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Recurrence spectroscopy in time-dependent fields

M. R. Haggerty
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

J. B. Delos
Physics Department, College of William and Mary, Williamsburg, Virginia 23187

~Received 22 September 1999; published 11 April 2000!

Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external
fields. We derive an alternative version of closed-orbit theory that applies when the external fields are time
dependent. We compare the results of this theory with experiments on lithium atoms in a weak oscillating
electric field.

PACS number~s!: 32.60.1i, 03.65.Sq, 05.45.2a

I. INTRODUCTION

Recurrences are classical orbits of an electron~or quan-
tum wave packets! that go out from an atom and later return.
They are visible in real time, and they are also visible as
peaks in the Fourier transform of the absorption spectrum of
the atom@1–8#. In a recent experiment, the absorption spec-
trum of the lithium atom was measured, first with a static
electric field@8#, then with the static field plus a weak oscil-
lating rf field parallel to the static field@9#. With the static
field only, many strong recurrences were visible. As the rf
field was added, these recurrences weakened according to a
complicated pattern. One might expect that orbits having pe-
riods rationally related to the period of the driving field
would be most affected, that they would be destabilized, and
that those recurrences might be most weakened by the rf
field. However, the experiment showed that recurrences that
were ‘‘in resonance’’ with the driving field were least af-
fected by the driver.

Reference@9# showed the experimental results and gave a
brief explanation for the pattern of weakening caused by the
rf field. Reference@10# showed that a study of the weakening
allows the classical trajectories of the electrons to be recon-
structed from experimental data. In this paper we present a
full analysis of this experiment. Starting from the time-
dependent Schro¨dinger equation, and proceeding systemati-
cally, we derive formulas for the absorption spectrum and
the recurrence spectrum in oscillating fields.

Here is a summary of the essential ideas. An atom is
placed in a static field with a low-frequency oscillating field,
and a laser shines on the atom. We consider the total rate of
absorption of photons from the laser field, i.e., the total rate
of production of electrons in highly excited states. That pro-
duction rateRx(Eout,t) is an oscillatory function of time and
photon energy.

The production rate oscillates with photon energy because
of recurrences. As the laser acts upon the atom it produces a
steady stream of outgoing electron waves with a fixed out-
going energyEout5Ei1hn. These waves can be followed
by following classical paths of the electron. The paths are
turned around by the fields, and some paths return to the
atom. Paths that arrive at a given final timet interfere with
each other and with the outgoing wave. This interference

produces oscillations in the absorption rate as a function of
energyEout. The phase of the oscillations is related to the
classical action around the orbit,S, which depends on the
outgoing energy. The absorption rateRx(t) is proportional to
sin(S/\).

Now, because the applied fields are oscillating, the return-
ing orbits likewise oscillate in time, and their classical ac-
tions also must oscillate as a function of their arrival time,
S5S(Eout,t). In first order, there is a small shift in the ac-
tion, proportional to the amplitude of the oscillating field:
S(Eout,t)5S0(Eout)1const3sin(vt). Then the instantaneous
absorption rateRx(t) depends on photon energy and time as

Rx~Eout,t !}sin@S~Eout,t !/\#

5sin$@S0~Eout!1const3sin~vt !#/\%.

The measurement averages over many rf cycles. When we
average the absorption rate over time, its oscillatory depen-
dence onEout is weakened, in proportion to a Bessel func-
tion. The argument of that Bessel function turns out to be
proportional to the amplitude of the oscillating field, and to
the frequency-dependent dipole moment of the closed orbit.
In essence, the time-dependent field causes the phase of the
returning electron wave to be frequency modulated, weaken-
ing its Fourier component at the frequency corresponding to
Eout. This phenomenon explains the measurements.

Our derivation follows in spirit the analysis of recurrences
in static fields developed earlier by Du and Delos@1#. How-
ever, they assumed that the fields imposed on the atom were
static, and they developed their whole theory from the fixed-
energy Green’s function. Therefore, to examine absorption
spectra and recurrence spectra in oscillating fields, we have
to start over from the beginning, and develop the whole
theory in a time-dependent framework. The theory can be
derived from a formula that happened to appear in Ref.@1# as
Eq. ~2.16a!:

D f ~Ef !5F2me~Ef2Ei !

p\3 GReE
0

`

^Dc i uK̂1~ t,0!uDc i&

3exp~ iE f t/\! dt.
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In that paper, this formula was mentioned as an ‘‘aside’’—it
was not really essential to the theory, and the proof of this
equation given in Ref.@1# presumed that the applied fields
were time independent. Here we show that a similar formula
also applies to our time-dependent system. The assumptions
used in our derivation are quite general; the primary assump-
tion is that the atom is acted upon by two fields that are far
apart in frequency.

The theory developed in this paper has connections with
other work on a number of other topics in atomic and mo-
lecular physics.~1! Real-time recurrences@7#: Recurrences
have also been observed in real time. A short pulse of light
applied to an atom creates an electron wave packet; this
packet moves away from the atom, and it is detectable when
it returns to the atom. However, all such measurements to
date have involved only static fields applied to the atom.~2!
Two-color excitation@11#: There are many observations and
calculations dealing with the excitation of atoms by two co-
herent sources having different frequencies. The experiments
discussed here are of the same type. The special features in
the present case are that~i! one field is very slow~rf! and the
other is very fast~visible!; and ~ii ! the excitation is to high-
Rydberg states, corresponding to principal quantum number
around 110.~3! Microwave ionization@12#: In the experi-
ments of Bayfield, Koch, and their groups, hydrogen atoms
were excited to states aroundn;30–60, and then the excited
atoms were passed through a microwave cavity. In the ex-
periments of Gallagher, sodium atoms in the ground state
entered a microwave cavity, and there the laser excited them
to high states.~The different order of events is significant.!
The experiments considered here@9# are similar to this sec-
ond case—the laser excitation occurs within the oscillating rf
field. However, these experiments have a number of new
aspects:~i! high resolution is achieved;~ii ! the laser is co-
herent on a time scale which is long compared to a cycle of
the rf field, and, more important, long compared to the return
times of many orbits of the electron; and~iii ! the experi-
ments are done by the scaled-variable method~which is op-
timal for recurrence spectroscopy!. Therefore recurrences
can be observed, and their actions and strengths can be mea-
sured quantitatively.

A. Physical picture

To avoid inessential complications, we develop a theory
for a ‘‘pseudohydrogen’’ atom: spin is ignored; the atom has
just one active electron; in the excited states we ignore quan-
tum defects and their associated phase shifts; and the initial
state is a product of a radial factor times a spherical har-
monic. The method for describing real lithium~with its
phase shifts and core scattering! has been given elsewhere
@3#, and we do not need to be distracted by those details. In
the experiment, static, rf, and laser fields are all oriented
along thez axis; therefore, the system is cylindrically sym-
metric. Moreover,m50 throughout@13#. Therefore the azi-
muthal anglef is ignorable, and the spatial variables areq
5(r ,u).

The Hamiltonian has a number of terms, which we
present in their approximate order of importance. The atomic
Hamiltonian is

Hatomic5
p2

2me
2

e2

r
1Vcore~r !, ~1.1a!

but we shall neglect the termVcore due to the ionic core.
Applied to the atom is a static electric field on thez axis,

Hstatic5Hatomic1eF0z, ~1.1b!

and a weaker rf field: also polarized parallel to thez axis;

H~ t !5Hstatic1H rf~ t !, ~1.1c!

H rf~ t !5eF1z sin~vt !. ~1.1d!

Finally there is a laser field, also polarized parallel toz, hav-
ing a high frequencyvL :

HL~ t !52eFLcos~vLt1gL!Dz

→eFLe2 i (vLt1gL)Dz . ~1.1e!

Dz is the dipole operator describing the laser’s polarization.
In the experiment, the laser is linearly polarized along thez
axis, soDz5z. As usual, since we are only interested in
excitation, we keep only the ‘‘positive-energy’’ term of the
cosine. The phase of the laser relative to that of the rf field is
gL , which will be shown later to be unimportant. Our as-
sumptions are as follows~Fig. 1!.

~1! Initially, atoms are prepared in a low-energy eigen-
state ofHatomic,

Hatomicuc i&5Ei uc i&. ~1.2!

At laboratory field strengths, these compact states are negli-
gibly affected by the external fields. In our particular case,
the electron has been prepared in the 3s state of lithium, so
c i(q) is the radial 3s wave functionR3sLi(r )/(4p)1/2. ~For
true hydrogen atoms, the static field would break the degen-
eracy of the atomic states, and the appropriate initial states
would be eigenfunctions ofHstatic such as 2s62p.) ~2! We
assume that the low-frequency fieldH rf(t) has a negligible
effect on the initial state. In particular, we assume that it is
not strong enough to cause transitions directly into or out of

FIG. 1. Atoms are excited from an initial state of a sharply
defined energyEi by a steady, coherent laser of a sharply defined
frequencyvL , and electron waves of energyEout5Ei1\vL propa-
gate outward. A rf field acts upon the outgoing electrons, changing
their energy within some range. The static and rf fields have little
effect on the initial state.
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the initial state.~3a! The laser has a well-defined frequency
vL which is of course much larger than the rf frequencyv
~in our case 1014 compared to 108 Hz!. Furthermore, the laser
frequency is sharp,dvL!v, so the laser is coherent on a
time scale that is long compared to the cycles of the rf field.
This is important because this type of recurrence spectros-
copy involves the observation of interference between out-
going and returning waves: therefore, the laser must be co-
herent on a time scale longer than the return time of classical
orbits. ~3b! We further assume thatHL(t) is ‘‘weak,’’ and
can be treated in first-order time-dependent perturbation
theory. A consequence will be that it steadily pumps electron
probability from the initial state to the high-energy states,
and that de-excitation is neglected.

To formulate equations with good time limits, we idealize
the experiment to the following sequence of events.~i! The
atoms begin ‘‘at rest,’’ with the electron prepared in a low-
energy initial statec i(q). ~ii ! The rf field is turned on, but
has negligible effect.~iii ! The laser field is turned on, and left
on for many cycles of the rf field; it excites some atoms to
high-energy states.~iv! A pulsed electric field is applied that
collects all electrons in all high-energy states, and these elec-
trons ~or the residual ions! are counted.~The pulsed field
does not ionize atoms that remain in the initial state.! The
measurement records the number of electrons collected~i.e.,
the probability that an electron has made a transition into any
high-energy state! divided by the time that the laser acts
upon the electron—that is, one measures the averagerate of
production of high-energy electrons by the laser field.

B. Excitation rate

At any time t, there is some probability that the electron
has survived in the initial state, and some probability that it
has been excited. Let us write the full wave function of the
system as the sum of two terms, one representing the initial
state and the other representing ‘‘all the rest’’:

uC~ t !&5e2 iEi t/\uc i&1uCx~ t !&. ~1.3!

The label ‘‘x’’ means ‘‘excited’’; this term represents the
development of electron probability in the entire band of
highly excited states.

The experiment subjects the atom to the laser interaction
for a fixed length of timeTint ~long compared with the rf
period!, then measures the total probability
^Cx(Tint)uCx(Tint)& that the atom has been excited. The ex-
perimentally measured average rate of excitation is then

R̄x[
1

Tint
^Cx~Tint!uCx~Tint!&. ~1.4!

We will proceed by calculating the instantaneous excita-
tion rate,

Rx~ t ![
d

dt
^Cx~ t !uCx~ t !&, ~1.5!

and will show thatRx(t) oscillates at the frequency of the rf
field. Then we will averageRx(t) over a rf cycle to obtain
the theoretically predicted average excitation rateR̄x :

R̄x5
1

Trf
E

0

Trf
Rx~ t ! dt. ~1.6!

II. SMALL DISTANCES: QUANTUM REGIME

The physics near the atom is dominated by the Coulomb
attraction and the effect of the laser; the external fields are
negligible. We treat this regime quantum mechanically.

A. Effect of the laser

The laser field is a weak perturbation which can be treated
using standard methods of perturbation theory. The wave
function for the electron satisfies the time-dependent Schro¨-
dinger equation

i\
]

]t
uC~ t !&5@H~ t !1HL~ t !#uC~ t !&. ~2.1!

To first order in HL , and using the fact thatH(t)uc i&
'Ei uc i& ~i.e., the applied fields have a negligible effect on
the initial state!, the excited-state wave functionuCx(t)&
obeys an inhomogeneous Schro¨dinger equation,

@ i\~]/]t !2H~ t !#uCx~ t !&

5~eFL!e2 iEi t/\e2 i (vLt1gL)Dzuc i&. ~2.2!

It can be seen from Eq.~2.2! that gL only contributes a
constant phase touCx&, and can be set to zero. We are left
with

@ i\~]/]t !2H~ t !#uCx~ t !&5uI ~ t !&, ~2.3!

where

uI ~ t !&[~eFL!e2 iEoutt/\Dzuc i& ~2.4!

is a source function that oscillates with the energy

Eout[Ei1\vL , ~2.5!

but is otherwise time independent. The source function is
localized. Thus the time-dependent, spatially extended ex-
cited wave functionuCx(t)& is generated by the steady, com-
pact sourceuI (t)&. As a consequence of this first-order treat-
ment, the source function on the right-hand side of Eq.~2.3!
contains the electric field from the laser, while the Hamil-
tonian H(t) on the left-hand side contains the static and rf
fields, but not the laser field.

We can express the solution to this equation as an integral
containing the time propagator underH(t). In operator form,
this propagatorK1(t,t8) is the solution to the Schro¨dinger
equation containingH(t):

@ i\~]/]t !2H~ t !#K1~ t,t8!50: t.t8

K1~ t,t8!51: t5t8
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K1~ t,t8!50: t,t8.

Then one can easily show that

uCx~ t !&5~ i\!21E
2`

t

dt8 K1~ t,t8!uI ~ t8!&, ~2.6!

whereuI (t)& is the source function defined in Eq.~2.4!.
The starting point of the theory of recurrences in time-

dependent fields is the theorem

Rx~ t !52
2

\
Im^I ~ t !uCx~ t !&. ~2.7!

The proof is in Appendix A 2.

B. Source function is localized

To obtain a physical interpretation of the above formulas,
let us write Eqs.~2.6!, ~2.7!, and~2.4! in configuration rep-
resentation:

Cx~q,t !5~2 i\!21E
2`

t

dt8E dq8 K1~q,t;q8,t8!I ~q8,t8!

~2.8a!

Rx~ t !52~2/\!ImH E dq I * ~q,t !Cx~q,t !J ~2.8b!

I ~q,t !5~eFL!exp~2 iEoutt/\!Dzc i~q!. ~2.8c!

Equation ~2.8a! tells us that the functionI (q,t) acts as a
‘‘source function’’ for the wavesCx(q,t): the waveCx at
locationq at time t is the superposition of all the waves that
propagated from all locationsq8 in the source from all earlier
timest8. The excitation rateRx(t) is related to the overlap of
these waves with the source function at timet. The source
function I (q,t) is well localized: it is negligible everywhere
except in a ball of perhaps 10a0 around the nucleus. It fol-
lows that we primarily need to know about the behavior of
Cx(q,t) in the same small ball.

In this region,Cx(q,t) consists of two types of waves.
There are waves that propagate fromq8 to q directly, with-
out leaving the vicinity of the nucleus. The propagation time
t2t8 is typically less than ten atomic time units. In addition,
there are waves that propagate outward fromq8 and wander
around under the influence of the long-range Coulomb field
and the applied electric fields, visiting distant locations be-
fore returning to the vicinity of the nucleus and arriving atq
105 or more atomic time units later. The distinction between
these two types of waves is unambiguous because of the
large distinction in distances and times. We name these two
waves in the vicinity of the nucleusCx

dir(q,t) andCx
ret(q,t).

C. Direct wave

The direct waveuCx
dir& is needed for two purposes. First,

it enters into the expression for the smooth background part
of the absorption. Second, it determines the starting ampli-

tudes associated with the classical trajectories that will be
used to calculate the returning wave. In this section we de-
rive an expression foruCx

dir&.
As stated earlier, near the atom the external fields are

much weaker than the atomic Coulomb field; they have a
negligible effect on the waves that go directly fromq8 to q
without leaving the vicinity of the atom. Therefore, to calcu-
late the direct wave, we can approximateK1(t,t8) by the
atomic propagator

Katomic
1 ~ t,t8![exp@2 i ~ t2t8!Hatomic/\#. ~2.9!

We substitute Eq.~2.9! into Eq. ~2.6!, and perform the time
integration ~inserting the conventional exponential cutoff
factor to ensure convergence!:

uCx
dir~ t !&5 lim

a→01

~ i\!21E
2`

t

dt8 exp@2 i ~ t2t8!Hatomic/\#

3e2a(t2t8)/\~eFL!exp@2 iEoutt8/\#Dzuc i&

5~eFL!e2 iEoutt/\@Eout2Hatomic1 ia#21Dzuc i&

5~eFL!e2 iEoutt/\ucout&, ~2.10!

where

ucout&[Gatomic
1 ~Eout!Dzuc i& ~2.11!

is a stationary wave function that appeared in earlier papers
†Ref. @3#, Eq. ~5.8!‡.

We see that, except for the phase factor,uCx
dir(t)& is a

perfectly steady time-independent outgoing wave. Since the
electron is acted upon by oscillating rf fields, its energy is
not conserved. However, on the small scale ofuc i&, the en-
ergy is negligibly affected by the rf field, and so it has the
sharply defined valueEout5Ei1\vL . Thus the effect of the
laser on the atom is to givelocally a steady coherent stream
of outgoing waves of well-defined energyEout.

At intermediater @in the general vicinity of the atom but
outside the range wherec i(q) is significant#, cout separates
approximately into a product of radial and angular parts:

cout~q!'C1H exp~ iA8r !

r 3/4 J Y ~u,f!. ~2.12!

The radial part is a zero-energy spherical outgoing Coulomb
wave, whileY(u,f) describes the intensity and angular dis-
tribution of outgoing waves.Y(u,f) can be obtained by pro-
jecting uDzc i& onto a Coulomb scattering wave,

Y~u,f![C2
21^c k̂uDzc i&, ~2.13!

where uc k̂& is the zero-energy Coulomb scattering wave
leaving the nucleus in directionk̂,

c k̂~q![J0„A8rA 1
2 ~11 k̂• r̂ !…, ~2.14!

and k̂ points in direction (u,f). Since the initial state is
cylindrically symmetric and the laser is linearly polarized
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along the static field,Y does not depend onf, and we can
write Y(u). For more details including the value of the con-
stantC2, see Appendix A 3.

The direct contribution to the excitation rate follows from
Eqs.~2.7! and ~2.11!:

Rx
dir52

2

\
~eFL!2Im^c i uDz

†Gatomic
1 ~Eout!Dzuc i&.

~2.15!

One can evaluate Eq.~2.15! directly, but a shortcut is simply
to calculate the flux of electrons going out through a sphere
at radiusr large enough for Eq.~2.12! to be valid:

Rx
dir5r 2E sinu duE df ImH @Cx

dir~q!#*
]

]r
Cx

dir~q!J
54p~eFL!2E sinu duE df uY~u,f!u2. ~2.16!

Note thatRx
dir is time independent, and it is the same smooth,

nearly energy-independent background that was obtained in
Ref. @1#.

III. LARGE DISTANCES: SEMICLASSICAL REGIME

For large distances, the effect of the laser is negligible and
the physics is dominated by the external electric fields and
the Coulomb field. We treat this regime semiclassically.

A. Continuing the wave function semiclassically

In Sec. II C, we showed how to find an approximate wave
function describing the outgoing electron wave near the
nucleus. Our task now is to propagate this wave function
through large distances and back to the nucleus. We do this
semiclassically, by following classical trajectories from the
region near the nucleus, where the outgoing wave function is
known, to the regions where we want to compute the return-
ing wave function. We will follow the method of Maslov and
Fedoriuk @14#, as done in Ref.@1#, but with the difference
that our system is time dependent. Proofs of the formulas
used in this section can be found in Appendix B.

The recipe requires that we know the outgoing wave func-
tion on some surface in configuration space, for all time.
This condition is met if we take this initial surface to be a
sphere of radiusr i;10a0, whereCx

dir is known from Eq.
~2.10!. To find the wave function in the rest of space, we
imagine that classical trajectories depart radially outwards
from this sphere, starting at all initial angles and all initial
times, and with initial energyEout. The trajectories propa-
gate under the influence of the time-dependent Hamiltonian
H(t), consisting of the Coulombic attraction to the nucleus
and the static and rf external fields. Where the classical elec-
tron trajectories go, so go the quantum electron waves.

A trajectory is specified by its initial angles and its initial
time. The anglesu i and f i indicate where on the initial
sphere the trajectory began, as well as the direction of the
initial momentum~we will omit f because of the cylindrical
symmetry of our system!. The initial time t i represents the

‘‘laboratory time’’ when the electron emerged from the sur-
face~e.g., 3:42 A.M.!. There are two ways to specify a later
point along a given trajectory: by the final laboratory timet
or by the ‘‘travel time’’ t[t2t i . Thus q(u i ,t i ,t) is the
point that is reached at laboratory timet by an electron
started at timet i from angleu i . Alternatively,q(u i ,t i ;t) is
the point reached by the same trajectory after it has been
traveling for durationt ~e.g., 150 ps!.

The family of classical trajectories carries the wave. If a
trajectory travels from a pointqi on the initial surface at time
t i to a pointq at some later timet, then the semiclassical
approximation to the excited-state wave function at that
point is ~see Appendix B!

Cx
sc~q,t !5Cx

dir~qi ,t i !A~q,t;qi ,t i !

3exp$ i @S~q,t;qi ,t i !/\2lp/2#%. ~3.1!

@If several trajectories pass through (q,t), the wave function
is the superposition of the contributions~3.1! from each tra-
jectory.# This wave function is proportional to the direct out-
going waveCx

dir(qi ,t i) at the point on the initial sphere from
which the trajectory that arrives at (q,t) emanated. The
phase is given by Hamilton’sprincipal functionS, integrated
from (qi ,t i) to (q,t):

S~q,t;qi ,t i !5E
(qi ,t i )

(q,t)

@p•dq2H dt8#. ~3.2!

Compared to a time-independent treatment, the new term is
2*H dt8, and we emphasize that energy is not conserved on
the trajectories. The amplitudeA(q,t;qi ,t i) is related to the
density of classical trajectories, and will be explained below.
Finally, l is the Maslov index. In previous papers it was
calledm, but we change the letter because the Maslov index
for a time-varying field need not be equal to that for a fixed
field. The Maslov index is the number of times~including
multiplicities! that the amplitude diverges on the path from
the initial surface to the field point (q,t).

The amplitudeA(q,t;qi ,t i) can be computed from a ratio
of Jacobians evaluated at the initial and final points:

A~q,t;qi ,t i !5UJ~qi ,t i !

J~q,t ! U
1/2

. ~3.3!

Several expressions forJ(q,t) are given in Appendix B; for
example,

J~q,t !52r 2sinu detF ]~r ,u!

]~u i ,t i !
G

t

. ~3.4!

Conceptually,J(q,t) can be computed by comparing three
trajectories. First the trajectory that arrives at (q,t) is identi-
fied, and its initial values (u i ,t i) found. Then each ofu i and
t i are perturbed slightly, and those trajectories are integrated
to the same final timet. The Jacobian is evaluated at the field
point (q,t) and at the corresponding point (qi ,t i) on the
initial sphere to obtainA(q,t;qi ,t i).

RECURRENCE SPECTROSCOPY IN TIME-DEPENDENT FIELDS PHYSICAL REVIEW A61 053406

053406-5



B. Time dependence of trajectories and wave function

The initial time t i has physical significance because it
determines the phase of the rf field at the instant that the
electron emerges from the atom. For any fixed value of the
travel timet, q(u i ,t i ;t) and p(u i ,t i ;t) are periodic func-
tions of t i ; they oscillate at the frequency of the rf field. Let
us think about a pencil of trajectories that emanate from the
initial sphere at timet i in a small range of initial directions
aroundu i ~Fig. 2!.

That pencil of trajectories forms a vector fieldp(q;t). As
t i varies and the rf field oscillates, the entire vector field
wobbles in space with the same period. Close to the nucleus,
the motion of the momentum-vector field is negligible~the rf
field is too weak to change the initial course of the electron!.
But on a larger scale, the electron is traveling great distances,
and the oscillating force has plenty of time to change the
velocity of the electron. We might picture water coming
from a fixed hose that sends out a spray in a periodically
oscillating wind.

Table I summarizes the meanings of the various times that
appear in the formulas. The variablet is real time, as mea-
sured by a clock in the laboratory, andq is a point in real
space.~A sufficiently small detector placed atq would some-
times record the presence of an actual electron.! The wave
function Cx(q,t) is oscillating in real timet at the rf fre-
quency. In contrast, the variablest, u i , andt i , and the func-
tions q(u i ,t i ;t) and p(u i ,t i ;t) are ‘‘artificial’’ quantities
that are used for the purpose of constructing a semiclassical

approximation to the wave functionCx(q,t). If an electron
is seen at the locationq at timet, thent i , u i , andt represent
the time of emergence from the initial surface, the initial
direction of motion, and the travel time along the classical
path that the electron would have had if it were a classical
particle, respectively.

The trajectory relationship is partly invertible. At real
time t, the ‘‘classically allowed region’’ is the domain ofq
space in which trajectories are present. Given some specified
time t, and a specified pointq in the allowed region, there is
by definition at least one trajectory that goes throughq at
time t. We can trace that orbit backwards in time to find its
initial time t i(q,t) and initial locationqi(q,t) or u i(q,t)
when it left the surface~see Fig. 3!.

This relationship between (qi ,t i) and (q,t) is implicit in
Eq. ~3.1!. The travel timet(q,t) and final momentump(q,t)
can similarly be thought of as functions of the final pointq
and timet. At each pointq, all of these quantities—t i(q,t),
u i(q,t), t(q,t), and p(q,t)—are periodic functions of real
time t.

Moreover, since the entire vector fieldp(q,t) is oscillat-
ing periodically in timet at the rf frequency, it follows that at
each pointq the principal functionS„q,t;qi(q,t),t i(q,t)…,
the Jacobian J(q,t), and the classical amplitude
A„q,t;qi(q,t),t i(q,t)… oscillate periodically as a function of
time t with the same frequency. But these classical quantities
determine the semiclassical wave function. Thus the time
dependence of the ensemble of classical orbits manifests it-
self as the time dependence of the wavefunction.

C. Waves return to the atom

According to Eq.~2.7!, to find the excitation rate we need
to compute the overlap of the excited wave function and the
~localized! source function. Therefore, let us examine those
waves that return to the general vicinity of the atom~say,
within 50a0 of the nucleus!. In the semiclassical approxima-
tion, each returning wave is associated with a bundle of clas-
sical orbits that also return to the vicinity of the atom.

We now consider the generic case, with no nearby bifur-
cations, and for the moment we ignore the cylindrical sym-
metry. Under those conditions each bundle of returning tra-

FIG. 2. The solid curves are paths of electrons that emerge from
the atom at some initial timet i1, and the dashed lines are paths of
electrons that emerge later, att i2. The paths form a vector field
p(q,t). As t i varies, the whole vector field oscillates. Similarly, at
any locationq, the vector fieldp(q,t) oscillates in timet with the
frequency of the rf field. The vector field ‘‘supports’’ a semiclassi-
cal wave functionCx

sc(q,t), which is also oscillating in real time
with the frequency of the rf field.

TABLE I. Time definitions.

Symbol Description

t Real, laboratory time~e.g., 3:42 A.M.!
T Time duration of a classical closed orbit,

including repetitions if any~e.g. 200ps)
t i(t)5t2T Initial time of an orbit that ends at time t

t Progress variable for trajectories, 0<t<T

FIG. 3. If several paths arrive at a givenq at time t, the wave
function is a superposition of terms associated with each path. It
does not matter whether the paths started at the same time—the
laser has a long coherence time, so the two electron waves will
nevertheless be coherent. Tracing the orbits backwards in time al-
lows t i , u i , andt for each orbit to be deduced.
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jectories contains exactly one ‘‘closed orbit’’ that returns
exactly to the nucleus. The other trajectories in the bundle
are adequately described by a linear approximation in the
neighborhood of the closed orbit, which in turn can be ob-
tained from the stability matrix of the closed orbit. We there-
fore can learn about the excitation rate by studying classical
closed orbits.

The wave carried by a closed orbit and its neighbors may
be labeled by the direction (u f ,f f) from which the closed
orbit comes. For pointsq not too close to the nucleus, the
semiclassical approximation~3.1! is a good representation of
each such returning wave;Cx

ret(q,t)'Cx
sc(q,t). But closer

to the atom, the semiclassical approximation diverges due to
the Coulomb singularity, so we need to ‘‘connect’’ back to a
quantum wave function.

Near the atom, the Coulomb field again dominates, and
the quantum wave corresponding to an isolated closed orbit
and its neighbors is approximately a zero-energy Coulomb
scattering wavec k̂ f

(q) @see Eq.~2.14!#, returning from the

same directionk̂ f5(u f ,f f) as does the classical closed or-
bit.

In fact, however, the system is cylindrically symmetric, so
if one trajectory returns from direction (u f ,f f), then other
trajectories also return from all other possible azimuthsf f .
The appropriate quantum wave is therefore a cylindrically
symmetrized zero-energy Coulomb scattering wave charac-
terized by the angleu f :

cC,u f
~q![

1

2pE0

2p

df f c k̂ f
~q!. ~3.5!

We assume that the returning wave is locally proportional to
this quantum wave,

Cx
ret~q,t !'Cx

sc~q,t !'N~ t !cC,u f
~q!, ~3.6!

whereN(t) is some coefficient of proportionality to be de-
termined.

Equation~3.6! expresses a functional relationship which
should hold for anyq in the region where bothCx

sc andcC,u f

are valid, namely for intermediate distances from the atom.
In Appendix A 4 we show how to determineN(t) by com-
paring Eqs.~3.5! and ~3.1!:

N~ t !5eFL~C1 /C3!A0~ t !Y~u i !

3exp$ i @S~0,t;0,t i !2Eoutt i #/\2 ilp/2%. ~3.7!

D. Returning waves contribute to the excitation rate

Equation~2.7! tells us that the returning waves contribute
to the excitation rate:

Rx
ret~ t !52

2

\
Im^I ~ t !uCx

ret~ t !&. ~3.8!

A straightforward sequence of substitutions gives~Appendix
A 5!

Rx
ret~ t !5219/4p5/2FL

2A0~ t !Im$Y* ~u f !Y~u i !

3exp@ iS~ t !/\2 ilp/22 i3p/4#%. ~3.9a!

S(t) has a new definition compared to Ref.@1#: it is an ‘‘ex-
tended action,’’ integrated all the way around the closed or-
bit ~starting and ending at the nucleus!,

S~ t ![E
t i (t)

t H p~q,t8!
dq

dt8
2@H~ t8!2Eout#J dt8. ~3.9b!

The extended action includes the usual action,*p•dq
5*(pr dr1pu du), around the closed orbit, plus a new term
2*@H(t8)2Eout#dt8. The amplitudeA0(t) is

A0~ t !5~sinu fsinu i !
1/2

r i
1/4

r f
1/2U Ĵ~r i ,u i ,t i !

Ĵ~r f ,u f ,t !
U1/2

, ~3.9c!

which can be evaluated anywhere near the ends of the closed
orbit. The reduced JacobianĴ is defined in Eq.~B10a!. Ther
dependence of the reduced Jacobians is such thatA0 has a
finite limit as r i and r f go to zero whenever approximation
~3.6! for the returning wave is valid~i.e., if the closed orbit
does not have a bifurcation nearby!.

It is easy to show that this formula reduces to the formula
that was derived for static fields@Ref. @1#, Eq. ~5.13a!#. If the
rf field is zero, then the ratio of Jacobians is independent of
time t, and the extra term in the extended action disappears
because energy is conserved.

IV. WEAK RF FIELDS

With the rf field acting upon the system, the whole vector
field p(q,t) oscillates periodically in timet at the rf fre-
quency, so the shape and size of any closed orbit oscillates
with this period. The durationT5t2t i(t) of each closed
orbit, the initial and final anglesu i andu f , the angular fac-
torsY(u), the Jacobian ratioA0(t), and the extended action
function S(t) all oscillate at this frequency. It is the oscilla-
tion of S(t) that produces the largest effect. In current ex-
periments, the rf field is weak compared to the static electric
field; F1 is 1–5 % of F0. Therefore the initial and final
anglesu i andu f are not much affected by the rf field@and,
furthermore,Y(u) is slowly varying over the whole range of
u for which orbits are closed#. Likewise, A0(t) and S(t)
oscillate by only a few percent. SinceS(t) is large, however,
this few-percent variation ofS(t) is substantial compared to
\, and there can be a significant variation in the phase of the
returning wave.

The theory developed up to this point applies whether the
rf field is weak or strong, provided only that it is not strong
enough to substantially perturb the initial state. Let us now
consider a weak rf field that is a small perturbation to the
dynamics in the static field,Hstatic. Clearly S(t) is close to
the value that would be obtained for static fields. How does
S(t) change as a result of applying the rf field?
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A. Action perturbation

Standard methods of classical mechanics~Appendix C!
show that, in first order,

DS~ t,F1![S~ t,F1!2S~ t,F150!

'2F1E
t i

t ]H

]F1
dt8 ~4.1!

52eF1E
0

T

z0~t!sin@v~t1t2T!#dt, ~4.2!

wherez0(t) is thez component of the electron’s position on
the unperturbedorbit ~in the static field alone!, starting~at
t50) and ending~at t5T) at the origin. Since the orbit
z0(t) is calculated in the absence of the rf field, it depends
only on the elapsed timet, and not on the real timet.

Equation~4.2! is conveniently expressed in terms of the
complex, frequency-dependent ac dipole momentZ(v) of
the orbit,

S~ t !'S02eF1uZ~v!uTsin~vt1b!, ~4.3!

where

Z~v![
1

TE0

T

z0~t!exp~ ivt!dt,

~4.4!
b52vT1arg„Z~v!…,

andS0 is the action of the unperturbed orbit. We see that, in
first order,DS oscillates sinusoidally in time, and it is lin-
early proportional toF1, to the closure time of the orbit, and
to the absolute magnitude of the ac dipole moment of the
orbit.

B. Averaged excitation rate

As stated in Sec. I B, it is not the instantaneous excitation
rateRx(t) that is observed in the experiment, but the average
of Rx(t) over a cycle. Let us calculate the contribution of the
returning wave to this average by taking the time average of
Eq. ~3.9a!. As argued in Sec. IV A, we can use forA0(t) its
unperturbed value, which is time independent. The only sig-
nificant time dependence is inS(t). UsingS(t) given by Eq.
~4.3!, the integral is over one period of the sinusoid and a
standard integral gives

1

Trf
E

0

Trf
dt exp@ iS~ t !/\#5exp@ iS0 /\#J0„eF1uZ~v!uT/\…,

~4.5!

whereJ0 is a Bessel function. Note that the phase constantb
has dropped out. We can now use Eqs.~4.5!, ~3.9a!, and
~1.6! to evaluateR̄x

ret. The result is

R̄x
ret5219/4p5/2FL

2A0J0„eF1uZ~v!uT/\…Im$Y* ~u f !Y~u i !

3exp@ i ~S0 /\2lp/223p/4!#%, ~4.6!

whereu i andu f are the initial and final angles of the trajec-
tory in the static field.

If we setF150 in Eq. ~4.6!, thenJ0→1, and we recover
the static field expression for the excitation rate. But when
F1 is turned on, the Bessel function decreases, corresponding
to a weakening of the strength of the spectral oscillation
caused by the closed orbit. Thus, the effect of a rf field is to
weaken each recurrence from its static field value by a Bessel
function factor,J0„eF1uZ(v)uT/\….

V. STRONG RF FIELDS

In Sec. IV, we introduced the assumption that the orbits
are only weakly perturbed by the rf field. Let us now return
to Eq. ~3.9!, and ask what happens as the rf field becomes
stronger.

We still need to average the instantaneous excitation rate
using Eq.~1.6!, but now the variation ofS(t) with time will
exceed Planck’s constant, so it is appropriate to evaluate the
integral by stationary phase. The stationary phase points are
the extrema ofS(t), which satisfy

]S

]t U
qi ,qf

52@H~ t !2Eout# 5
SPA

0 ~5.1!

~the derivative being taken with initial and final points held
fixed, qi5qf50). Therefore, the main contributions to the
recurrence strength come from those closed orbits that return
to the atom with the same energy they had when they left,
Eret5Eout. In other words, recurrences arise primarily from
orbits that are closed in an extended (q,2E) space. Such
orbits form a discrete set, and can be characterized by their
initial directions together with their initial times.

If we let t̂ be the real time at return corresponding to any
stationary phase point, then the resulting contribution toR̄x
is

R̄x
sp5221/4p3FL

2A0~ t̂ !

Trf
UdEret

dt U21/2

ImXY* ~u f !Y~u i !

3expH iS~ t̂ !/\2 ip/2Fl1
3

2
1

1

2
sgn~dEret/dt!G J C.

~5.2!

u f andu i here are the angles at the origin of the closed orbit
that returns at timet̂ . Eret is the energy of the electron at the
end of the closed orbit, when it returns to the atom; it oscil-
lates periodically in time due to the effect of the rf field.

How does the transition from expression~4.6! ~for weak
rf fields! to expression~5.2! ~for strong rf fields! occur? For
small rf fields, we have shown thatS(t) is sinusoidal with a
small amplitude. Equation~5.2! cannot be applied in that
limit because the stationary phase approximation breaks
down ~becauseudEret/dtu21/2→`).

But as the sinusoid increases in amplitude, a stationary
phase approximation becomes appropriate. NowS(t) has
two extrema—one maximum and one minimum—per period,
and Eq.~5.2! can be applied to each in turn. The sum of the
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two contributions gives precisely the large-argument expan-
sion of the Bessel function of Eq.~4.6!.

As the rf field increases, the sinusoidal approximation
breaks down, and the stationary phase expression begins to
differ from Eq.~4.6!. For still stronger fields, still more com-
plicated phenomena can occur. For example, as the vector
field p(q,t) oscillates, a caustic in the extended space could
pass through the point (q50,E5Eout). This would be a bi-
furcation, at which the number of closed orbits satisfying the
energy condition~5.1! changes; equivalently, the number of
extrema ofS(t) changes. Such phenomena certainly exist,
but at present, significant consequences have not been iden-
tified in the experiments.

Note that the amplitude factorA0( t̂ )udEret/dtu21/2 that
appears in Eq.~5.2! is the same as the amplitude factor that
enters into the semiclassical energy-domain Green’s function
@15#, and the ‘‘sign’’ that appears in the exponent combines
with l to give m, the Maslov index that appears in the
Green’s function.

VI. COMPARISON WITH EXPERIMENT

A. Scaled variable spectroscopy

The classical dynamics of hydrogen in external static and
microwave electric fields~like that of hydrogen in other ex-
ternal field configurations! is scalable. This means that it is
possible to change the external parameters in a certain way
that leaves the classical dynamics unchanged except for an
overall scale. The atomic core does not have this scaling
property, in principle ruining the scaling property for nonhy-
drogenic atoms. However, in practice the effect of the core is
small enough that the scaling law is still an excellent ap-
proximation.

We denote scaled quantities with tildes. We opt to make
the scaled static electric field strength equal to unity:F̃0
[1. This choice dictates how the other scaled variables are
defined

r̃5rF0
1/2, ~6.1a!

p̃5pF0
21/4, ~6.1b!

t̃ 5tF0
3/4, ~6.1c!

H̃5HF0
21/2, ~6.1d!

ṽ5vF0
23/4. ~6.1e!

We define the scaled rf electric field

f [F̃15F1 /F0, ~6.1f!

ending up with the following final scaled Hamiltonian:

H̃5
1

2
p̃22

1

r̃
1 z̃@11 f sin~ṽ t̃ !#. ~6.1g!

In the oscillating field, the electron energyE(t) is not
constant. But its initial energyEout is well defined, so we
define the scaled energy

e[EoutF0
21/2. ~6.1h!

Action has units of momentum times distance, so the scaled
action is

S̃5F0
1/4S. ~6.1i!

The analogous quantum system isnot scalable. Quantum me-
chanics imposes another relationship between the variables,
namely, the commutation relation@x,p#5 i\. Effectively
quantum mechanics introduces an additional scale—the de
Broglie wavelength of the electron—into the system, break-
ing the scaling property. Specifically, under the above scal-
ing, the classical orbits do not change their shapes but they
do change their sizes compared to the de Broglie wavelength
of the electron. After scaling, Planck’s constant has the ef-
fective value 1/\eff[w[F0

21/4, because

S~Eout,F0 ,F1 ,v!/\5S̃~e, f ,ṽ !w.

This scaling property allows a useful experimental tech-
nique called scaled-variable spectroscopy. To obtain a
scaled spectrum, one simultaneously varies the laser energy,
static, and rf field strengths, and the rf frequency to keep the
scaled parameters (e, f, andṽ) constant while changingF0.
One records the photoabsorption spectrum as a function of
w5F0

21/4. This technique keeps classical dynamics constant
while varying the effective Planck’s constant, thereby sim-
plifying semiclassical mechanics. Then one takes the Fourier
transform of the experimental scaled spectrum to obtain a
‘‘recurrence spectrum’’C(S̃),

C~S̃![U 1

w22w1
E

w1

w2
dw R̄x~e, f ,ṽ,F05w24!exp@2 iS̃w#U2

,

~6.2!

which, because each orbit causes a sinusoidal modulation of
the absorption rate, shows peaks at the scaled actions of the
important classical electron orbits.

B. Many orbits are similar to the parallel orbit

In this section we will consider some of the special fea-
tures of hydrogen in a static electric field, and their ramifi-
cations for the experiment. The system is classically regular,
and thef motion is ignorable. Closed orbits can be charac-
terized by two integers,k andn. The closed orbit (k,n) un-
dergoesn cycles ofz motion, while undergoingk cycles of
transverse motion. Closed orbits return to the atom at the
same angle they departed,u f5u i . Moreover, whenever the
electron returns exactly to the atom, the Coulomb force turns
it around and sends it back out in the direction from which it
came. Therefore, in static fields, after each traversal of a
closed orbit, the electron goes back out and traverses the
same orbit in reverse—i.e., closed orbits repeat themselves to
form longer closed orbits.
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One important closed orbit is the ‘‘parallel’’ orbit, in
which the electron travels along the positivez axis with no
transverse motion. The parallel orbit is characterized by in-
dices (k,n)5(0,1), which we will abbreviate asi . The par-
allel orbit repeatedn times has indices (0,n).

At the energy and field strengths involved in the
Spellmeyer-Kleppner experiment@9#, the parallel orbit is
particularly important. At their scaled energye520.4, the
largest possible initial angleu i of any closed orbit is about
30°; orbits with larger initial angles ionize immediately.
Moreover, the motions along thez axis are larger than those
transverse to it. It turns out that thez motion of any closed
orbit (k,n) is not so different from that of the parallel orbit
repeatedn times ~see Fig. 4!:

zk,n~t!'z0,n~t!:0<t<Tk,n. ~6.3!

For example, the return time of each orbit varies by only
about 30% from the return time of the repeated parallel orbit:
Tk,n'T0,n5nTi . Moreover, the actions of all orbits with the
samen are indistinguishable in the experiment:Sk,n'S0,n
5nSi . The ac dipole moment of orbit (k,n) is, accordingly
@from Eq. ~6.3!#,

Zk,n~v!'Z0,n~v!. ~6.4!

We can computeZ0,n(v) for n repetitions of the parallel
orbit from the ac dipole momentZi(v) of the parallel orbit
itself as follows:

Z0,n~v!5
1

T0,n
F E

0

Ti
1E

Ti

2Ti
1•••1E

(n21)Ti

nTi Gz0,n~t!

3exp~ ivt! dt

5
1

nTi
@11eivTi1•••1eiv(n21)Ti#

3E
0

Ti
zi~t!exp~ ivt! dt

5expF iv~n21!Ti

2 G sin~nvTi/2!

n sin~vTi/2!
Zi~v!. ~6.5!

~A similar expression relates the ac dipole moment of any
repeated orbit to that of its primitive suborbit.! Substituting
Eqs. ~6.4! and ~6.5! into Eq. ~4.6!, we find that all recur-
rences (k,n) close to thenth return of the parallel orbit are
reduced by approximately the same factor,

J0„eF1uZk,n~v!uTk,n /\…'J0S e

\
F1UZi~v!UTi

sin~nvTi/2!

sin~vTi/2! D .

~6.6!

Whenever the quantity multiplyingF1 in the argument of
the Bessel function becomes zero, the recurrence will not be
weakened even for quite large rf fields. This happens when
Zi(v) vanishes, but also for combinations of the orbital pe-
riod and rf frequency for which sin(nvTi/2)/sin(vTi/2) van-
ishes.

For example, consider rf periods longer than the period of
the parallel orbit,Trf.Ti ~as in the experiment!. Then the
sine in the denominator of Eq.~6.6! cannot vanish, but the
one in the numerator vanishes ifTrf5(n/m)Ti for any inte-
ger m. In particular, if Trf5nTi , then recurrences near the
nth return of the parallel orbit are unweakened by the oscil-
lating field. At first glance, this result might seem unex-
pected. Normally one finds that an orbit is most perturbed
when the period of the perturbation is rationally related to
the period of the orbit. In our case the perturbation is a pure
sinusoid, so it has no higher harmonics. Therefore, the effect
of the rf field averages to zero over the multiple periods of
the electron orbit, leaving the recurrence unaffected by the rf
field for many rational ratios of periods.

This pattern of unweakened recurrences is the most strik-
ing feature of the experimental measurements. The ‘‘re-
stricted’’ model described in this section, using only the
properties of the parallel orbit, is able to predict that pattern.

C. Experiment

In Ref. @9#, we compared two versions of the theory with
experiments. The first, ‘‘general’’ semiclassical result comes
from finding each classical closed orbit, its amplitude, and its
ac dipole momentZ(v) individually, then summing them
together coherently, using a term like Eq.~4.6! for each or-
bit. The general theory gives quantitative agreement with the
finer details of the experiment and of a semiquantal calcula-
tion @9#.

The second, ‘‘restricted’’ semiclassical result comes from
treating all orbits as approximated by the parallel orbit, as
explained in Sec. VI B. The whole rf dependence of the re-
currence spectrum can then be derived from the properties of
just the parallel orbit. Here we give a more detailed compari-
son of the semiclassical theory with experiments~Fig. 5!.

Since the ‘‘restricted’’ theory suffices to explain all the
major trends in the data, we use it in the comparison. One

FIG. 4. Comparison of thez motion of several closed orbits in
static fields, withe520.4. ~a! The parallel orbit (k,n)5(0,1); the
~b! (1,2), ~c! (1,3), and~d! (2,5) orbits~solid lines!. Repeats of the
orbits are shown~dashed lines! to aid comparison. Both axes are
unitless scaled quantities@see Eq.~6.1!#.
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abscissa in each plot in Fig. 5 isS̃/S̃i , which counts the
approximate number of vertical excursions that the orbit
takes before returning to the atom. For plots~a!–~c! v is held
constant and the scaled rf field strengthf is varied; for~d!–~f!
f is held constant, and the scaled rf frequencyṽ is varied.

Figures 5~a! and 5~d! show the argument of the Bessel
function of Eq.~6.6!. When that quantity goes to zero, the
corresponding recurrence is not significantly weakened by
the rf field. Parts~b! and ~e! show the square of the Bessel
function shown in Eq.~6.6!, which is the factor by which
recurrences are weakened by the rf field; i.e., the strength of
the f 50 recurrence peak is multiplied by this factor.~In the
experimentDw!w, so the Bessel function can be treated as
approximately constant across the spectrum.! Parts~c! and
~f! show experimental recurrence spectra@see Eq.~6.2!# mea-
sured by Spellmeyer and Kleppner@16#. It is evident that
even this restricted theory gives remarkable agreement with
experiment: the unweakened bands and all of the ripply
structure of the Bessel function are manifested in the experi-
mental measurements.

VII. SYMMETRY-BREAKING ANALOGY

We conclude this paper by defining ‘‘temporal symmetry
breaking,’’ and explaining how that concept connects the
present work with other recent work. In the static field, the
Hamiltonian is independent of time, while in the perturbing
rf field it is periodic in time. We compare this to another
system@17#, an atom in a static magnetic field, which is
perturbed by a weak electric field perpendicular to the mag-
netic field. In that case, the unperturbed Hamiltonian is inde-
pendent of the azimuthal angle, while the full Hamiltonian is
periodic in that angle—we call it cylindrical symmetry
breaking. In this section we explain the intimate relationship
between the present case of temporal symmetry breaking and
the case of cylindrical symmetry breaking.

This connection came as a surprise. In quantum mechan-
ics time plays a distinct role as an evolution parameter, not a
dynamical variable, so it is not in general analogous to a
coordinate or angle. On the other hand, in classical mechan-
ics we can extend the phase space from (p,q) to (p,q,t,
2E), and then time becomes a dynamical variable like any

FIG. 5. Semiclassical theory vs experi-
mental data at scaled energye520.4.
Axes are plotted as unitless scaled quanti-
ties. ~a! The argument of the Bessel func-
tion given in Eq.~6.6!, plotted as a func-

tion of scaled actionS̃/S̃i and scaled rf

field strengthf. The axis S̃/S̃i'n corre-
sponds to the number of repetitions of the
parallel orbit.~b! The square of the Bessel
function ~6.6!, as a function of the same
parameters.~c! Experimental recurrence
spectra at various values off. Parts~a!, ~b!,
and ~c! are taken at a fixed scaled rf fre-

quency ṽ50.32. Parts~d!, ~e!, and ~f!
show analogous quantities, except with
fixed scaled rf field strengthf 50.008, and

a range of scaled rf frequenciesṽ. The
‘‘restricted’’ semiclassical theory is seen
to predict the pattern of weak and strong
recurrences seen in the experiment. The
physical parameter ranges in each case
were 146<w<158; i.e., 24.1 cm21

<Eout<23.5 cm21 and 11.4V/cm>F0

>8.2 V/cm. ~The experimental data are
from Spellmeyer and Kleppner@16#.!

TABLE II. Correspondence between cylindrical and temporal symmetry breaking.

~a! (a8) ~b! (b8)

H0
Hatomic1

LzB1B2r2/8
Hatomic1

LzB1B2r2/8
Hatomic1Fz Hatomic1Fz

H8 0 F1x5F1r cosf 0 F1z cos(vt)
Conserved E andLz E only E andLz Lz only
Classical action S0(E,B) S02F1Tx̄ cos(f2f0) S0(E,F) S02F1TuZ(v)ucos(vt)

Recurrence weakened by — J0(F1Tx̄/\) — J0(F1TuZ(v)u/\)

Reference @1# @17# @3# @9#
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other. Therefore aclassicalHamiltonian that is periodic in
time is analogous to one that is periodic in an angle. Within
a semiclassical approximation, then, we can exploit this anal-
ogy, and connect the observations made in@9# to the obser-
vations of cylindrical symmetry breaking presented in Ref.
@17#. Four closely related systems are listed in Table II.

For each of these systems, the Hamiltonian is dominated
by a time-independent and cylindrically symmetric part,
which we callH0; it consists of the atomic Hamiltonian@Eq.
~1.1a!# plus a term from the strong static field. In~a! and
(a8), the static magnetic field gives the additional term
LzB1B2r2/8. In ~b! and (b8), the static electric field gives
the additional termF1z.

A. Cylindrical symmetry breaking

In the magnetic field, the simplest orbit, which produces
one of the strongest recurrences, lies in the planez50; it is
known as the perpendicular, Garton-Tomkins-Edmonds, or
quasi-Landau orbit. Actually it is a cylindrical family of or-
bits; the electron begins at any initial azimuthal angle, and as
it executes one cycle ofr motion, the azimuthal angle ad-
vances approximately 2p/3 rad. The electron begins with a
certain energyEout and with angular momentum component
Lz

out50, both of which are conserved underH0. It returns
therefore withLz

ret50, so every orbit in the cylindrical fam-
ily comes back exactly to the nucleus. The cylindrical family
of returning orbits carries a well-focused, cylindrically sym-
metric returning wave, which produces a strong recurrence.

Any interaction that changes the angular momentumLz
weakens the recurrence. Let us turn to situation (a8). The
weak electric field breaks the cylindrical symmetry, and the
Hamiltonian becomes periodic inf. The cylindrical family
of returning orbits is destroyed—of that continuous family,
only two discrete orbits return exactly to the nucleus. All the
other orbits in the family return withLz small but nonzero,
and they miss the nucleus. They come back close enough
that they contribute to the recurrence, but they do not come
back in phase. This partially destructive interference weak-
ens the recurrence.

The symmetry breaking perturbation changes the phase of
the returning wave according to the formula

]S

]F1
52E ]H

]F1
dt, ~7.1a!

DS52eF1E x~ t ! dt, ~7.1b!

wherex(t) is evaluated withF150. Since unperturbed or-
bits in a family are identical except for their azimuthal ori-
entation, it is easy to show that the above integral depends
sinusoidally on the orbit’s initial azimuthal anglef, specifi-
cally,

S~E,B;F1 ,f!'S0~E,B!2F1Tx̄ cos~f2f0!. ~7.2!

@Here x̄ is the averagex coordinate of the ‘‘most uphill’’
orbit in the family, x̄5max*x(t)dt/T, and f0 is the initial
azimuthal angle of that orbit.#

The returning wave function at the origin is the coherent
superposition of all the waves that return after starting out at
all initial azimuths. Therefore, the recurrence amplitude is
also such a superposition:

Rx5Im
1

2pE0

2p

df Cexp$ i @S~E,B;F1 ,f!/\1g#%

'ImH Cexp$ i @S0~E,B!/\1g#%
1

2pE0

2p

df

3exp@2~ i /\!F1Tx̄ cos~f2f0!#J
5Csin@S0~E,B!/\1g#J0~F1Tx̄/\!. ~7.3!

From this formula, we see that partially destructive interfer-
ence of waves coming from different azimuths weakens the
recurrence amplitude by a Bessel function factor. The argu-
ment of the Bessel function is proportional to the perturbing
electric fieldF1, and to the product of the time duration of
the unperturbed orbitT with the average ofx(t) on the most-
uphill unperturbed orbit, i.e., to the static electric dipole mo-
ment of that orbit.

The f integral in Eq. ~7.3! has two stationary phase
points, corresponding to two terms in the asymptotic ap-
proximation for the Bessel function. These correspond to two
surviving closed orbits. Therefore, Eq.~7.3! smoothly con-
nects the cylindrically symmetric case with the case of fully
broken symmetry.

B. Temporal symmetry breaking

Now let us return to the case considered in this paper,~b!
and ( b8). H0 contains the Coulomb Hamiltonian with a
static electric field along thez axis, and the perturbationH8
is a weak oscillating electric field also oriented along thez
axis. As explained earlier, because of the intrinsic time de-
pendence of this system, many aspects of recurrence theory
had to be re-examined. First we had to show that an excita-
tion rate or photon absorption rate exists in this system@Eq.
~2.7!#: at each timet, there is a well-defined photoabsorption
cross section and an oscillator strength density
D f (E,F0 ;F1 ,t), which oscillates at the rf frequency. Not
surprisingly, this quantity was divided into a smooth ‘‘back-
ground’’ part and an oscillatory part associated with return-
ing waves@Eqs.~2.15! and ~3.9a!#.

The returning waves were, as always, constructed from
the classical orbits. At this point, we went into the extended
phase space (p,q,t,2E), and then time became a dynamical
variable like any other@Eq. ~B3!#. From this point on, the
theory exactly parallels the theory of cylindrical symmetry
breaking@17#.

SinceH(t) is periodic in time, time is like an angle vari-
able; it is analogous to the azimuthf. Each returning orbit
for static fields becomes redefined as a continuous family of
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orbits returning at timet @Eq. ~3.6!#, and we examine this
family over one cycle of the rf field. Because of the
t-symmetry breaking, the conjugate variableE is not con-
served. The family of orbits that formerly came back to the
nucleus withEret5Eout is destroyed. Of that continuous fam-
ily of unperturbed orbits, under sufficiently small perturba-
tion, the whole family will remain closed in configuration
space, but not closed in the extended space (q,2E). In each
family, just two discrete orbits survive that haveEret5Eout.

Recurrences are weaker ifEretÞEout. ~This important fact
was not obvious from the earlier derivations of recurrence
theory, in which energy conservation was taken for granted
@1,3#.! The situation is analogous to cylindrical symmetry
breaking, in which recurrences are weaker if angular mo-
mentum is not conserved. If the oscillating field is suffi-
ciently strong, then only the two distinct orbits for which
Eret5Eout contribute to the recurrence. On the other hand, for
a weak perturbation, the whole family contributes, butwith a
time-varying phase.

The phase of the returning wave is the extended action,
and the first-order calculation gives

DS~ t !52eF1TuZ~v!usin~vt1b!.

Instead of the static dipole momentx̄, DS depends on the
ac-dipole momentZ(v). The contribution to the excitation
rate arising from each recurrence is

Rx~E,F0 ;F1 ,t !5Csin@S~E,F0 ;F1 ,t !/\1g#

which, when averaged over a cycle, gave the Bessel function,

R̄x~E,F0 ;F1!5Csin@S0~E,F0!/\1g#J0@F1TuZ~v!u/\#.

Partially constructive averaging of the recurrence term over a
cycle of the RF field selectively reduces the strengths of the
recurrences. For certain recurrences, generally those having
return times commensurable withTrf , the ac dipole moment
vanishes, and the recurrence survives the perturbation.
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APPENDIX A: PROOFS AND ADDITIONAL FORMULAS

1. Absorption rate, cross section, and oscillator
strength density

For comparison to earlier work, we note that the photoab-
sorption cross section is equal to the rate of production of
electrons in excited levelsRx(t), divided by the photon flux
density in the laser:

s~ t !5
Rx~ t !

c^E3H&/~4p\vL!

5
4p\vLRx~ t !

c^4FL
2cos2~vLT1gL!&

5
2p\vL

cFL
2

Rx~ t !. ~A1!

In the last line we have averaged over a cycle of the laser
field. The oscillator strength density can be defined as

D f ~ t !5
mec

2p2e2\
s~ t !5

mevL

pe2FL
2

Rx~ t !. ~A2!

Its dimensions are (energy)21. The cross section and the
oscillator strength density, like the absorption rate, are time
dependent, and must be averaged over a cycle of the rf field
~Sec. IV B!. These formulas are based on Gaussian units for
electric fields and charges.

2. Proof of Eq. „2.7…

The rate of increase of probability of finding the electron
in the excited state is given by Eq.~1.5!, which can be writ-
ten

Rx~ t !52 ReH F d

dt
^Cx(t)uG uCx~ t !&J .

From Eq.~2.3!,

d

dt
^Cx~ t !u5~2 i\!21@^I ~ t !u1^Cx~ t !uH~ t !#.

Therefore,

Rx~ t !5~2/\!Re@ i ^I ~ t !uCx~ t !&1 i ^Cx~ t !uH~ t !uCx~ t !&#.

The second term in the brackets is purely imaginary, leaving

Rx~ t !52~2/\!Im^I ~ t !uCx~ t !&

5~2/\2!ReE
2`

t

dt8 ^I ~ t !uK1~ t,t8!uI ~ t8!&. ~A3!

In the last equation we used Eq.~2.6!. Equation ~A3! is
equivalent to Eq.~2.16a! of Ref. @1#.

3. Outgoing Coulomb wavecout„q…

In this appendix we justify Eq.~2.12! and give an expres-
sion for computingY(u,f). More details can be found in
Ref. @1~b!#, Sec. IV C.

We computecout from Eq. ~2.11!. For this we need the
expression for the Coulomb Green’s function. Since the ex-
periments are near the ionization threshold, we use the zero-
energy Green’s function, which is accurate enough for our
purposes:
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GC
1~q,q8;E50!5(

l ,m
Ylm~u,f!gl

0~r ,r 8!Ylm* ~u8,f8!,

~A4!

where, whenr .r 8,

gl
0~r ,r 8!522p i

H2l 11
(1) ~A8r !

Ar

J2l 11~A8r 8!

Ar 8
. ~A5!

J2l 11 is a Bessel function;H2l 11
(1) is a Hankel function of the

first kind, for which we use the asymptotic expansion

Hn
(1)~z! →

z@1A 2

pz
exp@ i ~z2np/22p/4!#. ~A6!

Substitute Eqs.~A4!, ~A5!, and~A6! into Eq. ~2.11!, and
compare with Eq.~2.12!. Taking the constantC1 equal to

C1523/4p1/2e2 i5p/4 ~mea0
2/\2!, ~A7!

the angular distribution of outgoing waves is found to be

Y~u,f!5(
l ,m

~2 ! lYlm~u,f!E dq8 Ylm* ~u8,f8!

3
J2l 11~A8r 8!

Ar 8
Dzc i~q8!. ~A8!

Dz is the dipole operator appropriate for the laser polariza-
tion ~in our caseDz5z85r 8cosu8). The angular integral in
Eq. ~A8! is standard, and the radial integral can be evaluated
as described in Ref.@1#. It can be shown that Eq.~A8! is
equivalent to Eq.~2.13!, if C2 is chosen to be

C2523/2p ~mea0
3/\2!. ~A9!

4. Returning wave

The goal of this section is to evaluate the factorN(t),
which characterizes the strength ofCx

ret in Eq. ~3.6!. We do
this by computing the ratio of the incoming part ofCx

sc to the
incoming part ofcC,u f

at the convenient position (r f ,u f),

N~ t !5
inc@Cx

sc~r f ,u f ,t !#

inc@cC,u f
~r f ,u f !#

, ~A10!

where ‘‘inc’’ means ‘‘incoming part of.’’
Except near a bifurcation, these two approximations are

consistent, andN(t) is approximately independent ofr in a
shell ~say from 10a0 to 70a0) around the nucleus. Thus the
final answer is insensitive to the radius chosen to ‘‘join’’ the
semiclassical wave to the Coulomb scattering wave.

The incoming part ofcC,u f
(r ,u) at the angleu f ~the di-

rection from which the returning wave comes! on a final
boundary sphere of radiusr f is

inccC,u f
~r f ,u f !'C3

exp~2 iA8r f !

r f
1/2sinu f

, ~A11a!

where

C35eip/2223/2p21 ~mea0
3/\2!. ~A11b!

@This is Eq.~4.23a! of Ref. @1~b!#, evaluated atu5u f .]
Now the coefficientN(t) can be evaluated from Eq.

~A10! using Eqs.~3.1!, ~A11a!, ~2.10!, and~2.12!:

N~ t !5eFL

C1

C3
F r f

1/2

r i
3/4

A~qf ,t;qi ,t i !sinu f GY~u i !

3exp$ i @S~qf ,t;qi ,t i !1A8r i1A8r f2Eoutt#/\

2 ilp/2%. ~A12!

As stated earlier, as long as we are not near a bifurcation, our
approximations are all consistent and the value ofN(t) is
independent of the location of the boundary sphere. In fact,
the limits can be evaluated carefully to computeN(t) at r i
5r f50. In particular, the combination

lim
r f ,r i→0

@S~qf ,t;qi ,t i !1A8r i1A8r f #5S~0,t;0,t i ! ~A13!

is equal to the classical actionS(0,t;0,t i) calculated from
origin to origin, while the combination

lim
r f ,r i→0

@~r f
1/2/r i

3/4!A~qf ,t;qi ,t i !sinu f #[A0~ t ! ~A14!

has a finite limit, which we callA0(t). Substituting those
quantities into Eq.~A12!, we obtain Eq.~3.7!. Equation
~3.9c! gives an expression forA0(t) in terms of reduced
Jacobians.

5. Excitation rate from returning orbits

Using the definitions ofcC,u f
@Eq. ~3.5!# and ofY(u) @Eq.

~2.13! or ~A8!#, one easily shows that

^Dzc i ucC,u f
&5C2Y* ~u f !, ~A15!

whereC2 is defined in Eq.~A9!. The overlap of the returning
wave with Dzc i gives the contribution of that wave to the
excitation rateRx

ret(t). Starting from Eq.~3.8!, we have only
a long sequence of substitutions. In order we use Eqs.~3.6!
and ~2.4!, then Eqs.~A15! and ~3.7!,

Rx
ret~ t !52~2/\!~eFL!Im@N~ t !eiEoutt/\^Dzc i ucC,u f

&#

52~2/\!~eFL!2Im@~C1C2 /C3!Y~u f !Y* ~u i !

3A0~ t !exp$ iS~ t !/\2 ilp/2%#,

whereS(t)5S(0,t;0,t i)1Eout(t2t i), as in Eq.~3.9b!. Sub-
stituting in the values of the constants from Eqs.~A7!, ~A9!,
and ~A11b! yields Eq.~3.9a!.

6. Dimensional considerations

Let us denote dimensions of length byl, energy bye, and
time by t. The functionsC(q,t), Cx(q,t), and c i(q) all
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have the usual dimensions of three-dimensional wave func-
tions, l 23/2. From Eq. ~2.11!, cout(q) has dimensions
e21l 21/2. The angular factorY(u) has dimensionsl, and it is
best to take the radial part ofcout(q) to have dimensions
l 23/2; then the radial factor in Eq.~2.12! would be
exp@i(8r/a0)

1/2#/(r /a0)3/4a0
23/2, and this means that the con-

stantC1 has dimensionse21 and its value@Eq. ~A7!# is of
course in Hartree21.

In Eq. ~3.5! we choosecC,u f
(q) to have the same dimen-

sions as cout(q) (e21l 21/2), so N(t) has dimensions
(e/ l ). In Eq. ~A8! let the radial factor have dimensions
l 23/2; then, like the radial part of cout, it is
J2l 11(8r /a0)1/2/(r /a0)1/2a0

23/2. Similarly we interpret Eq.
~A11a! to contain (r i /a0) and (r f /a0) everywhere, and if the
radial factor in Eq.~A11a! is defined to have unitsa0

23/2,
then C3 has dimensions (l /e). A similar convention is in-
volved in Eq.~A14!: with r f andr i understood asr f /a0 and
r i /a0, thenA0(t) is dimensionless, and one easily confirms
that Rx

ret(t) @Eq. ~3.9a!# has dimensionst21.

APPENDIX B: LAGRANGIAN MANIFOLDS AND
TIME-DEPENDENT WAVE FUNCTIONS

Outside the domain whereuI (t)& is significant, we can
construct a solution to the homogeneous time-dependent
Schrödinger equation

@ i\ ]/]t2H~ t !#Cx~q,t !50 ~B1!

by the method of Maslov and Fedoriuk@14#. However, our
situation is a bit different from the common one. In most
applications of semiclassical methods to time-dependent
problems, the initial wave function is given everywhere in
space at some single initial time. In contrast, here we are
constructingC(q,t) from its behavior on a boundary sphere
at all times. Nevertheless we can show that we have a valid
semiclassical construction by mapping this problem onto the
framework of Maslov and Fedoriuk.

For this purpose we expand phase space in the usual way
by including t as a classical dynamical variable, creating a
conjugate momentumpt , and defining an effective Hamil-
tonian

H~p,q,pt ,t ![H~p,q,t !1pt. ~B2!

We create a ‘‘timelike’’ variablet to represent the progress
along paths in the expanded phase space, and then the ca-
nonical equations of motion are augmented by

dt/dt51, ~B3a!

dpt /dt52]H/]t. ~B3b!

We may construct a semiclassical wave function using the
theory of Maslov and Fedoriuk, provided that we know the
wave function on an ‘‘initial’’ two-dimensional Lagrangian
manifold in the three-dimensional augmented configuration
space (r ,u,t). If we were evolving a wave function in time
from its known spatial dependence at a single timet i , then
that initial surface would be the set of all configuration
points (r ,u) at the initial timet i . However, as explained in
the text, our initial surface is the set of points on the bound-
ary sphere at all times—the set of all points$r 5r i ,0<u i
<p,2`,t i,`% ~see Fig. 6!.

Now we must define the ‘‘generator’’S0(r i ,u i ,t i) and
the initial momenta on this initial surface so that they are
self-consistent, and consistent withCx

dir(q,t) on the surface
@Eqs.~2.10! and ~2.12!#. We choose

S0~r i ,u i ,t i !52Eoutt i1A8r i . ~B4!

The second term is added for later convenience.Y(u) is a
slowly varying factor which will be incorporated into the
initial amplitude rather than intoS0. The corresponding ini-
tial momenta are

pu~r i ,u i ,t i !5]S0 /]u i50, ~B5a!

pt~r i ,u i ,t i !5]S0 /]t i52Eout, ~B5b!

FIG. 6. ~a! If the Hamiltonian is independent of time, then, as in Ref.@1#, we can calculate the Lagrangian manifold~and thereby the
wave function! by integrating trajectories starting at a given boundaryr 5r i at any arbitrary fixed timet i . ~b! Often in time-dependent
systems, we construct a wave functionC(q,t) given its value everywhere in space at some initial timet i . Trajectories associated with such
a wave function emerge from all locations (r ,u) in the t5t i plane.~c! In the present case the ‘‘initial’’ wave function is given on a boundary
r 5r i at all timest. The associated trajectories emerge from all locations (u,t) in the r 5r i plane. The Lagrangian manifold framework
naturally allows such a change.
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while pr is chosen such that the value of the effective Hamil-
tonian H is fixed and equal to zero. Specification of these
values of (r i ,pr ,pu ,pt) specifies an initial two-dimensional
surface, parametrized by (u i ,t i), in six-dimensional phase
space. The method of construction ensures that this initial
manifold is Lagrangian.

Next, for each point (u i ,t i) on the initial surface, we in-
tegrate Hamilton’s equations, generating trajectories that are
functions of the progress variablet and the initial variables
(u i ,t i); i.e., the solutions to Hamilton’s equations are repre-
sented by six functions@q, p, pt52E(t), andt5t i1t] of
three variables (u i , t i , andt). The initial two-dimensional
surface thus sweeps out a three-dimensional surface in the
six-dimensional phase space, and again the method of con-
struction ensures that it is a Lagrangian manifold. As the
trajectories are integrated, they give the configuration space
generator of the Lagrangian manifold,S(q,t):

S~q,t !5E ( pj dqj1S0~r i ,u i ,t i !

5E
qi t i

q,t

@pr dr/dt1pu du/dt1pt dt/dt#dt

2Eoutt i1A8r i

5S~q,t;qi ,t i !2Eoutt i1A8r i . ~B6!

In this formulaqi5(r i ,u i). Since (qi ,t i) can be regarded as
a function of the field point (q,t), the left-hand side is a
function of (q,t), and it is the generator of a Lagrangian
manifold havingp5]S/]q, andpt5]S/]t.

Given the wave functionC0 on the initial manifold, the
wave function at each point in configuration space (q,t) can
be calculated according to the standard rules:

C~q,t !5C0~qi ,t i !A~q,t;qi ,t i !

3exp@ iS~q,t;qi ,t i !/\2 ilp/2#. ~B7!

In particular the phase is the generatorS ~plus the appropri-
ate Maslov phase shifts!. The amplitude is the wave function
on the initial surface times a ratio of Jacobians,

A~q,t;qi ,t i ![UJ~qi ,t i !

J~q,t ! U
1/2

, ~B8!

and each Jacobian is

J~q,t !5det
]~evolving configuration space variables!

]~ initial-surface variables; progress variable!

5det
]~x,y,z,t !

]~u i ,f i ,t i ;t!

5r 2sinu Ĵ~q,t !, ~B9!

where

Ĵ~q,t !5det
]~r ,u,t !

]~u i ,t i ;t!
. ~B10a!

Since we have obeyed all the rules of Maslov and Fedoriuk,
previously established theorems tell us that we have con-
structed the first term in a formal asymptotic approximation
to a solution to the Schro¨dinger equation; i.e., we have a
semiclassical approximation.

The relationship t5t i1t allows us to simplify Eq.
~B10a!. Treating the final position as a function of the initial
angles, initial time, and time of travel, we obtain

Ĵ~q,t !5detF ]~r ,u!

]~u i ,t i !
G

t

2detF ]~r ,u!

]~u i ,t!G
t i

, ~B10b!

where subscripts indicate the variable that is to be held fixed.
The second term of this expression is the Jacobian that was
needed in Ref.@1#, where the system was time independent.
The first term does not appear in the time-independent
theory. It includes the change in a trajectory’s final position
when the initial timet i is changed, while holding the time of
flight ~or travel time! t constant. For a time-independent sys-
tem, this derivative is zero. For our time-dependent system it
is nonzero, because trajectories beginning at different times
experience different phases of the rf field, and therefore end
up at different final positions.

An alternative and more succinct expression forĴ is mo-
tivated by the observation thatt can be eliminated by sub-
stituting the identity

F ]

]tG
t i

5F ]

]t i
G

t

2F ]

]t i
G

t

into Eq. ~B10a!; the result is

Ĵ~q,t !5detF ]~r ,u!

]~u i ,t i !
G

t

. ~B10c!

In this expression, the final~laboratory! time t is held fixed,
while the initial time~and implicitly the travel time! are var-
ied.

APPENDIX C: ACTION PERTURBATION THEOREM

Equation~4.2! is a variation on old theorems in classical
mechanics. Its proof is a matter of writing out all the vari-
ables and taking a derivative. We are given a Hamiltonian
function H(p,q,t8;F1)[H(t8;F1) which depends on the
phase space variables (p,q), the timet8, and on the strength
F1 of the rf field ~thoughF1 could be any other parameter!.
We are given a closed orbit that ends at the origin at timet.
It begins at the origin at time

t i5t i~ t;F1!5t2T~ t;F1!.

T(t;F1) is the duration of the closed orbit; in our case it is a
periodic function of the final timet, and it has some unspeci-
fied dependence on the parameterF1. The orbit is therefore
described by functions @p(t8;t,F1),q(t8;t,F1)# with
t i(t,F1)<t8<t.

Now we fix the final timet, and drop it from our list of
variables. The orbit functions obey Hamilton’s equations
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dp~ t8;F1!/dt852]H~ t8;F1!/]q,

dq~ t8;F1!/dt85]H~ t8;F1!/]p.

The end points are held fixed,

q~ t85t;F1!5qf ,

q„t85t i~ t,F1!;F1…5qi ,

and the initial momentumpi5p„t85t i(F1);F1… is restricted
such thatH(pi ,qi ,t i ;F1)5Eout is fixed and independent of
F1. Becauseqi is held fixed,

05
dqi

dF1
5

]q„t i~F1!;F1…

]t i

dti~F1!

dF1
1

]q„t i~F1!;F1…

]F1
. ~C1!

The extended actionS(F1) is

S~F1!5E
t i (F1)

t H p~ t8;F1!•
]q~ t8;F1!

]t8

2@H~ t8;F1!2H~ t i ;F1!#J dt8,

and its derivative is

dS

dF1
52Fp~ t i ;F1!•

]q~ t i ;F1!

]t i
GFdti~F1!

dF1
G

1E
t i (F1)

t F ]p~ t8;F1!

]F1
•

]q~ t8;F1!

]t8

1p~ t8;F1!•
]2q~ t8;F1!

]t8 ]F1

2
]H~ t8;F1!

]p
•

]p~ t8;F1!

]F1

2
]H~ t8;F1!

]q
•

]q~ t8;F1!

]F1
2

]H~ t8;F1!

]F1
Gdt8. ~C2!

The first term is the boundary term~due to the change in the
lower limit of integration! and everything else comes from
differentiating under the integral sign. There are other terms,
involving H(t i ;F1), but their derivatives all add to zero be-
cause the initial value ofH is fixed independent ofF1.

Inside the integral, the first and third terms cancel. Inte-
grating the second term by parts, we obtain

E
t i (F1)

t

p~ t8;F1!
]2q~ t8;F1!

]t8 ]F1

dt8

5p~ t8;F1!•
]q~ t8;F1!

]F1
U

t85t i (F1)

t85t

2E
t i (F1)

t ]p~ t8;F1!

]t8
•

]q~ t8;F1!

]F1
dt8. ~C3!

The integral in Eq.~C3! cancels the fourth term under the
integral in Eq.~C2!. The upper-boundary term in Eq.~C3!
vanishes because the final point is fixed:]q(t;F1)/]F150.
The lower-boundary term in Eq.~C3! combines with the
boundary term in Eq.~C2!,

2p~ t i ;F1!•F]q„t i~F1!;F1…

]t i

]t i~F1!

]F1
1

]q„t i~F1!;F1…

]F1
G50

by Eq. ~C1!. We are left with an expression for the pertur-
bation to the action,

dS~F1!

dF1
52E

t i (F1)

t ]H~ t8;F1!

]F1
dt8, ~C4!

from which Eq.~4.1! follows. The derivative of the Hamil-
tonian is integrated along theunperturbedtrajectory.

Let us now evaluateDS for our system. From Eq.~1.1!,

]H~ t8;F1!

]F1
U

F150

52e zt~ t8!sin~vt8!,

wherezt(t8) is the unperturbed trajectory that arrives at point
qf at timet85t. But whenF150, the shape of the orbit does
not depend on the return time, so let us write

z0~t![zt~t1t2T!, 0<t<T,

wherez0(t) describes the shape of the unperturbed orbit, but
its argument always runs from 0 toT. Equation~4.2! follows
trivially.
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