experiment subjects the atom to the laser interactiogyt is otherwise time independent. The source function is
for a fixed length of timeT, (long compared with the rf |ocalized. Thus the time-dependent, spatially extended ex-
period, ~then measures the total  probability cited wave functiod W (t)) is generated by the steady, com-
(U (Tind) [ (Tiny)) that the atom has been excited. The ex-pact sourcél (t)). As a consequence of this first-order treat-
perimentally measured average rate of excitation is then ment, the source function on the right-hand side of @)
contains the electric field from the laser, while the Hamil-
_ 1 tonian H(t) on the left-hand side contains the static and rf
R.= T—_(\Ifx(Tim)l\IfX(Tim». (1.4 fields, but not the laser field.
int We can express the solution to this equation as an integral
containing the time propagator undé(t). In operator form,
We will proceed by calculating the instantaneous excitathis propagatoK ™ (t,t") is the solution to the Schdinger
tion rate, equation containingd (t):

g [iA(alat)—H(D KT (t,t")=0: t>t’
Rx(t)5a<\lfx(t)|\px(t)>, (15) K+(t't/):1: t=t’

053406-3
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K (t,t")=0: t<t’. tudes associated with the classical trajectories that will be
used to calculate the returning wave. In this section we de-
Then one can easily show that rive an expression for¥ "),

As stated earlier, near the atom the external fields are
much weaker than the atomic Coulomb field; they have a
negligible effect on the waves that go directly frayh to g
without leaving the vicinity of the atom. Therefore, to calcu-
wherell(t)) is the source function defined in E@.4). late the direct wave, we can approximadé (t,t’) by the

The starting point of the theory of recurrences in time-atomic propagator
dependent fields is the theorem N )

Kaomidt.t ) =exd —i(t—t")Hqomic/ 7 - (2.9

atomi

t
w=im [ ek o), @e

2
Ry (t)=— —Im{1(t)|W(1)). (2.7  We substitute Eq(2.9) into Eq. (2.6), and perform the time
h integration (inserting the conventional exponential cutoff

o . factor t
The proof is in Appendix A 2. actor to ensure convergence

. t
B. Source function is localized |ngr(t)>= lim ('hrlJ dt” exd —i(t—t")Haomic/ ]
a—0" -

To obtain a physical interpretation of the above formulas, .
let us write Eqs(2.6), (2.7), and(2.4) in configuration rep- xe M (eF )exd —iEqut' A ]D,| )

resentation: i A
=(eFpe IEomt/h[Eout_Hatomic""a] lDz|¢i>

\Ifx(q,t)=(—iﬁ)’1J’;dt’J dg’ K*(q,t;q",t)1(q’,t") =(eF e Fal |y, (2.10
(2.8 where

|¢out>EG;—tomic(Eout)Dz| ¢|> (2-11)

is a stationary wave function that appeared in earlier papers
[Ref.[3], Eq. (5.9)]. ‘

We see that, except for the phase faclarl'(t)) is a
perfectly steady time-independent outgoing wave. Since the
electron is acted upon by oscillating rf fields, its energy is
not conserved. However, on the small scalé}, the en-
ergy is negligibly affected by the rf field, and so it has the
sharply defined valug,,=E;+ % . Thus the effect of the
laser on the atom is to givlecally a steady coherent stream
of outgoing waves of well-defined ener@g,.

At intermediater [in the general vicinity of the atom but
outside the range wheng(q) is significant, ¢, separates

Rx(t)=—(2/ﬁ)lm{f dgl*(q,t)¥,(q,t); (2.8b

I(a,t)=(eF)exp(—iEqt/%)Dohi(aq).  (2.80

Equation (2.89 tells us that the functior(q,t) acts as a
“source function” for the wavesV,(q,t): the waveW, at
locationq at timet is the superposition of all the waves that
propagated from all locatiores in the source from all earlier
timest’. The excitation rat®,(t) is related to the overlap of
these waves with the source function at tim&he source
functionI(q,t) is well localized: it is negligible everywhere
except in a ball of perhaps &g around the nucleus. It fol-
lows that we primarily need to know about the behavior of . . . )
¥ (q.t) in the same small ball. approximately into a product of radial and angular parts:

In this region,¥,(q,t) consists of two types of waves. ex(i J8r)
There are waves t_hat propagate frgmto q directly, v_\nth—_ lﬂout(Q)“C1|T} V(0,p). (2.12
out leaving the vicinity of the nucleus. The propagation time r
t—t’ is typically less than ten atomic time units. In addition, . ) ) )
there are waves that propagate outward fignand wander The radla_l part is a zero-energy spherlcgl outgoing Coulqmb
around under the influence of the long-range Coulomb fieldvave, while)(6,¢) describes the intensity and angular dis-
and the applied electric fields, visiting distant locations bedribution of outgoing wave)(,¢) can be obtained by pro-
foorse returning to the vicinity of the nucleus and arrivinggat  i€cting |D#;) onto a Coulomb scattering wave,
10° or more atomic time units later. The distinction between _
these two types of waves is unambiguous because of the W(0,6)=C, (il D), (2.13
large distinction in distances and times. We name these tw\%

waves in the vicinity of the nucleuifg"(q,t) and¥'*(q1). here |¢) is the zero-energy Coulomb scattering wave

leaving the nucleus in directiok,

o Diect wave V(@) =Jo(VBI 3 (1+k- 7)), (214
The direct wavd W ") is needed for two purposes. First,

it enters into the expression for the smooth background padnd k points in direction ¢,¢). Since the initial state is
of the absorption. Second, it determines the starting amplieylindrically symmetric and the laser is linearly polarized

053406-4
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along the static field) does not depend o, and we can “laboratory time” when the electron emerged fror_n the sur-
write J(6). For more details including the value of the con- face(e.g., 3:42 A.M). There are two ways to specify a later

stantC,, see Appendix A 3. point along a given trajectory: by the final laboratory titme
The direct contribution to the excitation rate follows from or by the “travel time” r=t—t;. Thusq(¢;,t;,t) is the
Egs.(2.7) and(2.11): point that is reached at laboratory tinieby an electron

started at timeg; from angled; . Alternatively,q(#,,t;;7) is
dir 2 ) - the point reached by the same trajectory after it has been
RY"= — 2 (eF)IM(i| D2 Gaiomid Eow) Dol ) traveling for durationr (e.g., 150 ps
(2.15 The family of classical trajectories carries the wave. If a

trajectory travels from a poirg; on the initial surface at time
One can evaluate E(.19 directly, but a shortcut is simply t; to a pointq at some later time, then the semiclassical
to calculate the flux of electrons going out through a sphergpproximation to the excited-state wave function at that
at radiusr large enough for Eq2.12 to be valid: point is (see Appendix B

S _apdir Nt —
Rgir:rZJ SIthOJ dd) Im[[\lfg"(q)]* %\pglr(q) ‘ch(qit)_\lrx (ql 1t|)A(qrt1ql !tl)
X expli[S(a,tqi t)/E—Nm/2]k.  (3.)

=477(eF,_)2f S'”adaf de |16, ¢)|%. (216 [if several trajectories pass through, ), the wave function

' is the superposition of the contributio(.1) from each tra-
Note thathIr is time independent, and it is the same smoothjectory.] This wave function is proportional to the direct out-
nearly energy-independent background that was obtained igoing Wave\lfg"(qi ,t;) at the point on the initial sphere from

Ref. [1]. which the trajectory that arrives af,t) emanated. The
phase is given by Hamiltonigrincipal functionS, integrated
Ill. LARGE DISTANCES: SEMICLASSICAL REGIME from (g;.tj) to (q,t):

For large distances, the effect of the laser is negligible and (at)
the physics is dominated by the external electric fields and S(a,t;q; ’t‘):f [p-dg—Hdt']. (3.2
the Coulomb field. We treat this regime semiclassically. (@i 1)

Compared to a time-independent treatment, the new term is
—[H dt’, and we emphasize that energy is not conserved on
In Sec. Il C, we showed how to find an approximate wavethe trajectories. The amplitud®q,t;q; ,t;) is related to the
function describing the outgoing electron wave near thedlensity of classical trajectories, and will be explained below.
nucleus. Our task now is to propagate this wave functiorFinally, \ is the Maslov index. In previous papers it was
through large distances and back to the nucleus. We do thisalled u, but we change the letter because the Maslov index
semiclassically, by following classical trajectories from thefor a time-varying field need not be equal to that for a fixed

region near the nucleus, where the outgoing wave function ifield. The Maslov index is the number of timéscluding
known, to the regions where we want to compute the returnmultiplicities) that the amplitude diverges on the path from
ing wave function. We will follow the method of Maslov and the initial surface to the field poinf(t).

Fedoriuk[14], as done in Ref[1], but with the difference The amplitudeA(q,t;q; ,t;) can be computed from a ratio
that our system is time dependent. Proofs of the formulasf Jacobians evaluated at the initial and final points:

used in this section can be found in Appendix B.

The recipe requires that we know the outgoing wave func- J(q; ,t)
tion on some surface in configuration space, for all time. A(g.t;q;,t) =
Thi L . L J(q,t)

is condition is met if we take thclj_s initial surface to be a

. i
sphere of r'ad|u3i~10a0, whe.re\If'X is known from Eq. Several expressions fd(q,t) are given in Appendix B; for
(2.10. To find the wave function in the rest of space, Weexample
imagine that classical trajectories depart radially outwards ’
from this sphere, starting at all initial angles and all initial
times, and with initial energ¥,;. The trajectories propa- J(q,t)= —rzsinede{
gate under the influence of the time-dependent Hamiltonian
H(t), consisting of the Coulombic attraction to the nucleus
and the static and rf external fields. Where the classical eledzonceptually,J(q,t) can be computed by comparing three
tron trajectories go, so go the quantum electron waves. trajectories. First the trajectory that arrives gitj is identi-

A trajectory is specified by its initial angles and its initial fied, and its initial values{; ,t;) found. Then each of; and
time. The anglesy; and ¢; indicate where on the initial t; are perturbed slightly, and those trajectories are integrated
sphere the trajectory began, as well as the direction of theo the same final timé The Jacobian is evaluated at the field
initial momentum(we will omit ¢ because of the cylindrical point (g,t) and at the corresponding poing;(t;) on the
symmetry of our systejn The initial timet; represents the initial sphere to obtairA(q,t;q;,t;).

A. Continuing the wave function semiclassically

1/2

(3.3

a(r,a)} 3.4
t

a(0;,t)

053406-5
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/

FIG. 3. If several paths arrive at a givenat timet, the wave

FIG. 2. The solid curves are paths of electrons that emerge frorunction is a superposition of terms associated with each path. It
the atom at some initial timg,, and the dashed lines are paths of does not matter whether the paths started at the same time—the
electrons that emerge later, 8. The paths form a vector field |aser has a long coherence time, so the two electron waves will
p(a,t). Ast; varies, the whole vector field oscillates. Similarly, at nevertheless be coherent. Tracing the orbits backwards in time al-
any locationg, the vector fieldp(q,t) oscillates in timet with the lowst;, 6;, andr for each orbit to be deduced.
frequency of the rf field. The vector field “supports” a semiclassi-
cal wave function¥;%q,t), which is also oscillating in real time

with the frequency of the rf field. approximation to the wave functioir,(q,t). If an electron

is seen at the locatiog at timet, thent; , 6;, andr represent

the time of emergence from the initial surface, the initial

direction of motion, and the travel time along the classical
The initial time t; has physical significance because it path that the electron would have had if it were a classical

determines the phase of the rf field at the instant that the@article, respectively.

electron emerges from the atom. For any fixed value of the The trajectory relationship is partly invertible. At real

travel time 7, q(#6;.t;;7) andp(6;,t;;7) are periodic func- timet, the “classically allowed region” is the domain of

tions oft; ; they oscillate at the frequency of the rf field. Let space in which trajectories are present. Given some specified

us think about a pencil of trajectories that emanate from theimet, and a specified poing in the allowed region, there is

initial sphere at time; in a small range of initial directions by definition at least one trajectory that goes throught

aroundd,; (Fig. 2). time t. We can trace that orbit backwards in time to find its
That pencil of trajectories forms a vector figddq;t). As initial time t;(g,t) and initial locationg;(q,t) or 6;(q,t)

t; varies and the rf field oscillates, the entire vector fieldwhen it left the surfacésee Fig. 3.

wobbles in space with the same period. Close to the nucleus, This relationship betweerg(,t;) and (g,t) is implicit in

the motion of the momentum-vector field is negligillee rff  Eqg. (3.1). The travel timer(q,t) and final momentunp(qg,t)

field is too weak to change the initial course of the eledtron can similarly be thought of as functions of the final paint

But on a larger scale, the electron is traveling great distanceand timet. At each pointg, all of these quantitiest+{q,t),

and the oscillating force has plenty of time to change theg,(q,t), 7(q,t), andp(q,t)—are periodic functions of real

velocity of the electron. We might picture water coming time t.

from a fixed hose that sends out a spray in a periodically Moreover, since the entire vector figiqq,t) is oscillat-

oscillating wind. ing periodically in timet at the rf frequency, it follows that at
Table | summarizes the meanings of the various times thagach pointq the principal functionS(q,t;q;(a,t),t;(q,t)),

appear in the formulas. The varialiés real time, as mea- the Jacobian J(g,t), and the classical amplitude

sured by a clock in the laboratory, agdis a point in real  A(q,t;q;(q.t),t;(q,t)) oscillate periodically as a function of

space(A sufficiently small detector placed gtwould some-  timet with the same frequency. But these classical quantities

times record the presence of an actual eleciréhe wave determine the semiclassical wave function. Thus the time

function ¥,(q,t) is oscillating in real timet at the rf fre-  dependence of the ensemble of classical orbits manifests it-

quency. In contrast, the variables#;, andt;, and the func-  self as the time dependence of the wavefunction.

tions q(6; ,t;;7) and p(6;,t;;7) are “artificial” quantities

that are used for the purpose of constructing a semiclassical C. Waves return to the atom

B. Time dependence of trajectories and wave function

According to Eq.(2.7), to find the excitation rate we need
to compute the overlap of the excited wave function and the
(localized source function. Therefore, let us examine those

TABLE I. Time definitions.

Symbol Description waves that return to the general vicinity of the atdgsay,
t Real, laboratory timée.g., 3:42 A.M) within 50a, of the nucleus In the semiclassical approxima-
T Time duration of a classical closed orbit, tion, each returning wave is associated with a bundle of clas-
including repetitions if anye.g. 200ps) sical orbits that also return to the vicinity of the atom.
ti(t)y=t—T Initial time of an orbit that ends at time t We now consider the generic case, with no nearby bifur-
T Progress variable for trajectoriess@-<T cations, and for the moment we ignore the cylindrical sym-

metry. Under those conditions each bundle of returning tra-
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jectories contains exactly one “close__\d orpit” lthat returns R;e‘(t)=219’47r5’2FEA0(t)Im{y*(ef)y( 6,)
exactly to the nucleus. The other trajectories in the bundle _ _ _
are adequately described by a linear approximation in the xexfiS(t)/h—iNm/l2—i3m/4]}.  (3.98

neighborhood of the closed orbit, which in turn can be ob-
tained from the stability matrix of the closed orbit. We there-S(t) has a new definition compared to REF]: it is an “ex-
fore can learn about the excitation rate by studying classicaknded action,” integrated all the way around the closed or-
closed orbits. bit (starting and ending at the nucléus

The wave carried by a closed orbit and its neighbors may
be labeled by the directiond(, ¢¢) from which the closed . q
orbit comes. For pointg| not too close to the nucleus, the S(t)Ef {p(q,t’)—q—[H(t’)—Eom]] dt’. (3.9
semiclassical approximatidi3.1) is a good representation of ti(t) dt’
each such returning wavel*{(q,t)~W¥3{q,t). But closer

to the atom, the semiclassical approximation diverges due t§he extended action includes the usual actigip-dq
the Coulomb singularity, so we need to “connect” back to a— f(p dr+p,d#), around the closed orbit, plus a new term

quantum wave function. , _ _ — [[H(t') = Equldt’. The amplitudeA(t) is
Near the atom, the Coulomb field again dominates, and

the quantum wave corresponding to an isolated closed orbit
and its neighbors is approximately a zero-energy Coulomb
scattering wavej (0) [see Eqg.(2.14)], returning from the

J(ri, 6;,t)
I(re,0f,t)

12

. (3.99

p 1/a

Ao(t)=(sinsin 0i)1’2$,2

same directiork;=(6;,¢¢) as does the classical closed or-
bit. which can be evaluated anywhere near the ends of the closed

_ Infact, however, the system is cylindrically symmetric, S0 gt The reduced Jacobidris defined in Eq(B10a. Ther
i one trajectory returns from dlrectlorﬂ{,qs_f), the_n other dependence of the reduced Jacobians is suchAthdtas a
trajectories also return from all other possible azimuths it limit as r, andr; go to zero whenever approximation

The appropriate quantum wave is therefore a cyIindricaIIy(3_6) for the returning wave is validi.e., if the closed orbit
symmetrized zero-energy Coulomb scattering wave chara(aOes not have a bifurcation neayby

terized by the angl@ : It is easy to show that this formula reduces to the formula
1 (2n that was derived for static fieldRef.[1], Eq.(5.133]. If the

Y6, (A)= 5 des ¢ (Q). (3.5  rffield is zero, then the ratio of Jacobians is independent of

mJo time t, and the extra term in the extended action disappears

because energy is conserved.
We assume that the returning wave is locally proportional to

this quantum wave,
IV. WEAK RF FIELDS
W9, =V, =N(t) gc,6,(q), (3.6 With the rf field acting upon the system, the whole vector
field p(q,t) oscillates periodically in time at the rf fre-

whereN(t) is some coefficient of proportionality to be de- quency, so the shape and size of any closed orbit oscillates
termined. with this period. The duratiom=t—t;(t) of each closed

Equation(3.6) expresses a functional relationship which orbit, the initial and final angles; and ¢;, the angular fac-
should hold for anyj in the region where boti#;°andyc 5,  torsJX(6), the Jacobian ratiéy(t), and the extended action

are valid, namely for intermediate distances from the atomfunction S(t) all oscillate at this frequency. It is the oscilla-
In Appendix A4 we show how to determireé(t) by com- tion of S(t) that produces the largest effect. In current ex-

paring Egs.(3.5 and (3.1): perirpents_, the rf field is weak compared tq t_h_e static e_Iectric
field; F; is 1-5% of Fy. Therefore the initial and final
N(t)=eF_(Cy/Ca)Ag() N 8;) angles#, and #; are not much affected by the rf fie[énd,

furthermore))(6) is slowly varying over the whole range of
Xexp{i[S(0,t;0,t;) —Egutil/A—iNT/2}. (3.7) 0 for which orbits are closdd Likewise, Ag(t) and S(t)
oscillate by only a few percent. Sin&t) is large, however,
this few-percent variation o$(t) is substantial compared to

) ) ) fi, and there can be a significant variation in the phase of the
Equation(2.7) tells us that the returning waves contribute returning wave.

D. Returning waves contribute to the excitation rate

to the excitation rate: The theory developed up to this point applies whether the
5 rf field is weak or strong, provided only that it is not strong

R(t) = — —Im(1 (1) | ¥'*(1)). (3.9 enou_gh to substantially pertur_b the initial state. L_et us now

fi consider a weak rf field that is a small perturbation to the

dynamics in the static fieldil e Clearly S(t) is close to
A straightforward sequence of substitutions givappendix  the value that would be obtained for static fields. How does
A5) S(t) change as a result of applying the rf field?
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A. Action perturbation

Standard methods of classical mechar(igppendix Q
show that, in first order,

AS(t,Fl)ES(t,Fl)_S(t,F]_:O)

toH
%—Flftﬂ—Fldt' (4.2
T
=—eF1f zo(7m)sifw(7+t—T)]d7, (4.2
0

wherezy(7) is thez component of the electron’s position on

the unperturbedorbit (in the static field alone starting (at

7=0) and ending(at 7=T) at the origin. Since the orbit

PHYSICAL REVIEW A61 053406

where 6; and ¢; are the initial and final angles of the trajec-
tory in the static field.

If we setF;=0 in Eq.(4.6), thenJy— 1, and we recover
the static field expression for the excitation rate. But when
F, is turned on, the Bessel function decreases, corresponding
to a weakening of the strength of the spectral oscillation
caused by the closed orbit. Thus, the effect of a rf field is to
weaken each recurrence from its static field value by a Bessel
function factor,Jo(eF,|Z(w)|T/%).

V. STRONG RF FIELDS

In Sec. IV, we introduced the assumption that the orbits
are only weakly perturbed by the rf field. Let us now return
to Eq. (3.9, and ask what happens as the rf field becomes
stronger.

Zo(7) is calculated in the absence of the rf field, it depends \ye stjll need to average the instantaneous excitation rate

only on the elapsed time, and not on the real time

using Eq.(1.6), but now the variation o8(t) with time will

Equation(4.2) is conveniently expressed in terms of the gyceed Planck’s constant, so it is appropriate to evaluate the

complex, frequency-dependent ac dipole moméqb) of
the orbit,

S(t)~Sy—eF,|Z(w)|Tsin(wt+ B), 4.3

where

1 (7T
Z(w)= ?J’O Zo(r)expioT)dT,
(4.9
B=—owT+argZ(w)),

integral by stationary phase. The stationary phase points are
the extrema of5(t), which satisfy

SPA
H :_[H(t)_Eout]zo
g; .Q¢

(5.9

(the derivative being taken with initial and final points held
fixed, g;=q;=0). Therefore, the main contributions to the
recurrence strength come from those closed orbits that return
to the atom with the same energy they had when they left,
E,et= Eou- In other words, recurrences arise primarily from

andS, is the action of the unperturbed orbit. We see that, in0rbits that are closed in an extendegi { E) space. Such
first order,AS oscillates sinusoidally in time, and it is lin- Orbits form a discrete set, and can be characterized by their

early proportional td=y, to the closure time of the orbit, and initial directions together with their initial times.
to the absolute magnitude of the ac dipole moment of the If we lett be the real time at return corresponding to any

orbit.

B. Averaged excitation rate

As stated in Sec. | B, it is not the instantaneous excitation Eipz 221/4773|:E

stationary phase point, then the resulting contributiofRto
is

-1/2

Aq()
—_— Im

d Eret
dt

Y (0)(6;)

rateR,(t) that is observed in the experiment, but the average Tt
of R,(t) over a cycle. Let us calculate the contribution of the
returning wave to this average by taking the time average of
Eqg. (3.99. As argued in Sec. IV A, we can use fAp(t) its
unperturbed value, which is time independent. The only sig-
nificant time dependence is 8(t). UsingS(t) given by Eq. o .
(4.3), the integral is over one period of the sinusoid and afr and ¢; here are the angles at the origin of the closed orbit
standard integral gives that returns at timeé. E is the energy of the electron at the
L end of the closed orbit, when it returns to the atom; it oscil-
rf . _ . lates periodically in time due to the effect of the rf field.
T_rffo dtexiS(t)/fi]=exiliSo/h 1 Jo(eFa|Z(w)[T/H), How does the transition from expressioh6) (for weak
(4.5 rf fields) to expression5.2) (for strong rf field$ occur? For
small rf fields, we have shown th&t) is sinusoidal with a
whereJ, is a Bessel function. Note that the phase conggant small amplitude. Equationi5.2) cannot be applied in that
has dropped out. We can now use E@5), (3.99, and limit because the stationary phase approximation breaks
(1.6) to evaluateR'®". The result is down (becausddE e /dt| = 2—c0).
But as the sinusoid increases in amplitude, a stationary
phase approximation becomes appropriate. N&) has
two extrema—one maximum and one minimum—per period,
and Eq.(5.2) can be applied to each in turn. The sum of the

3 1
At §+ Esgr(dEret/dt) .

(5.2

xexp{ iS(t)/h—iwl2

RI®=2194552F2 A 3 (e F,4|Z( )| T/R)IM{Y* (61) ) 6;)
X exdi(Sy/h—\ml2—37/4)]}, (4.6)
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two contributions gives precisely the large-argument expan- In the oscillating field, the electron enerdy(t) is not
sion of the Bessel function of E¢4.6). constant. But its initial energ¥,, is well defined, so we

As the rf field increases, the sinusoidal approximationdefine the scaled energy
breaks down, and the stationary phase expression begins to
differ from Eq.(4.6). For still stronger fields, still more com- e=EquFo (6.1h
plicated phenomena can occur. For example, as the vector . ) ) )
field p(q,t) oscillates, a caustic in the extended space couI(f‘Ct.'on 'has units of momentum times distance, so the scaled
pass through the poingEOE=E,,). This would be a bi- action Is
furcation, at which the number of closed orbits satisfying the
energy condition5.1) changes; equivalently, the number of
extrema ofS(t) gha_n_ges. Such phenomena certainly ex_ist,-rhe analogous quantum systermig scalable. Quantum me-
but at present, significant consequences have not been ideganics imposes another relationship between the variables,
tified in the experiments. . namely, the commutation relatiopx,p]=i#. Effectively

Note that the amplitude factoho(t)|dEe/dt| " that  quantum mechanics introduces an additional scale—the de
appears in Eq(5.2) is the same as the amplitude factor thatBroglie wavelength of the electron—into the system, break-
enters into the semiclassical energy-domain Green'’s functiofhg the scaling property. Specifically, under the above scal-
[15], and the “sign” that appears in the exponent combinesing, the classical orbits do not change their shapes but they
with X to give u, the Maslov index that appears in the dochange their sizes compared to the de Broglie wavelength
Green's function. of the electron. After scaling, Planck’s constant has the ef-

fective value Y 4s=w=F,"*, because

S=Fy’s. (6.1i)

VI. COMPARISON WITH EXPERIMENT ~ ~
A. Scaled variable spectroscopy S(Bou,Fo,F1,0)/f=S(e.f,0)w.

The classical dynamics of hydrogen in external static and This scaling property allows a useful experimental tech-
microwave electric fieldglike that of hydrogen in other ex- nique called scaled-variable spectroscopylo obtain a
ternal field configurationsis scalable This means that it is Scaled spectrum, one simultaneously varies the laser energy,
possible to change the external parameters in a certain wajatic, and rf field strengths, and the rf frequency to keep the
that leaves the classical dynamics unchanged except for @taled parameters(f, andw) constant while changingp.
overall scale. The atomic core does not have this scalin@ne records the photoabsorption spectrum as a function of
property, in principle ruining the scaling property for nonhy- w=F; . This technique keeps classical dynamics constant
drogenic atoms. However, in practice the effect of the core isvhile varying the effective Planck’s constant, thereby sim-
small enough that the scaling law is still an excellent ap-plifying semiclassical mechanics. Then one takes the Fourier
proximation. transform of the experimental scaled spectrum to obtain a

We denote scaled quantities with tildes. We opt to make:yecyrrence spectrum’c(S),

the scaled static electric field strength equal to uniy:

=1. This choice dictates how the other scaled variables are, ~ 1 W2 o — ~ ~ |7
. TE)= dwR (e f,,Fo=w Hexd —idw]| ,
defined Wo—Wy ),
- (6.2
r=rFg?, (6.13
which, because each orbit causes a sinusoidal modulation of
P=pF 4 (6.1b the absorption rate, shows peaks at the scaled actions of the
o important classical electron orbits.
T34
t=tFg", (6.10 B. Many orbits are similar to the parallel orbit
Hopp-12 6.1 In this section we will consider some of the special fea-
o (6.1 tures of hydrogen in a static electric field, and their ramifi-
5 cations for the experiment. The system is classically regular,
w=ng3’4. (6.1 and the¢ motion is ignorable. Closed orbits can be charac-
terized by two integersk andn. The closed orbitK,n) un-
We define the scaled rf electric field dergoesn cycles ofz motion, while undergoind cycles of
transverse motion. Closed orbits return to the atom at the
f=F,=F,/F,, (6.1f) ~ same angle they departegh= 6, . Moreover, whenever the
electron returns exactly to the atom, the Coulomb force turns
ending up with the following final scaled Hamiltonian: it around and sends it back out in the direction from which it

came. Therefore, in static fields, after each traversal of a
1 1 closed orbit, the electron goes back out and traverses the
H=Zp2-Z+Z1+fsin(wl)]. (6.1g  same orbitin reverse—i.e., closed orbits repeat themselves to
2 r form longer closed orbits.
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os | - 2 nsinwT,/2) [(@). &9
2,:: 0 o I i { i (A similar expression relates the ac dipole moment of any

repeated orbit to that of its primitive suborbiSubstituting

Egs. (6.4) and (6.5 into Eq. (4.6), we find that all recur-
rences k,n) close to thenth return of the parallel orbit are
reduced by approximately the same factor,

05 /‘\ /\/, \ /,, \\\
] L \
; \
\
0 v ) o
1
)

«

0 V y ! \ Jo(eF1|Zy ()| Ty n/h)~Jg gFl Z|(w) T”W :
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FIG. 4. Comparison of the motion of several closed orbits in ~ Whenever the quantity multiplying, in the argument of
static fields, withe= — 0.4. (@) The parallel orbit k,n)=(0,1); the  the Bessel function becomes zero, the recurrence will not be
(b) (1,2), (c) (1,3), and(d) (2,5) orbits(solid line9. Repeats of the Weakened even for quite large rf fields. This happens when
orbits are showr(dashed linegsto aid comparison. Both axes are Z|(w) vanishes, but also for combinations of the orbital pe-
unitless scaled quantitigsee Eq(6.1)]. riod and rf frequency for which sin@T/2)/sin(T/2) van-

ishes.

One important closed orbit is the “parallel” orbit, in For example, consider rf periods longer than the period of
which the electron travels along the positizexis with no  the parallel orbit,T>T (as in the experimept Then the
transverse motion. The parallel orbit is characterized by insine in the denominator of E¢6.6) cannot vanish, but the
dices k,n)=(0,1), which we will abbreviate gs The par- one in the numerator vanishesTify=(n/m)T for any inte-
allel orbit repeateah times has indices (0). germ. In particular, if Ty=nT, then recurrences near the

At the energy and field strengths involved in the nth return of the parallel orbit are unweakened by the oscil-
Spellmeyer-Kleppner experime®], the parallel orbit is lating field. At first glance, this result might seem unex-
particularly important. At their scaled energy — 0.4, the  pected. Normally one finds that an orbit is most perturbed
largest possible initial anglé; of any closed orbit is about when the period of the perturbation is rationally related to
30°; orbits with larger initial angles ionize immediately. the period of the orbit. In our case the perturbation is a pure
Moreover, the motions along theaxis are larger than those sinusoid, so it has no higher harmonics. Therefore, the effect
transverse to it. It turns out that tlzemotion of any closed of the rf field averages to zero over the multiple periods of
orbit (k,n) is not so different from that of the parallel orbit the electron orbit, leaving the recurrence unaffected by the rf
repeatech times (see Fig. % field for many rational ratios of periods.

This pattern of unweakened recurrences is the most strik-
ing feature of the experimental measurements. The ‘“re-
stricted” model described in this section, using only the

For example, the return time of each orbit varies by onlyyrgperties of the parallel orbit, is able to predict that pattern.
about 30% from the return time of the repeated parallel orbit:

Tkn~Top=nT;. Moreover, the actions of all orbits with the
samen are indistinguishable in the experimer@; ,~ Sy,
=nS§,. The ac dipole moment of orbik(n) is, accordingly
[from Eq. (6.3)],

Zk’n(T)%ZO’n(T):Og Tng’n. (63)

C. Experiment

In Ref.[9], we compared two versions of the theory with
experiments. The first, “general” semiclassical result comes
from finding each classical closed orbit, its amplitude, and its
ac dipole momen&(w) individually, then summing them
together coherently, using a term like E4.6) for each or-

We can comput&,,(w) for n repetitions of the parallel bit. The general theory gives quantitative agreement with the
orbit from the ac dipole momer#(w) of the parallel orbit  finer details of the experiment and of a semiquantal calcula-

itself as follows: tion [9].
The second, “restricted” semiclassical result comes from
T 2T T
[
0 TH (n*l)TH
Xexpiwr)dr

Zyn(@)~Zop(w). (6.4

treating all orbits as approximated by the parallel orbit, as
explained in Sec. VIB. The whole rf dependence of the re-
currence spectrum can then be derived from the properties of
just the parallel orbit. Here we give a more detailed compari-
son of the semiclassical theory with experimefigy. 5.

Zop(w)= Zon(7)

1
TO,n

1 . .
— IwTH . Iw(n—l)TH
n_I_H[lJre +..-+¢€ ]

Since the “restricted” theory suffices to explain all the
major trends in the data, we use it in the comparison. One
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FIG. 5. Semiclassical theory vs experi-
mental data at scaled energy=—0.4.
Axes are plotted as unitless scaled quanti-
ties. (&) The argument of the Bessel func-
tion given in Eq.(6.6), plotted as a func-
tion of scaled actionS/S; and scaled rf
field strengthf. The axisS/Sj~n corre-
sponds to the number of repetitions of the
parallel orbit.(b) The square of the Bessel
function (6.6), as a function of the same
parameters.(c) Experimental recurrence
spectra at various values bfParts(a), (b),
and (c) are taken at a fixed scaled rf fre-
quency w=0.32. Parts(d), (e), and (f)
show analogous quantities, except with
fixed scaled rf field strength=0.008, and
a range of scaled rf frequencies. The
“restricted” semiclassical theory is seen
to predict the pattern of weak and strong
recurrences seen in the experiment. The
physical parameter ranges in each case
were 146sw<158; i.e., —4.1 cm?
<E,~<-35 cm! and 11.4V/cm=F,
=8.2 V/Icm. (The experimental data are
from Spellmeyer and Kleppngi6].)

abscissa in each plot in Fig. 5 B/S;, which counts the VIl. SYMMETRY-BREAKING ANALOGY

approximate number of vertical excursions that the orbit \ye conclude this paper by defining “temporal symmetry
takes before returning to the atom. For pl@s-(c) w is held  preaking,” and explaining how that concept connects the
constant and the scaled rf field strengti varied; for(d)—(f)  present work with other recent work. In the static field, the
f is held constant, and the scaled rf frequeacys varied. Hamiltonian is independent of time, while in the perturbing
Figures %a) and 5d) show the argument of the Bessel rf field it is periodic in time. We compare this to another
function of Eq.(6.6). When that quantity goes to zero, the system[17], an atom in a static magnetic field, which is
corresponding recurrence is not significantly weakened byerturbed by a weak electric field perpendicular to the mag-
the rf field. Partgb) and (e) show the square of the Bessel netic field. In that case, the unperturbed Hamiltonian is inde-
function shown in Eq(6.6), which is the factor by which pendent of the azimuthal angle, while the full Hamiltonian is
recurrences are weakened by the rf field; i.e., the strength gferiodic in that angle—we call it cylindrical symmetry
the f=0 recurrence peak is multiplied by this factdin the  breaking. In this section we explain the intimate relationship
experimentAw<w, so the Bessel function can be treated asbetween the present case of temporal symmetry breaking and
approximately constant across the spectjuRarts(c) and  the case of cylindrical symmetry breaking.
(f) show experimental recurrence spe¢sae Eq(6.2)] mea- This connection came as a surprise. In quantum mechan-
sured by Spellmeyer and KleppnEt6]. It is evident that ics time plays a distinct role as an evolution parameter, not a
even this restricted theory gives remarkable agreement witdynamical variable, so it is not in general analogous to a
experiment: the unweakened bands and all of the ripplyoordinate or angle. On the other hand, in classical mechan-
structure of the Bessel function are manifested in the experics we can extend the phase space framq) to (p,q,t,
mental measurements. —E), and then time becomes a dynamical variable like any

TABLE Il. Correspondence between cylindrical and temporal symmetry breaking.

@ (a) (b) (b)

H0 ngiogg:ZZ/S LZEiOEE::Z/S Hatomic+ Fz Hatomic+ Fz

H' 0 F.x=F1p cosp 0 F 1z cos(wt)
Conserved E andL, E only E andL, L, only
Classical action So(E,B) Sy— F1TXCOS(b— dby) So(E,F) Sy—F1T|Z(w)|cost)
Recurrence weakened by — Jo(F,TXh) — Jo(F1T|Z(w)|/#)
Reference [1] [17] [3] [9]
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other. Therefore @lassicalHamiltonian that is periodic in  [Here x is the averagex coordinate of the “most uphill”

time is analogous to one that is periodic in an angle. WithinOrbit in the family = maxix(t)dt'T, and &, is the initial

a semiclassical approximation, _then, we can exploit this analézimuthal angle of, that orbit. ' 0

gy, and connect_ the observations mgdéa]qto the 0b§er- The returning wave function at the origin is the coherent

vations of cylindrical symmetry breakln_g pre_sented n REEf'superposition of all the waves that return after starting out at

[17]. Four closely related systems are I|_sted_|n Table ”_' Il initial azimuths. Therefore, the recurrence amplitude is
For each of these systems, the Hamiltonian is dominate Iso such a superposition:

by a time-independent and cylindrically symmetric part,

which we callH; it consists of the atomic HamiltonidiEq. 1 (2=

(1.13] plus a term from the strong static field. {a) and szlmz—f d¢ Cexpli[ S(E,B;F,¢)/h+ ]}

(@), the static magnetic field gives the additional term Tlo

L,B+B?p?/8. In (b) and (B), the static electric field gives 1 ron
the additional ternf;z. mlm[ Cexpli[ Sy(E,B)/h + 7]}ﬂf do
0
A. Cylindrical symmetry breaking X ex — (i/ﬁ)FlTYCOS(d)— d’o)]]
In the magnetic field, the simplest orbit, which produces
one of the strongest recurrences, lies in the plané; it is = Csin Sy(E,B)/h + ')’]‘]O(F]_TY/ﬁ) (7.3

known as the perpendicular, Garton-Tomkins-Edmonds, or

quasi-Landau orbit. Actually it is a cylindrical family of or- rrom this formula, we see that partially destructive interfer-
bits; the electron begins at any initial azimuthal angle, and agnce of waves coming from different azimuths weakens the
it executes one cycle g8 motion, the azimuthal angle ad- ecyrrence amplitude by a Bessel function factor. The argu-
vances approximately2/3 rad. The electron begins with & ment of the Bessel function is proportional to the perturbing
C%&[a'n energyE,,; and with angular momentum component gjectric fieldF,, and to the product of the time duration of
L; =0, both of which are conserved undep. It returns  he ynperturbed orbif with the average of(t) on the most-
therefore withL;*=0, so every orbit in the cylindrical fam- yphill unperturbed orbit, i.e., to the static electric dipole mo-
ily comes back exactly to the nucleus. The cylindrical family ment of that orbit.
of returning orbits carries a well-focused, cylindrically sym-  The ¢ integral in Eq.(7.3 has two stationary phase
metric returning wave, which produces a strong recurrencepoints, corresponding to two terms in the asymptotic ap-
Any interaction that changes the angular momentum  proximation for the Bessel function. These correspond to two
weakens the recurrence. Let us turn to situatioh).(&8he  surviving closed orbits. Therefore, E(f.3) smoothly con-
weak electric field breaks the cylindrical symmetry, and thenects the cylindrically symmetric case with the case of fully
Hamiltonian becomes periodic i#. The cylindrical family  proken symmetry.
of returning orbits is destroyed—of that continuous family,
only two discrete orbits return exactly to the nucleus. All the
other orbits in the family return with, small but nonzero, ) o
and they miss the nucleus. They come back close enough NOW let us return to the case considered in this pafimr,
that they contribute to the recurrence, but they do not com@nd (). Ho contains the Coulomb Hamiltonian with a
back in phase. This partially destructive interference weakstatic electric field along the axis, and the perturbatioid’

B. Temporal symmetry breaking

ens the recurrence. is a weak oscillating electric field also oriented along the
The Symmetry breaking perturbation Changes the phase @GS As eXplained earlier, because of the intrinsic time de-
the returning wave according to the formula pendence of this system, many aspects of recurrence theory
had to be re-examined. First we had to show that an excita-
S JH tion rate or photon absorption rate exists in this system
(9_|:1 = ﬁ?ldt’ (7.19 (2.7)]: at each timd, there is a well-defined photoabsorption

cross section and an oscillator strength density
Df(E,Fq;F1,t), which oscillates at the rf frequency. Not
surprisingly, this quantity was divided into a smooth “back-

AS= _eFlf x(t) dt, (7.1 ground” part and an oscillatory part associated with return-
ing waves[Egs.(2.15 and(3.93].

The returning waves were, as always, constructed from
wherex(t) is evaluated withF;=0. Since unperturbed or- the classical orbits. At this point, we went into the extended
bits in a family are identical except for their azimuthal ori- phase spacep(q,t,—E), and then time became a dynamical
entation, it is easy to show that the above integral dependgariable like any othefEq. (B3)]. From this point on, the
sinusoidally on the orbit’s initial azimuthal anglg, specifi- theory exactly parallels the theory of cylindrical symmetry
cally, breaking[17].

SinceH(t) is periodic in time, time is like an angle vari-

. able; it is analogous to the azimugh Each returning orbit
S(E,B;F1,9)~So(E,B)—F Txcog p—¢pg). (7.2  for static fields becomes redefined as a continuous family of
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orbits returning at time [Eq. (3.6)], and we examine this Ry(t)

family over one .cycle of thg rf fleld.. Begause of the U(t)_c<E><H>/(47-rth)

t-symmetry breaking, the conjugate varialiteis not con-

served. The family of orbits that formerly came back to the Amh o Ry(t)

nucleus withE .= E is destroyed. Of that continuous fam- = >

ily of unperturbed orbits, under sufficiently small perturba- c(4Ffcos(w T+ 1))

tion, the whole family will remain closed in configuration ok

space, but not closed in the extended spage E). In each _cmhoy R(1). (A1)
family, just two discrete orbits survive that hakg,=E, ;. CFE *

Recurrences are weakerbf.# E, . (This important fact
was not obvious from the earlier derivations of recurrencdn the last line we have averaged over a cycle of the laser
theory, in which energy conservation was taken for grantedield. The oscillator strength density can be defined as
[1,3].) The situation is analogous to cylindrical symmetry
breaking, in which recurrences are weaker if angular mo-
mentum is not conserved. If the oscillating field is suffi-
ciently strong, then only the two distinct orbits for which

Erer=Eou CONtribute to the recurrence. On the other hand, folis gimensions are (energy}. The cross section and the
a weak perturbation, the whole family contributes, With @ ycijiator strength density, like the absorption rate, are time

DHD= = )= LR (1),  (A2)
=0 == .
2m%e’h me’F? §

time-varying phase _ _ . dependent, and must be averaged over a cycle of the rf field
The phase of the returning wave is the extended actiongec. |y B). These formulas are based on Gaussian units for
and the first-order calculation gives electric fields and charges.

AS(t)=—eFT|Z(w)|sin(wt+ B).
2. Proof of Eq. (2.7)
The rate of increase of probability of finding the electron
in the excited state is given by E@L.5), which can be writ-
ten

Instead of the static dipole momexf AS depends on the
ac-dipole momenZ(w). The contribution to the excitation
rate arising from each recurrence is

d
R(E,Fo;F1,t)=Csin S(E,Fo;F1,t)/h + y] Rd(t)=2 Re[ {a“’x(t”h‘l’x(t»]-
which, when averaged over a cycle, gave the Bessel functiof,oM Ed.(2.3),
d o
RA(E FoiF1) = Csinl Sy(E,Fo)/ i + Y1 F 1 TIZ(w) /4], ar (PO I= IR AL POIHO ).

Partially constructive averaging of the recurrence term over 4 nerefore,

cycle of the RF field selectively reduces the strengths of the _ . .

recurrences. For certain recurrences, generally those havingRX(t)_(Z/ﬁ)Re['“(t)wx(t)H'<Wx(t)|H(t)|q’X(t)>]'
return times commensurable wilhy, the ac dipole moment

. . . The second term in the brackets is purely imaginary, leavin
vanishes, and the recurrence survives the perturbation. purely ginary 9

Ry(t)=— (2 Im(1 (1) | (1))
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3. Outgoing Coulomb wave,(q)

APPENDIX A: PROOFS AND ADDITIONAL FORMULAS In this appendix we justify Eq2.12 and give an expres-
1. Absorpti ‘ . d oscillat sion for computing)(6, ¢). More details can be found in
. Absorption rate, cross section, and oscillator Ref. [1(b)], Sec. IV C.

strength density We computey,,; from Eq. (2.11). For this we need the

For comparison to earlier work, we note that the photoabexpression for the Coulomb Green'’s function. Since the ex-
sorption cross section is equal to the rate of production operiments are near the ionization threshold, we use the zero-
electrons in excited levelR,(t), divided by the photon flux energy Green'’s function, which is accurate enough for our
density in the laser: purposes:

053406-13



M. R. HAGGERTY AND J. B. DELOS

Gé(q,q':E=0>=§ Yim(6,8)92(r,r )Y (6", ¢"),
' (A4)

where, wherr >r’,

HED, 1(V8r) 3y, 1(V8r)
Jr NI

Jo1+1 is a Bessel functiontd$t), ; is a Hankel function of the
first kind, for which we use the asymptotic expansion

gl(r,r')=—2mi (A5)

z>1

2
HO(z) — —exdi(z—vml2=wl4)].  (A6)

Substitute Eqs(A4), (A5), and(A6) into Eqg.(2.11), and
compare with Eq(2.12). Taking the constant, equal to
C,= 23/477_1/2e7i57r/4 (meag/ﬁZ), (A?)

the angular distribution of outgoing waves is found to be
V0,00~ (<)Vin(0.6) | da Vi (0",

XJM(W)
\/F

D.¢i(a’). (A8)

PHYSICAL REVIEW A61 053406

where

Cy=e227%27"1  (mead/h?). (A11b)
[This is Eq.(4.233 of Ref.[1(b)], evaluated at= 6 .]
Now the coefficientN(t) can be evaluated from Eg.

(A10) using Egs(3.1), (Alla), (2.10, and(2.12:
Cy rfllz .
N(t)=eF,_C—3 @A(Qf,t;qi ,ti)smef y(@l)
X exp{i[S(dy ,t; 0 1) + 8r + V/8r{— Equt ]/
—in/2}. (A12)

As stated earlier, as long as we are not near a bifurcation, our
approximations are all consistent and the valueNgf) is
independent of the location of the boundary sphere. In fact,
the limits can be evaluated carefully to compitét) atr,
=r¢=0. In particular, the combination

lim [S(ar,t;q,t)+/8ri+v8r]=5(0,t;0,t;)

¢ ,ri*>0

(A13)
is equal to the classical actiaf(0,t;0,t;) calculated from
origin to origin, while the combination

lim [(rF2r ¥ A(ge,tai t)sing]=Ag(t) (AL4)

rs ,I’i~>0

D, is the dipole operator appropriate for the laser polarizanas a finite limit, which we calA(t). Substituting those

tion (in our caseD,=z"=r'cos#’). The angular integral in

Eq. (A8) is standard, and the radial integral can be evaluate

as described in Refl]. It can be shown that EqAS8) is
equivalent to Eq(2.13), if C, is chosen to be

C,=2%27 (meal/h?). (A9)

4. Returning wave

The goal of this section is to evaluate the fachi(t),
which characterizes the strength Wt in Eq. (3.6). We do
this by computing the ratio of the incoming partWw£to the
incoming part ofzpC,ng at the convenient positiorr {, s),

_inc[\lf)s(c(rf !ef !t)]
B incf e g (re, 001"

N(t) (A10)

where “inc” means “incoming part of.”

Except near a bifurcation, these two approximations are

consistent, andN(t) is approximately independent ofin a

shell (say from 1@, to 708,) around the nucleus. Thus the
final answer is insensitive to the radius chosen to “join” the

semiclassical wave to the Coulomb scattering wave.

The incoming part oﬁﬁc,of(r,a) at the anglets (the di-
rection from which the returning wave comesn a final
boundary sphere of radius is

exp(—i/8ry)

: : (Alla)
ri'%sin o;

incyic o (1, 0r)~Cs

uantities into Eq.(A12), we obtain Eq.(3.7). Equation
.90 gives an expression foAy(t) in terms of reduced
Jacobians.

5. Excitation rate from returning orbits

Using the definitions ofic ,, [Eq.(3.5] and of)(6) [Eq.
(2.13 or (A8)], one easily shows that

(Dathildhc,o,) = C2V* (6y), (A15)

whereC, is defined in Eq(A9). The overlap of the returning
wave with D,i; gives the contribution of that wave to the
excitation rateR[S(t). Starting from Eq(3.8), we have only
a long sequence of substitutions. In order we use E3}6)
and(2.4), then Eqs(Al15) and(3.7),

RE(t) =~ (2/h)(eF)IM[N(t)e'Eout™ (D, ys| g 4,)]
=~ (2/h)(eF)?IM[(C1C,/C3) (61 V* (6;)
X Ag(t)exp{iS(t)/h—iNm/2}],
whereS(t) =S(0,t;0,t;)) + Equ(t—t;), as in Eq.(3.9b. Sub-

stituting in the values of the constants from E@s7), (A9),
and (Allb) yields Eq.(3.9a.

6. Dimensional considerations

Let us denote dimensions of length hyenergy bye, and
time by t. The functions¥(q,t), ¥,(q,t), and ;(q) all

053406-14



RECURRENCE SPECTROSCOPY IN TIME-DEPENDENT FIELDS PHYSICAL REVIEW6A 053406

(@)

FIG. 6. (a) If the Hamiltonian is independent of time, then, as in R&f, we can calculate the Lagrangian manifééhd thereby the
wave function by integrating trajectories starting at a given boundasyr; at any arbitrary fixed time; . (b) Often in time-dependent
systems, we construct a wave functidr{q,t) given its value everywhere in space at some initial titmeTrajectories associated with such
a wave function emerge from all locations ¢) in thet=t; plane.(c) In the present case the “initial” wave function is given on a boundary
r=r; at all timest. The associated trajectories emerge from all locatiaghs) (in the r=r; plane. The Lagrangian manifold framework
naturally allows such a change.

have the usual dimensions of three-dimensional wave func- For this purpose we expand phase space in the usual way
tions, | %2 From Eq. (2.11), #.,{q) has dimensions by includingt as a classical dynamical variable, creating a
e 1172 The angular facto}(6) has dimensionk and itis  conjugate momenturp,, and defining an effective Hamil-
best to take the radial part af,,{(q) to have dimensions tonian
| =32 then the radial factor in Eq(2.12 would be
expi(8r/ag)?]/(r/ag)**ay *2, and this means that the con- H(p,d,p;,t)=H(p,q,t) +p;. (B2
stantC, has dimensiong ! and its valug[Eq. (A7)] is of
course in Hartree!.

In Eqg. (3.5 we choosa/;cy,,f(q) to have the same dimen-

sions as ¥,,(q) (e 1173, so N(t) has dimensions

We create a “timelike” variabler to represent the progress
along paths in the expanded phase space, and then the ca-
nonical equations of motion are augmented by

(e/l). In Eq. (A8) let the radial factor have dimensions dt/dr=1, (B3a)

| =32 then, like the radial part of ¢y, it is

Joi+1(8r1ag) Y (rlag)?a, . Similarly we interpret Eq. dp,/dr=—aH/4t. (B3b)
(Al1a) to contain ¢;/ay) and (;/ap) everywhere, and if the

radial factor in Eq.(A11a) is defined to have unita; ¥,  We may construct a semiclassical wave function using the

then C; has dimensionsl(e). A similar convention is in- theory of Maslov and Fedoriuk, provided that we know the
volved in Eq.(A14): with r; andr; understood as;/ay and  wave function on an “initial” two-dimensional Lagrangian
rilag, thenAy(t) is dimensionless, and one easily confirmsmanifold in the three-dimensional augmented configuration

that RIE(t) [Eq. (3.99] has dimensions ™ 2. space (,6,t). If we were evolving a wave function in time
from its known spatial dependence at a single timethen
APPENDIX B: LAGRANGIAN MANIFOLDS AND that initial surface would be the set of all configuration
TIME-DEPENDENT WAVE FUNCTIONS points (r,#) at the initial timet; . However, as explained in

the text, our initial surface is the set of points on the bound-
Outside the domain wherg(t)) is significant, we can ary sphere at all times—the set of all poirfts=r;,0< 6,
construct a solution to the homogeneous time-dependengﬂ,_m<ti<oo} (see Fig. 6.
Schralinger equation Now we must define the “generatorSy(r;,6; ,t;) and
the initial momenta on this initial surface so that they are
) self-consistent, and consistent Wi‘l}'ﬁ”(q,t) on the surface
[if 9lat=H(1)]W,(q,t)=0 (BD)  [Egs.(2.10 and(2.12]. We choose

| So(ri 61 ,t) =~ Equti + V8r;. (B4)
by the method of Maslov and Fedorijik4]. However, our
situation is a bit different from the common one. In mostThe second term is added for later convenierdg) is a
applications of semiclassical methods to time-dependenslowly varying factor which will be incorporated into the
problems, the initial wave function is given everywhere ininitial amplitude rather than int&,. The corresponding ini-
space at some single initial time. In contrast, here we ar@al momenta are
constructing¥ (q,t) from its behavior on a boundary sphere

at all times. Nevertheless we can show that we have a valid pu(ri,6;,t)=0Sy/96,=0, (B5a)
semiclassical construction by mapping this problem onto the
framework of Maslov and Fedoriuk. pi(ri,0;,ti)=03dSy/t;=—Equt, (B5b)

053406-15



M. R. HAGGERTY AND J. B. DELOS PHYSICAL REVIEW A61 053406

while p, is chosen such that the value of the effective Hamil-Since we have obeyed all the rules of Maslov and Fedoriuk,

tonian M is fixed and equal to zero. Specification of thesepreviously established theorems tell us that we have con-

values of ¢;,p;.py,P:) specifies an initial two-dimensional structed the first term in a formal asymptotic approximation

surface, parametrized byg(,t;), in six-dimensional phase to a solution to the Schdinger equation; i.e., we have a

space. The method of construction ensures that this initizéemiclassical approximation.

manifold is Lagrangian. The relationshipt=t;+ 7 allows us to simplify Eq.
Next, for each point ¢;,t;) on the initial surface, we in- (B10a. Treating the final position as a function of the initial

tegrate Hamilton's equations, generating trajectories that ar@ngles, initial time, and time of travel, we obtain

functions of the progress variabteand the initial variables

(6,.1); i.e., the solutions to Hamilton’s equations are repre- (qt)= { ar.e) | { a(r.,0)

: . g,t)=de de

sented by six functiongq, p, p;=—E(7), andt=t;+ 7] of a(6;.t) | a(0;,7)

three variables §;, t;, and 7). The initial two-dimensional

surface thus sweeps out a three-dimensional surface in thehere subscripts indicate the variable that is to be held fixed.

six-dimensional phase space, and again the method of coffhe second term of this expression is the Jacobian that was

struction ensures that it is a Lagrangian manifold. As theneeded in Ref[1], where the system was time independent.

trajectories are integrated, they give the configuration spacghe first term does not appear in the time-independent

., (B1Ob

§

generator of the Lagrangian manifols(q,t): theory. It includes the change in a trajectory’s final position
when the initial timet; is changed, while holding the time of
S(q,t)=f E p; daj+ So(ri,6;.t) flight (o_r travgl tlme)_r constant. Forgnme—mdependent sys-
tem, this derivative is zero. For our time-dependent system it
at is nonzero, because trajectories beginning at different times
=| [p;dr/dr+p,dé/dr+p,dt/dr]dr experience different phases of the rf field, and therefore end
aiti up at different final positions.
— Eou i+ V8, An alternative and more succinct expressionJds mo-
it ' tivated by the observation thatcan be eliminated by sub-
=38(0,t;0;,t) — Equtti + V8r;. (B6)  stituting the identity
In this formulag;=(r;, ;). Since @;,t;) can be regarded as a|l | d a ]
a function of the field point ¢,t), the left-hand side is a ar t ot | (9_tit

function of (g,t), and it is the generator of a Lagrangian

manifold havingp=9S/dq, andp,;=dS/dt. into Eq. (B10a: the result is
Given the wave function?, on the initial manifold, the a. (B10a;

wave function at each point in configuration spagg) can .

be calculated according to the standard rules: J(q,t)=de

P(q,t)=Vq(q;,t)A(,t;q;,t;
(@0 ="o(ai t)AQ.t:a:. ) In this expression, the findlaboratory time t is held fixed,
Xexdis(q,t;qi,t)/h—iN7/2]. (B7)  while the initial time(and implicitly the travel timgare var-
ied.

ar,6) ]

5‘(0, vti)_t.

(B109

In particular the phase is the generaf(plus the appropri-
ate Maslov phase Shil)tSThe amplitude is the wave function APPENDIX C: ACTION PERTURBATION THEOREM
on the initial surface times a ratio of Jacobians,
Equation(4.2) is a variation on old theorems in classical

J(q;,t)| M2 mechanics. Its proof is a matter of writing out all the vari-
A(G.1;G;,t)= g | (B8 ables and taking a derivative. We are given a Hamiltonian
function H(p,q,t";F;)=H(t";F;) which depends on the
and each Jacobian is phase space variableg, ), the timet’, and on the strength
_ ] ) ) F, of the rf field (thoughF, could be any other parameter
J(q.t)=det d(evolving configuration space variabjes We are given a closed orbit that ends at the origin at time
' d(initial-surface variables; progress variable It begins at the origin at time
d(X,y,z,t) t=ti(t;F) =t—T(t;F,).
= s 1)
P T(t;F,) is the duration of the closed orbit; in our case it is a
=r2sin gj(q,t), (B9) periodic function of the final tim& and it has some unspeci-
fied dependence on the paramefgr The orbit is therefore
where described by functions [p(t’;t,F4),q(t";t,F;)] with
ti(t,Fy) st'<t.
3(q.t)=de a(r,0,t) (B10a Now we fix the final timet, and drop it from our list of

(6 ,ti;7) variables. The orbit functions obey Hamilton’s equations
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dp(t’;F)/dt’=—9H(t";Fq)/aq,
dq(t’;Fy)/dt’ =gH(t";F)/dp.
The end points are held fixed,
q(t'=t;Fy)=aqs,
qt’=t(t,F1);F1)=q;,

and the initial momentunp;=p(t’' =t;(F,);F,) is restricted
such thatH(p; ,q; ,t; ;F1) =Egy is fixed and independent of
F,. Becausay; is held fixed,

0= doi  dq(ti(F1);Fq) dti(Fy)

aq(ti(F1);Fy)

T dF, at; dF, aF, €Y
The extended actio8(F,) is
t aq(t’;Fy)
S(F1>=f p(t';Fy)- ————
t;(Fq) ot

—[H(t";F)—H(t; ;Fl)]} dt’,

and its derivative is

aq(t ;Fl)Hdti(Fl)}

as _ [ o
d_Fl_ p(iv 1)' at| dFl

N ft ap(t’;Fyp) _ daq(t’;Fy)
t(Fp|  IF1 at’

*q(t';Fy)  JH(t';Fy) ap(t';Fy)

+p(t';Fq)-
P(tF) at' oF p JIF;
IH(t";Fq) aq(t’;F IH(t";F
B ( 1). q( 1)_ ( 1) dt'. (C2)
daq JF, JF,

The first term is the boundary terfdue to the change in the
lower limit of integration and everything else comes from

PHYSICAL REVIEW6A 053406

Inside the integral, the first and third terms cancel. Inte-
grating the second term by parts, we obtain

t
f p(t';F
t(Fq)

=p(t';Fq)-

q(t';Fy)
at' oF,

aq(t’;Fq)
JF 4

1) dt’

t' =t

t'=t,(F,)

t !. /.
—f IP(iF) dA(tFY 3
ti(Fy)  at’ dF
The integral in Eq.(C3) cancels the fourth term under the
integral in Eq.(C2). The upper-boundary term in E¢C3)
vanishes because the final point is fixed(t;F)/dF,=0.
The lower-boundary term in EqC3) combines with the
boundary term in Eq(C2),

aq(ti(F1);F1) dti(Fy) N aq(ti(F1);Fy)|
ot dF dF, B

_p(tiiFl)‘[ 0

by Eqg. (C1). We are left with an expression for the pertur-
bation to the action,

dS(Fy)
dF,

J‘t AH(t';Fy) at’ ca
uFp  9F1 '
from which Eq.(4.1) follows. The derivative of the Hamil-
tonian is integrated along thenperturbedtrajectory.

Let us now evaluatd S for our system. From Eql.1),

IH(t";Fy)

oF =—ez(t')sin(wt"),

F,=0

wherez,(t") is the unperturbed trajectory that arrives at point
g attimet’ =t. But whenF;=0, the shape of the orbit does
not depend on the return time, so let us write

zo(7)=z(7+t—T), O0=7<T,

differentiating under the integral sign. There are other termswherezy(7) describes the shape of the unperturbed orbit, but
involving H(t;;F4), but their derivatives all add to zero be- its argument always runs from 0 7o Equation(4.2) follows

cause the initial value dfl is fixed independent df ;.

trivially.
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