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Bifurcation of the periodic orbits of Hamiltonian systems: An analysis using normal form theory

D. A. Sadovskit?" and J. B. Delo4?
IDepartment of Physics, College of William & Mary, Williamsburg, Virginia 23187-8795
2Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colorado 80309-0440
(Received 26 October 1995

We develop an analytic technique to study the dynamics in the neighborhood of a periodic trajectory of a
Hamiltonian system. The theory begins with Poincare Birkhoff; major modern contributions are due to
Meyer, Arnol’d, and Deprit. The realization of the method relies on local Fourier-Taylor series expansions with
numerically obtained coefficients. The procedure and machinery are presented in detail on the example of the
“perpendicular” (z=0) periodic trajectory of the diamagnetic Kepler problem. This simple one-parameter
problem well exhibits the power of our technique. Thus, we obtain a precise analytic description of bifurcations
observed by J.-M. Mao and J. B. Deldhys. Rev. A45, 1746(1992] and explain the underlying dynamics
and symmetried.S1063-651X96)10407-4

PACS numbsfs): 03.20:+i, 02.30.Hq, 31.10tz, 46.10+z

I. PURPOSE. ORGANIZATION OF BIFURCATIONS tative change of the floor the phase portraitn the imme-
OF PERIODIC ORBITS diate neighborhood of this orbit. Different types of bifurca-
tions are characterized by different changes. The simplest
The modern study of periodic orbit®O’s) began with  way to observe these changes is to numerically generate the
Poincare[1] who realized that periodic solutions provide a trajectories in the neighborhood of the given periodic orbit,
route to the study of nonintegrable dynamics. Thus, the ideand to plot a series of Poincasarfaces of section for dif-
of chaos entered classical mechanics in close relation to pderent values of the parameter.
riodic orbits. The concept of quantum chaos, the quantum For two degrees of freedom this approach gives a good
analog of classical nonintegrability, was also formulatedidea of what happens, so it has been used extensively in
within a periodic orbit framework. Gutzwillef2,3] showed application to concrete dynamical systems. It does not, how-
how to use semiclassical approximations to calculate thever, address the questionwhy certain phenomena occur.
density of states of a quantum system from PO'’s of the corinstead, it essentially produces “experimental” data—a re-
responding classical system. Similar semiclassical expresult of a purely numerical experiment. Furthermore, in ana-
sions were obtained for other observables, such as transitidpzing Poincaresurfaces of section we largely rely on the
probabilities[4,5]. pattern-recognition ability of our eye—a wonderful device
A particularly rich structure has been studied for the stategut, regrettably, a helpless one for plots of dimension higher
of the near-zero-energy Rydberg electron of the hydrogetthan 2 or 3. This limits the applications to two degrees of
atom in magnetic or electric fieldgt—7]. In this case the freedom, where in fact almost all of such work has been
large-scale structure of the absorption spectrum is formed bglone.
those short-time orbits of the electron that begin at and return The main purpose of this paper is to present a more gen-
to the nucleus. Many such recurrences have been clearlyral and appropriate strategy of attacking the problem. “Nor-
identified in the experimental daf&]. mal form theory” is a perturbation theory that combines with
If fixed parameters of the system, such as energy or fielthe principles of bifurcation theory and gives an approximate
strength, are made to vary, then the family of PO’s changedescription of classical motion near a periodic orbit and of
quantitatively, but may also change qualitatively, as a resulhow that motion changes as the parameters of the system are
of bifurcations of orbits. For instance, as energy increasemade to vary. At its lowest level of approximation, normal
new periodic orbits can be created, and as order changes form theory leads to the theorem of Mey&4, which asserts
chaos this results in a proliferation of PO’s. In atoms in fieldsthat periodic orbits typically bifurcate in just five ways de-
the new orbits are observed as new peaks that emerge in tpending on the period-multiplication factor. We show that
recurrence spectrum when scaled energy chafegesFigs. 5 normal form theory can be used as a consistent quantitative

and 6 of Ref[8]). theory and that at higher levels of approximatigith more
It follows that the mechanism of individual bifurcations of termg this theory describes not only bifurcations of the orbit
periodic orbits, and their patterns and sequentsir “or- itself but also bifurcations of other orbits nearby.

ganization’), are of fundamental interest for the study of the In particular, normal form theory provides a logical foun-

dynamics of nonintegrable classical systems and of theidation for the observation that bifurcations of periodic orbits
guantum analogs. can occur in organized sequen¢&6]. For example, looking
A bifurcation of a periodic orbit is associated with a quali- at the diamagnetic Kepler problefPKP) defined in Appen-
dix C, Shaw[11] and Mao and Delo§6] Sec. V C 3 were

A studying how the new PO that they call “pac-man” was

*Present address: Universitel Littoral, Quai Freycinet 1, Bté  created near the perpendicular orbit. They saw a period-4
Postal 5526, 59379 Dunkerque Cedex 1, France. bifurcation that had the expected “four-island-chain” pattern
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2034 D. A. SADOVSKII AND J. B. DELOS 54
functions constitute reduced effective Hamilton functions
near a particular periodic orbit of the system. The function in
Fig. 1 has been obtained as a normal form. All searching and
experimentation with surfaces of section are thereby reduced
to examination of contour plots and stationary points of
simple functions.

Other bifurcations that SMD studied for the perpendicular
orbit ([6], Fig. 11 proved to have a similar organization.
Normal form theory provides an explanation: it shows that
for all bifurcations of the perpendicular orbit above a certain
scaled energy, the normal forms are qualitatively equivalent
to (1) with k=4,5,6,. . . . Specifically, the fourth- and sixth-
power radial terms have alternating signs, and higher terms
are small enough that they cause no qualitative changes in
the vicinity. This is sufficient to guarantee the presence of
just such an organized sequence of bifurcations.

SMD also found that one of the bifurcations of the per-
pendicular orbit seemed not to occur through such an orga-
nized sequence. Again normal form theory gives an
explanation—at low scaled energies the alternation of signs
does not occur in the normal form, so the complicated se-

FIG. 1. “Organized” one-parameter bifurcations displayed by quence is not present.
the normal form near the period-4 bifurcation of perpendicular orbit  Normal form theory is also a natural and direct way to
(contours are not drawn equidistantly deal witha priori symmetries of a physical system, which

can have important consequences for bifurcations of periodic
(these terms will be explained in Sec. I).BHowever, orbits. In the case with symmetry Meyer’s generic classifi-
“much more” was observed in the surfaces of secfiBiys.  cation has to be modified to account for the bifurcations that
9(a), 9(b), and 9c) of Ref.[6], and our Fig. 1 (1) A stable-  are actually observe12], Appendix B of[6]). In normal
unstable pair of nearby period-4 orbits was created by dorm theory,a priori symmetries become explicitly built into
“saddle-node” bifurcation(2) A second such pair was cre- the normal form, and they combine with additional symme-
ated in a similar fashior(3) The separatrices rearranged into tries that are induced by resonances. This leads to a complete
two concentric four-island chaind4) Finally the actual classification of bifurcations of periodic orbits with symme-
period-4 bifurcation of Meyer's classification occurred: thetry_ We plan to present such a classification in a separate
inner chain shrank and collapsed onto the perpendicular ofuture paper.
bit, leaving only the outer chain, who3epoints correspond Intriguing observation§6—8] and the lack of understand-
to the “pac-man” orbit. All these observations came out Ofing of the observed phenomena have inspired our present
careful examination of many numerical calculations; Shawyork. The methods we use are well de\/eloped in the math-
Mao, and DelogSMD) could neither anticipate nor explain ematical literature. Poincaraid the foundation of normal
these sequences of events. We use the term “organizationform theory in his dissertation, Dulac considered normal

€=-0.324546

when we refer to such sequences of bifurcations. forms near resonancdd3], and Birkhoff treated normal
What does normal form theory give us? Consider theforms near periodic orbits as an important case of the general
function theory[14]. An efficient Lie transform algorithm is a recent
) PR vital contribution due to Deprit and othef45]. Two con-
e P p P temporary sources, one by Meyer and Hdlb], and the
fo(p.¢)=(s0~2) 2 (1+a+COSkcp)( 4 6)’ @ other by Arnol'd[17], contain many original contributions to

the use of normal forms in qualitative analysis of bifurca-
with p and ¢ polar coordinates on the plane, the order of thetions. These books guided us well through the whole theory
resonancé=4, « a fixed positive constant, areda variable  and their influence is invaluable.
parameter that passes through a fixed valgye(a) The con- In this paper we review these theories, and adapt them for
tours of(1) reproduce numerically generated surfaces of seceur purpose. More important, we compose them into a uni-
tion. Thus our Fig. 1 is a contour plot of a function qualita- fied, consistent procedure that can be used in a variety of
tively equivalent ta1) and it is indistinguishable from Fig. 9 applications.(To our knowledge, this paper is the first to
of Mao and Delog6]. In particular we examine the station- carry through the whole process for a nontrivial periodic or-
ary points of (1): the points where of (p,¢)/dp  bit) The procedure is long, but ultimately rewarding. To
=df .(p,¢)/dp=0. These stationary points dfl) corre- make the procedure accessible to the general physics com-
spond to periodic orbitgfixed points of the Poincareap munity, to show its realization in all details, and to demon-
found in Ref.[6]. As e varies, these stationary points are strate its usefulness we analyze the bifurcations of the per-
created and destroyed in an orderly sequence of events, preendicular orbit of the diamagnetic Kepler problem. A brief
cisely corresponding to that if6]. (b) Normal form theory summary of the results was published[it0], and we en-
gives a systematic algorithm for constructing such functionsourage the reader to return to that paper to keep the goals in
from the exact total Hamilton function of the system. Thesemind.
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In Sec. Il and in Appendix A, we present additional back-
ground information that underlies the theory. The details and

implementation of the theory begin in Sec. Ill. 0.08 /*_
0.04 i
IIl. INTRODUCTION. KA 0.02 | 1
GENERIC BIFURCATIONS AND NORMAL FORMS | ' ‘
<
At the heart of the theory is an intimate relationship be- S 000 I
tween bifurcations of periodic orbits of Hamiltonian systems o 002 :
and bifurcations of stationary points of smooth functions of = B
two variables. Let us introduce our subject by explaining that ‘I“I’ §
relationship(see also Appendix A 5 © :
= ° i
A. Generic bifurcations of stationary points - §
of Morse functions S ]
Qualitative theory of generic functions, known in math- 06 0B 1 12
ematics as Morse theofy8], is a basic theory that directly coordinate q
applies to generic Hamilton functions. The main ideas are
intuitively simple and we survey them briefly. FIG. 2. “Organized” one-parameter bifurcations of even func-
tions on the line exemplified by Eq2c); dotted line gives the
1. Morse functions on the line position of stationary points.

Consider a functionf_(q) that depends smoothly on a
single variableq and a single parameter. Let us say that
f.(q) changes qualitatively if and only if as parameter
varies, a new stationary point is created. This can occur onlﬁ
if for someeg there is a degenerate stationary pajpt such
that bothfso(qo)’ and feo(qo)” vanish. For example, con-

sider the one-parameter family of functions

stationary point atj=0. As ¢ decreases through 1/4, a new
local maximum(max) and minimum(min) are created at a
ritical point atqy=1/y/2, and they move apart ascontin-
es to decrease. This is again a “saddle-node” bifurcation,
with cubic normal form(2a). Due to the symmetry of2c)
aboutg=0 a twin max-min pair appears at the same time at
go=— 1/{2. As ¢ decreases through zero, the twin maxima

move to the origin, “collide” with it, and disappear, leaving
(29 th o Lo L

e origin a local max for negative [“pitchfork” bifurca-

As & decreases throughy, this function changes qualita- tion, with normal form(2b)].

tively from one with no stationary points to one with a maxi- e further note that the two bifurcations aveganized
mum and a minimum. This change is known as a “saddlelhey form a sequence of two events caused by a monotonic

node” bifurcation or a “fold catastrophe.” Moreover, a change of a single parameter. In one-parameter theory this
general smooth function having a degenerate critical poinPh€nomenon of organization is not generic. However, if
can be locally reexpressed in the forf2a) by a smooth high-order terms irf2c) are sufficiently small, so that cutting
change of coordinates, provided only tHag(q)” is non- them off gives a qualitatively correct behavior fyf in the

zero. Therefore we say that the one-parameter family o eighborhood of 0, such organization can be common: it

functions(2a) is the normal formthat represents th@nly) Oe;ak;jsﬁleagfggsthe fourth- and sixth-power terms(2a) have

Ejlesgerlc creation of stationary points of functions on the line Function (1), which described the bifurcations of PO's
' . . . near the perpendicular orbit, is essentidltg) with an angu-
Now suppose that our functions aaepriori restricted to | dulati di h A f
be symmetric abouj=0. The Taylor expansion can contain ar mocu ation. AS. stresse n Sec..l, the Qrgan|z§1t|on 0
) bifurcations of stationary points manifested in functidn

only even terms, ‘f.’md a bifurcation can only occur if thehas been observed for many bifurcations of periodic orbits
guadratic term vanishes, so the normal form [6,10,11,21

f(a)=(e—eo)q?+q*+- - (2b)

gives the typicalgenerig bifurcation of symmetric functions  The theory for the planar case is central to our study. The
on the line, called the “pitchfork”[20]: as & decreases stationary points

throughe, the minimum atg=0 becomes a maximum, and
two new minima are created. 3f.(do,Po)  If.(do.Po)

If a symmetric function changes qualitatively near (0o, Po): .
go# 0 we still expect the cas@a—the only difference is
that at the same time exactly the same bifurcation occur
near—qg. Consider, for example, the function

fo(@)=(e—&0)q+q>

2. Morse functions on the plane

0 (39

of generic(Morse functionsf_(q,p) are such that the Hes-
sian matrix is nonsingular:

f.(q)=eq%2—q*/4+q%/6+ - - -, (20
,  det2,(do,po) #O. (3b)

2
illustrated in Fig. 2. Foe large and positive, there is a single Q.= ( <9(q,p)2
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Whenever(3b) holds, the stationary point3a) is isolated TABLE I. Generic one-parameteC,-symmetric Morse func-
from any other stationary poinis nondegenerateand it  tionsf,: R°—R and their bifurcations.

persists(can be continugdover a range of.

. . . ) ) a b . . T ¢
What are the typical qualitative changes in this case? The 8 ge”‘;, fa“d tl?“““‘}’lal deformation
. . . g . nomenon
simple answer has been given biilthskii and Pavlichen- e
kov [22]. The idea remains the same as in the case of the C 1.2
1 sP +3q +egq

line, but on the plane there are more possible symmetry

properties to consider, such as m '
f(a,p)=f(R(q,p)), R=C;,C;,C3,C4,Ch=q, (4 ﬂ\ﬂ

TN

the rotations of the plane by anglerZk. The corresponding
normal forms are shown in Table[23].

In this table, theC; (no symmetry and C, (inversion
normal forms are the obvious two-dimensional generaliza-
tions of Egs.(2a and(2b). For C;, we get the saddle-node
bifurcation: anX point (saddl¢ and anO point (max or min
are created where there was no stationary point before. For
C, symmetry, there are two possible types of pitchfork bi- ab>0
furcation:O — X with two newO'’s created, oX — O with
two new X's created 20].

S Ny
To understand the higher symmetry cases, let us examine » @

k=4 in more detail. Consider a functidn(q,p) that must AA@)
haveC, symmetry about the origin. The Taylor expansion of ab< 0 =
f.(q,p) is best expressed in polar coordinates«), and,
because of the imposed symmetry, this expansion can con-
tain any power op?, and it can also contaip?cos4¢ and
p?'sindj, with j any integer. However, to makg,(q,p)
smooth in = psing, p=pcosp) at the origingq=p=0, we
must have 2=4j. If the coefficient of the quadratic term

p? is nonzero, then the origin is an isolated stationary point,
so a bifurcation can only occur if that coefficient passes
through zeroTypically all other coefficients in this expan-
sion will not become zero at the same time. Therefore, the
generic representatiofmormal form for bifurcations ofC,
functions is

C,

f.(q,p)=ep?+tap*+ ibpicogde)+ - - -. (5)

The structure of the contour plots ) depends on the
relative magnitudes of the constargsand b. If |a|>|b|,
then (for a>0) when >0 the origin is an isolated min

(O point in the contour plgt Whene passes through zero la] > |b]

and becomes negative, the origin becomes a max, and nearby

there are four symmetrically placed mins separated by saddle Cr k" cos ke + tag* + $eo,

points(X points in the contour plojsWe call this an “island k>4 similar to the k =4, |a] > |b| case

chain” bifurcation. 3 ocal symmetry in the neighborhood of the stationary point.
The reader can now verify the following) If [b|>[al,  bwe assume the critical value of parametgr0 so that the germ

the C, bifurcation(5) has a different structure: four saddles of the family corresponds to the expression in this column without
approach so that they collide with the origin wher 0, and  the Jast terma#0 andb#0.

then reappear with a different orientation Whemhanges C(q’p) and (Q!(P) are local rectangu|ar and po|ar coordinates.

sign (“touch-and-go” bifurcation. (ii) For C3 symmetry,  dThe middle contour plot corresponds to the critical vatye
the generic structure can only be “touch and gdqiif) For

Cyx symmetry withk=5, the only generic behavior is the
“island chain.” (Hint: compare the degree im of the main
resonance termpcoske and of p*.)

tions of periodic orbits of Hamiltonian systems resulting
from the change of a single parameter, then the patterns that
our eyes will see in a surface of section are the same patterns
that are shown in Table I. A peridd-bifurcation of a peri-
odic orbit looks like aC, bifurcation of stationary points of
a smooth function of two variables.

Meyer [9] has established a simple theorem, which we To understand this correspondence, several points must be
can state intuitively as follows. When we examine bifurca-explained.(a) The theorem describes generic behavior—

B. Generic bifurcations of periodic orbits:
Meyer's classification
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other things can happen, but they would be exceptidibal. If M,—1 itself is nonsingular, singularity can still occur
We need to know the analog of the Hessian condition: undefor M (repetitions of the Poincanmap. The kth repetition
what condition is a PO isolated im{p) and continuable in of the periodic orbit is elementarysolated and continuable
e? (c) Why is there such a close correspondence betweeonless
bifurcations of PO’qwhich are special solutions to differen-

tial equations defined in aN-dimensional phase spacand
bifurcations of stationary points of functions of only two
variables?(d) How does symmetry enter? Nothing is as-
sumeda priori about symmetries of the Hamiltonian system; N o—exp(=2mn/k) for n<k. (90)
yet a periodk bifurcation somehow manifests locg|, sym- '

metry.(e) What do we mean when we speak of “the patterns

our eyes will see”? How complete is the correspondencéconversely, at those critical values efsuch that Eq(9b)
between bifurcations of PO’s and bifurcations of stationaryholds, a periodk orbit might be created or destroyed at the

deiM¥—1)=0 for k=23,..., (9b)

points? central orbit.
The fundamental correspondence between the Hessian
1. Monodromy matrix and continuable orbits matrix (effectively—the matrix of the linearized equations

near the origin and the monodromy matrix is further ex-

The linear stability of a periodic orblt .(t) is defined by plained in Secs. V A and V C.

the (eigenvalues ofmonodromy matrix M, the linear part
of the Poincarenap: . . .
2. Reduction to two dimensions
X—=>P (X)) =M X+ . (6) In a generic one-parameter family of matrickk’ Eq.
(98 can only be violated at arsolated critical value &,
It can be obtained if we linearize equations of motion neafdx (e,,)/de+0, cf. Sec. Il A 1, and Eq.(9b) does not hold
I'; and integrate them over the period. _ _ at the sames;;. This assures that the bifurcation itself is
In N degrees of freedonM, is a symplectic matrix of generic and that no other periédbifurcation occurs for pa-

dimension N—2; in particular de¥ =1. It hasN—1 pairs  rameter values within soméinitely) small open neighbor-
of reciprocal eigenvalueg[16], Chap. I1Q A(e), called  hood ofe; [25].

multipliers, such that\1h,=1. For N=2 (two degrees of In a generic theory those;(e) in Eq. (9a) that belong to
freedom generic matriced have[24] different pairs(7a) are independent functions of the param-
etere, and, therefore, only one pair, , satisfies Eq(9c¢) at
N =exp(Fiw), (78 a “time,” i.e., at an isolated value;. The eigenvectors

associated with this pair of eigenvalues define a plane in
with characteristic exponentsai either real(hyperbolic or  phase space in which the bifurcation manifests itself. In this
unstable cageor purely imaginaryelliptic or stable caseA  way, the generic one-parameter problem reduces to dimen-
matrix with sion two[24,26]; with more parameters, more complex bi-
furcations can occur27].
AN=h=%*1 (7b) The study of each individual one-parameter bifurcation
reduces to the study of an equivalent one-degree-of-freedom
(singular casep=0) is not generi¢Eq. (7b) can be violated time-dependent (2-periodig system. A more complex phe-
by an arbitrarily small deformation df1], so typically Eq. nomenon in which new periodic orbits are created gt is
(7b) will hold only at some isolated critical value ef. structurally unstable: it can be decomposed into a sequence
If multipliers are hyperbolic, the central orbit is unstable of generic two-dimensional (2D) phenomena (at
and the neighboring trajectories diverge. Otherwise, if mul-g; ,e7s, ...) by anarbitrarily small deformation of the
tipliers are elliptic, this orbit iglinearly) stable: the neigh- problem(of M,).
bors may coil around the central orbit for long times, de-
pending on the nature of the nonlinear terms.

' ] o \ 3. Correspondence of phase portraits of normal forms
A fixed point of (6) satisfies the equation

and Poincaresurfaces of sections

P.(X)—Xx=(M,—1)Xx+---=0. (8) The Kol'mogorov-Arnol’d-Moser (KAM) theorem and
° ° the theorems of Poincamgnd Birkhoff assure us that around
The solutionx, =0 of this equation is unique if and only if &Ny stable PO of a nonintegrable system, a surface of section
(SO9 will generally be horribly complicated, with high-

2N-2 order island chainsX points, heteroclinic tangles, and struc-
detM,— =[] (\j—1)#0. (99  ture within structure to all levels of resolution. How can the
=1 simple functions given in Table | describe bifurcations of

periodic orbits in Hamiltonian systemd?) Normal form
If the above determinant is nonzerost, then the PQper-  theory replaces the exact Hamiltonian of the system by a
sists(can be uniquely continued &) in a domain surround- new effective Hamiltonian, which possesses only integrable
ing 9. Such a PO is callecelementary ([16], Chap. motion.(ii) The normal form correctly reproduces the large-
VIII Al). Therefore Eq.9a) is the analog of the Hessian scale structures on the SOS; i.e., it creates an “interpolated”
condition (3b). or “smoothed” SOS (iii) It does this effectively by averag-
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ing over high-order resonances in the system. The result pre- H 0 = wl(a2+p2)+F 10
serves short-time local structure, but smooths the long-time (G1,P1:6)=w3(A1+PD)+F, (109
structure. F=F(q1,p1;0)=F(d1,p1;d2,p2), (10D

The most important statement, which serves both as the
premise and as the backbone of our work, is that despite ther in complex coordinates=q+ip [30],
fact that the whole map is not reproduced by the normal
form, the short-time PQO'’s, their stability, and their bifurca- H=iwz,2} +2iF(z,,2} ,2,,25)
tions, are reproduced by the normal form. In particular the
bifurcations of the fixed points of the map and of the corre-
sponding PO’s are completely equivalent to those of the st
tionary points of the normal form.

=iwz,Z} +2iF (2,2} ,e*'). (100

% he forceF is nonlinear, i.e., it depends onq{,p;) and the
degree ofF in (g,,p1) is greater than 2. We consider suffi-
ciently small oscillations in q;,p;) and represenF as a
power series inz,,zy ,z,,z; . The normal form reduction

In real life the problem usually needs certain coordinateg|iminates from this series as many terms as possible. It re-
transformations to achieve the standard normal form repregins only “resonant” or “secular”’ terms ir, those whose

sentation, such as in Table I. The first step is similar fortime derivatives are small:
functionsf(qg,p) and for PO’s. FoIC, bifurcations the ori-

gin of the coordinate system is translated to coincide with the dFies  IF es
central stationary point of, (central equilibrium for all de a6
values ofe. In the case of PO we construct coordinates that

are normal to and have their origin at the central PO for allf » happens to be 1/ghe frequency of the driver is three
e's (Sec. IV A and Appendix B In general this coordinate times the natural frequency im{,p;)] the normal form re-

4, Fixed versuse-dependent coordinates

+w3{ai+pl,Fred=0. (12)

transformation i dependent. tains the 1:3 resonance terms:
The C; case is exceptional: on “one side” of the bifur- e oeea
cation there are no stationary poin80’s), and on “the Fi3=i[212; +(21)°Z5]+ - - -. (129

other side” neither can be regarded as the “central” station-

. . . . ion- i — i
ary point(PO), so we cannot use their location to define the!N action-angle variables, such that=y21,€'%,

coordinate system. Instead, a fixedindependent coordinate _ 2132 ...
system is defined having its origin at the single degenerate F13=4117c083¢1—0) ' (120
stationary poin{PO) that exists ak g . Consider now(123 in the plane ¢;,p;) (the plane of the

In the case of periodic orbits anothedependence comes pgincafesurface of sectionat g,=0 (=0, p,=1),
into the coordinate system on a later s{§ec. IV A): when
considering the motion along the PO we change to angle- |:1:3|q2=02(p§+ 3D1Q§)Dz+ . (120
action variables ¢,J) in which one period of the central
orbit T, maps into an interval §=2m. In other words we  This term is invariant with respect t€5 rotation in the
use ans-dependent effective time&ﬁ scale. This happens (q1,p1) plane. Furthermore, the saiy symmetry persists
for all C, k=2. In theC, case we simply lock oué scale  at all ¢ if we use a coordinate system that rotates with
to the periodT,, . such asp= ¢, — 6/3. [This coordinate system rotates in the
(g1,p1) plane as we move along the central PO, cf. Appen-
5. Resonances and symmetries dix A 3.]
Normalization thus creatdS; symmetry out of a general

In Sec. Il A symmetry was imposed as arpriori prop- L . )
i ; o Hamiltonian. However, we must be cautious since we have
erty and all possible canonical symmetries in the plane were

considered22.23,28. In contrast, bifurcation theory of pe- not considered convergence of the normalization process.

riodic orbits[9,16] does not begin with any postulated sym- :,r\(glgenfzsslgf;hgt;); ﬁtef\i/g]t;g ittri/hzfﬁct)jvcccz)ift?r?g?r:m:ll ;orsr::a,m is
metries. In fact we deal with generic periodic solutions y y

. . . ‘that it isapproximately G symmetric; i.e., it is symmetric in
which haveno special symmetry properties. Instead, symme-, . :
tries emerge from the normal form procedure. :[:e sagje av\(;:tvrage sense r?.s Q|s§uss?)c(i énlsec. B
How this happens for periodic orbits will become explic- ppendix 7. We retur fo this in Sec. '
itly clear after the normal form procedure is presented in Sec.
VIl [see Eq.(66)]. Here we give a simple example of a
k=3 resonance of a periodic orhit29], Appendix 3. To Now let us reexamine and reinterpret Table | in terms of
study bifurcations of a PO we consider small oscillationsbifurcations of periodic orbits. We only need to say that a
about this Pdin the normal planed;,p,;)] driven by the  saddle(X point) in the function plot corresponds to an un-
motion along the PO. Therefore, let us consider a onestable PO and a maximum or minimuf® point) corre-
dimensional oscillator with phase spaag (p;) driven by a  sponds to a stable PO.
periodically oscillating forcé=(q;,p;;6), with 6 the effec- a. C, bifurcation, saddle node, or extremal orbitAt the
tive time. It is helpful to write @,,p,) = (sind,cod), and to  Critical pointe; condition(93) is violated, Eq(8) has more
think of (g,,p,) as coordinates that are associated with mothan one solution, and the stability of the orbit is undefined.
tion along the central PO. Then the effective Hamilton func-The orbit isextremal([16], Chap. VIII A 2), which means
tion of this nonautonomous problem is that, like the stationary points @¢2a) it cannot be continued

6. Classification of bifurcations
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near e [the two solutions of Eq.8) exist either for ~matrix solutionXg .(6) (Sec. VA 2; (4) study the mono-
e=gq OF else fore<e;]. Two orbits get “created” or dromy matrix M =Xg .(27) and identify critical valugs)
“annihilated” as a stable-unstable pair corresponding to theen:xk @nd corresponding resonant<2 subspade) (d,p)
stationary points of th€ function in Table I. whereM, either has eigenvaluesi2mn/k (k>2), or can-

b. C, bifurcation, period doubling, or transitional not be diagonalizedk<2, n=1); (5 use a Floquet trans-
orbit. The “transitional” orbit ([16], Chap. VIl A 3) is so fo_rmaﬂon to obtain a time-independent linear part W_lt_h ma-
named because it changes stability while remaining on th#iX @ =InMg . (Secs. V B 3 and V I} (6) near each critical
scene. The surface of section looks like the plots of@ge V@lue, construct normal forms,.(q,p), which areCy sym-
function in Table I. The twin stationary points thatis)ap- metric functions on the plane containing omyk resonance

pear at the origin are equivalent under the symmetry op- t?rrtr)s(Secs. VI: an? t\r/1“b; (7) conslidfer bifurcation; o{hthe
eration; the corresponding two fixed points of the Poihcareﬁ? Iﬁg?)%o%?jmo? tr?e Or_ege_nor_rr:)aco?rrel Isﬁ gr(]gfr?) tlcr)] b'fer-
map are equivalent as well, because they lie on shme '9 g giq=p="u C ponding to bilu

! . . " cations of periodic orbits near and including the givean-
period-2 orbit, and the period-1 Poincarap(6) maps them tral) orbit (Secs. VII B and VIIl B
into each other. We may call such poimtsnnected : ; : L

In st to obtain th | f f th
c. Period-k or G, k>2, bifurcation. If there is a pair of n step (6), to obtain the normal form of the periodic

L : o > Hamilton function Jt .(q,p;#), we transform nonautono-
multipliers (9¢) the linear stability for thekth repetition of mous equations 0'?’ Er?o?ion) into autonomous but non-

the central orbit becomes undetermined, and it undergoes gamiltonian equations and then transform the latter using a
periodk bifurcation ([16], Chap. VIII A 4). In the “weak-  normal-form algorithm for ordinary differential equations
resonance” casélast row of Table ), the “island chain” (vector field$ [31]. The normal form ofJg , is obtained
pattern occurs: a stable-unstable pair of pekodrbits,  from the normal form of the differential equation€onnec-
which wind n times around the central orbit when passingtion to a more familiar theory for Hamilton functions is sum-
k times along it, branch from the central orbit. The latter ismarized in Appendix E 1.
stable on either side of the bifurcation. In the case of strong The general formulation of our approach is clearly ana-
resonance€; and upper line o2, in Table ) no new orbits  lytical but the realization is in most cases numerical. As the
are created at the center—the reason that it is called “touctheory is developed in the following sections, each theoreti-
and go” [6]. cal step is followed by numerical implementation for our
example, the perpendicular orbit of DKP.
In this paper we focus on the generic dynamical aspects of
C. Vocabulary the problem, such as the organization phenomenon, and on

Readers who are not familiar with the language of Hamil-the instrumental role of normal form theory. We note that

tonian bifurcation theory should note certain words that hav@Ur €xampléthe DKP has a number od priori symmetries
different meanings in other areas of physics. [32] besides those created by the normal form near the reso-

Given a collection of differential  equations NanCes. This gives us an opportunity to distinguish between
xi=fi(xq---x,), the set of functiond(x,- - -x,) is said to  JENeric and particular symmetry-related aspects of the

define avector field That vector field isHamiltonianif the ~ theory-

differential equations can be derived from a Hamilton func-

tion: n is even, the sex; is divided inton/2 pairs @;,pi), IV. EQUATIONS IN NORMAL VARIATIONS

and there exists a functionH(p,q) such that NEAR PERIODIC ORBIT

gi=0dH/dp;, pij=—0dH/dg;. A Hamiltonian matrix is a

matrix that represents linear Hamiltonian equations of mo- T0 study bifurcations of a periodic orbit we study the
tion. (A Hamiltonian matrix is not HermitiainFor more pre- change of nearby orbitéthe change of normal variations

cise definitions and more details, Jde,29. about the periodic orbitcaused by the change of param-
eteKs) €. These variations can be found for any phase curve
IIl. SKETCH OF THE METHOD of a system of Rl nonlinear differential equations. In the

vicinity of the phase curve, one of the coordinates, let us call

Arnol'd prepares us well by remarking that metamorpho-it 9, may be chosemlong the curve, so that otherN—1
ses of phase portraits @Hamiltoniarn vector fields near a coordinates span the space of normal variatiofis/], Secs.
singular point and those of a family of trajectories in the5.26 G and 6.34 A Furthermore,#(t) must be monotonic:
neighborhood of a periodic orbit constitute the twandst  dg(t)/dt>0 for all t, so thatt(6) is defined everywhere,
complex problems of bifurcation thedry([17], Sec. 6.3%  and we can rewrite our initial systefnear the phase curye
The plot of our method is as follows. For a given periodic as a system of 8— 1 equations with coefficients depending
trajectory of a system withl degrees of freedom, parameters on ¢, the new independent “time” coordinate. If the phase
&, and Hamilton functiorH,(p,q) we (1) use angle-action curve is aT,-periodic orbit(in general the period depends on

variables  ¢,J) and normal variations d;,p;), the parameter) the coefficients aréfor a properly chosen
i=1,... N—1, to describe the motion along and normal tot— ¢) 2#-periodic functions of.

the trajectory(Sec. IV A); (2) solve H.(6,J,9,p)=E and
construct a reduced Hamilton functigft .(q,p; 6), which
is 27r periodic in “time” @ and is parametrized by energy
E and paramet¢s) ¢ (Secs. IVB and IV C 2 (3) derive We first introduce new coordinates in configuration space
linearized equations forf , and obtain their fundamental (N\,o)=(\,0q, ...,0n-1) such thatdo’s are variations

A. Normal variations
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normal to the configuration-space image of the trajectorydependent Hamiltoniatl4b) describes the evolution on the

For N=2 this was explained in detail in Rdf7], Appendix

D1, and we give a shorter description in our Appendix B.

In the new canonical coordinatea ,p, ,o,p,), restric-

single energy shellenergy level sgtin the neighborhood of
this central orbit.
The concept of isoenergetic normal variations is in a

tion of our equations of motion to the central trajectory issense a generalization of the Poincaw@face of section
obviously given byoc=p,=0, resulting in a one-degree-of- method. In effect we are working with a continuous set of
freedom problem with Hamiltoniaki .(\,p,). Therebydo  surfaces of sectioB(6) taken at different “times”6, along
and 8p,, define 2N—2 variations normal to the central tra- the central orbit. Eacl$(6) is a phase portraita constant
jectory in the phase space of our dynamical system. On thevel se}, a slice of the extended phase space of Hamilton
other hand, neitheb\ nor &p, are normal variations, nor functionJ, g and that Hamilton function describes the con-
can they in general be used as a new independent “time'tinuous ¢ evolution of these sections. The “conventional”
variable. It is the action-angle variables Poincaresurface of sectior is defined as a hypersurface
1 1t (usually a plangin the (initial) phase spaceg(p) transverse
J=— jg p}\d)\:_J Ep}\j\dt’ to the central trajectory. The latter cross8sat some
2 2m Jo (60,90,Po) and there are diffeomorphic open neighborhoods
of (gg,po) On S and onS(6y).
27 d&,
_T_Et_<ﬁ)t, Hs(p)\i)\)_gs(‘-])a (13b)

(139

C. Perpendicular orbit in the diamagnetic Kepler problem

) . To illustrate this method we consider a single electron
that suit the purposé33], Chap. 7, Sec. 4.1, Proposition 1 (such as in the hydrogen atorthat moves in Coulomb and
Indeed,8J, variation of the action of the central trajectory, is magnetic fields with orbital angular momentum=0. As
clearly the last needed normal variation, afds the new  ghown in Appendix C the Hamilton function for this prob-
“time” variable. This important dynamical concept com- oy
pletes our construction of the space of normal variations for

a periodic trajectory of a Hamiltonian system. p§,+ pf,
H,=2=——"

(u/2_v/2)2
€ 2 ~— &

> ,
(15

+4(u'2+v’2)[
B. Isoenergetic reduction

For time-independent dynamical systems we account for ) ) ] ) )
energy conservation is nonsingular in the S(_)-called s_en"|_|para_bollc coor(_jlnafces
(C2). We study one particular periodic trajectory, which is
normal to the field, the so-called perpendicular orbit. On ev-
ery major step our general outline will be followed by the
i.e., we consider normal variations of the orbit restricted toconcrete application to this orbit.
the set of constant enerdy. Any variation §J and hence
68, (1)=2m8JIT,, the energy variation of the periodic or-
bit, should be “compensated” by variation of the energy of
the motion in the normal spacef,o). In other words, of
the 2N -1 normal variations §J, p,., 60) of a conservative
dynamical system onlyI2—2 are independent. These latter
are calledisoenergeticnormal variations. It follows that at

any givend Eq. (143 defines a (&—2)-dimensional space g transformation of configuration coordinates is required

H.(J,p,,0;0)=E=const, (149

1. Perpendicular trajectory

Equations of motion for this particular solution follow
from Hamilton function(15) restricted tov'=0:

Ho(py N)=32p2—4sN?+2)\6=2, \=u'. (16

of isoenergetic normal variations, embeddeddm(, ,o). In

that (2N —2)-dimensional space the flow is Hamiltonian and () o) s

the reduced Hamilton functiof, g(p,,o,6) is obtained by
solving Eq.(149 for J as a function of p,,o,0) at fixed
¢ andE:

Joe(py,0,0)=—1. (14b)
This reduced Hamilton function is 72 periodic in 6 (in
“time” ) and it contains energy as well as= asparameters

The solution of(14g to obtain(14b) is possible locally by
the implicit function theorem becau$g4|

dH.(J,p,,0;0 €, 2w
MH.0Po,036) 9. 2m

33 a3 T,

(149

Following Arnol’'d we call this procedurisoenergetic re-
duction ([29], Sec. 6.45B and Appendix FCThis time-

since in(16) the role of translational and normal coordinates
played by (',v'). The solution
r'.(0)=[p)(0,e),\(0,e)] for Hamilton equations defined
by (16) with initial conditiont=X\=0 is shown in Fig. 3; it
can be represented ag\aector valued Fourier series

. Q.(0)| Q¥sin(k0) -
(0= P,(0)| k=155 ...|Pkcogke)]’ (173
_ 2mt k_271'k K 5
0=5— P=75-Q:. (17b)

€ &

Due to the simple kinetic term ifil6) Q.= P., and hence
(17b. The dependence of the Fourier amplitu@g in Eq.
(17), periodT,, and action], in Eq. (133 on the parameter
¢ is illustrated in Fig. 4. Notably, the “harmonic” terr@*
accounts for up to 90% af(6), and its contribution natu-
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angle 6=2nt/T(c)

rally decreases with growing. In general we can qualita-
tively approximateQ‘; andJ, by linear, andT, by quadratic
functions ofe.

2. Equations in normal variations

For the (regularized diamagnetic Kepler problent in
Eqg. (149 has a fixed value, equal to 2, whie or “scaled
energy,” is the only parameter. Nevertheless, the method of
normal variations begins by introducing an additional param-
eter, thevirtual energy&, and solving the Hamiltonian prob-
lem (16) at different values of this virtual energy:

Ho(py N)=2p2—4er?+2\0=£=2+6E (19

(o€ is the virtual energy going into transverse oscillations
when the trajectory deviates from=p,=0.) With the in-
troduction of this virtual energy, the transformation to
action-angle representation proceeds as a textbook one-
dimensional problem. For each scaled enetgythe trajec-

tory is computed at several values of virtual ene&ythe
actionJ=J,(&) is evaluated as a function of virtual energy

FIG. 3. Perpendicular periodic orbit in the diamagnetic Kepleré, and finally the canonical transformation,6,) < (6,J) is
problem: solution\ (6), p,(#) at different values of scaled energy €xpressed as Taylor-Fourier series,
e=-05,...,0,...0.5.

1.1 F — Amaxl®)
° Q'(e)
power (3,4)

09 r

0.8

10

o action 2rJ°(g)
power 3

by
2.40 + & o period T(e) e
/4’ — —- power (3,4) SN
V. - - -- power (4,5) N
—— power (5,6) ™

- V7,

2.35 4
Vs
v
-0.5 -0.2 0.0 0.2 0.5

scaled enerav £

FIG. 4. Amplitude\ . first Fourier series coefficiei®! (top
plot), actionJ® (middle ploy, and periodr of perpendicular orbit as
functions of scaled energy. JO(S)EJS in Eq.(21) is approximated
by a power 3 polynomialQ*(e) is Q= in Eq. (17) or Q¥=%(J°)

in Eq. (19b. This Q*(¢) is obtained from an approximating poly-
nomial of power(3,4) in (¢,J). T, is obtained from different ap-
proximating polynomials for virtual energy(e,J) as (&/9J) ! at

QK(J)sin(ke)

=> | 2wk . (199

[QS(J,H)}
k
oddk T Q:(J)cogka)

P.(J,0)

ok

k _ 1] i

QD=2 2 e (190
Gi iy (199

G+jres

Ho(D)=2 >,
=0 j=1

3.0 | S o e e 0 0 0 o o o o

o2

£=0.5

virtual energy £ and period T
[N
o

-
0
T

o E(g,J)

10 WSS & & & & & o 4

:I3 “1 é é % é S; 1IO 1I1 12
action 2rJ
FIG. 5. Variational study of perpendicular trajectory. Circles
show exact values of virtual energyand periodT. £ is approxi-
mated by a power 6 polynomial in scaled energy and actiqd)(
with no J-independent termg;(e,J) is obtained from the approxi-
mation for& and Eq.(19d).
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TABLE Il. Leading terms in the power series approximation for virtual enefgit9c), and Fourier
amplitudesQ¥ (19b) in the range— 0.5<¢=<0 (11 data pointsand —1<5£<1 (11 points.
i & 10Q}; 10°Q7; 10°Q7; 10°Q/; 10°Q7;
01 0.3520 4.656 —0.1936 —0.0015 0.0071 —0.0022
02 4.427 —28.16 0.2880 0.3206 —0.1319 0.0347
11 —9.724 5.131 —2.452 0.1129 0.0451 —0.0180
03 —11.38 159.6 2.729 —3.289 1.158 —0.2925
12 60.06 —59.87 16.80 2.822 —1.620 0.4397
21 —20.26 —2.081 —13.70 1.681 —0.0979 —0.0256
04 36.92 —757.9 —31.25 21.54 —7.113 1.761
13 —351.5 383.8 —31.89 —48.84 18.73 —4.538
22 283.0 —48.84 155.0 —2.923 —4.884 1.758
31 —9.369 —43.64 —28.65 7.635 —1.689 0.2953
05 —99.89 2858.0 179.5 —100.3 31.93 —7.807
14 1530 —1247.0 —380.9 397.7 —128.7 28.91
23 —2069 805.0 —745.5 —115.6 69.80 —19.11
32 301.7 386.4 366.6 —50.96 2.625 1.381
41 60.21 —46.43 8.229 11.29 —5.025 1.423
15 —4419 —1233.0 3965 —2018. 575.6 —120.2
24 7655 —3586.0 464.8 828.9 —306.7 70.13
33 —2235 —-416.4 —1441 —100.9 103.8 —33.33
42 —469.9 281.4 —-129.1 —69.13 30.68 —7.622
51 —14.63 37.80 14.62 —4.680 0.3694 0.3100
TH(I)] L =H_.(p,,\,p,,0) in Eq. (15 by substituting
Te(J)=2m —3 } : (199 [x,p,]—[Q.(J,6),P.(J,6)] and obtain
2
The virtual energy and Fourier amplitudeQ* vanish when H,(J,p,,0;0)=H,(J)+ Po _ de g+ 245
J—0 and hence have ndindependent terms. The depen- 2
dence (_)f V|_rtual.ene_rg§119c) and p_erlod(19d) onJ ande is _ —202Q,(3,0[Q,(3,6)%+ 2]
shown in Fig. 5; typically, to obtain a 4-5 digit accuracy in
T, a power(5,6) approximation polynomial ing,J) is re- (209
quired for &(e,J). Table Il gives the numerical values of
coefficients in Eqs(19b) and (190). =2. (20b)

To arrive at the time-dependent probldi®a we trans-
total

form the Hamiltonian

Hs(pu’lu/1pv’lv,)

21Je(pe,0; 0) for pe=0=0.5

| 172
2n

0.75n n 1.25n  1.5n

angle 6=2nt/T

o 0.5m 1.75n

FIG. 6. Reduced Hamiltonian in normal variations near perpen-

dicular trajectory (21) as a function of angle variabl®, for
o=p,=0.5 at different values of parameter

For the transverse motion ip{ , o), the first term_(J) is
an additive “constant” that can be ignored. The next square
bracket arises from those terms in Efj5) that contain only
p,» andv’, and the last term describes periodic coupling of
the motions along and normal to the trajectory.

Now the isoenergetic reduction (d4b): Eq. (20b) defines
J as an implicit function of p,,,o; 6), and we need to con-
struct(minus this function explicitly for @ ,o) sufficiently
small[see discussion of E4B2) in Appendix B]. This con-
struction can be done analytically, but a numerical solution
would do just as well: we solve ER0a at different values
of (¢,0,p,) and 6, tabulate the resulting data, and approxi-
mate them by a Taylor-Fourier series

1
Ten=2(Pg,0:0) :JS+61§=:1 (32 Oap§a+~]gaoo'za)§

2a

2b
Po Z
é (a+b)&E

+ 2

a=
b=

J¥.,cog2k6),

(219

with coefficients expanded in a power seriesin
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FIG. 7. Mathieu-Hill's equation for perpendicular trajectory: co- momentum py,
efficientsJ¥,, with a+b=1 (denotedka:b) in Eq. (21). ) )

FIG. 8. Phase plot of perpendicular trajectory for
e=—0.5--0.5. See Eqs(24), (25), and(26).
JK —E i gk ﬂ 21b
eab™ & & iab (g i)l (21D of & is weaker than what would be obtained for a harmonic

oscillator. The first three terms enter the linearized equations

L I analyzed in Sec. V D below.
An example of such a solution is shown in Fig. 6. There are Y

no terms linear in g,,0) since the force vanishes for
(ps»0)=0 (on the central trajectojy more precisely, as ) ) .
seen from Eq(20a, the potential energy is alwayso2. The Symmetrlgs of the reduced Hamilton . function
first few coefficients in(21) are shown in Fig. 7. As ex- J=(Ps,0;6) In Egs.(21) and(22) affect the analytic struc-
pected, at>0 high frequencies become increasingly impor-turé of the normal form as well as the geometry of bifurcat-
tant, but nevertheless it is possible to obtain a good Fouriefd Orbits.7:(p, .o 6) is periodic ing with periodr, sym-
Taylor series approximation in a sufficiently wide range of Metric about¢=0, and it contains only even powers of

3. Symmetry properties

(p, o). Principal terms in21) arep?, \?, A?cos(2), and
A% with coefficients given below:

For a physical interpretation, let us writ@1) in simpler

notation:

andp,; .

Let us see how symmetries of the original Hamiltonian
(15) and(16) and of the periodic orbif17) produce the sym-
metries of 7. Hamiltonian(15) is invariant under a number

k ab It ab N I b I ab i i i
a a a a of linear canonical transformations of the phase space, but
0 01 0.1932 0.0004 -0.1613 0.3636 Only two operations
0 10 -0.2379 -—3.608 —0.0171 6.267 .
Ry :(N,Pr»T,Ps)—>(— N, — Py, 0. P,), (239
1 10 00352  0.0844  0.0249 —0.2255 AP ProP
0 20 -0.8223 -2172 19.78 17.87 R, (\,Py,0:Ps)—(N,Pr,— T, — Py) (23b)

that leave the perpendicular orbit invariant are relevant. Thus
the invariance group of the perpendicular PO is

g:{I1R)\1R(r!C2}ND2! CZZR)\OR(J'! (230)

Jen=2=3%e)+3p2/ () + 3[v(e) + A(e)cosW+ - - -]o?
22 a group of order four.
Due to our choice of initial conditions the origins of space
inversionR, and time reversaC, :(p,0)—(—p,— 6) coin-
cide, andQ, andP, in (17) are, respectively, odd and even
functions off. We also notdcf. Fig. 3 that sincex=0 for
#=0modr (at the origin and p,=0 for = w/2modr (at
the turning points the Fourier series contain no constant
terms: Q°(J)=P%(J)=0 in Eq. (19). Moreover, since the
perpendicular trajectory is degenerf®8] it is time-reversal
invariant: for everyé there exists’ such that
c (Qg(é’)) ( Q.(—0) ) (Qs(é”)
I Po)) \=P.(=0)] P06

+B(s)ot+---.

For the transverse motiod?(¢) is an additive constant and
can be ignored. The effective ma$e(s)=[2J2 ol tis
close to 2.5 and nearly independentsofThe effective force
constanty(g) = ZJS 10 vVaries approximately linearly witl,
being positive(restoring whene < —0.12 and negativéun-
stablg otherwise[cf. quadratic terms of the initial Hamilton
function (15)]. The quantity A(e)=2J2,, represents the
force constant for parametrically driven oscillations. Finally
B(s)=J2,, is the force constant for the nonlineéubic)
restoring force. It is negative, indicating that the confinement

) . (24
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(0'# 0 sinceQ, is odd) This and the idempotency &, o=—o(uv+Acodh+---). (270
mean that if applied t§Q.(6),P.(6)] the time-reversal op- ] ) .
eration reduces t¢see Fig. 8 Without high-frequency terms denoted by ellipses these are
Mathieu equation$36]; Hill's equations[37] can have any
C,:0—0'=0+m, py——p,. (25) periodic force. The following discussion applies to a gener-

alization of (27): any quadratic Hamilton function having
Equationg24) and(25) can be satisfied if only odd-Fourier N’ degrees of freedom.

harmonics(starting withk=1) are present irf17). Consid-
ering action(25) on the perpendicular orb{i7) we conclude 2. Fundamental matrix solution and monodromy matrix

that in fact Equations(27) describe(smal) oscillations near the cen-

Q.(0) Q,(6) —Q,(6) tral orbit driven by a Zr-periodic force that is proportional to
*( ¢ ): 2( € :( ¢ ) (26)  the displacement. The fundamental matrix soluti(®) of
P.(0) P.(0) —P.(0) system(27b) (of a linear nonautonomous Hamiltonian sys-

i.e., the action of the time-reversal operation on the perpen—tem withN' =N—1 degrees of freedoms a real symplectic

dicular orbit (17) is identical to that of spatial inversion matrix of dimension " such that
C.. X(0)=1, deX(6)=1, X(0)eSp2N’,r). (28a

V. FLOQUET-LYAPUNOV THEORY Then any other matrix solutio¥i( §) of (27b) is ([16], Theo-

. rem 3, Chap. Il A
We return now to general theory, and consider a general

2-periodic-in¥# Hamilton function as in Eq(14b). Such a Y(0)=X(0)Y(0). (28b
Hamilton function is the starting point of the local qualitative ) _ o

study of the motion near the central PO. Referring to thdn particular, since Eqgs.(27) are 2m periodic Y(6)
sketch of the method in Sec. IIl we now carry out steps 3, 4=X(6+2m) must be a solution and

and 5: derive linear equations for the transverse motion, -~

study the monodromy matrix of these equations, and use a X(6+2m) =X(0)X(2). (289
Floguet transformation to make the linear part time indepenTpis shows that in essence, even though solutions of Egs.

dent. (27b) are not periodic, the group of diffeomorphisms defined

The first important result of the linear theory is the stabil-by these equations needs to be studied only farggs 27,
ity analysis of the central periodic trajectory. Furthermore, asfj,o monodromy matrix

described in Sec. IV B phase portraits of Hamilton{aab)

lead to a continuous periodic family of Poincasarfaces M=X(2m)eSp2N’,r),deM=1 (280

S(o,p,;0). The linear theory compensates for changes oc-

curring in  S(o,p,;0) by a linear symplectic defines the transformation over the periog.2

2m-periodic-in# transformation of the transverse space

(o,ps)- In other words we adjust our reference frame by B. Floguet-Lyapunov theorem

making a linear Zr-periodic canonical stretch and rotation of

coordinates §,p,) while traveling along the orbit. By the

Floguet-Lyapunov theorem the linear part can be mexe Like any symplectic matrix, the monodromy mat(@8d

actly time independent using this change of variables. Thidas a logarithm[16], Chap. Il, Theorem 2, and Appendix

transformation will subsequently be applied to the nonlineaHowever, matrix I can be real only if multipliers. (ei-

part of (14b). genvalues oM) are such that Re>— 1. Appendix D gives
the solution for cas€7a). If all multipliers are of type(7a)

A. Mathieu-Hill equations [24] the logarithm is a blockdiagonal matrix with X2

blocks as in Eq(D4) [38].

1. Logarithm of a symplectic matrix

1. Linearization of reduced Hamiltonian

For any giverd the pointp,=o=0 is an equilibrium: the 2. Theorem

periodic force vanishes at the central trajectory, The fundamental matrix solutiof28a is not periodic,
P.lo=|o="0. (The central trajectory corresponds to the cen-nowever, by the Floquet-Lyapunov theorésee[16], Chap.

tral stationary point of a function of two variables, such asj| g, [17], Sec. 5.26 A, ani37], Chap. 1.2it can be repre-
f, in Sec. I A2) Hence, linearization of the equations of gented as

motion defined by7, g in Eq. (14b) gives a quadratic Hamil-
ton function such as, for example, X(0)=B(O)M(0)=B(0)expQ20), M2m)=M,
(293

Te=3%¢e,E)+3p2u(e,E) _ o , _
- with B(6) a 27 periodic symplectic matrix, and(Q) a
+307v(e,E)+A(e,E)cosf+---], (278  g-independent Hamiltonian matrixf. Eq. (A1)]. The peri-
) odicity of B(8) simply follows from (28c):
o=p,/u,
B(6+2m)=X(0+2m)M(6+2m) 1=X(6)M(6) 1.
p,=—o(v+Acoh+ - --), (270 (29b)
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Now we define a new reference frange which moves can do the same using the quadratic part of the reduced
according toB(#6): Floquet-transformed Hamilton functiaf, i.e., the eigenval-
ues of =0, in (319. The two approaches apply near the
origin (the central orbjt and are, of course, equivalent since
eigenvalues of), are characteristic exponents bf, [,
esp(2N’,r) is the infinitesimal generator ofM,_

e Sp(2N’,r)].

y=Qy. (29d) Once the Hamilton functiory/, g is put into form(31¢

and its quadratic terms are made time independent, we ana-

The proof is short and instructive to follow. We slightly ex- lyze the stability of its central equilibriurtstationary point
tend this proof by applying transformati¢29¢) to the full  precisely as discussed in Sec. Il Al®)] in Eq. (310 is the
nonlinear system: analog of the Hessian matrix in Eqg3b) and (Al). If
N’=1, a max or min of7(y) is a stable PO while a saddle is
an unstable PQ.

For anyN’, elementary orbits correspond to isolated, i.e.,

nondegenerate stationary points of Hamilton{amc) (Secs.
y=B A(6)By+B lu(By,f)—B 1By, (30p IIB1). Thus if the central orbit, which corresponds to the
equilibrium at the originy=0, is elementary, the matrix
where the second term is the transformed nonlinear part a2, is nondegeneratgef. Egs.(3)]: none of its eigenvalues
the vector field, and the last term is the residual of the timeiw;(¢) vanishes,
dependent transformation. Using the definition Bfand ]
dX/d6=A(6)X we express this last term as def), #0=w;#0, j=1,...N’; (32)

x=B(0)y, (299

and our equations of motiof27) reduce to a lineatime-
independensystem

x=A(0)X+u(x,8)=By~+BY. (303

In the new coordinates the equations of motion become

B—lg:(eﬂﬁx—l)()'(e—ﬂﬂ_)(e—ﬂﬂg):B—l/_\( 6)B—Q in other words, all harmonic frequencieg of Hamiltonian
(300 (319 are nonzero.
These harmonic frequencies;(e) in (32) are indepen-
(note that() and exj§2¢ commute, so that(30b) becomes  dent functions ok, and therefore typically only one of them
indeed will pass through zero at some Lgsolated valug, [Q has
- 1 a single nilpotent X2 block (5 o). The set of degenerate
y=Qy+B "u(By,0). (300 members of the generic family, is of measure zerpThese
eqit are the bifurcation pointg24,26.
There are three principal types of resonances in the re-
In the Hamiltonian caséHamiltonian matrixA and sym-  duced Hamiltonian probler810: (i) singularities in the lin-
plectic matrixB) the residual matriX8 ~'B is Hamiltonian ~ ear problem and correspondiit; andC, (period 1 and 2
([16], Chap. Il A, Theorem B In other words, ifF is the bifurcations;(ii) resonances that involve one single mode of
generating function of(linean canonical transformation (310 and “time,” i.e., the motion along the orbit, and that
(290, and 7 is the old Hamilton function with nonlinear part result in periodk (Cy), k>2, bifurcations;(iii) if N'>1,
U=0(x?), then resonances between different transverse mode$3bf).
Types(i) and(ii) are directly related to bifurcations of PO'’s,
ac 0 d and will be studied here. These cases are two-dimensional
B "Bx= -1 0 Vx%}", (31a phenomena and we can usde=1 (Secs. VIBand VIIA S
[24].
There remains one problem that is worth mentioning—the
)Vyj(By), (31  absence of a real M, in the C, case. Consider the>22
matrices in Appendix D. Domains of real and complex loga-
rithms overlap forr=3|TrM|<1. TheC, bifurcation occurs
at 7=1, at the edge of the complex domain, and therefore
can only be analyzed in terms of the real logarithnvofEqg.
y+UB(0)Y,0). (319 (D4o]. All k>2 phenomena happen in the elliptic domain
|7|<1 and again we may use this real logarithm\ef[Eq.
(D4c¢)]. On the other hand, th€, bifurcation happens for
7=—1, at the edge of the real domain, so that the complex

3. Floquet transformation of a Hamilton function

B !ABy+-.-= 0
-1 0

and the new Hamilton function is

~ 0
J(y,0)=yTQT(

-1 0

Therefore, to make transformatid29¢) of Hamiltonian

T in (14b), with x=(p,,0), we (1) separate7, g into .

linear (quadratic inx), and nonlineaf O(x?)] parts;(2) re- logarithm must be used.

place the linear part by the time-independent quadratic form To understand this situation better it is useful to imagine
with matrix Q; and (3) substitutex— B(8)x. the topology of the extended phase spag@), or, in other
' words, the local topology of the constant energy level set of

the initial problem near the periodic orbit. For the real case
(the central orbit is stableour space is foliated as a set of
As outlined in Sec. Il B, the stability of periodic orbits is tori. In the complex case the points at the beginning and the
traditionally analyzed in terms of the multipliers of the end of the period are connected Mos-wise and the topol-
monodromy matrix(28d), the linearized Poincarmap. We  ogy is different[39]. To avoid the problem and to have real

C. Linear stability in the generic case
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FIG. 9. Critical values of scaled energy for peribdbifurcations FIG. 10. Matrix of the Floquet transformatids( 6) in Eqgs.(29)

of perpendicular orbifEq. (33), n=1] and the trace of the mono- at different scaled energies0.5<¢=<0.5 for perpendicular trajec-
dromy matrix calculated from Mathieu-Hill's equatidaircles and  tory [AB(8)=B(6)—1].
compared to direct numerical calculati¢solid lines.

¢ increases TV passes critical values witk=3,4,5,. ..,

periodic-in¥ equations we may double the period tar 4 and then 1 k=2 “occurs” for s— —).

[two sheet coveraggl7], Sec. 5.26 (¢ so that IM? is real.
The double-period system h&@s symmetry and the bifurca-

tion is of typeC, with two C,-equivalent stationary points ) _ ]
connected byM. Since in our case>—1 (Fig. 9) we can always use a real

logarithm (Appendix D and this simplifies the analysis. Ob-
viously, B, the matrix of the Floquet transformati¢29), has
_ . _ the same period as Hamiltonig8l), i.e., because of sym-

Let us now carry qut this analysis for the perpendlcullarmetry R, the the matrixB,(#) has periodw. We define
PO of the diamagnetic Kepler problem. We obtain the I|n—"0'=29, so thatB (’5) is 27 periodic ind and is represented
earization of the equations in normal variations defined by . ° . ~

L 0 as a Fourier series on the intervak@<2w. Due to the

(21) by retalmng (_)nly terms of typéllsm (therg are n.o-other initial condition X(0)=1 matrix elements oB—1 can be
purely quadratic inp,, terms andJ, 1. Their coefficients .t in terms of pure sine or cosinsithout constant terin
are shown in Fig. 7. To compute a fundamental matrix soluggries as follows:
tion X,(#) we use numerical integration of the linearized
equations for two initial conditionsx;(0)=(1,0) and

2. Floquet transformation

D. Floguet analysis for perpendicular trajectory

, : 10 ~ i
Xo=(0,1) with x=(o,p,). The resulting column vectors Bg(@):( ) B.(6 :([C(_)S] [sm])’ (343
x1(6) andx,(6) form the matrixX,(6). 01 [sin] [cos]

1. The half-period monodromy matrix where[sin] and[ cos| mean Fourier sine and Fourier cosine

As explained in Sec. IV C 3 the reduced Hamiltonian for S€"€S:
the perpendicular orbit21) is 7 periodic in § due to the
R,~C,) invariance of the orbit. As a consequence, the _ [ o
Eno}\nodr*o)my matrixas well as the Poincammap i'?selj can [f](g)_|20 F'(19), f=sinorcos, (34D
be defined atr, thefirst return time M{™=X_(#), instead
of at 2, the actual period of the orbit. This circumstance F(9)=q (j.e., I=1) in the sine series anB®=1 in the
has been exploited by Mao and Del& who computed the  cosine series. These matrix elements are shown in Fig. 10.
“half map” by registering all crossings of the surface of  As outlined in Sec. V B 3 we transform Hamiltoni&21)
section(regardless of direction Using the half period we py substitutingc= (o, p,) for By in all nonlinear terms. Two
should, however, remember how the halves are connecteghordinate representations of the result of this substitution
into complete trajectoriegsee Appendix F are required for the subsequent normal form reduction. Be-
The trace ofM{™ is used to determine critical values low we present the essentials of these results in the simpli-

el at which an ,k) bifurcation of the half map occurs:  fied Fourier series notatiof84b) with amplitudesF") as
well as orderd specified separately. To follow note that in
m(eli)=3TrM (™ (&K = cog 2an/k). (33)  the spirit of this notation
This trace, and the associated solutions to EBp), are [sin][sin]=[cog|[cos|=[cos], [sin][cos|=[sin].

shown in Fig. 9. The trace is a monotonic functionsofas (340
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a. Polar coordinates. If the matrix Q) of the linear equa- TABLE IIl. Leading terms 8™ in the nonlinear part of the
tions (29d) is nonsingulafi.e., for case«>2 in Table ) we Floquet-transformed Hamilton functiof85) for e=—0.31628(at
use action-angle coordinates such that the period-4 bifurcation Notation as in Eg. (36b with

«=1.0865 andw= 3.

o - sing ~
x=| =B,(0)2I coss =B,(A)y. (353 kn f 1058 10%° 103* 10%? 10 2°

) ) . 0,0 cos 33.245 20.209 29.049 10.057-2.7210
In these coordinates our reduced Hamiltonian becomes fg cos —24.049 —21.335 —44.672 —14.713 6.0584

combination of Fourier series: 20 cos —32.437 —8.1164 19.946 55598 —1.9909
~ o~ 30 cos 28533 14.670 —4.8630 —0.9033
J.=wl+[cog(2¢)[cog|(0) +[sin](2¢)[sin](6).
(35h

40 cos —1.3781 —6.3843 0.5400
50 cos —5.4510 0.9567
Both ¢ and 6 series start withi=1 for sines, and with 60 cos 1.5367
| =0 for cosines; they series has the form 0,1 cos —16.209 —4.1809 7.9024  4.9031  4.7888
1,1 cos 11.658 4.4147 —-12.978 —7.6133 —7.3363
2 (2|)|2 F(l)(ZI)SCOS(ZHp) (350 2,1 cos 15.937 1.4335 6.7353 3.2879 2.2397
“= &) s ' 3,1 cos —13.937 —2.4857 —1.8001 —0.5779
4,1 cos 0.5937 0.9152 0.1402
To understand the origin of Eq$35b) and (35¢) consider 5,1 «cos 2.7229 —0.0968

nonlinear terms in Eq21), such as 6,1 cos —0.7650
. _ o~ . 1,1 sin —58.825 —24.312 —-5.0572 —1.1582 —0.6157
o ={by cos(#)coq ¢)+ by sin](H)sin(¢)}", 2,1 sin  42.835 24546 4.4981  0.8201—0.0393

31 sin 22239 -10.913 —-1.5728 -0.1711

use Eq.(340), and verify that these terms indeed areperi- 41 sin —15347 21211  0.1947

odic in ¢ and 2 periodic in¢. In fact, thew periodicity in - £ &, 66388 —0.1050

¢ is due to theR, symmetry:(21) is an even function of sin —0.8866

both o andp,,. On the other hand, since we use a half mapo'2 cos —6.8055 —3.3590 —3.8895 —0.8140 —0 1055

M (™ with time =28, our problem no longer possesses any1:2 cos 83255 53001 62688 12820  0.3812

special property with regard &, . (In other words, we re- 55 .o 12230 —223281 —-3.1390 —05677 —0.2516

duced our problem with regard ®, .) 2 cos —5.6703 01938 08366  0.0993
In the actual numerical procedure that we have developeci, cos 42177  0.2845 —0.0769

this Floquet transformation is done at a series of fixed valueg’2 cos —15258 —0.0913
of parametere near the critical value; obtained in the ' '

linear study(Fig. 9). (¢ dependence is reintroduced only 62 cos 02354
after a collection of normal forms at various fixedis ob- -2 sin 21160 51828  0.2569 ~0.0105 0.1254
tained) The old coordinatesx=(,p,) in the Hamiton 22 S —15.665 -52228 ~0.0709 ~0.0525  0.0273

function (21) are replaced by the new coordinatesuch that 32 sin ~05131  2.3199 ~0.0809 —0.0279
4,2 sin  5.4834 -0.4549 0.0320

pSin) 52 sin —2.4568 0.2462

X=B(0)Say=B(¢9)Sa( (363 6,2 sin 0.3434

pCosp

with S,=diag(a*,«) a scaling matrix to have the quadratic
part in (310 in a standard formfwy'y. To actually express
(21) in terms ofy the values of7.(p,(y,6),a(y,6);0) are
sampled over a grid in polar coordinates ¢, and “time”

with an imaginary Hamiltonian. This requires a symplectic
transformation with multipliei, such that

9. The coefficients7{4" in the Fourier representatid85b) o q
of 7, x=| ) |=BuU0S,| | =B.(0)Sy. (373
Jy;0)=30p*+p* knzsf TV p?t(2ke) F(n0), This timea is chosen to put thp2 term in the standard form
T p/2.
s=k—2, f=sinorcos, (36b)
. . . VI. IDEA OF LIE TRANSFORMATION
with (k,n) integers Q(if f=cos), 1,2,. .., aresubsequently S S
obtained from a Fourier transform thand ¢ and a polyno- We return again to general theory. In the previous section
mial fit in p2. Table Il gives an example of these coeffi- we have used an exact change of variables to make the linear
cients. part of our problem time independent; i.e., we converted Eq.

b. Rectangular coordinateslf the linear part is singular (308 containingA(#) to (300 containing(} independent of
the problem is essentially one dimensional and we keep rec#. For the purposes of this section, let us temporarily sup-
angular coordinatey. It is, however, convenient to work press thed dependence that remains in the nonlinear terms,
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and consider a general autonomous set of equations having A. Algorithm of Lie transformation

the form 1. Lie equation

X=AxX+U(X). (38) Let us first focus on the principal aspect of the required
transformation and consider an infinitesimal€0) formal
near identity change of variables. Substitutitgpb) into

The matrixA can now be used to construct a formal near- .
(409 gives

identity change of variables
. dw .

x=y+t(y)=y+0(ly|?, (39 Yy=Ay+eAWY) — o ey +euly+ew(y)]

which preserves the linear part @8), but which reduces the

nonlinear part to a “minimal” or “normal” form. =Ay+e
Let us introduce a formal small parametersuch that

dw
Aw(y)— d_yAy +eu(y)+---, (439

where the derivative ofv is a matrix

x=Ax+eu(x)+- - -, (408
W, IW,
and consider a change of variables q Wy Vyw,y dy, 9Y»
— | wy | =| Vyw, [ = dw, aw,
x=y+ew(y), w(y)~O(yl?. (40b) dy ’ -

B
Ideally, Eqg.(40a might be reduced to a purely linefrp to : :

an arbitrary high orde©(|y|%)] equation. This, however, is (43b

often impossible; instead the normal form of &40a, Ideally we would like to put Eq(40a in a purely lineafup

: to O(€?)] form y=Ay+-- -, i.e., to eliminate all nonlinear
y=Aytev(y)+---, (41)  terms of ordek. As seen fron(43a this requires solving the

homological or Lie equatiof17], Chap. 5, Sec. 22C
retains nonlinear terms(y) that no transformation of type

(39 can eliminate. Such terms are the resonance técms dw

Sec. 11 B 5, and they always exist in Hamiltonian systems Law(y) = d—yAy— Aw(y) =u(y). (439

(see Sec. VIl A4 To find the resonance terms and the i

correspondingenerator w in other words to shape the strat- However, as was already known to Poingaitee solution

egy of the transformation, we study in the following sectionw(y), the generator of the desired transformation, does not

the infinitesimal case— 0 with all higher orders neglected. always exist, so that in general the normal fd#) contains
The finite transformation(operation of a continuous some residual nonlinearity(y).

group for €# 0, now written asy+w(y,€) in Eq. (39), is a

solution of the equation 2. Finite transformation
The Lie transformation technique provides an efficient al-
(Y, €) gorithm to accumulatgiintegrate transformations. If the

s Wltw(y,e)e), w(y,0=0 (423  generatorw(y,e), [41] the initial nonlinearityu, and the
final nonlinearityv are expressed as formal Taylor series in

defined by the generat¢operator of the corresponding alge- €

bra) w(y,€). In other words, i
W(X, €)= X Wi 1(X), (443
ao(y,e€) ,0°w(y,€) k=0
r(y,e)=¢ =0t € ———5—
Jde Jde o e
- u(x, €)= > —ud(x) (44D
=ew(y,0)+---. (42b i=or! "
;
Clearly, to study the transformation of coordinates we need _ f_ur 440
to constructu(y,e) ([40], Chap. 12.2, Theorem 2.2How- v(X.€) 20 r! o(X). (449
ever, it turns out that to obtain the new equations of motion
(41) we only need the generatar(y, €). we find the terms i (y,€) by an iterative procedure:
We will see that reduction to a normal form is a stepwise P
perturbation technique whose zero order, the linear part it J i1
Ax, remains unchanged, while higher orders are sequentially U= ui*1+|<§=:o k LUj - Wicr1)- (449

reduced. The transformation accumulates: reduction of order

r contributes to orders>r. The main advantage of the Lie (Proof is in Ref.[16], Chap. VIl A2 or Ref.[40], Chap.
transformation theory is that it gives a very efficient way t012.2) The operatiornt is often called the Lie product or Lie
keep track of this accumulating transformation. bracket. For vector fields it is a commutator



FIG. 11. Lie triangle.

du dw
—W——u,

£(uw)= dx dx

(453

with derivatives as in Eq43b). Thus operatiort, is noth-
ing else but
LaW(x) = — £(Ax,W)=—£(ud,w). (45b)

The implementation of Eq44d) is best illustrated by the
so-called Lie triangle in Fig. 11. Rows=0 (the top, 1, 2,
etc., of this triangle correspond to the ordesteps of the
algorithm. Each row has+1 terms(columnsi=0, ... r);
the leftmost {=0) and rightmosti(=r) terms are the initial
u? and the transformed,=uj. The calculation proceeds
with increasingr (down from the top andi (from left to
right on each rowu?—>u[)) and involves(if r>1) interme-
diate termsu} with i+j=r. To calculate a terni>0 in a
row we use already known terms in the columnl on the
immediate left. We take the left term on the current row
[horizontal line, first term in the right-hand side of E44d)]
and add contribution€l(u,w) due to generatorsv, with
k=1, ... r—i+1 combined with termsi in the left column
above our rowfarrows from up left, sum in the right-hand
side of Eq.(440d)].

The important point to notice is about the generators in-

volved. The lowest-order contribution due wg is of order
€ [the order of £ terms in Eqg. (44d is
(i—1)+(j—k)+(k+1)=r, cf. Eq.(42)] and therefore the
effect of w, begins on rowr (for transformation of order
€") where it contributeonly to the termu!_, in thei=1
column. This main contribution bw, , which is, of course,
due toLaw, [i=1,k=j=r—1 in Eq.(44d)], can be used to
eliminate some of the terms of order To find w, we first
assumew, =0 and proceed along theh row using genera-
tors of orders 1...,r—1, already known from previous
rows, to calculat@, . (The latter is the sum af’, the initial
term of orderr, and all terms accumulated due to previous
transformationg.Next wetry to solve the Lie equatio43¢

as

2
SAWr :'Jr .

(463
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Oncew, is found we add its contributiorr £,w, to all terms
in the row, ending with

v, =U;— LW, . (46b)
This brings us back to the central problem of the theory—
solving the Lie equation with giveA andU.

3. Solving the Lie equation. Homogeneous polynomials

The key to Eq.(430 is that operatorl, has invariant
subspace$(y™) spanned by homogeneous polynomials of
the same total powaen, i.e., £, :P(y™)—P(y™). Moreover,
£, is a linear operator ofP(y™) with homogeneous mono-
mials forming a convenient basis. If the null spakerne)
of £, restricted taP(y™) is not empty, then the normal form
v(y) retains monomials in this null space, KgtP(y™). As
we will see below in Eq.(52¢), precisely this happens if
there exist resonances of order All other monomials in
the range spac@émage of £, (U, Img,), i.e., all nonreso-
nant terms, can be eliminated by a proper choice of genera-
torswpelmg, .

Following these ideas we represew;, v,=up, and
u,= u? in Egs.(44) and all other entries in the Lie triangle as
vector-valued polynomials iR, such as

(upi™
. (uhysm
oo=3 | 7|, (473
{m} :
(upR™
wherex{™ is a monomial,
X{m}:XZmZsznz_ . 'XEN’ (47b)

the sum is over all possible monomials of fixed degree

N
{mi={my,m,, ... mym=0, > m=m;, (470
i=1

and the well-decoratecl|){"™ in Eq. (478 are coefficients.
The relation between the poweof the formal parameter
e and the degreen of the polynomial depends on the par-
ticular problem. Typically, in a Taylor series, the natural
correspondence is=i+j and m=r+ 1, specifically,r =0
andm=1 for Ax. In some casefwith symmetry we may
havem=2r+1.

Further details of the implementation of the algorithm de-
pend on whether or not the matix can be brought to diag-
onal form. These two cases have to be treated separately; we
consider them in Sec. VII, where we also focus on the appli-
cation of the theory to Hamiltonian ordinary differential
equationg ODE's).

B. Nonautonomous equations with periodic coefficients

Application of the above theory to our problem, reduction
of nonautonomous equations of ty(&d) to a normal form,
needs further analysis. There are several ways to go, but in
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any case we should take advantage of the fact that the time A. Normal form in the diagonal case
dependence of30d) is 27,7 perlodlc(cf. Appendix E 2. . Consider a case where the matAxof the linear part of
A _dlrec_t way to take immediate advantage_of the perlod-(38) can be diagonalized, 16 \,, . .. Ay} be the eigen-
icity in ¢ is to introduce a supplementary pair of variables, 5 ;a5 ofA, and take our equations already in the diagonal
[31] form
"= sing k= 0 1 X, (484 Z=Az+U(2)=(N1Z1,M2Zp, ... AnZN) THU(Z). (49
cosyl -1 0
Since the field is Hamiltonian, Eq$49) are canonical. We
or, equivalently, will use three different types of canonical variables: cqmplex
(z,2), action angle or polarl(¢), and the usual coordinate
(exp(+i 0) . ( i 0 ) s and momentumd,p). They can be defined as follows:
exp(—10) 0 (0,p)=(\2Isin(),\2Icog ¢)) (509
We add two new differential equationg,8a or (48b), to our =((z+2),ki(z-2) (50b)

original system, and replace altperiodic factors by their

expression in terms ofx or (. [Recall our change with indices such that

60— (d,,p») in Eqg. (10b) [31].] The resulting systenfwhich

is now autonomoyscan be put into normal form by the o — i ; _

algorithm already developeg above. Moreover, tge two 225-1=225= ~1\2lexplipg), s=1....N. (509

added oscillator equations are already linear and are not |, the above notation the Hamilton function of E49)

transformed“time” is not being redefineg—their variables g [30]

and their matrices just participate in the transformation of

other equations. In other words, the corresponding compo- N

nents of the generatav are always 0. H=i E WZpZost -+ -, (5139
In our application to periodic orbits, we go fronN2au- s=1

tonomous Hamiltonian equations tdN2-2 nonautonomous . . )

Hamiltonian equation§isoenergetic reductionthen back to  With N harmonic frequencies, such that

2N autonomous but non-Hamiltonian equations. The — .

2N—2 equations describe oscillations transverse to the orbit Nas=Nos—1= ~lws. (51b

and driven by a periodic forc@lue to the changing potential

along the orbix. The 2N equations include this fordge., the

motion along the orbjtas a dynamical subsystem. The latter,

however, remains independent from tHg-22 subsystem: it N

pushes without response. It is the resonances between the _ _

two subsystems, the driving and the driven, that are respon- (m,w)—szl Msws=0, (523

sible for the bifurcations of the central orbit. We consider

only the resonances of this kindn the generic situation and

these resonances occur isolated from each other and from

those among the modes of th&l2 2 subsysten).

We say that these frequencies satisfyieaonance condition
if there is a set of integenns, s=1, ... N such that

N
M=, |my|>2. (52b)
=1

VII. SYMPLECTIC LIE TRANSFORMATIONS. NORMAL _
FORMS OF HAMILTONIAN VECTOR FIELDS For \,\ we define

While it may seem simpler to work with Hamilton func- 2N N
tions (Appendix E 3, the advantage becomes marginal for (mN)=2, mj)\jZE (Mye_1—My)iws, (520
an algebraic processor or a computer program—in particular j=1 s=1
if the transformation depends periodically on tiMdle We
implement the generdtime-independentvector field algo-
rithm in Secs. VI A and VI B, converting the differential m;=0, MIE m;>2. (520
equations to normal form, and then we rewrite the result as a =

new Hamilton function. This aIgori'Fhm may Or may Not aU- \ e that for vector fieldg[17,29, Appendix 7.8 the reso-
tomat!cally preserve the sym_plectlc structure of our mmql nance condition is often written asm(,\)=X\,, with
equations of motion. Even if it does not, we can make thISm!>O as in(520 andM' =2 [42]

algorithm symplectic by requiring the generating field 1~ - '
w(Xx, 6,€), the solution of Lie equatio430), to be Hamil-
tonian. More precisely, we require th&l2-2 components of

w to be Hamiltonian when the two added variablé8a or Let {e,,e), ...,ey} be the eigenvectors & and define
(48b) are treated as parameters. The way to do this as well asonomialszi™ as in Eqs(47¢) and(47b). These monomials

to solve Eq.(43¢ depends on the linear part. combined with the eigenvectoeg provide basis vectors on

2N

1. Solving the Lie equation
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the space of vector valued polynomials of total order

el™(z)=71"e,=(0,...,0,2,0,...,0)T.
k=1 N-k

These basis vectof$3) are the eigenvectors af, :

Sadl™(2) =[(\,m) ~ Ale™(2) =[(\,m) — M, ] (2),

(54)
since
k—1 zero row N1Z1
iq{(m} ppegim| MMz Mo A2Z
dz Z, 2, ZN
N—k zero rows/ \ \yzy
:()\1m1+}\2m2+-~'+)\NmN)q{(m}
=(\,m)e™. (55)

2051

and, clearly,

AR = ARPT U =[an, +bN,] T or0, (570
the symplectic property comes without any extra effort.
Thus, in our example iN#0 we take

V=—,u,[a)\1+b)\2]7l. (579

It also follows that in the diagonal Hamiltonian case of di-
mension N we only need\ nonconjugated components of
the generating field.

In the application to periodic orbits in Sec. VI B, the full
set of N supplemented equations is not Hamiltonian but the
original subset of RI—2 equations is Hamiltonian. The
above procedure also automatically preserves the Hamil-
tonian property within that subset if the variabl@s8b are
treated as parameters.

3. Real transformation. Elliptic case

The eigenvalues oA are either pure reafhyperbolic,

Consequently, eigenvectors]™ (z) whose eigenvalues unstable central orbior pure imaginaryelliptic, stable cen-
[(\,m)—\,] equal zero form the basis of the null spacetral orbit). In the elliptic case\; ,= *iw, the “eigencoordi-
KerC,|P(z™). All others form the basis of the range spacenates” z,,=q=ip are complex, and,=z,. This means

ImE4|P(z™). This makes solving the Lie equatio@6a

that equations foz, and z; are complex conjugates, and

straightforward: for each order of the transformationtherefore the corresponding components of all vector fields,

r=1,2,..., thesolution is
T AL™
@ ){m}A{m}
W,=—{E} Zim T 2' 2, (563
m :
TN A
with A’s being the inverted eigenvalues 8§ ,
— [(A,m) =N ™Y if (A,m)#\
A= “ ST (sep)
0, otherwise.

This w, safely eliminates all termg, in the range space of

£a, leaving only those in the null space.

2. Symplectic property

u, v, W, U, etc., have the propertyj,=(u),: the canonical
conjugate is the complex co