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Abstract: Proinflammatory cytokines are produced in pregnancy in response to the invading
pathogens and/or nonmicrobial causes such as damage-associated molecules and embryonic semi-
allogenic antigens. While inflammation is essential for a successful pregnancy, an excessive inflamma-
tory response is implicated in several pathologies including pre-eclampsia (PE). This review focuses
on the proinflammatory cytokine macrophage migration inhibitory factor (MIF), a critical regulator of
the innate immune response and a major player of processes allowing normal placental development.
PE is a severe pregnancy-related syndrome characterized by exaggerated inflammatory response and
generalized endothelial damage. In some cases, usually of early onset, it originates from a malde-
velopment of the placenta, and is associated with intrauterine growth restriction (IUGR) (placental
PE). In other cases, usually of late onset, pre-pregnancy maternal diseases represent risk factors for
the development of the disease (maternal PE). Available data suggest that low MIF production in
early pregnancy could contribute to the abnormal placentation. The resulting placental hypoxia in
later pregnancy could produce high release of MIF in maternal serum typical of placental PE. More
studies are needed to understand the role of MIF, if any, in maternal PE.

Keywords: human pregnancy; inflammatory response; cytokines; placenta

1. Introduction

Pre-eclampsia (PE) is a syndrome affecting about 5% of all pregnancies [1]. It is a
severe complication of human pregnancy, with significant risk of mortality and short- and
long-term morbidity for both mother and fetus [2,3]. It is diagnosed by the presence of de
novo hypertension after 20 weeks of gestational age accompanied by proteinuria and/or
evidence of maternal acute kidney injury, liver dysfunction, neurological features, hemoly-
sis or thrombocytopenia, or fetal growth restriction [4]. Although it is possible to control
blood pressure with antihypertensive drugs and to prevent seizures with magnesium
sulphate, at the moment the only definitive treatment of PE is timed delivery, often preterm.
Preterm birth represents a risk of death or long-term sequelae for the newborn, and the
risk increases as gestational age decreases. This inverse relationship between gestational
age and risk is a continuum. However, particular attention to weigh the risk for the mother
of continuing pregnancy and the risk for the fetus of immediate delivery must be given
in cases where the disease occurs before 34 weeks of gestational age [5]. Prevention of PE
is feasible for women with known risk factors and is effective only for some forms of the
disease [6]. Its etiology is multifactorial and still not completely understood, while there
is nowadays evidence that the symptoms are attributable to an excessive inflammatory
response that causes generalized endothelial damage [7].
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2. Immune Response in Pregnancy

Throughout pregnancy, the maternal reproductive system is provided with an inflam-
matory response essential for the defense against infections. The mucosa of the female
reproductive tract is indeed permanently exposed to an extensive variety of microorganisms
coming from the external environment and develops protective defense mechanisms [8–10].
This implies that the pregnancy is established in an immunologically active environment
capable of protecting the mother and the fetus. In support of this activation, the basal
expression of cytokines is higher in the mononuclear cells from the female reproductive
tissues than in peripheral blood mononuclear cells [11].

To control the microorganisms antigenic load, cells of the female reproductive mu-
cosa act via sensing through pattern recognition receptors (PRRs), a class of evolutionary
conserved receptors of which the toll-like receptors (TLRs) are the most studied [12,13].
All known TLRs (1–10) mRNA and protein are expressed in human placenta [14–16]. In-
terestingly, an intense and polarized TLR2 expression was shown in the cell membrane
of the villous cytotrophoblast adjacent to the syncytiotrophoblast layer, especially in the
first weeks of pregnancy [16]. This peculiar staining pattern together with an abundance of
TLR3, TLR4, and TLR5 suggested a TLR defensive barrier against pathogens during the
most vulnerable time of fetal development [16,17].

Besides pathogen-associated molecular patterns (PAMPs), such as bacterial lipopolysac-
charides (LPS), TLRs also recognize and sense endogenous molecules expelled from in-
jured/damaged tissues, referred to as damage-associated molecules (DAMPs) [18].

While responding to microorganisms and/or nonmicrobial causes, a tolerogenic
state is, however, needed during pregnancy, to avoid rejection of the semi-allogenic fetus.
These apparently conflicting types of response—defense against pathogens and embryo
acceptance—are not necessarily separate as they appear to share features of the innate
immune response. TLR (1–9) mRNAs are expressed in the decidual macrophages and
uterine natural killer (uNK) cells, the major immune cell populations in the maternal
uterus [19]. Whatever the triggering signal, activation of TLRs leads to common cascade
signals and induces the transcription and the release of proinflammatory cytokines such as
TNFα, IL-1, IFNγ, IL-6, and IL-8 [20–22] (Figure 1).

Numerous other markers of inflammation are increased in pregnancy: white blood
cell count of granulocytes, neutrophils, and monocytes, C reactive protein, erythrocyte
sedimentation rate, fibrinogen [23–25]. It is, however, important to emphasize that while
a controlled and moderate response is essential for successful pregnancy, an exaggerated
inflammatory response is implicated in several pathologies including PE [26] (Figure 1).
Changes in TLRs have been associated with PE, characterized by higher placental expres-
sion of TLR-2, -3, -4, and -9 [27,28].

2.1. Normal Pregnancy

If the background picture explains how physiological pregnancy is characterized by
an inflammatory response, it is also recognized that the immune condition undergoes
different biological phases. A proinflammatory state is present during the earlier and
later phase of pregnancy while an anti-inflammatory one characterizes the intermediate
period [29–32]. This concept, developed approximately in the last two decades, is in con-
trast to the hitherto established idea which viewed pregnancy as a single event with an
anti-inflammatory or immune suppression state. This theory postulated that a successful
pregnancy is sustained by type 2 T-cell (Th2)-derived cytokines and a shift to Th1 cytokines
would lead to early abortion or pregnancy disorders [33–35]. It is now currently recognized
that the Th2/anti-inflammatory cytokines are important mediators for the maintenance of
an already established pregnancy, allowing uterine quiescence and fetal growth and devel-
opment [30,32]. On the other hand, a predominance of Th1/proinflammatory cytokines
is needed in the earlier and later stage events [36]. The complex of immunomodulatory
molecules secreted by both embryonic and maternal tissues exerts its action on complemen-
tary tissues acting as communication signals between mother and fetus, since very early
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embryonic development [37]. During this first stage, the blastocyst breaks through the uter-
ine epithelium in order to implant; the trophoblast cells that line the blastocyst—and more
specifically the extravillous trophoblast cells—migrate within and around the mother’s
blood vessels and replace the endothelium and vascular smooth muscles. As a result, the
spiral arteries become unresponsive to endocrine and vasoactive stimuli, thus attaining the
physiologic properties that are required to adequately perfuse the placenta [38]. All these
activities, involving the contribution of proangiogenic factors, require an inflammatory
environment capable of repairing the tissue, producing vascular changes, and creating an
appropriate uterine immune response for the acceptance of the semi-allogenic fetus [39].
The maternal decidua is filled with a unique immune cell population of which the NK cells
with a higher cytokine profile and poor cytotoxic potential are the most abundant [40,41].
The proinflammatory environment decays approximately at the end of the first trimester, to
increase again in approximately the event of labor, contributing to uterine contractions and
cervical ripening [42]. The local cytokine profiles at the maternal–fetal interface guarantee
fetal growth and development on the one hand and have profound reflexes on the mother’s
physiological adaptations to pregnancy on the other hand [43]. In fact, during pregnancy,
striking functional changes occur in the maternal organism, involving cardiovascular,
hematologic, renal, respiratory, gastrointestinal, endocrine, and metabolic systems [43].

Figure 1. An inflammatory response is essential in pregnancy to protect against infection, repair
tissue injury, and promote a tolerogenic milieu for the fetus. An exacerbated inflammatory response
can be harmful for pregnancy outcomes causing diseases such as PE.

2.2. Pre-Eclampsia

In pre-eclampsia, all the markers of inflammation as well as circulating levels of
pro-inflammatory cytokines and chemokines are increased compared with physiological
pregnancy [7,25,44–47]. The generalized inflammatory response with high levels of cy-
tokines, such as IL-1β, IL-8, IL-6, TNFα, may occur in the absence of a microbial infection:
potential stimuli can arise from cellular stress, trophoblast necrosis or apoptosis, placental
hypoxia [48]. However, also an infection already established before pregnancy or develop-
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ing during pregnancy may be the trigger for the development of PE [44,49–53]. Women
affected by autoimmune diseases, such as antiphospholipid syndrome and systemic lupus,
are at high risk of developing PE, strongly suggesting that a dysregulation of the immune
system plays a crucial role in the etiopathogenesis of the disease. Also, the higher incidence
of PE in primigravidas, or those who have limited contact with paternal antigens, indicates
the involvement of the immune system. On the other hand, the increased risk of PE in
women with diseases directly or indirectly affecting the cardiovascular system underscores
that the inability of the maternal organism to cope with the needs of the growing placenta
and fetus contributes to PE. It is thus clear that PE is a multifaceted, multifactorial syn-
drome sharing pathophysiologic mechanisms (systemic inflammation, oxidative stress)
with non-pregnancy disorders such as hepatorenal syndrome, cardiorenal syndrome, car-
diohepatic syndrome, as it is well outlined in a recent review by Gyselaers [54]. Recently
common features (cytokine storm) have been highlighted between the most severe forms
of COVID-19 disease and PE [55].

At least two forms of PE are recognized: one of placental origin (placental PE) and one
triggered by maternal pre-existing conditions (maternal PE) [56]. Many studies aimed at
understanding the etiology of PE show different characteristics of the two populations [53,57,58].
Phenotypically they can be distinguished based on fetal growth: intrauterine growth
restriction (IUGR) in placental cases (IUGR-PE) and appropriate for gestational age (AGA)
in maternal PE (AGA-PE) [59].

Placental PE more often occurs ≤34 weeks of gestational age [59]. At the basis of
placental PE, there is an abnormal interaction between the trophoblast and the decidua
mainly occurring during the first trimester of pregnancy. This leads to the pathological
development of the placenta: on the maternal side, the vascular bed largely maintains
its pre-pregnancy characteristics with the spiral arteries incompletely transformed into
dilated unstructured vessels, at variance with normal pregnancy [60]. On the fetal side,
the impaired perfusion due to the abnormalities of the maternal vascular bed impacts the
growing villi that typically present a reduction in the density of small-stem arteries and
in arterial branching [61,62]. The abnormal placenta on the one hand limits the transfer
of oxygen and nutrients from the mother to the fetus, resulting in IUGR, and eventually
in intrauterine demise [62,63]; on the other hand, it releases molecules that trigger the
maternal exaggerated inflammatory response. Trophoblast cells and mesenchymal stromal
cells of PE placentae produce and release into the maternal circulation increased amounts of
proinflammatory cytokines, chemokines, and antiangiogenic factors compared to placentae
from normal pregnancies [45,64], contributing to the endothelial damage and to the clinical
picture of the disease.

Maternal PE more often is of late onset (>34 weeks). It is likely to occur in preg-
nant women with already established conditions that involve an underlying endothelial
dysfunction, such as cardiovascular diseases, diabetes, autoimmune diseases, obesity,
asymptomatic chronic infections [50,51,65,66]. Therefore, the placenta is not or only sec-
ondarily involved, the vascular villous tree has a normal development, and fetal growth
is normal.

To differentiate placental and maternal forms of pre-eclampsia may be difficult: it
would need a careful study of uterine and umbilical arteries Doppler indices, longitudinal
investigation of fetal growth, and eventually of some biomarkers. Therefore, many studies,
recognizing different forms of pre-eclampsia, separately report data for cases diagnosed
before (early-onset PE) or after (late-onset PE) 34 weeks; this is not the same as “placental”
and “maternal”, but it may be a surrogate, since placental PE occurs more often ≤34 weeks
and maternal PE more often >34 weeks of gestational age.

3. MIF in Normal and Pre-Eclamptic Pregnancy

The cytokine macrophage migration inhibitory factor (MIF) is a pleiotropic inflamma-
tory molecule discovered over half a century ago [67,68]. Originally, MIF was identified
as a soluble protein produced by T-lymphocytes capable of inhibiting the random mi-
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gration of macrophages [67,68]. Today MIF is known as a central regulator of different
physiological processes contributing to cell proliferation and differentiation, angiogenic
biological activities, and innate immune response [69]. It is normally present in the plasma
of healthy subjects at concentrations ranging from 0.1 to 30 ng/mL, produced by a variety
of cell types including endocrine, epithelial, endothelial, and immune cells such as mono-
cytes/macrophages, and B and T cells [70,71]. MIF is stored in preformed, cytoplasmic
pools and is rapidly released in response to endogenous and/or exogenous stimuli such as
microbial products, antigen-specific proliferative signals, and hypoxia [72]. Extracellular
MIF acts through interaction with several cell surface molecules, of which CD74, an MHC
Class II invariant chain, is the most studied [73–75].

Unlike all other known cytokines, MIF has several enzymatic activities, specifically
phenylpyruvate tautomerase, L-dopachrome tautomerase, and thiol-protein oxidoreduc-
tase activities [76,77]. The major focus of MIF has been on its role in the inflammatory
process as a proinflammatory mediator [78,79]. It has been shown that MIF promotes
the production and expression of a large panel of proinflammatory mediators including
cytokines (TNFα, IL-1β, IFNγ, and IL-6), nitric oxide (NO), and matrix metalloproteases
(MMPs) [79,80]. In the context of proinflammatory responses, MIF secretion is induced
rather than inhibited by glucocorticoid hormones [81]. Additionally, MIF has the unique
ability to reverse the immunosuppressive/anti-inflammatory effects of glucocorticoids [81].

MIF is also an important regulator of innate immune responses and essential for
fighting pathogens including Gram-negative bacteria, viruses, and parasites [82–86]. In-
terestingly, MIF positively regulates the expression of TLR4 in macrophages promoting
the recognition of LPS, a cell wall constituent of most Gram-negative bacteria, by the
innate immune system [79,87,88]. A very recent report showed that Mif gene expression
is activated by LPS in Ciona Robusta, a marine invertebrate model, suggesting MIF as a
universal signaling mediator for the defense against pathogens [89].

MIF response can become exaggerated in many infections, inflammatory, and au-
toimmune diseases. Accordingly, MIF blood levels are increased in patients with septic
shock, systemic lupus erythematosus, and rheumatoid arthritis (see review by Bilsborrow
et al. [90]), a feature for which MIF is regarded as a biomarker and a pharmacological
target for different diseases [91,92]. Within this context, several classes of MIF inhibitors
appear to be of considerable therapeutic benefit in many inflammatory and autoimmune
conditions [93–97].

Studies performed in the past two decades showed MIF as one of the immunomodula-
tory molecules secreted at the maternal–fetal interface [98–100]. Although MIF knock-out
mice failed to show reduced fertility and produced normal-sized litter [101], extensive
evidence supports a high contribution of MIF in pregnancy, particularly during the earlier
and later phases, characterized by inflammatory-like events [99,102]. MIF is normally
present in tissues and fluids during normal pregnancy including uterus/decidua, placenta,
amniotic fluid, and fetal and maternal blood. Maternal MIF serum levels have been shown
to be remarkably elevated in pathological conditions such as preterm delivery [103] and
pre-eclampsia [44]. High MIF levels might indicate an excessive response in the case of
pathological inflammation/infection, which could be harmful to the health of the preg-
nancy and fetus. The role of MIF in normal and pathological pregnancies is summarized in
Tables 1 and 2.
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Table 1. MIF in human reproduction.

Findings References

Menstrual cycle

MIF mRNA and protein are expressed in uterine
glandular and surface epithelium. [104]

Uterine MIF expression is higher in late proliferative
and secretory phases. [105]

Early pregnancy

MIF is produced by uNK cells and acts on these same
cells by reducing their cytolytic activity. [106]

MIF protein is expressed in first trimester placenta
mainly in villous and extravillous trophoblast. [107]

Trophoblast MIF is induced by hypoxia. [108]
MIF promotes trophoblast cell invasion and migration. [109]

MIF promotes survival of first trimester human
placenta under induced stress conditions. [110]

MIF promotes trophoblast differentiation to
endovascular phenotype. [111]

Mid-pregnancy MIF mRNA and protein placenta expression declines
at 11–12 weeks and remains stable until term. [108]

Term pregnancy

MIF in amniotic fluid is higher at term than at
mid-gestation and higher at term with spontaneous

delivery.
[102]

MIF levels in umbilical cord serum at term birth are
higher than in maternal serum. [102]

MIF is expressed and secreted by extraembryonic
membranes. [112]

Table 2. MIF in pregnancy complications.

Findings References

Miscarriage

Maternal serum MIF levels in early pregnancy are low
in patients having miscarriage. [113]

MIF in uterine tissues and maternal blood is low in
patients with recurrent pregnancy loss. [114]

Pre-term delivery Maternal plasma MIF levels at first–second trimester
are higher in pregnancies with preterm delivery. [103]

Pre-eclampsia

Maternal serum MIF levels are higher in patients with
PE than in normal pregnancy. [115,116]

Maternal serum MIF is higher in patients affected by
IUGR-PE while not in AGA-PE. [115]

MIF mRNA in maternal plasma at 24–30 weeks is
higher in patients who later develop PE. [117]

MIF maternal serum levels are higher in normal
pregnancy compared to non-pregnancy but not

further increased in PE patients.
[118]

Secretion of MIF by placental mesenchymal stromal
cells is higher in IUGR-PE than in normal pregnancy. [45]

Maternal serum MIF in first–early second trimester is
lower in women who later develop PE. [119]

3.1. MIF in Normal Pregnancy
3.1.1. MIF in Early Pregnancy

Among the proinflammatory cytokines implicated in the early phase of pregnancy,
MIF is highly involved in placenta establishment and development [98–100]. MIF is abun-
dantly present at the maternal–fetal interface secreted both by fetal trophoblast and mater-
nal decidua. MIF mRNA and protein are already present in the uterus during the menstrual
cycle mainly in the glandular and surface epithelium, and the stromal and endothelial
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cells [104]. Quantitative assessment showed a regulated cycle phase-dependent expression
pattern with higher levels in the late proliferative/early secretory phase [105,106]. In first
trimester trophoblast, MIF is mainly expressed by the cells of the internal proliferative layer
of chorionic epithelium and by the extravillous trophoblast [107]. Importantly, trophoblast
MIF is upregulated by low oxygen tension, comparable to that occurring in the very early
stages of pregnancy because of the absence of maternal blood flow in the intervillous
space [108]. Induction of MIF by low oxygen tension was supported by studies in placental
tissues from women living at high and moderate altitude, representing a natural in vivo
model of chronic hypoxia. The findings showed that the higher the altitude, the higher the
concentration of MIF [108].

MIF promotes trophoblast migration and invasion. The abundance of MIF in the
earlier phases of gestation has aroused much interest on the role of MIF in the implantation
and development of the placenta. The majority of these studies were conducted on HTR-
8/SVneo, an in vitro model of cells originated from human first trimester placenta and
immortalized by transfection with a cDNA construct that encodes the simian virus 40 large
T antigen [120]. These cells are representative of the invasive extravillous trophoblast,
specifically of the cells that, detaching from the chorionic villi, migrate to and infiltrate
the maternal decidua up to the spiral arteries [120]. A report by Jovanović Krivokuća
et al. [109] showed that MIF can act on trophoblasts in an autocrine and paracrine manner.
Blocking of endogenous MIF with ISO-1, an inhibitor of the tautomerase activity of MIF,
reduced HTR-8/SVneo cell migration and invasion while an opposite effect was obtained
by addition of rMIF [109]. Similarly, addition of ISO-1 to decidual stromal cells conditioned
media decreased their proinvasive action on trophoblasts [109]. The same research group
also studied the potential contribution of trophoblast MIF on the spiral artery remodeling
process. They demonstrated that attenuation of endogenous MIF by specific siRNA had a
negative effect on the ability of HTR-8/SVneo to differentiate into endothelial-like pheno-
type [111]. HTR-8/SVneo cells also produce MIF in response to LPS, a cell wall constituent
of most Gram-negative bacteria recognized by TLR4 [121]. LPS-treated cells also showed
increased levels of MMP-2 and MMP-9 and higher migration activity.

MIF promotes cell survival and suppresses apoptosis. By using the model of chorionic
villous explants from first trimester placenta, Ietta et al. showed that MIF is able to
protect trophoblasts from excessive apoptosis against hypoxia/reoxygenation injury [110].
Apoptosis is a physiological process in normal placenta development which might become
harmful if not properly regulated and lead to pregnancy complications, such as pre-
eclampsia and IUGR [122]. Binding of MIF with its receptor CD74 was shown to be an
essential mechanism through which MIF suppresses apoptosis [110]. Downregulation of
CD74 gene was shown in placenta from women affected by PE [123]. A protective role of
MIF was also shown in decidual stromal cells challenged with reactive oxygen species [124].
MIF interferes with the apoptotic fate of these cells by triggering phosphorylation of
Mdm2 protein in a PI3K/Akt-dependent manner and changing the nuclear translocation
of p53 [124].

MIF in maternal–fetal immunotolerance. NK cells, the major immune cell subpop-
ulation in early pregnancy, produce MIF [99]. MIF also plays an autocrine/paracrine
role on these cells by reducing their cytolytic activity, thus contributing to maternal–fetal
immunotolerance [106]. Therefore, decidual NK cells are a source and a target of MIF.

Altogether, the data on MIF in early pregnancy are of extreme importance as a deficient
placentation may lead to pregnancy disorders such as PE and IUGR [125]. The key role
of MIF in establishment of pregnancy and placenta development is supported by the
fact that lower MIF secretion in early pregnancy was found to correlate with pregnancy
loss [113,114].

3.1.2. MIF from Mid-pregnancy to Term

To our knowledge, only little information is available on MIF from the end of the
first trimester to the end of pregnancy. By examining placental tissues at 7–10, 11–12,
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14–20 weeks of pregnancy, and at term, Ietta et al. showed that MIF mRNA and protein
declined at 11–12 weeks of gestation, then it remained constant until term [108]. By
contrast, assessment of MIF concentration in amniotic fluid showed that levels of MIF were
increasing from mid-pregnancy (median 20.07 ng/mL) to term (median 62.10 ng/mL) and
reached a peak in women at term with labor (median 258.80 ng/mL) [102]. Of note, the
changes of MIF in amniotic fluid with advancing gestation were not reflected in maternal
serum where levels remained stable from mid-trimester to term and at term with labor.
Maternal serum values during pregnancy were not different from values reported in non-
pregnant subjects [102]. Other authors reported that MIF maternal serum levels remain
unchanged throughout pregnancy, but found values that are higher compared to non-
pregnant subjects [118].

3.1.3. MIF in Fetal–Newborn Blood

MIF levels in cord serum at term birth (CS) were found higher than in maternal serum
(MS/CS ratio = 0.4), supporting MIF as an inflammatory mediator of labor [102].

In a study at different ages from fetus to adult, Roger et al. showed that the plasma
levels of MIF in fetuses at 26–30 weeks were about fivefold higher than in adults and further
increased to about 15–20-fold in full-term infants at birth. MIF plasma levels remained high
after birth at least until postnatal day 4 and decreased to levels normally found in adults
within the first month of life. Based on their data on MIF in regulating neonatal innate
immune responses, the authors proposed that high levels of MIF in newborns might play a
protective role to reduce susceptibility to infection during the neonatal period [126,127].

3.2. MIF in Pre-Eclampsia

Given the role of MIF in the establishment and development of the placenta and its
contribution to inflammation/infection response, its study in PE patients may help to
explain some of the pathogenetic pathways observed in this disease, which is characterized
by exaggerated inflammatory response and/or abnormal placental development. In fact,
it has been shown that MIF serum levels in maternal blood and MIF concentration in
maternal–fetal tissues are altered in pregnancies complicated by PE at different stages
of pregnancy.

3.2.1. MIF in Women Who Later Develop PE

MIF maternal serum levels have been studied in the first half of pregnancy in women
who developed PE during the third trimester. Cardaropoli et al. report on MIF levels in
the serum of 127 first/early second trimester women, 48 of whom later developed PE.
The values were significantly lower in the serum of PE patients than in the ones who had
an uneventful pregnancy (4967 ± 1620 pg/mL vs. 7640 ± 5519). However, when two
subgroups of PE patients were separately considered, MIF values were significantly lower
compared to controls only in 18 patients who developed PE before 34 weeks (3983 ± 1620);
in late-onset PE, the values were slightly lower (5557 ± 3642 pg/mL), but not significantly
different compared to those in normal pregnancies [119]. In a longitudinal study of
33 pregnancies at high risk of PE, Galbiati et al. measured plasma MIF mRNA at 6–16,
17–23, 24–30, and 31–34 weeks. Nine patients developed PE, three of them ≤34 weeks.
They did not find any difference in MIF mRNA at 6–16 and 17–23 weeks between women
who developed or did not develop PE, while MIF was significantly higher at 24–30 weeks
in women who developed PE. At 31–34 weeks, there was again no difference between the
two groups. This could be explained by the fact that the last ones developed late-onset
PE. The authors also measured the expression of HIF-1α in maternal plasma and found
high levels at 6–16 and 17–23 weeks, thus confirming the important role of oxygen in the
pathogenesis of PE [117].

As far as we know, these are the only data on MIF in patients who later develop PE.
There are no data about MIF concentration at the maternal–fetal interface in the first

trimester of pregnancy in women who later develop PE. Assuming that low serum levels
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are paralleled by low MIF concentration at the maternal–fetal interface, one can speculate
that it plays a role in the abnormal development of the placenta, since high levels of MIF
are required to stimulate trophoblast invasion in early pregnancy. The role of low first
trimester MIF maternal serum levels on placental development would also be confirmed
by the findings of Yamada et al. They found low MIF serum levels in patients having
miscarriage of fetuses with normal chromosomes [113]. First trimester miscarriage of
normal embryos/fetuses is due to abnormalities in trophoblast invasion of the decidua,
negatively affecting placenta development [125]. Thus, the same placenta abnormalities
would lead to abortion when they are extremely severe and more extended, or to PE when
they are less severe and less extended.

3.2.2. MIF in Women with Established PE

High levels of MIF in maternal serum of third trimester PE pregnancies were first
reported by Todros et al. [44]. The significantly higher levels in PE compared to normal
pregnancies (median 12.7 ng/mL vs. 5.3 ng/mL) were due to cases of early-onset PE
(17.8 ng/mL); in late-onset PE, the values were comparable to those of controls (6.16 ng/mL
vs. 5.3) [44]. The data were confirmed in another study by Cardaropoli et al. where the high
values of MIF serum levels in PE pregnancies (5126 ± 2902 ng/mL vs. 2467 ± 703 ng/mL)
were attributable to cases of PE complicated by IUGR while no significant difference was
found between AGA PE and controls [115]. More recently, higher values of MIF maternal
serum levels in PE patients were reported by Mahmoud et al. [116]. At variance with all
the above data, Hristoskova et al. found that MIF maternal serum levels were increased in
normal pregnancy compared to non-pregnant, but they were not further increased in PE
patients. However, they subdivided PE pregnancies according to the severity of the disease,
which is based on clinical characteristics, but may not reflect different pathophysiological
conditions [118]. Therefore, in their population there could be a prevalence of “late-onset
PE” where the levels of MIF are not increased.

MIF in placenta. A study by Cardaropoli et al. [115] showed that MIF is expressed
in placental tissue from both normal and PE third trimester pregnancies. Differences
were observed when IUGR-PE and AGA-PE cases were separately considered. Only
in the former was MIF concentration significantly lower compared to placentae from
normal pregnancy. Immunoreactivity for MIF was present in the syncytiotrophoblast of all
placentae, but only in IUGR-PE placentae was it also present in the intervillous space [115].
When cytokines expression profile expressed by a specific subpopulation of placental
cells, placenta-derived mesenchymal stromal cells (PMSCs), was studied in normal and
PE placentae (mainly IUGR-PE), a significantly higher release of MIF from PE-PMSCs was
shown [45]. However, MIF production by PE-PMSCs does not seem to be sufficient to
increase MIF placental content, since these cells show decreased proliferation and increased
cellular senescence relative to normal PMSCs [45].

The lower expression of MIF in placental tissue [115] and higher levels in maternal
serum [44] could be explained by its increased release in the placenta intervillous blood
(IVB) and hence in the maternal blood. High levels of MIF have also been reported
in the IVB plasma from women infected with malaria [128]. In a rat model of bladder
inflammation, it was shown that MIF concentration is decreased in the endothelium and
increased in the bladder lumen [129]. Moreover, in the human it was demonstrated that
the influenza A virus infection induces a reduction of MIF in bronchial epithelial cells with
an increase in extracellular MIF levels [130]. An alternative explanation could be that the
systemic inflammation originated by the hypoxic placenta induces the release of a large
amount of MIF by non-reproductive tissues [119].

MIF in fetal membranes. MIF concentration in fetal membranes is significantly higher
in AGA-PE cases compared with controls, but not in IUGR-PE [115]. MIF immunostaining
was stronger on epithelial cells of amnion side and decidual cells. A similar increase in
MIF immunostaining was found in fetal membranes of placentae from pregnancies with
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malaria infection [131]. This would be further evidence that symptomatic or asymptomatic
infections have an etiologic role in the development of PE [44,49–53].

Taken overall, the above data confirm that MIF plays a role in the pathogenesis of
PE, but its role is different as different pathogenetic pathways are recognized. The data
reported so far led us to speculate that in IUGR-PE and/or early-onset PE, low levels of
MIF in early pregnancy contribute to the abnormal placentation, insufficiently stimulating
trophoblast invasion; while later in pregnancy, it may induce the general endothelial injury
both directly and indirectly by stimulating the production of proinflammatory cytokines
(Figure 2). It is less clear which could be its role in AGA-PE and/or late-onset PE as
no significant differences compared to controls are reported in early and late pregnancy
maternal MIF serum levels or in late pregnancy placental concentration. However, it could
play a role in PE of infectious origin, one of the many possible causes underlying this group
of PE pregnancies.

Figure 2. Potential role of MIF in the pathogenesis of placental pre-eclampsia. Low MIF production in early pregnancy would
contribute to the abnormal placentation with subsequent placenta hypoxia and increased production of proinflammatory
cytokines, placental debris, and oxidative stress leading to pre-eclampsia.

4. Conclusions

MIF has a role in normal and PE pregnancy. In early pregnancy it contributes to
trophoblast invasion and normal development of the placenta. MIF deficiency in the
first/early second trimester of pregnancy can lead to miscarriage, or to placental impair-
ment if the pregnancy continues, thus contributing to the pathogenesis of placental PE. It
has to be elucidated if the higher levels of third trimester maternal serum MIF are a cause
or an effect of the disease. The role of MIF in the pathogenesis of maternal PE is less clear.
It might contribute to cases of infectious origin, but its effects can be blunted due to the
many other causes involved in the development of this type of PE (metabolic, cardiovas-
cular, autoimmune disorders). Therefore, more targeted studies should be performed to
understand its role in maternal PE.
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