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Bound state semiclassical wave functions
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The semiclassical theory developed by Maslov and Fedoriuk is used to calculate the wave function
for a two-dimensional bound state system. We investigate in detail an eigenstate of a coupled
anharmonic oscillator system. The primitive semiclassical wave function is obtained from the
characteristic function S and the density function J. Each of these functions consists of four
branches corresponding to the four possible directions of motion of the classical trajectory
through any point. The interference from the four branches determines the basic structure of the
wave function. A uniform approximation gives a wave function which is well behaved along each
caustic and which is in good agreement with the fully quantal wave function.

I. INTRODUCTION

In this paper we find a semiclassical wave function for a
two-dimensional bound state system using the method of
Maslov and Fedoriuk.' This method was discussed by one of
us in an earlier paper (denoted I) and subsequently used to
calculate a wave function for a scattering system.? We follow
the notation of those papers, and include only enough detail
here to make this paper reasonably self-contained. The pur-
pose is to show the application of the method to a bound state
system, emphasizing similarities with and differences from
the scattering case previously considered.”> We begin by re-
viewing the method, which is based on the mathematical
analysis of Maslov, and apply it to the present model system.
We then examine closely the resulting wave function for one
of the states of a two-dimensional anharmonic oscillator.?

The objective is to determine the semiclassical approxi-
mation to the wave function which is the solution of the
Schrodinger equation

[H( — ifid /3g,9) — E1¥(q) =0, (1L.1)

where ¢ denotes the set of configuration space variables,
which for the system considered here are the Cartesian co-
ordinates (x,z). The classical Hamiltonian function H(p,q)
associated with the operator H( — i#id /dq,q) is defined in a
four-dimensional phase space (p,q) = (p,, p;, X, z). In par-
ticular, we consider here a bound state of a system described
by the classical coupled anharmonic oscillator Hamiltonian

T= (p; +p)/(2M),
V=rkXx*+k, 2> + k;p;xZ* + ko, (1.2)

where M is the mass of the particle and & ’s are the force
constants and coupling constants. We takei= 1, M = 1, k,
=049, k, =169, k;,= —0.1, and k;,= —0.01, in
agreement with several previous studies.*

* Research sponsored by the U.S. Department of Energy under contract
DE-ACO05-840R21400 with Martin Marietta Energy Systems, Inc.
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Il. THE TRAJECTORY AND ITS ASSOCIATED
FUNCTIONS

A. Classical trajectory

The first step in finding the semiclassical wave function
is to determine the “eigentrajectory.” A trajectory is calcu-
lated by integration of Hamilton’s equations of motion

dp;/dt = — 3H /3q;; dgq;/dt=0JH /dp;, i=x,z.

2.1)
Simultaneously, the characteristic function S(¢) is calculat-
ed by integration of the differential equation

ds(t)/dt = p-dq/dt =Y p,(t)dg;(t)/dt. (2.2)

The initial values p° ¢° must satisfy both (i) a fixed energy
condition

H(p’¢°) =E (2.3)
and (ii) a restriction on the characteristic function S °(¢°):
ds°® = p°.dq°. (2.4)

Other than this, the initial conditions are arbitrary, and are
chosen to obtain an eigentrajectory satisfying the two semi-
classical EBK® quantum conditions:

A; = §pdq =(n,+1/2)2m, i=1,2, (2.5)
where n, corresponds roughly to an x quantum number, n,, a
z quantum number. The quantum conditions can be applied
easily when the motion is quasiperiodic, because such a tra-
jectory occupies a limited portion of configuration space
bounded by caustics. To impose these conditions, we gener-
ate the surface of section at x = 0 to obtain 4,, and use S to
determine the total phase around a loop, giving 4, + 4,;
details of this procedure are given in Ref. 6. We started the
trajectories at x° = 0, z° = 0, and varied p2 and p? in a syste-
matic search until the appropriate values of 4; were ob-
tained. Once the initial conditions for the eigentrajectory
have been found, the trajectory integration generates

© 1986 American Institute of Physics
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(pointwise) the functions x(¢), z(2), p, (), p, (¢), and S(?).

We consider here the state with n, = 6 and n, = 3, for
which we found the energy to be 8.651 43. This is the 46th
state, but the 20th state of odd parity. (For comparison, the
energy obtained from a fully quantum mechanical variation-
al calculation using a 300 state harmonic oscillator basis is
8.651 295.) Figure 1 shows a plot of the trajectory, which is
evidently quasiperiodic; the caustics are also drawn in the
figure.

B. The Lagrangian manifold

The functions [p(?), ¢(¢) ] form a two-dimensional sur-
face in phase space, called a Lagrangian manifold. The mani-
fold can be separated into a number of overlapping domains,
each of which uses two phase space coordinates as the appro-
priate variables for the domain. A regular domain has a
smooth and smoothly invertible projection into some por-
tion of configuration space. Then the coordinates x and z can
be regarded as independent variables, and the embedding of
the manifold in the phase space can be described by the
smooth functions p, (x,z) and p, (x,2).

There are four different sets of values of (p,,p,) asso-
ciated with any point (x,z), leading to the existence of four
sheets of the manifold. Figure 2 shows two of the four sheets,
by plotting p, = p, (x,z). We label the sheets by recognizing
that for either |x| or |z| not too large, the direction of motion
of the trajectory, as given by the four possible sign combina-
tions of the two momenta, can serve to determine the sheet
on which the trajectory lies at time z. (For large |x| and large
|z|, a different rule for this assignment is needed, and will be
given below.) The numbering of the sheets is specified in
Table 1.

Not all domains of the manifold are regular. Singular
points on the manifold are defined as those points which
project onto the caustics in configuration space, and any do-
main containing a singular point is singular (not regular).
The regular domains (1-4) of the manifold are defined as
those portions of the corresponding sheets which are suffi-
ciently far from the singular points. For the singular do-

~5 0 7

FIG. 1. The eigentrajectory for the c.upled harmonic oscillator system. The
caustics are also drawn.

FIG. 2. The Lagrangian manifold as represented by p, (x,2) for domains 1
(upper portion of surface) and 2 (lower portion of surface). The caustic is
outlined heavily in the base plane and on the surface. On the front surface
trajectories pass from domain 2 to domain 1 at the negative z caustic; on the
rear surface, trajectories pass from domain 1 to domain 2 at the positive z
caustic. On the ends trajectories switch to or from domains 3 or 4, which
form a surface similar to the one shown. Thus, a trajectory enters onto this
surface from the left edge, and winds about it until it exits on the right.

mains, there is no smoothly invertible projection into config-
uration space, and an alternative set of variables must be
used. Lagrangian manifolds have the property that it is al-
ways possible to pick a set of coordinates and momenta
(Po+9p) containing no canonically conjugate pairs, such
that the projection from the manifold to the selected varia-
bles is smooth and smoothly invertible. Near the upper and
lower caustics (large |z|-see Fig. 1) the appropriate selec-
tion of independent variables is (x,p, ), while near the right
or left caustics (large |x|) it is (p,,z). Each of the singular
regions corresponding to a caustic is thus defined to be a
separate domain of the manifold, overlapping with regular
domains. In addition, each of the regions which projects
close to a corner, where two caustics intersect, is also taken
to be a separate domain, with (p,.,p, ) as the variables. Thus
as the trajectory evolves in time it passes from one regular
domain to another, glancing off at least one caustic in config-
uration space and passing through at least one singular do-
main of the manifold as it does so.

The connections between the domains are easy to estab-

TABLE I. Near the origin, a trajectory is assigned to a sheet based on the
signs of the momenta. This procedure is unsatisfactory near the corners; to
see this most easily, examine Fig. 1 near the midpoint of the left caustic.
Near the corners, signs of mixed-space Jacobians times coordinates unique-
ly identify the sheet on which the trajectory lies.

Away from corners Near corners
Sheet Px P: xJ(py.2) 2J(x,p.)
1 + + - ~
2 + = + -
3 - - + +
4 - + - +

J. Chem. Phys., Vol. 84, No. 12, 15 June 1986
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lish. For example, a trajectory in domain 1 must eventually
reach either the top or the right caustic; it then passes
through the singular domain near that caustic and enters
either domain 2 (if it hits the top) or domain 4 (right).
These connections are important in the construction of the
uniform terms, below. They also establish the connections
between the sheets of the manifold. For example, along the
lower caustic sheet 2 joins 1, while on the right 1 joins 4;
these relations can be seen in Fig. 1.

C. Jacobian
The Jacobian is defined as
J(t) = 3(x,2)/3(t,u°). (2.6)

The symbol w® requires explanation. The Jacobian repre-
sents the effect on the trajectory of a differential change in
the initial conditions; in two dimensions the change in the
initial conditions involves a single variable. Since the surface
of section at x = 0 is available from the determination of the
eigentrajectory, we used data from it to obtain initial condi-
tions for a pair of trajectories spaced Az® = 0.01 units apart
in z. We thus actually integrated a pair of trajectories with
initial coordinates given by (0, — 0.005) and (0, + 0.005).
The differentiation with respect to w® in Eq. (2.9) is then
approximated by a difference formula using the trajectory
pair:

J(t) = (dx/dt) (Az/A2°) — (Ax/Az°) (dz/dt), (2.7)

where Ax(Az) is the difference between the x(z) values on
the adjacent trajectories. (A Jacobian has been generated in
a different way by Gray, Child, and Noid’ for Franck—Con-
don factors.)

Other Jacobians are also needed to calculate the wave
function near caustics. These are mixed position and mo-
mentum space Jacobians, defined as

oz = 3(p,2)/3(8u°), (2.8)
T, = 8(x,p,) /320", (2.9)
Jop. =0(p,,p,)/3(tu°). (2.10)

The configuration space Jacobian, J(¢), Eq. (2.6), must
be converted to four functions of configuration space varia-
bles J, (x,z), where k = 1,...,4 labels the four sheets of the
manifold. It is therefore necessary to identify the sheet on
which the trajectory is lying at all times ¢. For small |x] or
small |z|, we already mentioned that the signs of the mo-
menta identify the sheets. Near the corners, the sheet can be
assigned by comparing the signs of the mixed-space Jaco-
bians. J, , has opposite signs near the right and left caustics,
andJ,, hasopposite signs near the upper and lower caustics.
Hence, near the corners, the signs of xJ, , and zJ,, identify
the sheets. The assignments and labels are shown in Table I.

The functions J; (x,z) are related to J(¢) through the
trajectory functions x(¢), z(¢):

Je (x(0),2(2)) = J(2). (2.11)
This relationship gives the values of J on the points through
which the trajectory passes, but we need J, (x,z) on a regular

grid. To obtain these values, a grid of lines of constant z is
established at intervals z = 0.2, and each time the trajectory

Knudson, Delos, and Noid: Bound state semiclassical wave functions

crosses any of these grid lines the values of x, S, p,, J, and the
sheet number are recorded. After the trajectory has been
recorded for a sufficiently long time, the data is interpolated
in x at each fixed z to obtain a two-dimensional (x,z) grid
with spacings (0.2X0.2). This interpolation is done sepa-
rately for each domain. Two sheets of the resulting Jacobian
functions J, (x,z) are shown in Fig. 3.

The absolute value of the inverse of a Jacobian repre-
sents a classical density.® As can be seen in Fig. 3, the Jaco-
bians vanish at each caustic, so the classical density diverges
there.

D. The characteristic function

The next step is to calculate the characteristic function
S, which determines the phase of the primitive wave func-
tion.

Like J, S must be converted from a function of time,
S(2), to four functions of configuration space variables,
S (x,z). This is only possible if (1) $(z) is obtained from an
eigentrajectory, and (2) the Maslov phase corrections are
incorporated into the definition of S (x,z). Maslov [Ref. 1;
see also Ref. 5(c)] has shown that the characteristic func-
tion is reduced by 7/2 each time the trajectory switches
sheets. For example, near the upper caustic (z =z, ), where
trajectories on sheet 1 go tosheet 2, if S, (x,z. ) = S(z. ), then
S,(x,z.) = S(t.) — w/2. The procedure to convert to the
functions incorporating these phase shifts is discussed next.

As already stated, S(¢) is recorded each time the trajec-
tory passes through a z-grid line. On each individual z grid in
each domain, the data is then arranged in order of increasing
x. The trajectory winds through each domain in a complicat-
ed pattern, so points adjacent in x generally represent very
different times, and S(¢) considered as a function of x on a
grid line contains large discontinuities. We remove these dis-
continuities in S along a z grid by using the relationship
dS(x) = p,dx to obtain a predicted value of S(x):

SPred(xn+l) =S(xn) +px(x'l+l —‘x")

and then a corrected value is obtained by subtracting the
necessary multiple of 7/2:

——
275 J
138
-138+
% % | ?
—2.7536 -1 7
o0 -053 -3
« 253 56

FIG. 3. The Jacobians J, (x,z) (upper portion of surface) and J,(x,z) (low-
er portion of surface), Eq. (2.10). The heavy line in the base plane and on
the figure is the caustic, at which the Jacobians vanish.

J. Chem. Phys., Vol. 84, No. 12, 15 June 1986
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m=[{S(x,,1) — Spea}/(7/2)], m integer,
(2.12)

Sy (Xy 1) =S8(x,,,) —mu/2. (2.13)

This sequence of prediction and correction is continued all
along the z-grid line and the whole process repeated for each
grid line in each domain. At this point S, (x,z) is a smooth
function of x on each z-grid line. After interpolation to ob-
tain Sy (x,z) on a regular grid in x, the procedure can be
applied similarly to remove discontinuities in the z direction.

The final step is to establish the characteristic functions
on sheets 2, 3, and 4 relative to sheet 1. We add an appropri-
ate multiple of 77/2 such that three Maslov phase conditions
hold at caustics (modulo 27):

on the left: S,(x.,z) =S,(x,,z) +7/2, (2.14)
on the top: S,(x,z,) =S,(x,2.) —n/2, (2.15)
on the bottom: S;(x,z.) =S,(x,z.) +7/2. (2.16)

Then all the other Maslov conditions are automatically satis-
fied because the eigentrajectory has half-integral quantiza-
tion of action variables.

The resulting smooth characteristic functions are
shown in Fig. 4. In domain 1, for example, the characteristic
function increases in the direction of + x, + z, in accord
with the relationship VS = p. The connections between the
S’s on different domains are more difficult to see (because
the Maslov phase shifts are built into these functions, and
because of the presence of arbitrary differences of 2 7), but

272 77
s A
I

AW s A T A 777
S s
o e b
A o B A A e
e B A R Gl A A

77 -

T 7

7L LT LA L 2 AP L T A 2

e A e S

SZZ7Z AL =
S

careful examination will show that, for example, on the bot-
tom caustic S|, =S, — 7/2.

ll. WAVE FUNCTIONS
A. The primitive semiclassical wave function

The local asymptotic solution “to order #” of the Schro-
dinger equation for regular domain & is shown in I to be
given by

¥, (x,2) = [, (x,2)| 7" %exp[iS, (x.2)/%]. (3.1)

As shown in the previous section, the functions S, (x,z) im-
plicitly contain the phase shifts associated with the Maslov
indices. The full primitive semiclassical wave function at
each point x,z is the sum of contributions associated with
each regular domain that projects onto that point:

¥, (x,2) =NY ¥, (xz2), (3.2)

k
where N is a normalization constant.

A contour diagram and a projection of the primitive
semiclassical wave function is shown in Fig. 5. The normali-
zation constant NV has been chosen so that the primitive semi-
classical wave function agrees with the quantum mechanical
wave function at x = 3.2, z = 0.6. The basic structure of the
wave function is apparent; there are two interior nodes in the
z direction and five in the x direction, as the quantum
numbers for this state specify. The state also appears to be
symmetric in z, as it must be according to quantum mechan-

R
SN
LTI
AL
R
PR YR
e esd
22

FIG. 4. The characteristic function S; (x,z), plotted separately for domains 14 in (a)~(d), respectively.

J. Chem. Phys., Vol. 84, No. 12, 15 June 1986
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50

-257

FIG. 5. The primitive semiclassical wave function ¥, (x,z), Eq. (3.2). The
wave function is artificially truncated close to the caustic, where the zero in
the Jacobian causes the wave function to diverge. (a) Contour plot, con-
tours at + 0.10, + 0.14, +0.20, + 0.28, + 0.40. The heavy line is the
caustic. (b) Three-dimensional plot.

ics. Since the symmetry was not built into the computer
code, this provides a good check of the accuracy of the proce-
dure. The primitive semiclassical wave function diverges
near the caustics, where the Jacobian J(x,z) vanishes, and
the plot has been artificially truncated to omit these points.

B. Uniform wave function

Near and outside of the caustics the primitive form is
not suitable, and a uniform approximation is needed. We
obtain a global wave function by combining a set of “transi-
tional approximations,” each of which is calculated by Four-
ier transformation of an appropriate mixed-space or mo-
mentum space form.

1. Edge functions

In the following we consider the transitional approxi-
mation appropriate in the singular domain adjacent to the
upper (large z) caustic; the form for the bottom caustic is
very similar, while those for the right and left sides are ob-
tained by exchange of the roles of the x and z variables. The

Knudson, Delos, and Noid: Bound state semiclassical wave functions

singular domain near the upper caustic has a smooth projec-
tion into the (x,p, ) space, and in this space a primitive wave
function is suitable:

W(xp,) = |T(xp,) |~ 2expliS(x,p,)/#}. 3.3)

Then, as shown earlier (1), the leading term in the (inverse)
Fourier transform of ¥(x,p, ) is

W, (x,2) = |27/T,,(x)|V/?b(x)exp{iS;, (2. )/}

XAi[sgn(z,)b(x)(z—2z2.)], (3.4)

where z, = z, (x) is the position of the caustic, Ai is an Airy
function, and J,, is the mixed-space Jacobian J,2»Eq. (2.7),
evaluated at the caustic, ]P 2 [XP: (x:2.)]. The subscript 21
indicates that this is the term which arises from trajectories
changing to sheet 2 from sheet 1. The phase requires careful
attention; at the caustic the outgoing phase is shifted from
the incoming phase by 7/2, so the edge phase has the form

Sy =S, +m/4=S,— /4. (3.5)

The quantity b(x) has yet to be defined; the formal
expression comes from the expression for the manifold in
(x,p,) coordinates, 2(x,p,):

b(x) = |{1/2[d 2(x,p,)/dp? ] }) 2. (3.6)

However, because accurate numerical evaluation of the sec-
ond derivative is difficult, we employ an approximate
expression for this function. Near the caustic the trajectories
are very nearly described by the uncoupled harmonic oscilla-
tor system obtained by setting the coupling constants k,, and
k5, to zero. The trajectories then have analytic expressions
and the caustic corresponds to the turning point, so we find
under these conditions that

b(x) = |2k,z. "% b(2) = |2k, x.|'", 3.7

where we use the actual position of the caustic, not the un-
coupled turning point, in the expression.

As the domains are connected in pairs along a caustic,
there are two such terms on each edge; on top caustic, for
instance, not only do trajectories labeled 1 make the transi-
tion to those labeled 2, generating a uniform term we labeled
V¥,,, but trajectories labeled 4 also join to those labeled 3,
generating a W, term. Thus, the final edge function for the
upper caustic is

Y, (x,2) = ¥,,(x,2) + V3,(x,2), (3.8)

¥,, differs from ¥,, only in the characteristic function
S347#S5,,. Formulas for wave functions along the other caus-
tics are similar.

2. Corner functions

In the corners neither of the mixed-state representations
provides an appropriate set for the manifold, and the fully
momentum-space version with independent variables p,, p,
must be used instead. From the semiclassical expression

V(@.p.) = V(@ep.) |~ exp{iS(pep,) /A (3.9)
a Fourier transform in both variables gives the configuration
space wave function. An additional approximation (Appen-
dix) leads to an expression of the form

¥, (x,z) = C; Ai[sgn(x,.)b(2)(x — x,) ]

XAi[sgn(z.)b(x)(z—2.)], (3.10)

J. Chem. Phys., Vol. 84, No. 12, 15 June 1986
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where C; is a complex constant, x, and z, are the positions of
the caustics or their extensions into the forbidden region,
and the subscript I labels the corner. The constants may be
evaluated by requiring the corner function to match the edge
function at a position where their domains overlap; a con-
venient choice is on one of the caustics. Thus the condition
determining C, is

Y, (x..2)=C, Ai[0]Ai[sgn(z,)b(x)(z -2z.)]

=V, (x,,2). (3.11)

3. Semiclassical wave function

The total global semiclassical wave function is given by
the sum of all of the above terms combined by switching
functions. These switching functions confine the influence of
a given term to the domain for which it is appropriate (recall
that domains overlap). For convenience we use a single type
of switching function

e, (xz) =0.5(1 + tanh{(2.8/0)

X [x — x.(2) + sgn(x,)*0]}), (3.12)
e,(zx) = 0.5(1 + tanh{(2.8/0)
X [z2—2z.(x) + sgn(z,)*0]}), (3.13)

where o, an offset from the caustic, is 0.85 for e, and 0.60 for
e., and e, is used for the upper and lower caustics, e, , on the
left and the right. This switching function vanishes well in-
side a caustic, reaches 0.5 at the distance o inside the caustic,
and is greater than 0.99 at and beyond the caustic.

At any point (x,z) the nearest edge term is combined
wtih the closest corner

VY, (x,z) =(1—e,e,)V, +e.ce V¥, (3.14)

and this is combined with the primitive wave function to
obtain the final expression for the complete wave function:

V(xz2) =[1—e,(x2)]¥,(x2) +e,(x2)¥, (x,2),
(3.15)
where v is the coordinate nearly perpendicular to the nearest
caustic.

V. RESULTS

The magnitude of the resulting wave function is shown
with both a contour plot and a three-dimensional representa-
tion in Fig. 6. The semiclassical wave function is fit to the
quantum variational function at a single point, just as was
the primitive semiclassical wave function. The caustic is
superimposed as a heavy line on the contour plot. The effect
of the Airy-function transitional terms can be seen along
each caustic and in the corners, where they smoothly join on
to the primitive functions. The Airy-function forms are well
behaved near the caustics, and they decrease exponentially
in the forbidden region.

For purposes of comparison, we have also determined a
fully quantum wave function of the form

VY, (x,2) = 3 ¢, 0ty (X1, (2), (4.1)
nyn,

where the u’s are harmonic oscillator functions with appro-

50
254
z 04
-254
-50+ T - |
- -25 0 -35 7
X

FIG. 6. The semiclassical wave function ¥ (x,z), Eq. (3.15). (a) Contour
plot, contours at + 0.10, + 0.14, + 0.20, + 0.28, + 0.40. The heavy line
is the caustic. (b) Three-dimensional plot.

priate force constants. We used a 300 state basis [25 u,, (x)
X 12 odd-parity u,(z)] to obtain the function plotted in
contour and three-dimensional form in Fig. 7. The classical
caustics are also superimposed on the contour diagram as a
heavy line, and provide an outer boundary for the quantum
wave function. The three-dimensional plot shows the semi-
classical and quantal functions to be in good agreement, with
an identical pattern for the two functions. The contour dia-
gram shows the degree of quantitative agreement to be high,
with the corner regions showing the largest deviations. This
deviation probably arises from the “near-separable” approx-
imation we used in that region (Appendix).

The global picture presented in Figs. 6 and 7 is supple-
mented by the detailed comparisons shown in Fig. 8, in
which slices of the semiclassical and quantal wave functions
at fixed x or z are plotted as functions of z or x, respectively.
The quantitative agreement is seen to be excellent, with the
wave functions practically indistinguishable except near and
outside the caustics. In Fig. 8(a), asliceatx = — 1.4 a.u,,
the primitive and semiclassical wave functions are of virtual-
ly identical up to the caustics, where the singularity in the
primitive function is clearly seen. The primitive function
provides an excellent representation of the wave function to
within about 0.5 units from the caustic, confirming that the
improper behavior is restricted to a narrow region. The tran-

J. Chem. Phys., Vol. 84, No. 12, 15 June 1986
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FIG. 7. The semiclassical wave function ¥, (x,z), Eq. (4.1). (a) Contour

plot, contours at + 0.10, + 0.14, + 0.20, 4 0.28, + 0.40. The heavy line
is the caustic. (b) Three-dimensional plot.

sitional Airy-function approximation provides an excellent
representation near and beyond the caustic. In Fig. 8(b), a
slice at z = 0.6, the behavior is seen to be similar, except that
the transitional term is not quite as accurate, probably be-
cause the approximation for b [Eq. (3.7)] is not as good in
this case.

In order to examine the influence of the Jacobian on the
wave function, we also define a simple type of primitive semi-
classical wave function in which it is omitted:

VY, =N"Y exp(iS. /%), (4.2)

k
where N’ is chosen to match this function to the quantum
wave function at x = 3.2, z = 0.6. (We repeat that the Mas-
lov phase shifts are implicitly included in our definition of
S.) Slices of this function and the quantum wave function are
plotted in Figs. 9(a) and 9(b). By omitting J, the catastro-
phe at the caustic is avoided. The curvature (but not the
magnitude) of the wave function at the caustic closely fol-
lows the quantum function, indicating that the phases are
accurate near the caustic; this was also indicated by the prop-
er nodal structure of the semiclassical wave function along
the caustics. However, the magnitude of this zero-order
primitive wave function is not in good agreement with the
quantum results until well inside the caustic (|z —z,| > 1),

Knudson, Delos, and Noid: Bound state semiclassical wave functions

04

024 ..
00+
-02
_O{% 25 0 25 5

FIG. 8. Slices of primitive (dashed line), semiclassical (light solid line),
and quantum (heavy solid line) wave functions. (a) x= — 1.4, (b)
z=0.6.

where the Jacobian is relatively flat; the standard primitive
wave function provides a better approximation over a larger
range of the variables.

A number of numerical tests of the accuracy of the semi-
classical wave function have also been conducted. The sym-
metry of the system implies that J,=J;, J,=J,
Ps = —Pn, and p,; = — p,,; generally these conditions
are satisfied to more than five-digit accuracy even after inter-
polation to the regular grid in x. The other tests concern the
wave function itself. As mentioned earlier, we multiplied the
semiclassical wave function by a constant so that it would
exactly match the normalized quantum wave function at one
point. Hence the norm of the semiclassical wave function
provides a test of its global accuracy. The norm is

o, =f]‘Psc (x,2)|%dx dz. 4.3)

Numerical evaluation of this integral by the trapezoidal rule,
using only values at the grid points, gives O,, = 1.24 with the
scaling as described above. There are two primary sources
for the error in O, : (i) the numerical error in the integration
on this fairly wide grid, which we estimate at about 4%, and
(ii) the visible error in the transitional approximations in the
corners. We have also calculated the overlap of the semiclas-
sical with the quantum wave function using the same nu-

merical integration procedure and obtained 0.98
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FIG. 9. Slices of the simple primitive (light) and quantum (heavy) wave
functions. (a) x = — 1.4, (b) z=0.6.

(0,. X0,)"/?, demonstrating a very high overlap between
the approximate and exact functions.

A final stringent numerical test involves the calculation
of the overlap of the semiclassical function with the harmon-
ic oscillator basis functions

@y n, = f Y, (x,2)u, (x)u, (2)dx dz/\JO,,

and the comparison of these coefficients with corresponding
coefficients for the exact quantum wave function

(44)

Crn, = f VY, (x,2)u, (x)u, (z)dx dz. (4.5)

The results for the 15 basis functions with the largest coeffi-
cients in the quantum wave function are listed in Table II.
These 15 terms constitute 92% of the wave function in the
sense that 2d} , = 0.92. In the table the x and z quantum
numbers are listed in the second and third columns, respec-
tively, followed by the quantum ¢, , and semiclassicald, ,
coefficients in the fourth and fifth columns. Generally the
coeflicients agree within 10% or better.

V. CONCLUSIONS

The mathematical developments in multidimensional
semiclassical theory have been applied to the computation of
a bound-state wave function. The method is practical and
leads to a wave function which is an accurate representation
of this excited state.
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TABLEII. Columns 2 and 3 specify the x and z quantum numbers. Column
4 contains the 15 coefficients of largest magnitude in the (25X 12) state
quantum variational calculation of the eigenstates, in order of decreasing
magnitude, The fifth column is the coefficient as obtained by integration of
the semiclassical function with the harmonic oscillator basis function, Eq.
(5.3).

k n, n, Cpn, i,
1 5 3 —0.483 —0.480
2 4 3 0.427 0.408
3 8 3 0.347 0.345
4 9 3 0.293 0.295
5 6 3 —0.255 —0.223
6 7 3 0.241 0.222
7 10 3 0.211 0.216
8 8 5 0.149 0.197
9 9 5 0.149 0.173
10 11 3 0.138 0.153
11 10 1 —0.137 -~ 0.153
12 3 3 —0.135 -0.139
13 10 5 0.120 0.154
14 9 1 —0.116 —0.082
15 4 5 —0.110 - 0.105

APPENDIX: WAVE FUNCTIONS NEAR THE CORNERS

A more complete discussion of wave functions near the
corners will be given in a future article. Here we give a brief
outline of the arguments leading to Eq. (3.10). Near the
corners, the Lagrangian manifold has a smooth, invertible
projection into p,, p, space, and it has a generator S(p, ,p, ).
This generator must satisfy the Hamilton—Jacobi equation in
momentum space,

(P2 +p2)/(2M) + V( —3S /dp,, — S /dp,) — E =0.
(A1)

If $(p,.p,) is expanded in a Taylor series about p, =0, p,
=0, one finds from Eq. (A1) that S has linear and cubic
terms in the p’s, but no quadratic terms: to degree 3, S is
given by

S(pep.) =5(00) — (px° +p.2°) + (1/3)4p3
+ (1/2)Bp%p, + (1/2)Cp,p.

+ (1/3)Dp? + -, (A2)

where x°, z° represent the position of the corner, and 4D are
constants which must be chosen such that Eq. (A2) satisfies

Eq. (AD).
The arguments that are used by catastrophe theorists®

tell us that there is a point transformation among the P’s,
Py =Py(p.:p.),
P, =P,(p,.p;)

such that S can be written exactly as
S(P,P,) = (1/3)aP} + (1/3)aP} — Q3P, — QP

(A4)

(A3)
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This generator corresponds to a special case of the so-called
Hyperbolic Umbilic catastrophe. (The canonical form for
the generator of this catastrophe also contains a term c¢P,P,,
but it can be shown that the term vanishes in the present
case.)

Corresponding to the point transformation [Eq. (A3)]
among P’s, there is a point transformation among Q’s,

0, = G(x,2),
b = 0,(x,2), (AS)

such that the complete transformation (p,,p,,x,2)—(P,, P,,
Q,, 9,) is canonical. In these coordinates, the Lagrangian
manifold is described by the equations

Q,(P,P,) = —3S /3P, = Q9 —aP?,
O (P, Py) = ——aS/aP2=Q‘2) _bpg. (A6)

Singular points of this manifold are the lines 9, =0, @, = 0.
It can be shown that these singular points correspond to two
curves in xz space that meet in a right angle at the corner.

In these new coordinates, the semiclassical approxima-
tion to the wave function in P space is

U (P,P,) = |J(P,,P,)|~'? expliS(P,,P,)/#]
and the corresponding wave function in Q space is

(AT)

W(0,0) = ( — 2ih)? f expli(P,Q, + P,0,)/#]

X ¥ (P,,P,)dP, dP,. (A8)

When the form (A4) is put into Eq. (A8), and the approxi-
mation that J(P,,P,) be constant is used, the integral is sep-
arable, and one arrives immediately at the result that
¥ (Q,,0,) is a product of Airy functions.

This means that near the corners, there exist orthogonal
coordinates Q,(x,z) Q,(x,z) such that the two curves
0,(x,z) = Q9 and Q,(x,z) = Q9 correspond to the two
caustics. In these coordinates, the semiclassical wave func-
tion can be written as a product of Airy functions:

¥(Q,,0,) = CAi[a1(Q1 - Q?)]Ai[az(Qz - Q(z))]-
(A9)

In principle, the constants ¢, a,, and a, can be obtained from

the constants a and b in Eq. (A4), which in turn are related
to the constants 4-D in Eq. (A2). However, it is more con-
venient to determine the constants approximately by com-
parison of the corner functions with the previously deter-
mined edge functions.

Finally, for the state considered here, the perpendicular
lines defining the corner are close enough to (x,z) coordi-
nates that for our purposes we can use the approximation

V¥ = ¢ Ai{b, (2) [x — x°(2) 1}Ai{d, (x) [z — 2°(x) ] }.
(A10)
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