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Abstract

In this paper, we study some potential-theoretic aspects of the eikonal and infinity Laplace
operator on a Finsler manifoldM . Our main result shows that the forward completeness of
M can be detected in terms of Liouville properties and maximum principles at infinity for
subsolutions of suitable inequalities, including ΔN∞u ≥ g(u). Also, an∞-capacity criterion
and a viscosity version of Ekeland principle are proved to be equivalent to the forward com-
pleteness ofM . Part of the proof hinges on a new boundary-to-interior Lipschitz estimate
for solutions of ΔN∞u = g(u) on relatively compact sets, that implies a uniform Lipschitz
estimate for certain entire, bounded solutions without requiring the completeness ofM .

Contents
1 Introduction 2

1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Basics on Finsler manifolds 8
2.1 Forward and backward completeness . . . . . . . . . . . . . . . . . . . . . . 10

3 Viscosity solutions 12
3.1 Calabi’s trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Comparison with g-cones and Lipschitz regularity 15

5 Proof of Theorem 1.1 22

6 Appendix I: A homogeneous comparison 28

7 Appendix II: The Dirichlet problem 29

1



1 Introduction
The main purpose of the present work is to study the relationship between the metric properties
of a Finsler manifold and the potential-theoretic properties of the∞-Laplace operator

Δ∞u ∶= Hess u(∇u,∇u)

and its normalized version

ΔN∞u ∶= Hess u
(

∇u
|∇u|

, ∇u
|∇u|

)

.

Our investigation arises in connection to the fully nonlinear potential theory developed in [37,
38] in a Riemannian setting (cf. also [50, 49]), whose main goal is to recast, in a unified
framework, various maximum principles at infinity available in the literature: the celebrated
Ekeland [24, 25] and Omori-Yau ones [45, 57, 19], as well as those coming from stochastic
geometry (the weakmaximum principles of Pigola-Rigoli-Setti [48], related to the parabolicity
and the stochastic and martingale completeness of a Riemannian manifold). The appearance of
first order conditions in the statements of Ekeland and Omori-Yau principles calls for a theory
that includes eikonal equations, and opens the way to encompass the ∞-Laplace operator,
tightly related to the eikonal one.

The infinity Laplacian has received great attention after the pioneeringwork of G. Arronson
[7, 8] in the 1960s, and showed intriguing connections with pure and applied mathematical
issues, as for example, Tug-of-war games [12, 46, 51], mass transportation problems [27] and
others. The study of the infinity Laplacian is strictly related with anL∞ minimization problem:
given a bounded domain Ω ⊂ ℝm and a Lipschitz function � ∶ )Ω → ℝ, to find an extension
u of � in Ω such that the Lipschitz constant Lip(u, A) ≤ Lip(ℎ,A) for any A ⋐ Ω and ℎ
which agrees with u on )A. Such a function is called an absolutely minimizing Lipschitz
extension, shortly AMLE [21, 18]. Jensen in [31] showed that u is AMLE if and only if u
solves Δ∞u = 0 in the viscosity sense, and by [22, 31] AMLE functions are also characterized
by the comparison principle with cone functions

Cx(y) = a + b|x − y| a, b ∈ ℝ and y ∈ ℝm,

which are fundamental solutions of the homogeneous infinity Laplacian. All these properties
are foundational in the theory of infinity harmonic functions onℝm. Since then, various works
have been devoted to the analysis of Δ∞ on more general spaces, and an account can be found
in [21, 9]. Especially, on domains of ℝm equipped with a Finsler norm, the AMLE problem
and the associated∞-Laplace operator have been studied in [55, 29, 41, 42].

In [37], building on the above characterizations of ∞-harmonic functions, the geodesic
completeness of a Riemannianmanifoldwas characterized in terms of various potential-theoretic
properties of Δ∞, among them a suitable version of Ekeland principle for subsolutions of
Eikonal type equations and the validity of the following Liouville theorem:

entire viscosity solutions of Δ∞u ≥ 0 with sup
M
u <∞ are constant. (1)

In the present work we improve results from [37] on different aspects. First of all, we consider
more general inhomogeneous inequalities of the type

ΔN∞u ≥ g(u) (2)

for continuous non-negative g. This class includes reaction-diffusion equations with strong
absorption as those investigated in [4]. Such general setting brings extra difficulties: for ex-
ample, to overcome the lack of AMLE properties tailored to solutions of (2) we shall prove
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a boundary-to-interior Lipschitz estimates for solutions of (2) (with the equality sign) which
only depends on the L1 norm of g. The result might be of independent interest (cf. Section
1.1). Among other things, we study whether a Liouville property for bounded solutions of
(2) for some non-negative g still detects the completeness of M or rather a weaker property.
In this respect, the ∞-Laplacian behaves differently from other operators, notably from the
p-Laplacian for 1 < p <∞, despite their relation showed by the formal limit

ΔN∞u = lim
p→∞

|∇u|2−p

p
Δpu.

Indeed, in a geodesically complete manifold the validity of the Liouville theorem as in (1)
for the differential inequality Δpu ≥ g(u) is achieved from sharp geometric criteria that vary
accordingly to the vanishing or positiveness of the function g. When g ≡ 0, a sharp sufficient
condition is given by

∫

∞(

sds
|Bs|

)
1
p−1

= ∞,

where |Br| is the volume of a geodesic ball centered at a fixed origin (see [48]). On the other
hand, for g > 0 a sharp threshold is given by

lim inf
r→∞

log |Br|
r2

<∞,

see Theorem 2.24 and Proposition 7.4 in [14]. In the semilinear case p = 2, this difference
is clarified in terms of stochastic geometry (cf. [1, 28, 48] for a detailed account): briefly, if
g ≡ 0, the Liouville theorem (1) forΔu ≥ 0 turns out to be equivalent to the parabolicity ofM ,
which means that almost surely any Brownian path visits every compact set infinitely often,
while the case g > 0 on ℝ+, g(0) = 0, ties to the stochastic completeness ofM , that is, to the
property that Brownian paths onM have infinity lifetime almost surely, see [47, 48, 3].

A source of motivation for preseting our results in the framework of general Finsler man-
ifolds comes from causality theory in General Relativity. In fact, as showed in [17], there is
a correspondence between stationary Lorentzian manifolds and Finsler manifolds of Randers
type: to any (m + 1)-dimensional Lorentzian manifold M̄ = ℝ ×M that is stationary, in the
sense that its metric can be written as

−dt2 + �∗!⊗ dt + dt ⊗ �∗! + �∗g0

for some Riemannian manifold (M,g0) and some 1-form ! on M (with t ∶ M̄ → ℝ and
�∗ ∶ M̄ →M the projections onto the first and second factors), the correspondence associates
a Finsler structure of Randers type onM by setting

F (p) ∶=
√

g0(p, p) + !(p)⊗!(p) + !(p)

Remarkably, the causal geometry of M̄ can be grasped by studying the metric geometry of
(M,F ), and in this respect it is therefore useful to find criteria to guarantee the forward com-
pleteness of (M,F ). For instance, in [17, Thm. 4.4] the authors proved that the forward and
backward completeness of (M,F ) is equivalent to the fact that M is a Cauchy hypersurface
(see also [17, Rmk. 4.5]), while in [17, Thm. 4.3] they showed the equivalence between the
global hyperbolicity of M̄ and the precompactness of symmetrized balls in (M,F ).
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1.1 Main results
Let (M,F ) be a Finsler manifold (the basics of Finsler Geometry are recalled in Section 2).
We assume the Finsler norm F ∶ TM → [0,∞) be positively homogeneous of degree 1, and
F 2 be strictly convex when restricted on each fiber of TM → M . For smooth u, the Chern
connection associated to F allows to define the Hessian of a function and, consequently, a
Finsler∞-Laplacian. Also, the norm F induces a pseudo-distance d onM that is, d satisfies all
of the requirements of a distance function but, possibly, its symmetry. The lack of symmetry
introduces further issues, among them the need to distinguish which properties relate to the
forward completeness of M rather than to its backward one. The forward completeness for
(M,F ) is defined by asking that forward Cauchy sequences converge, i.e. if {xi} satisfies the
following Cauchy condition:

∀ " > 0, ∃N = N(") ∈ ℕ ∶ N ≤ i < j ⟹ d(xi, xj) < ",

then {xi} converges. Following [18], we define the Lipschitz constant of u on a set A to be

Lip(u, A) ≐ inf
{

L ∈ [0,∞] ∶ u(y) − u(x) ≤ Ld(x, y) ∀ x, y ∈ A
}

. (3)

Let %+(x) = d(o, x) denotes the distance from a fixed origin o ∈M . We are ready to state our
main result. Note that solutions are meant to be in the viscosity sense, see [23].

Theorem 1.1. Let (M,F ) be a connected Finsler manifold. Then, the following properties
are equivalent:

1) (M,F ) is forward complete.

2) Having denoted with %+ the forward distance from a fixed origin,
{

ΔN∞u ≥ 0 on M,

u+(x) = o
(

%+(x)
)

as %+(x)→ +∞
⟹ u is constant. (4)

3) For some/every g ∈ C(ℝ) with g(0) = 0 and g ≥ 0 on ℝ+, the following holds:
{

ΔN∞u ≥ g(u) on M,

0 < supM u < +∞
⟹ u is constant.

4) For some/every g ∈ C(ℝ) with g(0) = 0 and g ≥ 0 on ℝ+, the following holds: for
every open subset Ω ⊂ M ,

{

ΔN∞u ≥ g(u) on Ω,

0 < supΩ u < +∞
⟹ sup

Ω
u = sup

)Ω
u. (5)

5) For some/every � ∈ (0, 1) and � > 0, it holds

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ΔN∞u ≥ �u�+ on M,

lim sup
%+(x)→+∞

u+(x)

%+(x)
2
1−�

< 1−�

√

�
(1 − �)2
2(1 + �)

⟹ u is a (nonpositive) constant.

(6)
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6) For some/every K ⊂ M compact, it holds

inf
u∈ℒ (K,M)

Lip(u,M) = 0,

where
ℒ (K,M) =

{

u ∈ Lipc(M), u ≤ −1 on K
}

. (7)

7) For some/every K ⊂ M compact, the∞-capacity of K vanishes:

cap∞(K) ∶= inf
u∈ℒ (K,M)

‖F (∇u)‖L∞(M) = 0,

whereℒ (K,M) is defined in (7).

8) For some/every 0 < G ∈ C(ℝ), the following holds: for every open subset Ω ⊂ M , and
for every viscosity subsolution of

{

G(u) − F (∇u) = 0 on Ω,

supΩ u <∞
⟹ sup

Ω
u = sup

)Ω
u. (8)

9) (Ekeland principle). For every u ∈ USC(M) with supM u < ∞, for every " > 0 and
x0 ∈ M such that u(x0) > supM u − ", and for every � > 0, there exists x̄ ∈ M such
that

u(x̄) ≥ u(x0), d(x0, x̄) ≤ �, and u(y) ≤ u(x̄) + "
� d(x̄, y) ∀ y ∈M.

Some remarks on the equivalences in Theorem 1.1 are in order:

The some/every alternative. Property 3), as well as 4), holds for every g as in the state-
ment provided that it holds for some such g. In particular, in view of our assumption on
g, the every alternative is equivalent to require 3) for the smallest choice g ≡ 0. There-
fore, unlikely the case of Δp with p <∞, for the∞-Laplacian the Liouville theorems for
ΔN∞u ≥ g(u) under the assumptions g ≡ 0 or g(0) = 0, g > 0 on ℝ+ are equivalent.

Backward completeness. The notion of backward completeness for (M,F ), demanding
that backward Cauchy sequences converge, corresponds to the forward completeness of
the dual Finsler structure

F̃ (p) ∶= F (−p), p ∈ TM,

hence it can be described via the eikonal and normalized∞-Laplacian Δ̃N∞ associated
to F̃ . In view of the identity

Δ̃N∞u = −Δ
N
∞(−u),

the backward completeness of (M,F ) can be detected by minimum principles for solu-
tions of ΔN∞u ≤ g(u). We leave the statement to the interested reader.

On implication 1)⇒ 2). In Euclidean space, this implication was shown in [33, 22] in
a different way, namely as a consequence of the Harnack inequality for∞-subharmonic
equations (see [33, 34, 32], and also [26]).
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On conditions 8), 9) - a viscosity Ekeland principle. Implication 1) ⇒ 9) is the cel-
ebrated Ekeland principle [25, 24], originally stated for metric spaces, while 9) ⇒ 1)
has been pointed out by J.D. Weston [54] and F. Sullivan [53]. Extension to the Finsler
setting is straightforward, since Weston-Sullivan arguments as well as the proof of 9)
provided in [25, p.444] do not use the symmetry of d at any step. We included 9) for the
sake of completeness, and to emphasize that 8) can be interpreted as a viscosity version
of Ekeland principle.

On condition 5). Reaction-diffusion equations with strong absorption as in 5) were in-
vestigated in [4], where the authors proved regularity for the unnormalized case Δ∞u =
�u+ in ℝm, 0 ≤  < 3, and related Liouville theorems for entire solutions satisfying

u(x) = O(|x|
4
3− ) as |x| → ∞. (9)

In the limit  → 0, this relates to the ∞-obstacle problem. The constant bounding the
limsup in (6) is sharp, as readily seen on flat Euclidean space by noting that

u(x) = 1−�

√

�
(1 − �)2
2(1 + �)

|x|
2
1−�

solves ΔN∞u = �u
� .

On conditions 7), 8). The equivalence between 1) and 7), 8) was observed in [50, Thms.
2.28 and 2.29] in a Riemannian setting: it is inspired by the characterization of parabolic
Riemannianmanifolds bymeans of the vanishing of the 2-capacity cap2(K) of some/every
compact setK (cf. [28]), and to equivalent ones for the p-Laplacian, p ∈ (1,∞) in terms
of the p-capacity

capp(K) ∶=
{

∫M
|∇u|p ∶ u ∈ Lipc(M), u ≥ 1 on K

}

.

Observe that, to detect the forward completeness, we had to switch signs and define our
classℒ (K,M) by requiring u ≤ −1 on K .

Normalized vs unnormalized∞-Laplacian. The equivalence between items 1),… , 5)
could be rephrased for the unnormalized ∞-Laplacian with minor changes, replacing
ΔN∞u ≥ g(u) with the inequality

Δ∞u ≥ g(u)|∇u|2,

and 5) with the following statement:

5’) for some/every � ∈ (0, 3) and � > 0, it holds

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Δ∞u ≥ �u�+ on M,

lim sup
%+(x)→+∞

u+(x)

%+(x)
4
3−�

< 3−�

√

�
(3 − �)4
64(1 + �)

⟹ u is a (nonpositive) constant.

The fact that the forward completeness of (M,F ) implies any of 2),… , 4) is not difficult to
prove, and might be well-known among specialists, although we found no precise reference; on
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the other hand, 1)⇒ 5) is more subtle, due to the possibility that the limsup in (6) be positive,
and inspired by [4]. We briefly comment on implications 8) ⇒ 1) and 3) ⇒ 1), that are the
technical core of the present work.

The proof of 8) ⇒ 1) exploits results in [40, 37], namely it uses the Ahlfors-Khas’minskii
duality (AK-duality, for short). Roughly speaking, for a large class of fully nonlinear inequal-
ities

ℱ (x, u, du,Hess u) ≥ 0, (10)

the AK-duality establishes the equivalence between a maximum principle at infinity for solu-
tions of (10), in the form given by (5) (called there the Ahlfors property), and the existence of
solutions of the dual inequality

ℱ̃ (x, u, du,Hess u) ≥ 0, with ℱ̃ (x, r, p, A) = −ℱ (x,−r,−p,−A),

that decay to −∞ as slow as we wish1 (named Khas’minskii potentials). The eikonal equation

G(u) − F (∇u) = 0

falls into the class of PDEs forwhich theAK-duality holds, thuswe can construct aKhas’minskii
potentialw that is a subsolution of the dual equation F̃ (∇̃w)−G̃(w) = 0, with F̃ the dual Finsler
structure, ∇̃ the gradient induced by F̃ and G̃(t) ∶= G(−t). The existence of w easily implies
the forward completeness ofM . The construction of w proceeds, as in [37, 38], by stacking
solutions of obstacle problems, and has independent interest.

A key point in our arguments is related to the proof of implication 3) ⇒ 1). The sought
conclusion is obtained by constructing a sequence {uj} of functions which solve equation
ΔN∞u = g(u) on an increasing family of relatively compact sets Ωj . The main issue is then
to guarantee that such sequence locally converges to a limit solution u∞ onM∖K , where K is
a fixed small compact set. This requires to prove a uniform global Lipschitz bound for uj on
possibly incomplete manifolds, obtained in the following result.

Theorem 1.2. Let Ω ⋐ (M,F ), and let u ∈ C(Ω) satisfying

ΔN∞u = g(u) on Ω, (11)

for a continuous, non-decreasing and non-negative function g defined on u(Ω). If u is Lipschitz
on )Ω, then u is Lipschitz on Ω. Furthermore,

Lip(u,Ω) ≤

√

Lip(u, )Ω)2 + 2∫

supΩ u

infΩ u
g(s)ds. (12)

Inequality (12) is boundary-to-interior, and its relevance is motivated by the fact that stan-
dard Lipschitz estimates for infinity subharmonic functions as those in [22, Lemma 2.5] are not
suited to our purposes. Indeed, such estimates are local on relatively compact balls BR, and
blow up asR → 0. Hence, they cannot be turned into a global Lipschitz bound onM unless all
forward balls of some fixed radius are relatively compact inM , which is the case if and only if
M is forward complete. In [37], for g ≡ 0, the authors reach the goal by exploiting the abso-
lutely minimizing property of the ∞-harmonic functions uj , a characterization that currently

1We say that u decays to −∞ if upper level sets of u have compact closure inM .
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seems unavailable2 for solutions of (11). We overcome the problem by showing a Lipschitz
bound directly via comparison with radial solutions g (hereafter called g-cones), extending an
elegant argument in [9, Prop. 2.1]. Note that in the particular case g ≡ 0, this suitably reduces
to the AMLE condition Lip(u,Ω) = Lip(u, )Ω).

The paper is organized as follows: in Section 2 we collect some preliminary material and
main properties of Finsler manifolds. In Sections 3 and 4, we define viscosity solutions of
∞-Laplace equations, state their main comparison results with forward and backward g-cones,
and prove Theorem 1.2. Eventually, in Section 5 we prove Theorem 1.1. Appendices I and II
contain some ancillary results adapted to the Finsler setting.

Acknowledgements. The authors would like to express their gratitude to Andrea Mennucci,
for interesting discussions, and toMiguel Angel Javaloyes, for suggesting reference [17] and for
pointing out to us the relation with the causality theory in Lorentzian manifolds. The first and
third authors are partially supported by CNPq-Brazil, grant 2019/0014 Paraiba State Research
Foundation (FAPESQ) and PROMISSÕES-UFPI (010/2018), respectively. They also would
like to thank the worm hospitality of the Abdus Salam International Centre for Theoretical
Physics (ICTP), and of the Mathematisches Forschungsinstitut Oberwolfach (MFO), where
part of this work was conducted.

2 Basics on Finsler manifolds
LetM be an m-dimensional smooth manifold. As usual we denote by TM ≐ ∪x∈MTxM the
tangent bundle ofM , where TxM means the tangent space at x ∈ M . Each element of TM
has the form (x, p), where x ∈M and p = pi ))xi ∈ TxM . A Finsler structure onM (cf. [10])
is a function F ∶ TM → [0,∞) satisfying the following properties:

i) Regularity: F is smooth on TM∖0, with 0 the zero section.

ii) Positive homogeneity: F (x, �p) = �F (x, p) for all � > 0.

iii) Strong convexity: The fundamental tensor

gij(x, p) ∶=
1
2
)2F 2(x, p)
)pi)pj

is positive definite at every (x, p) ∈ TM∖0.

Note that the expression gij(x, p)pipj is invariant by a change of coordinates. We call a Finsler
manifold the pair (M,F ), where M is a smooth manifold and F is a Finsler structure on

2In this respect, note that (11) is not included in the class of PDEs considered in [13], where the authors compute
the Euler-Lagrange equations of absolute minimizers for

ℐ (u,Ω) = ess sup
x∈Ω

f (x, u(x), du(x))

In our case (say, even in a Riemannian setting), the PDE Δ∞u = g(u)|∇u|2 for the unnormalized∞-Laplacian would
be, formally, the Euler-Lagrange equation for the choice

f (x, s, p) = |p|2 − 2∫

s

0
g(t)dt,

a function that does not satisfy all of the assumptions in Theorem 3.5 of [13].
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M . Riemannian manifolds (M,g) are a particular subclass of Finsler manifolds, obtained by
choosing

F (x, p) ∶=
√

gij(x)pipj .

The induced Finsler structure F ∗ ∶ T ∗M → [0,∞) on the cotangent bundle is defined by

F (x, �) ≐ sup
p∈TxM∖0

�(p)
F (x, p)

= sup
F (x,p)=1

�(p),

and gives rise to a family of Minkowski norms F ∗ = {F ∗x }x∈M with corresponding fundamen-
tal tensor

g∗kl(�) = 1
2
)2F ∗2(�)
)�k)�l

.

Hereafter, we write F (p), F ∗(�) for notational convenience, suppressing the dependence on
x. We will use the Chern connection of (M,F ), defined on the vector bundle �∗TM , where
� ∶ TM∖0→M is the natural projection. Its connection forms are torsion free, that is,

dxj ∧ !ij = 0,

which means that dpk are absent in the definition of !ij , namely,

!ij = Γ
i
jkdx

k, and Γijk = Γ
i
kj .

Let Ω ⊂ M be open and consider a coordinate system (xi, )
)xi ) on TΩ. Given a non-

vanishing vector field v = vi
)
)xi on Ω, we introduce a Riemannian metric gv and a linear

connection ∇v on TΩ by setting, for p = pi ))xi and q = q
i )
)xi in TxΩ,

gv(p, q) ≐ piqjgij(x, v), and ∇v)
)xi

)
)xj

≐ Γkij(x, v)
)
)xk

.

We define the Legendre transformation l ∶ TM → T ∗M by

l(p) =
{

gp(p, ⋅), p ≠ 0,
0, p = 0.

Remarkably, l ∶ TM∖0→ TM∗∖0 is a smooth diffeomorphism and

F ∗(l(p)) = F (p), for all p ∈ TM.

Consequently, g∗ij(l(p)) coincides with the inverse of gij(p) (see [10], [52]), and the map
l−1 ∶ T ∗M → TM does exist. Given a smooth function f ∶ M → ℝ, we therefore define
the gradient of f as

∇f = l−1(df ).

In particular, note that

df (p) ≤ F ∗(df )F (p) = F (∇f )F (p) ∀ f ∈ C1(M), p ∈ TM,

df (p) = g∇f (∇f, p) on f =
{

x ∶ dxf ≠ 0
}

, for all p ∈ TM.

Following [56], given a smooth function f we define its Hessian Hess f onf by

Hess f (V ,W ) ≐ V W (f ) − ∇∇fV W (f ), for all V ,W ∈ Tf .
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It is easy to see that Hess f is symmetric and can be rewritten as

Hess f (V ,W ) = g∇f
(

∇∇fV ∇f,W
)

.

An alternative construction is proposed in [52], where the Hessian of f is defined as the
map

D2f ∶ TM → ℝ, D2f (p) ≐ d2

ds2
(f◦)

|s=0
,

with  ∶ (−", ")→M the geodesic satisfying  ′(0) = p. In [56], the authors point out that

D2f (V ) ≡ Hess f (V , V ), for all V ∈ Tf .

2.1 Forward and backward completeness
For x0, x1 ∈M , denote by Γ(x0, x1) the collection of all piecewise smooth curves  ∶ [a, b]→
(M,F ) with (a) = x0 and (b) = x1. The distance d ∶M ×M → [0,∞) is defined by

d(x0, x1) ≐ inf
Γ(x0,x1)

L(), with L() ∶= ∫

b

a
F ( ′(t))dt

the length of  . Despite d is not a metric, the space (M, d) satisfies the first two axioms of a
metric space:

1. d(x0, x1) ≥ 0, with equality holding iff x0 = x1.

2. d(x0, x2) ≤ d(x0, x1) + d(x1, x2).

The symmetry d(x0, x1) = d(x1, x0) is satisfied whenever the Finsler structure F is absolutely
homogeneous, that is F (�p) = �F (p) for every � ∈ ℝ. In this case, (M, d) is a genuine metric
space.

For x̄ ∈M fixed, and r > 0, we define on Tx̄M the tangent balls and spheres of radius r

Bx̄(r) ∶=
{

p ∈ Tx̄M ∶ F (x̄, p) < r
}

, Sx̄(r) ∶=
{

p ∈ Tx̄M ∶ F (x̄, p) = r
}

,

and the corresponding forward metric balls and spheres

+x̄ (r) ∶=
{

x ∈M ∶ d(x̄, x) < r
}

, +x̄ (r) ∶=
{

x ∈M ∶ d(x̄, x) = r
}

.

The associated backward balls and spheres

−x̄ (r) ∶=
{

x ∈M ∶ d(x, x̄) < r
}

, −x̄ (r) ∶=
{

x ∈M ∶ d(x, x̄) = r
}

coincide with the forward balls of the dual Finsler structure F̃ . As proved in Section 6.2 C of
[10], the topology of the underlying manifold and that generated by the forward balls coincide.
Hence we can state that a sequence xi → x in M if, given any open set O ∋ x, there is a
positive integer N (depending on O) such that xi ∈ O whenever i ≥ N . According to [10,
Lemma 6.2.1], for a fixed point x0 ∈M there exist an open neighbourhood U and a constant
� > 1, depending on x0 and U , such that

1
�
d(x2, x1) ≤ d(x1, x2) ≤ �d(x2, x1) ∀ x1, x2 ∈ U. (13)

Therefore, the statements

xi → x, d(x, xi)→ 0, d(xi, x)→ 0

are equivalent. However, this is not the case in general for Cauchy sequences.
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Definition 2.1. A sequence {xi} inM is called a forward (resp., backward) Cauchy sequence
if, for all " > 0, there exists a positive integer j" (depending on ") such that

j" ≤ i < j ⟹ d(xi, xj) < " [resp., d(xj , xi) < "].

Definition 2.2. A Finsler manifold (M,F ) is said to be forward complete if every forward
Cauchy sequence converges inM . It is said to be backward complete if every backward Cauchy
sequence converges.

A geodesic  from x̄ to x is a curve that is stationary for L. It can (and will henceforth) be
reparametrized via an affine map to have constant velocity F ( ′) ≡ 1. The exponential map
expx̄ associates to v ∈ Tx̄M the value v(1) of the unique forward geodesic v issuing from
x̄ with constant velocity F (v). The following result summarizes the minimizing properties of
short geodesics that we need.

Theorem 2.3. Let (M,F ) be a Finsler manifold. Then, for a given compact setK , there exists
" > 0 such that

1) [10, pp. 126-127] The map

exp ∶
{

v ∈ TK ∶ F (v) < "
}

→M, exp(x, v) = expx(v)

is a C1-diffeomorphism onto its image, and C∞ outside of the zero section.

Fix a point x̄ and suppose that, for some r, " > 0, expx̄ is aC1-diffeomorphism from the tangent
ball Bx̄(r + ") onto its image (we call these balls regular). Then:

2) [10, Thm. 6.3.1] Each radial geodesic expx̄(tv), 0 ≤ t ≤ r, F (x̄, v) = 1 is the unique
curve that minimizes distance among all piecewise C∞ curves inM with the same end-
poits.

The corresponding behaviour of the distance function from (or towards) a fixed origin
x̄ ∈ M on small balls has been described in [52, Lemma 3.2.4], and in [56, Eq. (4.1)]. Sum-
marizing, we have

Proposition 2.4. [52, 56] Let (M,F ) be a Finsler manifold, let r > 0 be such that +x̄ (r) and
−x̄ (r) are regular geodesic balls. Then, the functions

%+(y) = d(x̄, y), %−(y) = −d(y, x̄)

are smooth on, respectively, +x̄ (r)∖{x̄} and −x̄ (r)∖{x̄}, and there they satisfy

F (∇%±) = 1, Hess %±(∇%±,∇%±) = 0.

Indeed, the identity F (∇%±) = 1 is proved in [52, Lemma 3.2.4], while for the Hessian
identity we observe the following: if  ∶ [0, d(y, x̄)] → −x̄ (r) is a geodesic from y to x̄ with
initial velocity ∇%−(y), then %−((t)) = −d((t), x̄) = t − d(y, x̄) and thus

Hess %−(∇%−,∇%−) = d2

dt2
%−((t)) = 0.

Regarding the behaviour of longminimizing geodesics, we have the following Hopf-Rinow
type theorem due to Cohn-Vossen [20] (cf. also [43, 44] for more general statements, also
considering Finsler metrics constructed from Hamilton-Jacobi equations).
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Theorem 2.5 ([20], see Theorem 6.6.1 in [10]). Let (M,F ) be a connected Finsler manifold.
The following properties are equivalent:

1. (M,F ) is forward complete.

2. (M,F ) is forward geodesically complete, that is, every geodesic (t), a ≤ t ≤ b,
parametrized to have constant speed, can be extended to a geodesic defined on a ≤
t <∞.

3. For some/every x ∈M , expx is defined on all of TxM .

4. Every closed and forward bounded subsetK ⊂ M (in the sense thatK is contained into
some forward ball) is compact.

Furthermore, if any of the above holds, then every pair of points in M can be joined by a
minimizing geodesic.

3 Viscosity solutions
Hereafter, given a test function � regular enough, with � ≺x u (resp., � ≻x u) we mean that �
is defined in a neighbourhood of x, � ≤ u (resp. � ≥ u) and �(x) = u(x). We start by recalling
the definition of subsolutions for the eikonal equations.

Definition 3.1. Given Ω ⊂ M open and G ∈ C(Ω ×ℝ), we say that

1. u ∈ USC(Ω) is a viscosity subsolution of

F (∇u) − G(x, u) = 0 on Ω

if, for every x ∈ Ω and test function � ≻x u of class C1 it holds F (∇�) − G(x, �) ≤ 0
at x.

2. u ∈ USC(Ω) is a viscosity subsolution of

G(x, u) − F (∇u) = 0 on Ω

if, for every x ∈ Ω and test function � ≻x u of class C1 it holds G(x, �) − F (∇�) ≤ 0
at x.

Next, for � ∈ C2(Ω) we define

ΔN,+∞ �(x) =

{

Hess�
(

∇�
F (∇�) ,

∇�
F (∇�)

)

, if dx� ≠ 0,

max
{

D2�(p, p) ∶ F (p) = 1
}

, if dx� = 0.

and

ΔN,−∞ �(x) =

{

Hess�
(

∇�
F (∇�) ,

∇�
F (∇�)

)

, if dx� ≠ 0,

min
{

D2�(p, p) ∶ F (p) = 1
}

, if dx� = 0.

Definition 3.2. Let Ω ⊂ M be open, and let f ∶ ℝ× T ∗Ω → ℝ be a continuous function (the
dependence of f on x ∈ Ω is implicit when writing T ∗Ω).

1. A function u ∈ USC(Ω) is said to solve ΔN∞u ≥ f (u, du)
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∙ in the viscosity sense if, for every x ∈ Ω and every test function � ≻x u of class
C2,

ΔN,+∞ � ≥ f (�(x), d�(x));

∙ in the barrier sense if, for every x ∈ Ω, there exists u" ∈ C2 with u" ≺x u and

ΔN,+∞ u" ≥ f (u"(x), du"(x)) − ".

In these cases, we also say that u is a subsolution (in the viscosity/barrier sense).

2. A function u ∈ LSC(Ω) is said to solve ΔN∞u ≤ f (u, du)

∙ in the viscosity sense if, for every x ∈ Ω and every test function � ≺x u of class
C2,

ΔN,−∞ � ≤ f (�(x), d�(x));

∙ in the barrier sense if, for every x ∈ Ω, there exists u" ∈ C2 with u" ≻x u and

ΔN,−∞ u" ≤ f (u"(x), du"(x)) + ".

In these cases, we also say that u is a supersolution (in the viscosity/barrier sense).

3. A function u ∈ C(Ω) is said to solve

ΔN∞u = f (u, du) on Ω (14)

(in the viscosity/barrier sense) if it is both a subsolution and a supersolution.

Remark 3.3. If u is a subsolution (resp. a supersolution) in the barrier sense, and f is contin-
uous, then u is also a subsolution (supersolution) in the viscosity sense. However, the converse
is not necessarily true.

In the following proposition we state useful properties satisfied by ∞-Laplacian subsolu-
tions, that in our needed generality (the operator is discontinuous) can be found in [30, Thm.
2.6] and [41, Prop. 3.7].

Proposition 3.4. Let Ω ⊂ M be a bounded subset and f ∈ C(ℝ × T ∗Ω).

i) If u, v ∈ USC(Ω) are subsolutions of (14), thenmax{u, v} is also a subsolution of (14).

ii) (Stability) If {uk} ⊂ USC(Ω) is a sequence of viscosity subsolutions of (14), and uk → u
converges locally uniformly in Ω, then u is also a viscosity subsolution of (14).

3.1 Calabi’s trick
We begin with a chain rule for the ∞-Laplacian. Let � ∈ C2(ℝ) and � ∈ C2(Ω), where
Ω ⊂ M is an open set. Since the function w = �◦� solves

ΔN,±∞ w = �′′(�)F 2(∇�) + �′(�)ΔN,±∞ � on Ω∗ =
{

x ∈ Ω ∶ �′(�(x)) > 0
}

, (15)

a direct check shows the following

Proposition 3.5. Let u ∈ USC(Ω) (resp., LSC(Ω)) be a subsolution (resp., a supersolution)
of (14), and let � ∈ C2(ℝ). On the set Ω∗ = {x ∈ Ω ∶ �′(u) > 0}, the function w = �◦u is a
viscosity subsolution (resp., supersolution) of

ΔN∞w = �′′(u)F 2(∇u) + �′(u)f (u, du).

13



The following Lemma is a form of the classical Calabi’s trick [15] adapted to the Finsler
setting. By slightly modifying the original argument, we are able to avoid the assumption that
the underlying manifold be forward complete, a fact that will be important in what follows.

Lemma 3.6 (Calabi’s trick). Let (M,F ) be a Finsler manifold, fix x̄ ∈M and define

%+(y) = d(x̄, y), %−(y) = −d(y, x̄) ∀ y ∈M.

Let x ∈ M∖{x̄}. Then, for every " > 0 small enough there exist functions %+" , %
−
" satisfying

the following properties:

⎧

⎪

⎨

⎪

⎩

%+" , %
−
" are smooth in a neighbourhood U" of x,

%+" ≻x %
+, %−" ≺x %

−

F (∇%±" ) = 1, Hess %±"
(

∇%±" ,∇%
±
"
)

= 0 on U".

(16)

In particular, for every � ∈ C2(ℝ), the functions w±" = �(%
±
" ) satisfy

F (∇w±" ) = �
′(%±" ), ΔN,±∞ w±" = �

′′(%±" ) on U∗ ≐ {x ∈ U" ∶ �′(%±" ) > 0}. (17)

Proof. We first prove the statement for %+. Fix a small " > 0 in such a way that

(i) the backward geodesic ball −x (2") is relatively compact.

(ii) for every y ∈ −x (2"), expy ∶ B
+
y (2") ⊂ TyM → +y (2") is a diffeomorphism.

Choose x" ∈ −x (") to be the minimum point of %+ restricted to −x ("), and define

%+" (y) ≐ d(x̄, x") + d(x", y) ∀ y ∈M.

By the triangle inequality, %+" ≥ %+ on M . We claim that equality holds at y = x. Indeed,
assume by contradiction that %+" (x) = %+(x) + c" for some c" > 0. Let {j} be a sequence of
unit speed curves from x̄ to x with L(j) ≤ %+(x) + j−1 and, for every j, define

tj = inf
{

t ∈ [0, L(j)] ∶ j
(

(tj , L(j)]
)

⊂ −x (")
}

.

Note that xj = (tj) ∈ −x ("). Then,

d(x̄, x) + 1
j ≥ L(j) = L

(

(j)[0,tj ]
)

+ L
(

(j)[tj ,L(j )]
)

≥ d(x̄, x") + d(xj , x) = d(x̄, x") + d(x", x) > d(x̄, x) + c",

a contradiction if j is chosen to be large enough.
Having shown that %+" touches %+ from above at x, by (ii) we deduce that %+" is smooth on

" ≐ +x" (2")∖{x"}, that is a neighbourhood of x. Moreover, by Proposition 2.4

F (∇%+" ) = 1, Hess %+"
(

∇%+" ,∇%
+
"
)

= 0 on ",

as required. The argument is analogous for the signed distance %−: we choose " small enough
to match

(i) the forward geodesic ball +x (2") is relatively compact.

(ii) for every y ∈ +x (2"), expy ∶ B
−
y (2") ⊂ TyM → −y (2") is a diffeomorphism.
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Choose then x" ∈ +x (") minimizing −%− = d(⋅, x̄) on +x (") and define %−" according to the
identity

−%−" (y) ∶= d(y, x") + d(x", x̄) ≥ −%
−(y) ∀ y ∈M.

With the same argument as above, we can show that %−" ≺x %−, and the third condition
in (16) follows from Proposition (2.4) as well. To conclude, on U∗ it holds F (∇w±" ) =
�′(%±" )F (∇%

±
" ) = �

′(%±" ), while from equation (15),

ΔN,±∞ w±" = �′′(%±" )F
2(∇%±" ) + �

′(%±" )Δ
N,±
∞ %±" = �

′′(%±" ).

Corollary 3.7. Let (M,F ) be a Finsler manifold, and � ∈ C2(ℝ). Fix x̄ ∈ M and consider
the signed distance functions

%+(⋅) = d(x̄, ⋅), %−(⋅) = −d(⋅, x̄).

Then, v ∶= �(%+) is a viscosity supersolution of F (∇v) − �′(%+) = 0 on
{

�′(%+) > 0
}

∖{x̄}
(that is, F (∇�) − �′(%+) ≥ 0 holds at x whenever � ≺x v), and there it satisfies

ΔN∞v ≤ �′′(%+)

in the barrier sense. Similarly, the function u ∶= �(%−) is a viscosity subsolution of F (∇u) −
�′(%+) = 0, and it satisfies

ΔN∞u ≥ �′′(%−)

in the barrier sense on
{

�′(%−) > 0
}

∖{x̄}.

Proof. We will just prove it for %+. Let %+" be defined as in Lemma 3.6 and smooth in a
neighbourhood U". Up to reducing ", we can further assume that �′(t) > 0 for every t ∈
[%+(y), %+" (y)] and y ∈ U". Therefore, v" ≐ �(%+" ) ≻x v and

F (∇v") = �′(%+" ) = �
′(%+), ΔN,−∞ v" = �′′(%+" ) = �

′′(%+) at x.

If � ≺x v, then ∇�(x) = ∇v"(x) and thus F (∇�) − �′(%+) = 0 at x.

4 Comparison with g-cones and Lipschitz regularity
In this section, we will consider bounded sub-and supersolutions of the equation

ΔN∞u = g(u) on Ω ⋐M,

where g is a function whose restriction to [u∗, u∗] is non-decreasing and continuous, and u∗ =
infΩ u, u∗ = supΩ u.

For given b ≥ 0, consider a solution �b of
{

�′′b (t) = g(�b(t)) on a maximal interval [0, T ),

�b(0) = u∗, �′b(0) = b.
(18)

Multiplying the equation by 2�′ and integrating we deduce

[�′b(t)]
2 − b2 = G

(

�b(t)
)

, where G(s) = 2∫

s

u∗
g(�)d�. (19)
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If

b >
√

max{−G∗, 0}, (20)

where G∗ ≐ inf [u∗,u∗]G, then �
′
b > 0 and a second integration shows that �b is implicitly

defined by the identity

t = ∫

�b(t)

u∗

ds
√

b2 + G(s)
on [0, T ). (21)

In particular, note that the family {�b} is increasing in b, whenever it is valued on [u∗, u∗].
Given a ∈ [u∗, u∗] we define

Rb(a) ≐ inf
{

t ∈ [0, T ) ∶ �b(t) ≥ a
}

.

This constant encompasses the non translational invariance character of the inhomogeneous
equation, and it helps us to deduce “how far” the g-cones can be defined. In view of (19), for
any values u∗ ≤ a1 < a2 ≤ u∗ we have

‖�′b‖L∞(Rb(a1),Rb(a2)) ≤

√

b2 + 2∫

a2

a1
g+ ≤

√

b2 + 2∫

u∗

u∗
g+. (22)

Remark 4.1. We recall that when the function g is constant, let us say g ≡ c for some
c ∈ ℝ, the solutions of (18) are the quadratic functions �b(t) = u∗ + bt +

c
2 t
2 considered in

[46, 36, 6, 41].

Remark 4.2. If g ≥ 0 on [u∗, u∗], we will also consider the limit case of (21) for b = 0. Under
the validity of the Keller-Osserman condition

∫u+∗

ds
√

G(s)
<∞, (KO)

uniqueness for (18) does not hold, and we select �0 as being the one defined by the limit identity

t = ∫

�0(t)

u∗

ds
√

G(s)
on [0, T ).

If (KO) fails, necessarily g(u∗) = 0 and the only solution of (18) with b = 0 is the function
�0 ≡ u∗. In this case, we set R0(a) ≐ +∞ for every a ∈ (u∗, u∗].

For z ∈ M fixed, we define the forward and backward g-cones centered at z as being,
respectively,

C+z,b(w) = �b
(

d(z,w) + Rb(u(z))
)

on +z
(

Rb(u∗) − Rb(u(z))
)

,

C−z,b(w) = �b
(

Rb(u(z)) − d(w, z)
)

on −z
(

Rb(u(z))
)

.

Example 4.3. For instance, if g = 0,

C+z,b(w) = u(z) + bd(z,w), C−z,b(w) = u(z) − bd(w, z)

are the standard forward and backward cones. If g ≡ c ≠ 0, then

C+z,b(w) = u(z) +
(

b + cRb(u(z))
)

d(z,w) + c
2d(z,w)

2 on +z
(

Rb(u∗) − Rb(u(z))
)

,

C−z,b(w) = u(z) −
(

b + cRb(u(z))
)

d(w, z) + c
2d(w, z)

2 on −z
(

Rb(u(z))
)

.
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Since �′b > 0 on (0, Rb(u
∗)), because of Corollary 3.7, C+z,b and C

−
z,b satisfy, respectively,

⎧

⎪

⎨

⎪

⎩

Δ∞C+z,b ≤ g(C+z,b) on +z
(

Rb(u∗) − Rb(u(z))
)

∖{z},

C+z,b(z) = u(z),

C+z,b = u
∗ on +z

(

Rb(u∗) − Rb(u(z))
)

,

and
⎧

⎪

⎨

⎪

⎩

Δ∞C−z,b ≥ g(C−z,b) on −z
(

Rb(u(z))
)

∖{z},

C−z,b(z) = u(z),

C−z,b = u∗ on −z
(

Rb(u(z))
)

.

Extend C+z,b and C
−
z,b outside of the respective domains by setting them equal to, respectively,

u∗ and u∗, and call the resulting extensions C̄+z,b and C̄
−
z,b. Note that the extensions are Lipschitz

continuous on the entireM , and in view of (22) they satisfy

Lip(C̄+z,b,M) ≤

√

b2 + 2∫

u∗

u∗
g+(s)ds, Lip(C̄−z,b,M) ≤

√

b2 + 2∫

u∗

u∗
g+(s)ds. (23)

Our next result extends the celebrated comparison with cones theorem (cf. [22, 18, 36, 41]
and references therein) for g-cones.

Theorem 4.4. Let Ω ⊂ M be a bounded open set.

i) Suppose that u ∈ USC(Ω) ∩ L∞(Ω) satisfies

ΔN∞u ≥ g(u) in Ω, (24)

and assume
g ∈ C(u(Ω)) be non-decreasing, and b satisfy (20).

Then, for any relatively compact, open setK ⊂ Ω, and any forward g-cone C̄+z,b centered
at z ∈ Ω∖K , we have

u ≤ C̄+z,b on )K ⟹ u ≤ C̄+z,b on K.

ii) Suppose that v ∈ LSC(Ω) ∩ L∞(Ω) satisfies

ΔN∞v ≤ g(v) in Ω, (25)

and assume
g ∈ C(v(Ω)) be non-decreasing, and b satisfy (20).

Then, for any relatively compact, open set K ⊂ Ω and any backward g-cone C̄−z,b cen-
tered at z ∈ Ω∖K , we have

v ≥ C̄−z,b on )K ⟹ v ≥ C̄−z,b on K.

Proof. The argument follows the standard comparison strategy. For i), first observe that the
statement is obvious if u is constant. We argue by contradiction and assume that  ∶= maxK (u−
C̄+z,b) > 0. For " > 0 small enough we define

�"(t) = �b(t + Rb(u(z))) −
"
2
t2,
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and set %+(x) = d(z, x). Up to reducing ", we can assume that

" ≐ maxK (u − �"(%
+)) > max

{


2 ,max)K (u − �"(%

+))
}

,

�′" > 0 on [0, Rb(u∗)],
(26)

where the second line follows from the strict inequality in (20). Let x0 ∈ Int(K) realize ",
and note that �"(%+) < u∗ in a sufficiently small neighbourhood of x0. Choose %+" ≻x0 %

+ as
in Lemma 3.6, and reduce " to satisfy "(�+" )

2 <  . By construction, " + �"(%+" ) ≻x0 u and
therefore, at the point x0,

g
(
2
+ �"(%+" )

)

≤ g
(

" + �"(%+" )
)

≤ ΔN,−∞
(

" + �"(%+" )
)

On the other hand, by Lemma 3.6

ΔN,−∞
(

" + �"(%+" )
)

= �′′" (%
+
" ) = g

(

�"(%+" ) +
"
2
(%+" )

2) − " < g
(

�"(%+" ) +

2
)

,

yielding to a contradiction. Case ii) follows similarly.

When g is constant, with the same argument we deduce the following comparison with
quadratic cones, well-known in the Riemannian setting (cf. [35, 41]), and a related local Lip-
schitz regularity result. For z ∈ Ω we set

d+(z) ≐ sup
{

r > 0 ∶ +z (r) ⋐ Ω
}

, d−(z) ≐ sup
{

r > 0 ∶ −z (r) ⋐ Ω
}

,

and
�+Ω(z) ≐ max

{

d(z,w) ∶ w ∈ Ω
}

, �−Ω(z) ≐ max
{

d(w, z) ∶ z ∈ Ω
}

.

Corollary 4.5. Let Ω ⊂ M be a bounded open set, and let c ∈ ℝ.

i) Suppose u ∈ USC(Ω) ∩ L∞(Ω) solves

ΔN∞u ≥ c in Ω.

Then, for any relatively compact, open set K ⊂ Ω, and any forward quadratic cone C+z,b
centered at z ∈ Ω∖K , and b + cRb(u(z)) ≥ c−�+K (z), we have

max
K

(

u − C+z,b
)

= max
)K

(

u − C+z,b
)

.

Moreover, for every r ∈ (0, d+(z)) and every w ∈ +z (r) it holds

u(w) − u(z)
d(z,w)

≤ max

{

c−r,
c−
2
r + sup

�∈+z (r)

u(�) − u(z)
r

}

+
c−
2
d(z,w). (27)

ii) Suppose v ∈ LSC(Ω) satisfies

ΔN∞v ≤ c in Ω.

For any relatively compact, open set K ⊂ Ω and any backward quadratic cone C−z,b
centered at z ∈ Ω∖K , and b + cRb(u(z)) ≥ c+�−K (z), we have

min
K

(

v − C−z,b
)

= min
)K

(

v − C−z,b
)

. (28)
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Moreover, for every r ∈ (0, d−(z)) and every w ∈ −z (r) it holds

v(z) − v(w)
d(w, z)

≤ max

{

c+r,
c+
2
r + sup

�∈−z (r)

v(z) − v(�)
r

}

+
c+
2
d(w, z).

In particular, u and v are locally Lipschitz.

Proof. To prove (27) and (28) we just compare u and v with the cones

C+z,b(w) = u(z) + (b + Rb(u(z)))d(z,w) +
c
2
d(z,w)2,

and
C−z,b(w) = u(z) − (b + Rb(u(z)))d(w, z) +

c
2
d(w, z)2,

either on K or, respectively, on the balls +z (r) and −z (r). The restrictions b + cRb(u(z)) ≥
c−�+K (z) and b + cRb(u(z)) ≥ c+�−K (z) enable us to apply Corollary 3.7 on the entire K .

Remark 4.6. Corollary 4.5 shall be compared with Theorems 4.1 and 4.7 in [41]. We remark
that our quadratic cones are parametrized in a different way.

This comparison with cones theory allows us to assert the validity of the following strong
finite maximum principle which will be crucial in the proof of our main results.

Corollary 4.7. Let Ω ⊂ M be a connected open subset. If u ∈ USC(Ω) is a subsolution
of ΔN∞u = 0 in Ω, then u cannot attain an interior maximum point, unless u is constant. If
v ∈ LSC(Ω) is a supersolution of ΔN∞v = 0 in Ω, then v cannot attain a interior minimum
point, unless v is constant.

Proof. We only describe the proof for subsolutions, since the other case follows along similar
lines. Let y ∈ Ω be a maximum point, fix a forward ball +y (r) ⊂ Ω and � > 1 as in (13)
for U = +y (r). Let z ∈ +y (�

−1r∕2), and note that the triangle inequality and (13) imply
y ∈ +z (r∕2) ⊂ +y (r). Applying Corollary 4.8 on 

+
z (r)∖{z} to u and the forward linear cone

C+z (w) = u(z) +
2(u(y) − u(z))

r
d(z,w),

we conclude that
0 ≤

(

u(y) − u(z)
)( r

2
− d(z, y)

)

≤ 0,

hence u is constant on +y (�
−1r∕2), and the conclusion follows by an open-closed argument.

Another important consequence of Corollary 4.5 is the following comparison theorem for
the homogeneous case. Its proof, for Euclidean space with its flat Riemannian metric, was
first given by Jensen [31] with a delicate procedure (see also [9, 11]). A subsequent short and
elegant argument has been provided by Armstrong and Smart [5], and in Appendix I below we
describe the necessary changes to adapt their proof to the Finsler setting.

Theorem 4.8. Let Ω ⋐M and assume that u ∈ USC(Ω), v ∈ LSC(Ω) satisfy

ΔN∞u ≥ 0, and ΔN∞v ≤ 0 in the viscosity sense on Ω.

Then,
max
Ω
(u − v) = max

)Ω
(u − v).
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Comparison with standard linear cones is fundamental in the theory of the ∞-Laplace
equation, and provides the bridge to show the equivalence between ∞-harmonicity and the
absolutely minimizing Lipschitz property (see [9, 18, 21], and references therein).

Definition 4.9. Let Ω be a proper subset of M . We say that u ∈ Lip(Ω) is an absolutely
minimizing Lipschitz function on Ω if, for all open subset A ⊂ Ω,

Lip(u, A) = Lip(u, )A).

As recalled in the introduction, a characterization of ΔN∞u = g(u) in terms of certain ab-
solutely minimizing properties seems still unavailable. In order to achieve a uniform, global
Lipschitz regularity without using the completeness ofM , we introduce the following

Definition 4.10. Given Ω ⊂ M , u ∈ C(Ω) and a compact subset A ⊂ Ω, we define the sliding
slope

bA ≐ inf
{

b >
√

max{−G∗, 0} ∶ ∀ z ∈ A, C̄−z,b ≤ u ≤ C̄+z,b on A
}

.

If the set is empty, we define bA ≐ +∞.

It is easy to see that bA < +∞ if and only if u
|A is Lipschitz.

Example 4.11. If g = 0, since C+z,b(w) = u(z) + bd(z,w) and C−z,b(w) = u(z) − bd(w, z) we
have bA = Lip(u, A).

Remark 4.12. If g(u(Ω)) ≥ 0, the convexity of � solving (18) implies that the set
{

b > 0 ∶ ∀ z ∈ A, C̄−z,b ≤ u ≤ C̄+z,b on A
}

is the half-line (bA,∞).

Lemma 4.13. If g(u(Ω)) ≥ 0 then

bA ≤ Lip(u, A).

Proof. Let b ≐ Lip(u, A), so upward linear cones L+z,b = u(z) + bd(z, ⋅) and downward linear
cones L−z,b = u(z) − bd(⋅, z) can be slid along z ∈ A remaining, respectively, above and below
the graph of u on A. Since � is convex up until it reaches value u∗, a forward g-cone C̄+z,b lies
aboveL+z,b up until the latter reaches the value u

∗, hence C̄+z,b ≥ u onA. Again by the convexity
of �, a downward g-cone C̄−z,b with vertex at z ∈ A and slope b lies below the linear cone L−z,b
until the latter reaches value u∗, hence C̄−z,b ≤ u on A. By its very definition, bA ≤ b.

We will state now our main result of this section, Theorem 1.2, in the following strength-
ened form:

Theorem 4.14. Let Ω ⋐M , and let u ∈ C(Ω) satisfy

ΔN∞u = g(u) on Ω,

where g is continuous, non-decreasing and non-negative on u(Ω). If u is Lipschitz on )Ω, then
u ∈ Lip(Ω) and

Lip(u,Ω) ≤

√

b2)Ω + 2∫

u∗

u∗
g(s)ds.

In particular,

Lip(u,Ω) ≤

√

Lip(u, )Ω)2 + 2∫

u∗

u∗
g(s)ds.
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Proof. Pick b > b)Ω and set for convenience

Lb =

√

b2 + 2∫

u∗

u∗
g(s)ds.

For x, y ∈ Ω, it is sufficient to show that

u(x) ≤ u(y) + Lbd(y, x),

since the thesis follows by letting b ↓ b)Ω. By Remark 4.12,

∀ z ∈ )Ω, C̄z,b ≤ u ≤ C̄+z,b on )Ω,

thus comparison with g-cones implies C̄−z,b ≤ u ≤ C̄+z,b on Ω, that is,

C̄−z,b(w) ≤ u(w) ≤ C̄+z,b(w) for every w ∈ Ω, z ∈ )Ω.

If y ∈ )Ω, then setting z = y, w = x and using (22) we get

u(x) ≤ C̄+y,b(x) ≤ C̄+y,b(y) + Lbd(y, x) = u(y) + Lbd(y, x).

On the other hand, if x ∈ )Ω and y ∈ Ω, setting z = x and w = y we deduce

u(y) ≥ C̄−x,b(y) ≥ C̄−x,b(x) − Lbd(y, x) = u(x) − Lbd(y, x).

It remains to investigate the case x, y ∈ Ω. Choose

b′ = inf
{

ℎ ≥ 0 ∶ u ≥ C̄−x,ℎ on )Ω
}

.

SinceΔN∞u ≥ 0 onΩ, u ∈ Liploc(Ω). In particular, the set defining b
′ is non-empty, thus b′ < ∞

and, by a compactness argument together with Remark 4.2, b′ is attained. The compactness
of )Ω, and the fact that C̄−x,k ≥ C̄−x,ℎ if k ≤ ℎ, guarantee the existence of z0 ∈ )Ω such that
C̄−x,b′ (z0) = u(z0) and C

−
x,b′ (z) ≤ u(z) for every z ∈ )Ω. Therefore, by comparison

C̄−x,b′ ≤ u on Ω.

We examine the cone C̄+z0,b. Since it lies above the graph of u, hence above C−z,b′ , its initial
slope at z0 must be, at least, the slope of the solution �u∗,b′ of the ODE corresponding to C−x,b′
at the point Rb′ (u(z0)). The latter is not smaller than the slope b′ (because �u∗,b′ is convex),
therefore we infer the inequality

b ≥ b′.

By comparison, u ≥ C̄−x,b′ on Ω, implying

u(y) ≥ u(x) − Lip(C̄−x,b′ ,M)d(y, x)

≥ u(x) − Lb′d(y, x) ≥ u(x) − Lbd(y, x).

This concludes the proof.
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5 Proof of Theorem 1.1
When the “some/every" alternative occurs in 3), 4), 6), 7), 8), wewill always assume the weaker
and prove the stronger. For instance, when considering implication 2)⇒ 4), we will show the
validity of 4) for every choice of g as in the statement. On the other hand, in implication
4) ⇒ 1), for instance, we will only assume the validity of 4) for some choice of g. In what
follows, we set u∗ = supM u and u∗ = infM u.

1)⇒ 2).
Suppose, by contradiction, that there exists a solution u of ΔN∞u ≥ 0 on M with sublinear
growth u(x) = o(%+(x)) as %+(x) → ∞. Fix a compact set K . In view of the strong maximum
principle, uK ∶= maxK u < u∗. Because of Corollary 3.7, for every " > 0 the function
w" ∶= uK + "%+ satisfies ΔN∞w" ≤ 0. Furthermore, our growth requirement on u implies that
u < w" outside of a relatively compact, open set U . The comparison theorem in Appendix I
on U∖K yields to

u ≤ w" = uK + "w" on U∖K , hence onM∖K ,

and letting "→ 0 we infer u ≤ uK onM , contradiction.

2)⇒ 3) is obvious, for every choice of such g.

2)⇒ 4).
By contradiction, assume that there exist g ∈ C(ℝ), and u satisfying

{

ΔN∞u ≥ g(u) ≥ 0 on Ω,

supΩ u < +∞
with sup

Ω
u > sup

)Ω
u.

Note that u ∈ Liploc(Ω) because of Corollary 4.5, so choosing  ∈ (sup)Ω u, supΩ u) the
function

v ∶=

{

max{, u} on Ω,

 on M∖Ω

is bounded, non-constant and coincides with  in a neighbourhood of )Ω, thus ΔN∞v ≥ 0 on
M by Proposition 3.4. This contradicts 2).

3)⇒ 1) and 4)⇒ 1).
We prove both of the implications with the same strategy, and split the proof only at the last
step. Assume that either 3) or 4) holds for some choice of g. First, we redefine g on an interval,
say [0, 1] as follows: g(t) ≡ g(1) for t ≥ 1 and g(t) = 0 for t ≤ 0. In this way, the validity of
3) and 4) restricts to functions u valued in [0, 1]. Next, set

ḡ(t) = sup
s≤t

g(s).

Then, ḡ ∈ C(ℝ), ḡ ≥ g, ḡ(0) = 0 and ḡ is non-decreasing. Therefore, the validity of 3) or 4)
for g (and u ∈ [0, 1]) implies its validity for ḡ, under the same restriction on u. Hence, up to
replacing g with ḡ, we can assume that g be non-decreasing. Fix a point x ∈ M and a small,
forward regular ball  centered at x. Consider a smooth exhaustion {Ωj} ↑ M with  ⋐ Ωj
for each j. Set Aj ≐ Ωj∖, and let uj be a solution of

{

Δ∞uj = g(uj) on Aj ,

uj = fj on )Aj ,
(29)
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where fj = 0 on ) and fj = 1 on )Ωj (its existence follows from Perron method, using 0 as
a subsolution and 1 as a supersolution, and is proved in Appendix II; note that 0 ≤ uj ≤ 1).
Theorem 4.14 guarantees that

Lip(uj , Aj) ≤

√

b2)Aj + 2∫

1

0
g(s)ds,

With b)Aj the sliding slope of )Aj . We claim that {b)Aj} is decreasing, hence uniformly
bounded, as j → ∞. Indeed, since ) separatesM and Ωj ⋐ Ωj+1, every curve from x ∈ )
to a point y ∈ )Ωj+1 must cross )Ωj . Therefore,

d(), )Ωj+1) ≥ d(), )Ωj),

and thus any forward g-cone C̄+x,b that lies above 1 on )Ωj (i.e., it satisfiesRb(1) ≤ d(), )Ωj))
also lies above 1 on )Ωj+1. Similarly, to every backward g-cone C̄−y,b that can be slid along
y ∈ )Ωj remaining below 0 on ), the cones C̄−z,b centered at z ∈ )Ωj+1 and with the same
b remain below 0 on ). This suffices to conclude b2)Aj+1 ≤ b2)Aj . Therefore, {uj} is equi-
Lipschitz, say with constant L. Extend uj with values 0 on  and 1 outside of Ωj . Up to
subsequences, {uj} converges locally uniformly to a Lipschitz limit u∞ ≥ 0. By Proposition
3.4, u∞ satisfies Δ∞u∞ = g(u∞) and u∞ = 0 on ). We now exploit our assumptions. If
4) holds, applying the principle to u∞ on Ω = M∖ we deduce u∞ ≡ 0. On the other hand,
if 3) holds, first extend u∞ with u∞ ≐ 0 on , and note that the resulting extension solves
Δ∞u∞ ≥ g(u∞) onM . Apply then 3) to conclude that u∞ is constant, hence u∞ ≡ 0. To show
the forward completeness ofM , pick a unit speed geodesic  ∶ [0, T ) → M issuing from the
center o of , and assume by contradiction that T < +∞. Consider the functions wj = uj◦ ,
and note that wj = 1 after some Tj < T . From

wj(t) −wj(s)
t − s

≤
uj((t)) − uj((s))
d((s), (t))

≤ Lip(uj ,M) ≤ L ∀ 0 < s < t < T ,

letting t → T − we deduce
1 −wj(s) ≤ L(T − s).

However, wj → 0 locally uniformly, a contradiction if s is chosen to be close enough to T .

5)⇒ 2) is obvious, with the choice g(u) = �u�+.

1)⇒ 5).
The argument follows the ideas in [4]. Let %+ be the forward distance from o ∈ M . For each
r > 0 we define the function vr on +o (r) ⊂ M by vr(x) = �(%+(x)), with

�(t) = �(�, �)
⎡

⎢

⎢

⎣

t − r +
( sup)+o (r) u

�(�, �)

)
1−�
2 ⎤

⎥

⎥

⎦

2
1−�

+

,

and

�(�, �) = 1−�

√

�(1 − �)2
2(1 + �)

.

Note that � ∈ C2(ℝ) since � ∈ (0, 1). Using Corollary 3.7, vr satisfies
{

ΔN∞vr ≤ �(vr)�+ on +o (r) in the barrier sense,

vr = sup)+o (r) u, on )+o (r).
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Since u ≤ vr on )+o (r), and u is a subsolution of the above problem (in viscosity sense), we
claim that u ≤ vr on +o (r). In fact, if u − vr has a positive maximum c at x ∈ +o (r), let
%+" ≻x %

+ be an upper barrier for %+ guaranteed by Calabi’s trick. Then, � ∶= c + �(%+" ) ≻x u
and thus

���+ ≤ ΔN,+∞ � = �′′(%+" ) = ��(%
+
" )
�
+ < ��

�
+ at x,

contradiction. Next, by the growth assumption on u, we can find 0 < � < 1 such that

sup
)+o (r)

u ≤ ��(�, �)r
2
1−� .

Summarizing, we can write

u(x) ≤ �(�, �)
[

%+(x) −
(

1 − �
1−�
2

)

r
]

2
1−�

+
.

Letting r → +∞ we deduce that u ≤ 0 onM . To conclude, we apply 1) ⇒ 3) to obtain that u
is constant.

1)⇒ 6) and 1)⇒ 7).
Let K ⋐ M be compact, fix o ∈ M , %+(x) = d(o, x) and choose R large enough that K ⊂
+o (R). For r > R, the functions

ur(x) = min
{

−1 + R
r
(%+ − R), 0

}

∈ ℒ (K,M)

satisfy
Lip(ur,M) = R

r
, F (∇ur) ≤

R
r

a.e. on M,

so letting r→ ∞ we deduce both 6) and 7).

7)⇒ 6) for some compact K .
The implication follows from the inequality

Lip(u,M) ≤ ‖F (∇u)‖∞ ∀ x ∈ Lip(M).

Indeed, for every unit speed curve  ∶ [0,l] → M joining x to y, and for every u ∈ C1(M),
integrating the inequality du( ′) ≤ F ∗(du)F ( ′) = F (∇u) ≤ ‖F (∇u)‖∞ on [0,l] we infer

u(y) = u(x) + ∫

l

0
du( ′(t))dt ≤ u(x) + ‖F (∇u)‖∞l.

Choosing l such that l = d(x, y) + j−1, and letting j → ∞, we deduce u(y) ≤ u(x) +
‖F (∇u)‖∞d(x, y). The case u ∈ Lip(M) follows by approximation.

6)⇒ 1).
Fix a compact setK ⊂ M and a sequence of functions ūj ∈ Lipc(M)with Lip(ūj ,M)→ 0 and
ūj ≤ −1 onK . Up to replacing ūj withmax{ūj , 1}, we can assume that−1 ≤ ūj ≤ 0 onM and
ūj = −1 on K . By Ascoli-Arzelá theorem, up to subsequences, ūj → ū∞ locally uniformly,
for some ū∞ ∈ Lip(M), and from Lip(ū∞,M) ≤ lim inf j Lip(ūj ,M) = 0 we deduce that
ū∞ = −1 on M . Now, the proof concludes exactly as the one for 3) ⇒ 1), up to defining
uj = ūj + 1.

1)⇒ 8).
By contradiction, if u is a subsolution of

G(u) − F (∇u) = 0 on Ω,
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and sup)Ω u < supΩ u <∞, the function

v(x) = ∫

u(x)

0

ds
G(s)

would be a subsolution of
{

1 − F (∇v) = 0 on Ω,

v0 ≐ sup)Ω v < supΩ v <∞.

Let %+ be the forward distance from a fixed origin, and set w" ≐ v0 + "%+ for " ∈ (0, 1).
We claim that v ≤ w" on Ω. Once this is shown, letting " → 0 we would have v ≤ v0,
which is absurd. Assume therefore that U ≐ {v > w"} be non-empty. Since M is forward
complete, w"(x) → +∞ as x diverges, thus U is relatively compact and does not meet )Ω.
Pick a point x ∈ U where u − w" attains a (positive) maximum value c, and let %+" ≻x %+
be a barrier at x. Then, � ≐ v0 + c + "%+" would touch v from above at x, that would imply
0 ≥ 1 − F (∇�) = 1 − "F (∇%+" ) = 1 − ", contradiction.

8)⇒ 1).
Let 0 < G ∈ C(ℝ) such that 8) holds. We define

Ĝ(t) = min
[0,t]

G(s).

Then, Ĝ is non-increasing and positive on ℝ+, and from Ĝ ≤ G on ℝ+ we deduce that 8)
still holds, with Ĝ replacing G, provided that u be non-negative on Ω. Summarizing, we can
assume that G is non-increasing on ℝ+, up to restricting the validity of 5) to nonnegative u.
Fix a small, regular forward ball  = +x0 (3"), denote with ∇̃ the gradient induced by the dual
Finsler structure F̃ , and define

G̃(t) = G(−t).

We aim to prove the existence of a function satisfying

⎧

⎪

⎨

⎪

⎩

w ∈ C(M∖), w ≤ 0,

w(x)→ −∞ as x diverges ,

w is a viscosity subsolution of F̃ (∇̃w) − G̃(w) = 0 on M∖.

(30)

Here, the writing w(x) → −∞ as x diverges means that w has compact upper level sets in
M∖. Once this is shown, we conclude thatM must be forward complete as follows: set

ℎ(x) ≐ ∫

w(x)

0

ds
G̃(s)

,

then ℎ ≤ 0 and, since G is non-increasing, ℎ(x) → −∞ as x diverges. Furthermore, ℎ is a
viscosity subsolution of F̃ (∇̃ℎ) − 1 = 0 onM∖. By Proposition 4.3 in [16], ℎ is Lipschitz
continuous in the pseudo-distance d̃ induced by F̃ :

ℎ(y) ≤ ℎ(x) + Ld̃(x, y) = ℎ(x) + Ld(y, x) ∀ x, y ∈M∖.

for some constant L > 0. Take a maximal, forward geodesic  ∶ [0, T )→M issuing from x0,
and suppose by contradiction that T < +∞. Define v(t) ≐ ℎ((t)) on [3", T ). By assumption,
v(t)→ −∞ as t→ T −. On the other hand,

v(t) ≥ v(3") − Ld((3"), (t)) ≥ v(3") + L(3" − t),
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contradiction.
The idea to prove the existence of w is inspired by [37, 40]. Let Ωj ↑M be an increasing

exhaustion ofM by means of relatively compact open sets with smooth boundary, satisfying
 ⋐ Ω1. We will construct a sequence of functions {wj} such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wj ∈ C(M∖), wj ≤ 0 on M∖, wj > −1∕2 on )

wj+1 ≤ wj on M∖,

‖wj+1 −wj‖L∞(Ωj∖) < 2
−j ,

wj ≡ −j outside of some compact set Cj ,

wj is a viscosity subsolution of F̃ (∇̃wj) − G̃(wj) = 0 on M∖.

(31)

Once this is done, {wj} locally uniformly converges to some w ∈ C(M∖), and from w ≤
wj = −j outside of Cj we deduce that w(x) → −∞ as x diverges. By stability of viscosity
solutions, w satisfies all of the properties in (30). Fix a sequence {�j} ⊂ C(M) such that

0 ≥ �j ≥ −1, �j = 0 on , �j ≡ −1 on M∖Ωj ,

�j+1 ≥ �j on M, and �j ↑ 0 locally uniformly on M.

We proceed inductively. Set w0 ≡ 0 and define the forward balls 1 = +x0 (") and 2 =
+x0 (2"), so that 1 ⋐ 2 ⋐ . Fix a smooth cutoff  ∈ C∞c () satisfying  ≡ 1 on 2, and
denote with %+(x) = d(x0, x) the forward distance to x0 inM . For each j, define the Lipschitz
function

sj(x) = j ⋅max
{

" − %+

"
,−1

}

.

Since −%+(x) coincides with the signed backward distance to x0 in F̃ , applying Corollary 3.7
to (M, F̃ ) we deduce that sj is a viscosity subsolution of

F̃ (∇̃sj) − G̃(sj) −
j
"
 (x) = 0 on M∖1.

We will construct {wj} in such a way that wj ≥ sj onM , in particular, wj = 0 on )1. This
is trivial forw0. Having fixedw = wj , we define the obstacles gi = w+ �i for i > j. For each
i, we consider the following Perron class:

ℱ [gi] =

{

v ∈ C(Ωi∖1) ∶
v ≤ gi, and v is a viscosity subsolution of

F̃ (∇̃v) − G̃(v) − j+1
"  (x) = 0 on Ωi∖1

}

,

and the envelope
ui(x) ≐ sup

{

v(x) ∶ v ∈ ℱ [gi]
}

,

namely the solution of the obstacle problem on Ωi∖1 with obstacle gi. Perron class is non-
empty, since it contains the constant −j − 1. Furthermore, since �i = 0 on , we have gi ≥
sj + �i ≥ sj+1, and from  ≡ 0 outside of  we deduce sj+1 ∈ ℱ [gi]. This and 0 ≥ ui ≥ sj+1
guarantee that ui = 0 on )1. For v ∈ ℱ [gi], the function

ℎv = ∫

v(x)

0

ds
G̃(s)
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is a subsolution of
F̃ (∇̃ℎv) − 1 −

j + 1
"

⋅
1

inf [−j−1,0] G̃
= 0

on M∖1. Proposition 4.3 in [16] guarantees that ℎv is Lipschitz with constant Lj only de-
pending on j. Thus, functions v ∈  [gi] with v ≥ −j − 1 are equiLipschitz, in particular
ui ∈ Lip(Ωi∖1). By stability, ui is still a viscosity subsolution of

F̃ (∇̃ui) − G̃(ui) −
j + 1
"

 (x) = 0 on Ωi∖1,

and in fact it is also a viscosity supersolution of the same equation on the open set {ui < gi}.
For i large enough to satisfy Cj ⋐ Ωi,

−j − 1 ≤ ui ≤ gi = −j − 1 on Ωi∖Cj .

Thus, ui = −j−1 in a neighbourhood of )Ωi. Extending ui with −j−1 outside ofΩi produces
a subsolution (still named ui) of

F̃ (∇̃ui) − G̃(ui) = 0 on M∖.

Clearly, by construction ui ∈ ℱ [gi′ ] for every i′ > i. Therefore, the sequence {ui} is monotone
increasing and equiLipschitz, and hence converges to a limit function u ∈ Lip(M∖1) that
vanishes on )1.
Claim: u ≡ w.
We first prove that u ≥ −j on M∖1. We proceed by contradiction, assuming that the open
set U = {u < −j − �} be non-empty for some � > 0. Note that U might intersect , where
the term  does not vanish, but U ⊂ M∖B1 since u = 0 on )B1. Choose i0 large enough that

Ui0 = {u < gi0 − �} ≠ ∅.

This is possible since gi ↑ w locally uniformly. By monotonicity, ui < gi − � on Ui0 for every
i ≥ i0, meaning that the solution of the obstacle problem ui detaches from the obstacle gi on
Ui0 . Therefore, ui is also a supersolution of

F̃ (∇̃ui) − G̃(ui) −
j + 1
"

 (x) = 0 on Ui0

and, by stability, so is u on Ui0 . From U =
⋃

i0
Ui0 , we deduce that u is a supersolution of

F̃ (∇̃u) − G̃(u) −
j + 1
"

 (x) = 0 on U,

and, as a consequence, a supersolution of F̃ (∇̃u) − G̃(u) = 0 on U . At this stage, we use
property 8) to v ∶= −u, that is a subsolution of

G(∇v) − F (∇v) = 0 on U,

to deduce that supU v = sup)U v, contradicting the very definition of U and proving the claim.
Next, fix i0 with Cj ⋐ Ωi0 , and � > 0 small. From u ≥ −j and w = −j onM∖Cj , we deduce
that ui ↑ −j uniformly on )Ωi0 . Choose i >> i0 such that

ui > −j −
�
2

on )Ωi0 .
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It follows that the function

vi =

{

max{w − �, ui} on Ωi0 ,

ui on Ωi∖Ωi0

belongs toℱ [gi], and therefore ui ≥ vi onΩi by the maximality of ui. In particular, ui ≥ w−�
holds on Ωi0∖ for i large enough. By the arbitrariness of i0 and �, this proves that ui ↑ w
locally uniformly onM∖, hence u ≡ w.

To conclude, from ui ↑ u ≡ w locally uniformly we can choose i large enough such that, setting
wj+1 ≐ ui, wj+1 satisfies all of the requirements in (31).

1)⇒ 9).
As stated in the introduction, the proof of Ekeland principle given in [25, p.444], see also [2,
p.85], does not use the symmetry of d, and can therefore be repeated verbatim.

9)⇒ 1).
The argument is due to [54, 53], and we reproduce it here for the sake of completeness. Let
{xj} be a forward Cauchy sequence, and define the function

f ∶ M → [−∞, 0], f (x) = − lim sup
j

d(x, xj).

The goal is to prove the existence of x̄ ∈M such that f (x̄) = 0. Fix " > 0 and j" guaranteed
by the Cauchy condition. From

d(xj" , xj) < " ∀ j > j"

we deduce f (xj" ) ≥ −", hence supM f = 0. Furthermore, the triangle inequality implies
f (y) ≤ f (x) + d(x, y), hence f is locally Lipschitz and finite everywhere. Fix � ∈ (0, 1) and,
by 9), let x̄ satisfy

f (x̄) ≥ −�, f (y) ≤ f (x̄) + �d(x̄, y).

Choosing y = xj for j > j" we deduce

−" ≤ f (x̄) + �d(x̄, xj).

Thus, letting j →∞ along a sequence realizing f (x̄), and then letting "→ 0, we get

0 ≤ f (x̄) − �f (x̄) = (1 − �)f (x̄) ≤ 0,

and we conclude f (x̄) = 0.

6 Appendix I: A homogeneous comparison
Theorem 6.1. Let Ω ⋐M and assume that u ∈ USC(Ω), v ∈ LSC(Ω) are bounded on Ω and
satisfy

ΔN∞u ≥ 0, and ΔN∞v ≤ 0 in the viscosity sense on Ω.

Then,
max
Ω
(u − v) = max

)Ω
(u − v).
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Proof: sketch. Since the Finsler structure is non-symmetric, we need to adapt some notation
from [5]. First of all, by a compactness argument, we fix � > 1 satisfying (13) on the whole of
Ω. For any " > 0 and Ω ⋐M let us denote

Ω+" = {x ∈ Ω ∶ 
+
x (") ⊂ Ω}, and Ω−" = {x ∈ Ω ∶ −x (") ⊂ Ω}.

We setΩ" ≐ Ω−" ∩Ω
+
" . Up to reducing ", we will assume thatB+x (2") andB

−
x (2") are relatively

compact for all x ∈ Ω.
For x ∈ Ω+" and y ∈ Ω−" , define

u"(x) ≐ max
+x (")

u and v"(y) ≐ min
−y (")

v.

As in [5], applying Corollary 4.5 we can prove that u" and v" are solutions of the following
finite difference inequalities

S−" u
"(x) − S+" u

"(x) ≤ 0 ≤ S−" v"(x) − S
+
" v"(x) (32)

for every x ∈ Ω+2�", where S
" and S" are defined as follows

S+" u(x) ≐ max
y∈+x (")

u(y) − u(x)
"

, and S−" u(x) ≐ max
y∈−x (")

u(x) − u(y)
"

.

Now, arguing as in [5, Lem 4] we can conclude that

sup
Ω+�"

(

u" − v"
)

= sup
Ω+�"∖Ω+2�"

(

u" − v"
)

.

The conclusion then follows by passing to the limit "→ 0.

7 Appendix II: The Dirichlet problem
Let Ω ⊂ M be relatively compact, and let g ∶ ℝ × T ∗Ω → ℝ with the following properties:

(i) g ∈ C(ℝ × T ∗Ω),

(ii) sup(t,v)∈I×T ∗Ω |g| < ∞ for every compact I ⊂ ℝ.
(33)

Theorem 7.1. Let g satisfying (33), and let u1, u2 ∈ C(Ω) solving

⎧

⎪

⎨

⎪

⎩

ΔN∞u1 ≥ g(u1, du1) on Ω,

ΔN∞u2 ≤ g(u2, du2) on Ω,

u1 ≤ u2 on Ω.

Then, for every � ∈ C()Ω) with u1 ≤ � ≤ u2, there exists u ∈ C(Ω) such that

⎧

⎪

⎨

⎪

⎩

ΔN∞u = g(u, du) on Ω,

u1 ≤ u ≤ u2 on Ω,

u = � on )Ω.
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Remark 7.2. Note that the above existence result does not need any comparison theorem.

Proof. We will employ the Perron method. Fix I = [minΩ u1,maxΩ u2] and choose c ∈ ℝ+
such that

c > max
TΩ×I

|g|. (34)

Consider the Perron class

P =
{

v ∈ C(Ω) ∶ u1 ≤ v ≤ u2, ΔN∞v ≥ g(v, dv), v ≤ � on )Ω
}

,

and the Perron envelope u = sup{v ∶ v ∈ P } onΩ. By (34), −c ≤ ΔN∞v ≤ c for every v ∈ P .
Because of Corollary 4.5, P is uniformly locally Lipschitz continuous, hence u ∈ Liploc(Ω).
Given x ∈ )Ω and � > 0, let " > 0 small enough that the signed distance %−(y) = −d(y, x) is
smooth on −x (")∖{x} and that

u2 > �(x) − � on B−x (") ∩ Ω, � > � (x) − � on B−x (") ∩ )Ω,

u1 < �(x) + � on B+x (") ∩ Ω, � < � (x) + � on B+x (") ∩ )Ω.

Set �−� (x) ≐ � (x) − �, and let b >> 1 large enough in such a way that the backward quadratic
cone

C−b,x(y) ≐ ��(x) − (b + Rb(�−� (x)))d(y, x) +
c
2
d(y, x)2,

defined on −x ("), satisfies C
−
b,x < u1 on −x (") ∩ Ω. By Corollary 4.5 we then have C−b,x ≤ u2

on −x (") ∩ Ω, and

ΔN∞C
−
b,x ≥ c ≥ g(C−b,x, dC

−
b,x) on −x (") ∩ {C

−
b,x > u1}.

It follows that

w ∶=

{

max{C−b,x, u1} on −x (") ∩ Ω,

u1 otherwise

lies in P and therefore

lim inf
y→x

u(y) ≥ lim inf
y→x

w(y) ≥ lim inf
y→x

C−b,x(y) = � (x) − �. (35)

Similarly, setting �+� (x) = � (x) + �, we consider the forward quadratic cone

C+b,x(x) ≐ �+� (x) + (b + Rb(�
+
� (x)))d(x, y) −

c
2
d(x, y)2

that for large enough b solves
{

ΔN∞C
+
b,x ≤ −c on +x ("),

C+b,x > u2 on +x (") ∩ Ω.

We claim that v < C+b,x on +x (") for every v ∈ P . Indeed, this holds by construction on

+x (") ∩ Ω, while on )Ω ∩ +x (") we have

v ≤ � < �+� (x) ≤ C+b,x,
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thus v < C+b,x on )(
+
x (")∩Ω). If v−C

+
b,x attains a non-negative maximumm0 at x0 ∈ +x (")∩

Ω, then C+b,x + m0 is a smooth function that touches v from above and satisfies ΔN∞C
+
b,x(x0) ≤

−c < g(u(x0), du(x0)), contradiction. Thus, v ≤ C+b,x on +x (") ∩ Ω and, taking supremum,
u ≤ C+b,x there. Hence,

lim sup
y→x

u(y) ≤ lim sup
y→x

C+b,x(y) = � (x) + �,

thus coupling with (35) and letting � → 0we infer u ∈ C(Ω)with u = � on )Ω. By the stability
of subsolutions with respect to uniform convergence (Proposition 3.4), ΔN∞u ≥ g(u, du) on Ω.
We are left to prove that u is also a supersolution. Suppose, by contradiction, that there exist
x0 ∈ Ω and � ≺x0 u defined in a small, relatively compact neighbourhood U ⋐ Ω of x0 such
that ΔN∞�(x0) > g(�, d�)(x0). If u(x0) = u2(x0), then � ≺x0 u2, contradicting the fact that
u2 is a supersolution. Therefore, u(x0) < u2(x0). Up to subtracting to � a function  ≻x0 0
that is positive on U∖{x0} and vanishes at x0 at second order, we can assume that � < u on
U∖{x0}. By continuity of � and since � is smooth, up to shrinking U and choosing " small
we can satisfy any of the following properties:

⎧

⎪

⎨

⎪

⎩

� + " < u on )U,

� + " ≤ u2 on U,

ΔN∞� > g(� + ", d�) on U.

It follows that

û ∶=

{

max{u, � + "} on U,

u on Ω∖U

lies in P , and since û(x0) > u(x0) this contradicts the definition o u.
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