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We report the results of an experimental and theoretical investigation of the recurrence spectra
of Rydberg atoms in a static plus weak oscillating electric field. Experiments reveal the systematic
weakening of orbits in a recurrence spectrum as the oscillating field strength and frequency are changed.
We describe a generalization of closed orbit theory to time-dependent systems and show that it provides
a qualitative and quantitative description of the phenomena. [S0031-9007(97)03947-1]

PACS numbers: 32.60.+ i, 03.65.Sq, 05.45.+b

In the quest for a satisfactory understanding of the con-
nections between quantum and classical descriptions of
simple Hamiltonian systems, Rydberg atoms in applied
fields provide prototypes for experiment and theory [1].
Recurrence spectroscopy and closed orbit theory have
proven to be powerful tools for these studies [2–4]. A
recurrence spectrum is the Fourier transform of a photo-
excitation spectrum that is taken with the field varying
with energy according to a classical scaling rule that keeps
the classical motion unchanged at all points in the spec-
trum [2]. It can be shown that each closed classical orbit
of the electron generates a peak in the recurrence spec-
trum at the action of the orbit. Consequently, the recur-
rence spectrum provides a quantum picture of classical
behavior. Studies of recurrence spectra have led to obser-
vations of the creation of new orbits through bifurcations
[5,6], the onset of irregular behavior through core scatter-
ing [7–10], symmetry breaking in crossed fields [11], and
the identification of numerous closed orbits [1].

We have extended this line of inquiry by investigating
the recurrence spectrum of a Rydberg atom in a field
that is oscillating with a period which is comparable
to the period of its classical orbits. The underlying
thought is that periodic orbits should be sensitive to
periodic perturbations, and that this sensitivity should be
revealed by recurrence spectra. Recurrences with periods
that are integer multiples of the period of the perturbing
field might be expected to be most affected. We report
here the first results of such a study. The experimental
observations are surprising: Recurrences with periods
near integer multiples of the period of the perturbation
survive, while those that are out of “resonance” with the
field are weakened or eliminated. We have been able to
interpret these results by generalizing closed orbit theory

to incorporate periodic fields, obtaining both a qualitative
and quantitative description of the phenomena.

Our study employs a lithium Rydberg atom in a static
electric field—a system we have previously studied [8]—
but now with the addition of an oscillating field. At the
low actions studied in these experiments, the spectrum is
regular and can be understood by considering only the
closed orbits of hydrogen. Experimentally, introducing an
rf field is a straightforward task. (We use “rf” to signify
the oscillating field though the actual frequency may be in
the microwave regime.)

The Hamiltonian of a Rydberg atom in an electric field
F along thez axis and an rf field with amplitudeF1

oscillating at angular frequencyv, also polarized along
thez axis, is taken to be (in atomic units)

H 
p2

2
2

1
r

1 Fz 1 F1z cossvtd . (1)

Recurrence spectroscopy is possible because the classical
Hamiltonian can be expressed completely in scaled vari-
ables. We definẽr  F1y2r, p̃  F21y4p, t̃  F3y4t,
ṽ  F23y4v, and f̃  F21F1. This yields the scaled
Hamiltonian

H̃ 
p̃2

2
2

1
r̃

1 z̃f1 1 f̃ cossṽ t̃dg  F21y2Estd . (2)

In the oscillating field, the electron energyEstd is not
constant. We definee ; F21y2Eout to be the scaled
energy of the electron as it leaves the atom. The
scaled action is̃S  F1y4S [12]. To obtain a recurrence
spectrum we simultaneously vary the laser energy, static
and rf field amplitudes, and the rf frequency so as to keep
the scaled parameters (e, f̃, andṽ) constant as we record
the photoabsorption spectrum.

The experimental setup is similar to that described
in [8]. Lithium is excited to the3s state by two-step
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resonant excitation2s ! 2p ! 3s and then to anm  0
Rydberg state by a tunable laser. The scaled energy and
frequency are known to an accuracy of about 0.1%. The
rf field amplitude was calibrated by measuring sidebands
on various states in a Stark manifold [13], yielding
an overall accuracy inF1 of 10%, with 1% accuracy
at selected calibration points. In our experiments, we
measure actions up tõS ø 150.

We chose to study behavior at scaled energye  20.4,
which we had mapped previously for a static electric
field [6]. Because this energy lies above the saddle
point threshold for ionization (e  22), orbits directed
towards the negativez direction are absent. The most
important orbit is the parallel “uphill” orbit lying along
the positive z axis, and its repetitions. These form a
spectrum of recurrences equally spaced in action at an
interval DS̃  4.337. The second repetition lies close to
a bifurcation point ate  20.397 [14], which strongly
enhances its recurrence strength. In contrast, the first
repetition is extremely weak. We mapped recurrence
spectra with constant scaled amplitudef̃ and also constant
scaled frequencỹv.

Figure 1 displays a panoramic map of recurrence
spectra at̃f  0.005, with ṽ varying from 0.12 to 0.60.
The most conspicuous feature is a series of regions where
the recurrences are practically annihilated and a series of
regions where they survive. The periods of the surviving
orbits are near integer multiples of2pyṽ, shown by dark
lines in the plot. In addition, the strong second repetition
persists at all frequencies measured.

FIG. 1. Experimental recurrence spectra recorded ate 
20.4 and f̃  0.005, with scaled frequencỹv between 0.12
and 0.60 in steps of 0.02. The dashed lines are contours
generated from Eq. (10) wherean  0.2. The solid curved
lines mark the action at which a repetition of the parallel orbit
has a period that is an integer multiplen of the period of the
applied field. The values ofn are listed on the right.

Figure 2 displays a map at fixed frequencyṽ  0.32,
with f̃ varying from 0.0 to 0.022. As̃f increases, all the
peaks lose strength. Some recurrences are very sensitive
and fall off rapidly asf̃ increases; others persist to much
higher f̃. As the rf field is made yet stronger, many of
the peaks revive, some more than once.

The peaks in Figs. 1 and 2 are manifestations of
recurrences—classical orbits which go out from the
nucleus and return. To interpret the data, we briefly
review the ideas of closed orbit theory and then discuss
its extension to a time-periodic Hamiltonian. The theory
of recurrences begins from the usual quantum theory of
photoexcitation: As the laser radiation causes transitions
between the initial state and high energy eigenstates
of H, there is a well-defined rate of absorption. The
smoothed or large scale structure of the spectrum can
be expressed as an oscillator strength density, which we
denoteDfsE, Fd. The oscillator strength density can be
separated into two parts:

DfsE, Fd  Df0 1 Df1sE, Fd . (3)

Df0 is a smooth (practically constant) background that
is approximately the same as for the field-free atom at
the ionization threshold.Df1sE, Fd, which varies rapidly
with E and F, is due to recurrences that arise in the fol-
lowing manner. The laser radiation produces a stream
of outgoing waves which, in the semiclassical approxi-
mation, follow classical trajectories. As the trajectories
travel outward, some are turned back by the combined
Coulomb and applied fields and return to the atom.
These interfere with the outgoing waves (and with each
other), giving rise to oscillatory patterns in the absorp-
tion spectrum. Each returning orbitk gives a sinusoidal

FIG. 2. Experimental recurrence spectra recorded ate 
20.4 and ṽ  0.32 with scaled rf field amplitudẽf between
0.0 and 0.022. The solid curved lines mark the location of the
first zero in the recurrence strength as predicted by the restricted
semiclassical theory, Eq. (10).
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contribution to the oscillator strength density,

Df1,ksE, Fd  Ck sinfS0
ksE, Fdyh̄ 1 gkg . (4)

The corresponding expression in scaled variables is

Df1,kse, wd  Ck sinfS̃0
ksedw 1 gkg . (5)

S0
k sE, Fd ;

R
p ? dq is the classical action around the

closed orbit,S̃0
k sed is its scaled counterpartw  F21y4,

and gk is a phase correction associated with Maslov in-
dices. Ck is the recurrence amplitude, which is approxi-
mately independent ofE and F. The absolute square of
the Fourier transform of the absorption spectrum with re-
spect tow gives the recurrence spectrum, which reveals
peaks at the scaled actions of the closed orbits.

We have generalized closed orbit theory to incorporate
a time-dependent Hamiltonian. We summarize the main
features here—a full description will be published else-
where. The explicit time dependence of the Hamiltoni-
ans in Eqs. (1) and (2) means that many aspects of re-
currence theory need to be reexamined. It can be shown
[15] that at each timet, it is possible to define an instanta-
neous oscillator strength densityDfsE, F; F1, v, td out of
the initial state into a band of excited states.Df can be
separated again as in Eq. (3), withDf1 arising from
closed orbits. The physical picture is much as before.
The laser produces a steady stream of outgoing waves,
which now propagate in the oscillating electric field. The
result is a time-dependent wave function that in the semi-
classical description is “supported” by time-dependent
classical trajectories. Each returning orbit in the static
field represents a continuous family of identical orbits,
each starting at a different time. With the oscillating field
turned on, the orbits in a family are no longer identical
because their properties then depend on the phase of the
rf field when they left the atom. We call this splitting of
a single orbit into a continuous family of orbits “temporal
symmetry breaking,” because of its close analogy to cylin-
drical symmetry breaking [11,15]. The component ofDf1
arising from each family oscillates at the rf frequency, and
the measurement averages it over many cycles.

The returning wave can be calculated using a semi-
classical approximation in an extended phase space
sp, q, E, td where time is regarded as a dynamical
variable. The conjugate variableE is not conserved
because of the temporal symmetry breaking. The action
associated with the returning wave is again the classical
action, but now in the extended phase space:

Rstd 
Z

hp ? dq 2 fHstd 2 Eoutg dtj . (6)

This generalized action depends on the phase of the
field relative to the orbit. For some phases, the orbit
is stretched and its action increases, while for others,
the orbit is compressed, and its action decreases. At
small rf amplitudes, there is a smooth sinusoidal change
between these two extremes. Using first order classical

perturbation theory, the generalized action is found to be

Rkstd ø S0
k sE, Fd 1 F1jZksvdjTk cossvt 2 akd , (7)

where Tk is the period of the orbit,Zksvd is the time-
averaged ac electric dipole moment of theunperturbed
orbit s1yTkd

RTk

0 zstde2ivtdt, andak is the phase of the
rf field for which the maximal action is attained.

Substituting Eq. (7) into Eq. (5), averaging over a cycle
of the field, and recasting it in scaled variables yields

Df1,k  CkJ0s f̃jZ̃ksṽdjT̃kwd sinfS̃0
k sedw 1 gkg . (8)

This result provides a general description of the absorp-
tion spectrum of a Rydberg atom in a weak oscillating
electric field. Comparing Eq. (8) with Eq. (5), we see
that the perturbation weakens the recurrence amplitude by
a factor given by a Bessel function. The argument of
the Bessel function is the perturbation to the semiclassical
phase of the extreme orbits in the family—proportional to
the product of the perturbing field and the ac dipole mo-
ment of the unperturbed orbit.

In principle one must evaluatẽZksṽd separately for
each unperturbed closed orbit. However, in the regime
observed here, thez motion of every orbit is similar to
that of the parallel orbit or one of its repetitions. We
approximateZ̃ksṽd by that of the corresponding repetition
of the parallel orbit in what we call the restricted
semiclassical theory. Additionally, the ac dipole moment
for thenth repetition of the parallel orbit is related to that
for the 1st repetition:

j Z̃nsṽd jj Z̃1sṽd j

Ç
sinsnṽT̃1y2d
sinsṽT̃1y2d

Ç
. (9)

Using these approximations in (8), we find that every
recurrence peak is weakened by a factoran given by

an  J2
0

µ
f̃Z̃1sṽd

Ç
sinsnṽT̃1y2d
sinsṽT̃1y2d

Ç
T̃1w

∂
; J2

0 scnf̃d .

(10)

(In our experiment the range ofw is small so it can be
taken to be a constant.) We shall refer to the quantitycn

defined in Eq. (10) as the falloff coefficient.
We now can examine Figs. 1 and 2 in detail. The

dashed lines in Fig. 1 are contours generated from
Eq. (10) that show where the recurrence strength should
be reduced by 80% (an  0.2). The solid line in Fig. 2
shows the location of the first zero of the Bessel function
cnf̃ ø 2.4. This simple calculation predicts the large
scale features in the data, and even some details. To
further test the experiment and semiclassical theory, we
have compared our results with approximate quantum
mechanical Floquet calculations of the recurrence spec-
trum. Details of these calculations will be published
elsewhere [16]. Figure 3 compares the experimental
recurrence strength of the second repetition in Fig. 2 with
the prediction of Eq. (10). The experimental results and
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FIG. 3. Recurrence strength of the second repetition ate 
20.4 andṽ  0.32 vs scaled rf field amplitude,̃f. Squares are
experimental recurrence strengths, circles are from the Floquet
computation. The solid line is the prediction of Eq. (10), scaled
to agree near̃f  0.

the two theoretical calculations are in generally good
agreement.

The restricted semiclassical theory neglects the differ-
ences between the parallel and nonparallel orbits. These
differences produce, for example, the small discrepancies
between the experiment and restricted semiclassical the-
ory seen in Fig. 2. We have included the exact properties
of the nonparallel orbits in what we call the unrestricted
semiclassical theory. A convenient way to summarize the
results is to fit them to the form of Eq. (10) and express
the result in terms of the falloff coefficientscn. Values
of cn from the experiment, the Floquet computation, and
the unrestricted semiclassical model are compared with
Eq. (10) in Fig. 4. The restricted semiclassical model can
be seen to provide a good approximate picture, which is
made even better by the unrestricted calculation.

Our recurrence spectra show the systematic elimination
of recurrences. We have confirmed these effects in quan-
tum mechanical Floquet calculations. We have shown
how these results can be explained to be a consequence of
the destructive averaging of orbits returning to the nucleus
at different times. These results provide a firm foundation
for the investigation and interpretation of recurrence spec-
tra in time-periodic potentials.
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FIG. 4. Falloff coefficientcn [defined in Eq. (10)] for the first
30 repetitions of the parallel orbit. Squares are experiment,
circles are Floquet computation, and solid triangles are the un-
restricted semiclassical theory. The solid line is the prediction
of the restricted semiclassical theory.
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