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Abstract: Background: Inflammation is a process that underlies sight-threatening 

ocular surface diseases, and gene supplementation with the plasmid that encodes for 

interleukin-10 (p-IL10) will allow the sustained de novo synthesis of the cytokine to 

occur in corneal cells, and provide a long-term anti-inflammatory effect. This work 

describes the development of solid lipid nanoparticle (SLN) systems for the delivery of 

p-IL10 to transfect the cornea. Results: In vitro, vectors showed suitable features as 

non-viral vectors (size, zeta potential, DNA binding, protection and release), and they 

were able to enter and transfect human corneal epithelial cells. Ex vivo, the vectors were 

found to transfect the epithelium, the stroma and the endothelium in rabbit corneal 

explants. Distribution of gene expression within the cell layers of the cornea depended 

on the composition of the four vectors evaluated. Conclusion: SLN-based vectors are 

promising gene delivery systems for corneal diseases, including inflammation.  
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1.  Introduction 

Inflammation is the underlying process in severe ocular surface diseases, such as dry 

eye syndrome, allergic diseases and contact lens-related injuries as well as bacterial and 

viral infections [1]. The chronic inflammation associated with these conditions alters the 

corneal epithelial barrier [2], and results in vision loss and an impairment in life quality. 

The conventional therapy against ocular inflammation is the systemic administration or 

topical instillation of corticosteroids [3]. However, cataracts and increased intraocular 

pressure are adverse effects that are frequently caused by the long-term use of 

corticosteroids. Therefore, the development of new therapeutic strategies for the 

treatment of corneal inflammation becomes necessary. 

One possible approach is the administration of interleukin-10 (IL-10). This soluble and 

multifunctional cytokine, which is produced by several types of cells, displays both 

anti-inflammatory and immunosuppressive effects [4]. Several studies have confirmed 

the essential role that IL-10 plays in the regulation of bowel inflammation, chronic 

infections and neuroimmune diseases [5, 6], in the avoidance of allograft rejections [7, 

8], and in the immune response associated to ocular surface pathologies. Specifically in 

terms of ocular diseases, treatment with IL-10 in animal models has proven to be 

successful in promoting corneal transplant survival [9], and modulating herpes simplex 

virus (HSV)–induced stromal keratitis (HSK) [10], which is a significant infectious 

cause of blindness in developed nations. The blinding illness in ocular HSV infections 

is not the result of viral replication, but rather of the subsequent host immunologic 

response to the virus. It is here that the properties of IL-10 have been found to play a 

protective role in mice HSK models. However, the low bioavailability of this protein 

after topical administration, which is caused by the corneal barrier, and its short half-

life, hamper the anti-inflammatory effect, even after frequent topical administration at 

high doses. Gene supplementation, in which the plasmids that encode for IL-10 (p-

IL10) are administered in the cornea, is an alternative that may overcome these 

drawbacks. An important benefit of this therapy is the sustained synthesis of the protein 

de novo in corneal cells, which provides a long-term anti-inflammatory effect.  

The well-known need for suitable delivery systems that can facilitate successful gene 

therapy must be considered. Ideally, a system for corneal gene delivery must meet 

certain requirements: manufacture at high concentration and purity using simple and 
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reproducible procedures, corneal cell targeting to provide high therapeutic gene levels in 

a tissue-selective manner, and a lack of local toxicity, immunological reaction and 

injury to the extracellular matrix and surrounding tissues [11]. In this sense, cationic 

solid lipid nanoparticles (SLNs) present several advantages for corneal gene therapy. 

SLNs consist of a solid lipid core surrounded by a layer of surfactants in an aqueous 

dispersion and are usually composed of well-tolerated physiological lipids, that have 

been approved for pharmaceutical preparations for human use [12]. Furthermore, a 

variety of production methods, which have been successfully implemented in the 

pharmaceutical and cosmetic industries have been developed to manufacture SLNs and 

have furnished stable delivery systems that can undergo long-term storage [13]. 

Regarding delivery to the cornea, their nanometre-range dimensions and lipophilic 

properties mean that SLNs can enhance corneal penetration and the cellular uptake of 

active molecules, extend ocular retention time and provide a controlled release profile, 

improving ocular bioavailability [14-17]. Concerning their use as gene delivery 

systems, SLNs have been documented to be one of the most effective lipid-based non-

viral vectors, both in vitro and in vivo [18-21]. Moreover, these nanoparticles may be 

functionalized with a number of ligands to overcome barriers for gene transfer, such as, 

interaction with targeted cells, cellular uptake, appropriate intracellular distribution and 

entry to the nucleus. Chitosan, dextran and hyaluronic acid [22-24], which have 

received recognition for their biocompatibility, biodegradation and mucoadhesive 

properties, are such ligands and are commonly used in the design of ocular drug 

delivery systems [25, 26].       

The aim of this study is the development of p-IL10 delivery systems for transfection in 

the cornea, which may be useful for the topical therapeutic management of corneal 

inflammation-related diseases. After the physicochemical characterization of the SLN-

based vectors, their efficacy and intracellular behaviour in human corneal epithelial 

cells was studied, and their capacity to transfect corneal tissues was evaluated ex vivo in 

corneas that had been explanted from rabbits.   

2. Materials and methods 

2.1. Materials 

DOTAP (1,2-Dioleoyl-3- trimethylammonium-propane chloride salt) was obtained from 

Avanti Polar-lipids Inc. (AL, USA), Tween 80 and dichloromethane from Panreac 
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(Madrid, Spain), sodium behenate from Nu-Chek Prep (Eleysian, AL, USA) and 

Precirol® ATO5 was generously provided by Gattefossé (Madrid, Spain). Protamine 

sulfate salt Grade X (P), dextran (Mw of 3.26 KDa) (DX), ammonium chloride, glycol 

chitosan (CH), partially hydrolyzed polyvinyl alcohol 9000-10000 Da Mw (PVA9000) 

and Nile Red were acquired from Sigma-Aldrich (Madrid, Spain). Hyaluronic acid (Mw 

of 100 KDa) (HA) was purchased from Lifecore Biomedical and Bemiparin was a kind 

gift from Rovi® (Spain). The plasmid pcDNA3-EGFP (6.1 kb), that encodes the green 

fluorescent protein (GFP), was kindly provided by the laboratory of Professor B.H.F. 

Weber (University of Regensburg, Germany) and pUNO1-hIL10 (3.7 kb), which 

encodes human IL-10, was provided by InvivoGen. The promoter in this second 

plasmid (hEF1/HTLV) comprises the Elongation Factor-1α (EF-1α) core promoter 

coupled to the R segment and the U5 sequence (R-U5’) of the Human T-Cell Leukemia 

Virus (HTLV) Type 1. According to the manufacturer, this combination increases the 

steady state transcription and significantly increases translation efficiency.   

Deoxyribonuclease I (DNase I) and sodium dodecyl sulphate (SDS) were obtained from 

Sigma-Aldrich (Madrid, Spain), GelRed™ from Biotium (California, USA) and the 

materials used in electrophoresis on agarose gel were purchased from Bio-Rad (Madrid, 

Spain). 

Cell culture reagents, including Dulbecco´s Modified Eagle´s Medium/Nutrient Mixture 

F-12 with GlutaMAX™ (DMEM/F-12 with GlutaMAX™), fetal bovine serum (FBS) 

and penicillin-streptomicin, were acquired from Life Technologies (ThermoFisher 

Scientific, Madrid, Spain). Human insulin solution was obtained from Sigma-Aldrich, 

EGF from Myltenyi Biotec and Trypsin-EDTA from Lonza. 

Triton X-100 and DNA from salmon sperm were provided by Sigma-Aldrich (Madrid, 

Spain), Reporter Lysis Buffer (RLB) by Promega Biotech Ibérica (Madrid, Spain), and 

DAPI-Fluoromount-G by Southern Biotech (Birmingham, USA). Paraformaldehyde 

(PFA) was obtained from Panreac, while PBS and HEPES buffer were purchased from 

Gibco (ThermoFisher Scientific, Madrid, Spain). Transfectin® Lipid-Reagent was 

acquired from Bio-Rad, while ELISA for IL-10 with the DuoSet Ancillary reagent kit 

was purchased from R&D Systems.  
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The tissue-Tek® O.C.T™ compound was obtained from Sakura Finetek Europe (Leiden, 

The Netherlands). Other chemicals, unless specified, were reagent grade from Sigma 

Aldrich (Madrid, Spain) and Panreac (Barcelona, Spain). 

2.2. Preparation of SLNs and vectors 

SLNs were prepared using two different techniques: solvent evaporation/emulsification 

(SLN1), which has previously been described [21], and coacervation (SLN2), which was 

partially modified from [27] and [28]; the precipitation of SLN2 was obtained using 5 M 

ammonium chloride and 1 M hydrochloric acid, instead of 1 M sodium phosphate and 1 

M hydrochloric acid.  

SLN1 were made up of a core of the solid lipid Precirol® ATO5 and a cationic lipidic 

surface based on DOTAP and the surfactant Tween 80. In order to prepare SLN1-based 

vectors, the plasmid (pcDNA3-EGFP or pUNO1-hIL10) was first mixed with an 

aqueous solution of protamine (P) and then with an aqueous solution of either the 

polysaccharide dextran (DX), bemiparin (BE) or hyaluronic acid (HA). The complexes 

obtained were added to the SLN1 suspension, and the electrostatic interactions led to the 

binding of the complex by the SLNs, and to the formation of the final vector. The 

weight ratios of the components are summarized in Table 1. 

SLN2 were composed of behenic acid as the lipid matrix, were coated with PVA9000, 

as the suspending agent, and used CH as the cationizing agent. In order to prepare 

SLN2-based vectors, the plasmid was first complexed with P, and then with the SLN2. 

Vectors with different P:DNA:SLN2 ratios were prepared (Table 1). 

Table 1. Weight ratios of the vectors prepared and evaluated. 

Name of the vector Polysaccharide Weight ratio 
DX-SLN1 DX DX:P:DNA:SLN1  1:2:1:5 

BE2-SLN1 BE BE:P:DNA:SLN1   0.1:2:1:5 

BE3-SLN1 BE BE:P:DNA:SLN1   0.1:3:1:5 

HA-SLN1 HA HA:P:DNA:SLN1   0.5:2:1:2 

   
DNA-SLN2 - P:DNA:SLN2     0:1:20 

P2-SLN2 - P:DNA:SLN2     2:1:5 

P4-SLN2 - P:DNA:SLN2     4:1:10 
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2.3. Size and zeta potential measurements 

A Zetasizer Nano series-Nano ZS (Malvern Instruments, Worcestershire, UK) was used 

to measure size, polydispersity index and superficial charge of SLNs and the final 

vectors. The samples were diluted in Milli-Q™ water (EDM Millipore, Billerica, MA) 

for the particle size and zeta potential measurements, which were carried out using 

photon correlation spectroscopy (PCS) and Laser Doppler Velocimetry (LDV), 

respectively. 

2.4. Transmission electronic microscopy (TEM) images 

TEM images of the SLN1 and SLN1-based vectors were already present in the literature 

[21]. Visualization of SLN2 and the SLN2-based vectors was performed using electron 

microscopy negative staining. For that purpose, 10 µl of the sample was adhered onto 

glow discharged carbon coated grids for 60 s. After removing the remaining liquid, via 

blotting on filter paper, the staining was carried out with 2% uranyl acetate for 60 s. 

Samples were visualized using a Philips EM208S TEM and digital images were 

acquired on an Olympus SIS purple digital camera. Technical and human support for 

TEM was provided by the General Service (SGIker) of Analytical Microscopy and High 

Resolution in Biomedicine at the University of the Basque Country UPV/EHU. 

2.5. Agarose gel electrophoresis assay 

With the aim of studying the DNA binding efficiency of the vectors, the protection from 

DNase I digestion and the SDS-induced release of DNA, 0.7% agarose gel 

electrophoresis containing Gel Red™ was used and analysed using an Uvitec Uvidoc D-

55-LCD-20M Auto transilluminator, as previously described [22]. The capacity of the 

vectors to bind electrostatically the DNA was evaluated by adding the complexes at a 

final concentration of 0.03 μg DNA/μl diluted in MilliQ™ water in the gel. For DNAse 

I protection, the same concentration was exposed to 1 U DNase I/2.5 μg DNA and then 

incubated at 37ºC for 30 min. A SDS solution (4%) was mixed with the samples, to a 

final concentration of 1%, to release DNA from the SLNs. The pcDNA3-EGFP and 

pUNO1-hIL10 plasmids were added, untreated, as controls, as well as the 1 kb DNA 

ladder from NIPPON Genetics Europe (Dueren, Germany). 
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2.6. In vitro studies 

The human corneal epithelium (HCE-2) cell line was used for in vitro assays. HCE-2 

cells were maintained in medium, which was composed of DMEM/F-12 with 

GlutaMAX™, fetal bovine serum (15%), insulin (4 mg/mL), EGF (10 ng/ml) and 

penicillin-streptomycin (1%), incubated at 37ºC with 5% CO2 and subcultured every 7 

days.  

2.6.1. In vitro transfection 

Cells were seeded on 24-well plates at a density of 150,000 cells using 1 ml of medium 

per well, and then allowed to adhere for 24 hours. Seventy five μl of each vector (2.5 μg 

DNA) was then added to each well, containing 0.5 ml of medium, and the plates were 

incubated for 4 hours at 37ºC in 5% CO2. Thereafter, vectors were removed, cells were 

refreshed with 1 ml of complete medium, and the cell culture was allowed to grow for 

72 hours. Naked plasmids and the complexes without SLNs were also tested at the same 

dose of DNA. Transfection efficacy obtained with the vectors was compared to that 

obtained with the commercial transfectant TransFectin® Lipid-Reagent (Bio-Rad, 

Madrid, Spain), which was used according to the manufacturer’s protocol.   

2.6.2. Quantification of GFP and cell viability 

A fluorometric assay was carried out to quantify intracellular GFP 72 hours after 

treatment. Briefly, cells were washed with 300 μl of PBS, 400 μl of Reporter Lysis 

Buffer 1x was then added, and the plate was frozen to complete the lysis of the cell 

culture. After thawing, each well was scrapped and the lysate was centrifuged at 12,000 

g for 2 min at 4ºC. In order to measure the amount of GFP contained in 100 μl of the 

supernatant at 525 nm, a Glomax Multi Detection System (Promega) was employed, 

and GFP amount was expressed as Relative Fluorescent Units (RFU). The mean value 

of the auto-fluorescence detected in the non-treated cells was subtracted from the 

fluorescence measured in each well, and it was expressed as Relative Fluorescent Units 

(RFU). 

The percentage of transfected cells was measured using a FACSCalibur flow cytometer 

(Becton Dickinson Bioscienses, San Jose, USA). For this purpose, cells were washed 

with 0.5 ml of PBS 72 hours after transfection and then detached using 0.5 ml of 

trypsin-EDTA and, after incubation for 10 min, centrifuged at 1,000 rpm for 5 min. The 
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supernatant was discarded and cells were resuspended in 0.5 ml of PBS. Ten thousand 

events were collected for each sample. Transfection efficacy was measured at 525 nm 

(FL1), and cell viability at 650 nm (FL3). Propidium iodide was employed for dead cell 

exclusion [23]. 

2.6.3. Quantification of IL-10 

In order to measure the levels of IL-10 expressed by the cells 72 hours after addition of 

the complexes, an Enzyme-linked Immunosorbent Assay (ELISA) kit was carried out. 

Secreted and intracellular IL-10 was quantified. In order to quantify intracellular IL-10, 

cells were detached from the wells and lysed, as described in section 2.7 for intracellular 

GFP quantification. For secreted IL-10, the medium of each well was retired and 

centrifuged. One hundred μl of each sample was added to a 96-well plate that was 

covered with the corresponding capture antibody, and the assay was then performed 

according to the manufacturer´s instructions. 

2.6.4. Cellular uptake of the vectors 

In order to study the entrance of the complexes into HCE-2 cells, SLNs were labelled 

with the fluorescent dye Nile Red (λ=590 nm), and the vectors were prepared as 

described in section 2.2. Vectors were added to each well, and after 2 hours of 

incubation at 37ºC, the culture medium was retired and cells washed with PBS before 

being deteached from the wells, as described in section 2.7 for the percentage of GFP 

transfected cells. Vector entry into the cells was analysed using a FACSCalibur flow 

cytometer at 650 nm (FL3). 

2.6.5. Intracellular disposition of the vectors 

Cells were seeded and incubated at 37ºC, 5% CO2 for 24 hours in Millicell EZ slides 

(Millipore) at a density of 150,000 cells and 1 ml per well, and they were then treated 

with vectors containing the plasmid, which was labelled with ethidium monoazide 

(EMA). After 4, 12 and 24 hours, the slides were washed with PBS and fixed with PFA 

4%. DAPI-fluoromount-G™ (Southern Biotech) was used as the mounting fluid, to 

label the nuclei. The slides were then studied using an inverted fluorescence microscopy 

(Nikon TMS).  

2.7. Ex vivo studies 
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Ex vivo studies were performed on rabbit corneas. Eyes were enucleated, within 2 hours 

after animal death, from 12 week albino rabbits killed in a slaughterhouse for food 

purposes. Corneas were excised and kept in sterile Steinhardt medium [29], according 

to a protocol currently used for human cornea trans-plantation. A scleral ring of nearly 4 

mm was maintained around the explanted corneas. The internalization of Nile Red-

labelled vectors and the transfection efficacy, after treating the corneas with vectors 

bearing pcDNA3-EGFP, were studied using a previously-documented corneal holder 

[30]; it is a Plexiglas and glass structure, with donor and receiving compartments (0.65 

mL volume). The cornea was placed in the orifice (0.50 cm2) that divides the two 

compartments. To minimize the corneal irritation the o-ring holds only the scleral ring 

around the corneal circumference. Two hundred μl of SLNs under study were diluted to 

600 μl with PBS, vortexed for 5 seconds, sonicated for 30 seconds, and then introduced 

into the donor compartment of the corneal chamber (epithelial side), while the receiving 

chamber was filled with PBS. In this preliminary study the effect of tear washing was 

not considered, being the chamber a static system. Thus, the administered volume was 

constrained by chamber size and cannot resemble the real volume of tear flow. 

However, it was considered that an eye drop has a volume of nearly 25-56 µL, in front 

of a tear flow of about 1 μL/min, and the dilution of SLNs in PBS before administration 

was designed in order to resemble the ratio between administered nanosuspension and 

tear volume during the 2 hours experiment. 

2.7.1. Cell internalization of the vectors 

The corneas were kept at 37°C in the chamber for 2 hours, then removed, rinsed with 

normal saline buffer and observed using fluorescence microscopy on a DMI4000B 

fluorescence microscope (Leica). The corneas were subsequently still kept in vials with 

Steinhardt medium at 37°C for 24 hours, prior to further fluorescence microscopy 

observation. The staining of cell nuclei was performed by incubating the corneas in 1 

µM DAPI in PBS for 30 minutes endothelial side up, prior to observation. Images were 

acquired and merged using the Leica Application Suite V3 software. 

2.7.2. Transfection studies  

The corneas were kept at 37°C in the chamber for 2 hours, then removed from the 

chamber, rinsed with normal saline and kept in Steinhardt medium at 37°C for 48 hours, 

allowing GFP protein expression to occur. After incubation, the corneas were fixed with 
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4% PFA for 30 min and then transferred into a scintillation vial containing 3 mL of PBS 

1x. After 5 min, the PBS was replaced with 3 ml of a 30 % sucrose in PBS 1x solution 

and the sample was incubated overnight at 4°C. After the incubation period, the volume 

was replaced with 3 mL of Tissue-Tek OCT (Optimum cutting temperature 

formulation). The cornea was then quick-frozen in liquid nitrogen, and later sectioned 

(14 µm) on a cryostat (Cryocut 3000, Leica). 

GFP detection was performed by immunofluorescence. Sections were fixed with 4% 

paraformaldehyde for 10 min at room temperature. Next, they were washed in PBS, 

blocked and permeabilized in PBS 0.1 M, 0.1% Triton X-100 and 2% normal goat 

serum for 1 hour at room temperature. Subsequently, samples were incubated in 

primary antibody (polyclonal anti-GFP, IgG fraction) for 2 hours at room temperature, 

then washed again in PBS, and incubated in secondary antibody (Alexa Fluor 488 goat 

anti-rabbit IgG). Lastly, sections were washed in PBS and mounted with Fluoromount 

G. The fluorescence in each sample was analysed using inverted fluorescence 

microscopy (Nikon TMS).  

Sections of the cornea were also analysed using Masson´s trichrome staining technique. 

All samples were histologically evaluated and examined with an optical microscope 

(Olympus BX50). 

2.8. Statistical analysis 

Statistical analysis was performed using IBM® SPSS® Statistics 23 (IBM). The normal 

distribution of the samples was assessed using the Shapiro-Wilk test, and homogeneity 

of variance, using the Levene test. Comparisons were performed using either an 

ANOVA or Student's t test. Differences were considered statistically significant at 

p<0.05. Results are expressed as mean±SD. 

3. Results 

3.1. Size, polydispersity index and zeta potential 

Table 2 summarizes the particle size, polydispersity index (PDI) and zeta potential of 

plain SLNs. As can be seen, SLN1 had a slightly smaller size than SLN2 (257 vs 341 

nm), while the PDIs were similar and under 0.35 in both cases. Zeta potential was 

positive, but lower for SLN2 (+21 vs +42 mV). 
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Table 2. Physicochemical characterization of SLN1 and SLN2. PDI (Polydispersity index). (n=3; 
data are expressed as mean ± standard deviation). 

*p<0.05 with respect to SLN1. 

The size of the SLN1-based vectors bearing the plasmid pcDNA3-EGFP (Table 3) 

ranged from 143.2 (BE3-SLN1) to 218.9 nm (HA-SLN1), while they displayed PDI 

values that were always lower than 0.35. The surface charge varied from +28.1, in the 

case of HA-SLN1, to +39 mV. 

Table 3. Physicochemical characterization of SLN1-based vectors bearing the plasmid pcDNA3-
EGFP. PDI (Polydispersity index). (n=3; data are expressed as mean ± standard deviation). 

Vectors with 
pcDNA3-EGFP 

Size (nm) PDI Zeta potential (mV) 

 DX-SLN1 199.8 ± 0.4 0.26 ± 0.01 +38.4 ± 1.6 
BE2-SLN1 198.2 ± 1.6 0.29 ± 0.04 +38.9 ± 2.6 
BE3-SLN1   143.2 ± 7.2* 0.31 ± 0.05 +38.6 ± 1.1 
 HA-SLN1   218.9 ± 1.2* 0.32 ± 0.04   +28.1 ± 1.6* 

*p<0.05 with respect to the other formulations. 

Regarding SLN2-based vectors (Table 4), three formulations were characterized. P4-

SLN2 was the smallest in term of size (278 nm) and its zeta potential was the highest 

(+26 mV). The vector that was prepared without protamine (DNA-SLN2) was slightly 

bigger (325 nm; p<0.05) and its surface charge was lower (+7.5 mV; p<0.05). By 

contrast, the formulation P2-SLN2 was the largest (434 nm; p<0.05) and its surface 

charge was the lowest (p<0.05), at +4.2 mV. All PDI measurements were under 0.3. 

Table 4. Physicochemical characterization of SLN2-based vectors bearing the plasmid pcDNA3-
EGFP. PDI (Polydispersity index). (n=3; data are expressed as mean ± standard deviation). 

Vectors with 
pcDNA3-EGFP 

Size (nm) PDI Zeta potential (mV) 

DNA-SLN2 325.7 ± 1.2* 0.24 ± 0.01 +7.5 ± 0.2* 
P2-SLN2   434.2 ± 25.4* 0.30 ± 0.02 +4.2 ± 0.2* 
P4-SLN2 278.0 ± 5.7* 0.29 ± 0.01 +26.2 ± 1.3* 

*p<0.05 with respect to the other formulations.  

No changes (p>0.05) in particle size, PDI or zeta potential were observed (data not 

shown) when SLNs were labelled with Nile Red 

3.2. TEM images 

SLNs Size (nm) PDI Zeta potential (mV) 
SLN1 257.7 ± 6.3 0.32 ± 0.04 +41.8 ± 1.2 
SLN2   341.0 ± 0.9* 0.33 ± 0.00   +21.0 ± 0.8* 
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TEM photographs of the SLN2 (Figure 1A) and P4-SLN2 vectors (Figure 1B) show the 

spherical shape of the nanoparticles, as well as of the final vectors.  

 
Fig. 1. TEM photographs of (A) SLN2 and (B) P4-SLN2 vectors. Scale bar: 200 nm. 

 

3.3. Binding, resistance to the DNase I and SDS-induced release of pcDNA3-EGFP 

from vectors 

The capacity to bind, protect and release the plasmid pcDNA3-EGFP from BE2-SLN1 

and BE3-SLN1 vectors (Figure 2A), as well as from SLN2-based complexes (Figure 2B) 

was evaluated using agarose gel electrophoresis. DX-SLN1 and HA-SLN1 have been 

shown  to adequately bind, protect and release DNA in previous studies [20, 22]. 

 
Fig.2. Binding, protection and release of pcDNA3-EGFP from BE-SLN1 vectors (A) and SLN2-
based vectors. MW ladder corresponds to the 1 kb DNA ladder from NIPPON Genetics Europe. 

In the binding studies, the vectors were placed in the wells at a final concentration of 

0.03 μg DNA/μl, and the absence of bands in the corresponding lanes demonstrated that 

DNA was fully bound to the vectors in all cases. 
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The capacity of the vectors to release the plasmid was studied treating the vectors with 

SDS for 5 min, prior to placement in the wells. SDS is able to break the interaction 

between SLNs and DNA without disruption of the structure of lipid nanoparticles. 

Nevertheless, when the plasmid is too highly condensed by SLNs the release does not 

occur. After the SDS treatment of the SLN1-based vectors, DNA was able to migrate 

from the loading wells, which demonstrates its ability to be completely released. 

However, the plasmid was partially detected in the loading wells that correspond to the 

SLN2-based vectors (lanes 8-10), which indicates that complete release was not 

achieved.  

In order to evaluate the protection capacity, before addition of the vectors to the gel, 

they were first incubated with DNase I for 30 min, and later SDS was added to the 

mixture. All formulations were able to protect the plasmid, while free DNA was totally 

degraded (lane 5 in gel A, and lane 4 in gel B). After treatment with DNase I the 

plasmid released from the formulations showed two bands, while the control plasmid 

(lane 2 in figure 2A) only showed one band. The lower band (which shows high 

intensity) corresponds to the supercoiled form (SC) and the upper band to the open 

circular form (OC). The change detected in the bands indicates that DNase I turned the 

SC form, which is the DNA topology with the most transfection capacity, into OC by 

cutting one of the DNA double strands.   

3.4. GFP transfection and cell viability in vitro 

Transfection efficacy of pcDNA3-EGFP bearing vectors was determined 72 hours after 

treatment with the vectors. The percentage of HCE-2 transfected cells and the amount of 

GFP, that was expressed as RFUs, were measured. Cell viability was also evaluated at 

that time. In the case of the SLN2-based vectors, only the results of the vector P4-SLN2 

are represented, as the other vectors were not able to transfect. The transfection efficacy 

and cell viability of the BE2-SLN1 and BE3-SLN1 vectors were similar, and the former 

was used in the following studies. The naked plasmid and the complexes without SLNs 

were also added to the cells in the same conditions, resulting in no transfection. 
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Fig.3. (A) Percentage of transfected HCE-2 cells 72 hours after treatment with the pcDNA3-
EGFP vectors. (B) Relative fluorescence units (RFUs) of transfected HCE-2 cells 72h after 
treatment with the pcDNA3-EGFP vectors. (C) Cell viability 72 hours after the treatment of 
HCE2 cells with the pcDNA3-EGFP vectors. (n=3; data are expressed as mean ± standard 
deviation). ** p<0.01 with respect to the other formulations; * p<0.05 with respect to P4-SLN2; 
# p<0.05 with respect to BE2-SLN1 and HA-SLN1. 

 

The SLN2-based vectors were found to be less effective than the SLN1-based vectors in 

terms of the percentage of transfected cells (p<0.05) and RFUs (p<0.01). While 

commercial TransFectin was found to be more effective than SLN-based vectors 

(p<0.01), cell viability (Figure 3C) decreased drastically (35% of viable cells). Cell 

viability, after the treatment of HCE-2 cells with the SLN-based vectors, was over 85%, 

and did not show differences compared to the non-treated cells and to the cells treated 

with the naked plasmid and the complexes without SLNs (data not shown).   

3.5. Uptake of Nile Red-labelled SLNs in HCE-2 cells  

Nile Red-labeled vectors were added to HCE-2 culture cells, and after 2 hours of 

incubation cells were washed with PBS and detached from the wells. Vector entry into 

the cells was analysed using flow cytometry; the results are represented in the 

histograms in Figure 4. The displacement to the right of the histograms that correspond 

to the cells treated with the vectors, compared to the histogram that belongs to the non-

treated cells (filled grey), indicates that Nile Red-labelled vectors entered all the cells in 
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all cases. The variations in the displacements describe the different fluorescence 

intensities in the cells (expressed as the X mean in the graph). Those changes are related 

to the SLN to plasmid ratios; 2 to 1 in HA-SLN1, which showed less intensity, 5 to 1 in 

DX-SLN1 and BE-SLN1, which were in the middle, and 10 to 1 in the P4-SLN2 vectors, 

which gave the highest intensity.  

 

Fig.4. Flow cytometry analysis of cellular uptake of vectors, using Nile Red-labelled SLNs in 
HCE-2 cells. The values indicated over the lines correspond to the X mean intensity of 
fluorescence. 

3.6. Intracellular disposition 

In order to study vector distribution into HCE-2 cells, DX-SLN1, BE2-SLN1, HA-SLN1 

and P4-SLN2 vectors containing the plasmid labelled with EMA (red fluorescence) were 

added to the culture cells, and at different times (4, 12 and 24 hours), cells were washed, 

fixed and mounted with DAPI-fluoromount-G™, to label nuclei in blue. Figure 5 shows 

the images acquired by inverted fluorescence, where differences in terms of intracellular 

DNA condensation and distribution were observed. When the plasmid is highly 

condensed, due to the electrostatic interactions with the components of the vectors, red 

fluorescence appears dotted (arrow heads). Along the time, and due to the interaction of 

the vectors with intracellular components, plasmid de-condensation occurs, which 

results in a more diffused fluorescence (asterisks).     

In the case of the BE2-SLN1 and DX-SLN1 vectors, the plasmid appeared condensed 4 

hours after transfection, but at 12 and 24 hours, the diffused red fluorescence indicates 

plasmid de-condensation. The plasmid in the P4-SLN2 vectors remained highly 

condensed even 24 hours after the treatment of the cells, while DNA in the HA-SLN1 
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vectors was seen to be poorly condensed in the cytoplasm from 4 hours post-

transfection. 

Regarding the intracellular disposition, the plasmid appeared to be dispersed all over the 

cytoplasm and in the perinuclear area at 4 hours, while, after 12 hours, the plasmid was 

also located in the nucleus of some cells, which is necessary for gene expression. 

However, in the case of the P4-SLN2 vectors the plasmid was hardly detected in the 

nuclei. 

 
Fig.5. Fluorescence microscopy images 4, 12 and 24 hours after the addition of vectors 
containing the EMA-labelled plasmid (red) in HCE-2 cells. Nuclei were labelled with DAPI 
(blue). Arrow heads indicate areas where condensed plasmid was detected; asterisks indicate 
areas where de-condensed plasmid was detected. Magnification 60X. Scale bar: 20 µm.   

3.7. Ex vivo studies 

3.7.1. Internalization in cornea explants 

Internalization in cornea tissue was qualitatively analysed using fluorescence 

microscopy with Nile Red-labelled SLNs. In optical microscopy endothelial layer can 

be observed clearly, after addition of Alizarin Red dye to the endothelial side, in order 

to increase the contrast of cell margins for observation in normal light mode. Since the 
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dye can interfere in the fluorescence study, alternative nuclei staining was obtained with 

DAPI, added to the endothelial side, and only fluorescence images are provided. Two 

hours after incubation with Nile Red-labelled vectors, red fluorescence was detected 

around the DAPI stained nuclei, while 24 hours later it was co-localized with the DAPI 

stained nuclei, thus resulting in violet merging of cells. Figure 6 shows a representative 

distribution of Nile Red-labelled DX-SLN1 vectors in cornea tissue. Images of untreated 

corneas were included as reference. Uptake of topically administered nanoparticles is 

mainly limited by the corneal barriers, among which the epithelial layer; thus, in this 

preliminary internalization study the demonstrated uptake in the underlying endothelial 

cells assesses the overcoming of corneal barriers. 

Untreated corneas Corneas at 2h after administration Corneas at 24h after administration

10x

40x

Untreated corneas Corneas at 2h after administration Corneas at 24h after administration

10x

40x

Fig. 6. Fluorescence microscopy images (above: 10x, below: 40x) of Nile Red-labelled DX-
SLN1 internalization in cornea tissue. Left: untreated corneas; middle: two hours after 
incubation; right: two hours after incubation and 24 hours in Steinhardt medium at 37°C.  

 

3.7.2. Transfection in cornea explants 

Figure 7 shows GFP detection by immunofluorescence, 48h after treating cornea tissue 

with the vectors containing pcDNA3-EGFP plasmid. Three rabbit corneas were treated 

with each vector, and for protein detection, six cryosections from each eye were 

immunolabeled and observed using inverted fluorescence microscopy. As control, the 

immunofluorescence procedure was also carried out in non-treated corneas, and no 

green fluorescence was detected. Cryosections were obtained from the periphery and 

from the centre of the cornea. In all the sections obtained from the treated corneas GFP 
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was detected. However, the distribution of transfected cells differed according to 

composition of the vectors. DX-SLN1 induced GFP expression in the epithelium, stroma 

and endothelium, HA-SLN1 in the epithelium and stroma, while the BE2-SLN1 and P4-

SLN2 vectors were only able to transfect epithelial cells.  

 
Fig.7. GFP transfection in explanted rabbit corneas 48 hours after treatment with DX-SLN1 
(left), BE2-SLN1 (above right), P4-SLN2 (above middle) and HA-SLN1 (bellow). As control 
(above left) a non-treated cornea immunolabelled with primary and secondary antibodies has 
been included. Scale bar: 50 µm. 

3.7.3. Trichromic study 

Masson´s trichrome staining was carried out in six histological sections from each eye, 

that were obtained from the centre and from the periphery of each cornea. The 

microscopic images (Figure 8) revealed that no difference was present in the structures 

of non-treated corneas (Figure 8A) and transfected tissues. Both treated and non-treated 

corneas were kept in Steinhardt medium at 37°C for 48 hours in order to compare the 

effect of the vectors and avoid any interference that may be caused by the cornea 

handling procedure. The images show that the non-viral SLN-based vectors did not alter 

the corneal structure, since the treated corneas (B, C, D, E) showed an architecture close 

to the non-treated rabbit corneas (A). 
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Fig.8. Microscope image of cornea tissues stained using Masson´s trichrome technique. A: non-
treated cornea; B: cornea treated with DX-SLN1; C: cornea treated with BE2-SLN1; D: cornea 
treated with HA-SLN1; E: cornea treated with P4-SLN2. Scale bar: 50 µm. 
 
 
3.8. Studies with pUNO1-hIL10 

3.8.1. Vector characterization 

Differences in the plasmid size may affect the final features of the SLN-based vectors. 

Therefore, the delivery systems containing pUNO1-hIL10 were also characterized in 

terms of size, PDI and zeta potential (Table 5). The vector P4-SLN2 had a larger size 

(510.7 nm) than the SLN1-based vectors. Surface charge was positive, at around +36 

mV, in the case of BE2-SLN1 and DX-SLN1, and lower in the case of HA-SLN1 and P4-

SLN2, at around +29 mV. PDI was under 0.45 in all cases and did not show statistical 

differences.  

Table 5. Physicochemical characterization of SLN-based vectors bearing the plasmid pUNO1-
hIL10. PDI (Polydispersity index). (n=3; data are expressed as mean ± standard deviation). 
 

*p<0.05 with respect to the other formulations. #p<0.05 with respect to BE2-SLN1 and DX- 
SLN1. 
 
3.8.2. Agarose gel electrophoresis 

Vectors with  
pUNO1-hIL10 

Size (nm) PDI Zeta potential (mV) 

DX-SLN1 233.1 ± 81.7 0.36 ± 0.10 +36.1 ± 2.2 

BE2-SLN1 290.1 ± 20.8 0.34 ± 0.03 +36.6 ± 4.6 

HA-SLN1 242.1 ± 38.0 0.35 ± 0.04  +29.6 ± 0.8# 

P4-SLN2   510.7 ± 81.2* 0.44 ± 0.03  +29.5 ± 2.2# 
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The binding, protection and release capacity of the vectors are also influenced by the 

size of the plasmid. Figure 9 shows the gel electrophoresis for the study of these 

characteristics in the vectors that bare the plasmid pUNO1-hIL10, that was performed 

as previously explained for pcDNA3-GFP vectors. 

SLN1-based vectors were able to bind, protect and release the plasmid properly. 

However, in the case of SLN2-based vectors, the plasmid hardly migrated through the 

gel (lanes 11 and 15), which indicates that it was scarcely released from the vectors. 

 

Fig.9. Study of the binding, protection and release of the vectors formed with pUNO1-hIL10. 
Protection samples were treated with DNase I and SDS, and samples of release lanes, only with 
SDS. MW ladder corresponds to the 1 kb DNA ladder from NIPPON Genetics Europe. 

3.8.3. Transfection efficacy with pUNO1-hIL10 

IL-10 levels secreted by HCE-2 cells 72 hours after treatment with the vectors were 

analysed by ELISA in the culture medium of the cells. The basal production of non-

treated cells was not detectable. In addition, in order to analyse the effect of the SLNs in 

the IL-10 production by HCE-2 cells, vectors bearing the plasmid pcDNA3-EGFP 

instead of pUNO1-hIL10 were used for transfection, and IL-10 levels were also 

undetectable. SLN-based vectors induced IL-10 expression and, as can be seen in figure 

10, transfection with SLN1-based vectors resulted in higher extracellular IL-10 levels 

(over 10,000 pg/mL) than were caused by SLN2-based vectors (100 pg/mL). 

Intracellular levels of the cytokine were under 200 pg/mL in all cases.  
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Fig. 10. Levels of IL-10 secreted by HCE-2 cells 72h after treatment with SLN-based vectors 
bearing the plasmid pUNO1-hIL10. **p<0.01 with  respect to the other formulations. 

4. Discussion 

Gene therapy is a promising treatment for corneal inflammation, as it is a strategy to 

delivery potent anti-inflammatory genes, such as the one that encodes IL-10, in order to 

induce a long-term anti-inflammatory response through the de novo synthesis of 

cytokines. Additionally, the fact that it can be administered topically on the corneal 

surface, and over repeated administrations, makes this therapeutic approach very 

advantageous. However, limitations to the capacity of delivery systems to overcome the 

physiological obstacles to transfection, such as precorneal (tear turnover, nasolachrymal 

drainage) and corneal (tight junctions and hydrophobicity of epithelium) barriers, tissue-

selective targeting, cell internalization, escape from endo-lysosomal vesicles, movement 

through the cytoplasm and entry into the nucleus [31], are still partially unresolved.  

This work evaluates two types of cationic SLNs, which differ both in preparation 

method and composition, as non-viral vectors for corneal gene therapy. SLN1, which 

have demonstrated a good capacity to act as non-viral vectors, were prepared using the 

classical solvent-emulsification technique [22], while SLN2 were prepared by means of 

the newer solvent-free method, named coacervation [27, 28], as an alternative for 

comparison. The avoidance of solvents during SLN production is an advantageous 
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feature of this second type of lipid nanoparticles. SLN1 showed higher zeta potential 

than SLN2, mainly due to the presence of DOTAP, which is more cationic in character 

than CH, the cationic agent included in SLN2. It is important to note that the superficial 

charge of cationic SLNs designed for gene therapy determines DNA condensation 

capacity, and uperficial charge value of the final complexes [23]. 

SLNs were electrostatically combined with the peptide protamine and a variety of 

polysaccharides to form the final complexes with plasmids. The vectors were 

characterized in terms of size, superficial charge and shape, since these physicochemical 

properties have significant effects on bio-distribution and cellular internalization [32, 

33]. All the vectors presented particle sizes in the nanometre range, making them 

suitable for retention and corneal permeation after topical administration [14], and 

positive superficial charge. This cationic surface facilitates the cellular uptake of the 

nanoparticulate systems [30], thanks to interactions with the negatively charged cell 

membrane. Furthermore, after topical administration onto the surface of the eye, 

cationic vectors interact with the negatively charged mucus, thus favouring retention at 

the corneal surface and improving corneal permeation via endocytic uptake by epithelial 

cells [16]. In SLN2-vectors, the proportion of protamine and SLNs with respect to DNA 

had to be increased (up to protamine:DNA 4:1 and DNA:SLN 1:10) to ensure a cationic 

surface (at +26 mV). Either the absence of protamine or the use of lower ratios (DNA-

SLN2 and P2-SLN2 formulations), resulted in almost neutral vectors in terms of 

superficial charge, and they were not able to transfect culture cells.    

HA-SLN1 and DX-SLN1 vectors have previously proven themselves able to transfect a 

variety of cells in vitro and in vivo [19, 21, 23], and their capacity to transfect corneal 

cells both in vitro and ex vivo has also been demonstrated in this work. One of the other 

two new vectors designed to transfect the cornea was prepared with BE. This is a 

second-generation low molecular weight heparin (LMWH) with a mean MW of 3.6 

KDa. LMWHs are anticoagulant drugs that also possess anti-inflammatory effects [34], 

and the BE in the vectors may contribute to this effect. The plasmid in BE2-SLN1 was 

adequately condensed, protected and released, due, in part, to the protamine, which is an 

excellent aid for transfection that is mediated by lipid-based vectors (DNA condenser, it 

has nuclear localization signals that translocate DNA from the cytoplasm to the nucleus, 

and it improves transcriptional activity) [24]. This peptide was also used to prepare 

complexes with SLN2. TEM images showed that these SLN2-vectors had a spherical 
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shape. Previous studies have shown that spherical SLN-based vectors are well taken up 

by different types of cells [20, 24]. The shape of nanoparticulate systems is important 

since it influences their cellular internalization; it has been documented that the higher 

surface area of elongated nanoparticles facilitates their interaction with cell surfaces, 

and provides higher adhesion to cells compared to spherical nanoparticles [35], whereas 

the spherical shape favours cellular uptake better than an ellipsoidal shape [36].  

In order to test the usefulness of the SLN-based vectors as gene delivery systems for the 

cornea, transfection studies were carried out in HCE-2 cells with the reporter plasmid 

pcDNA3-EGFP, and with the therapeutic plasmid pUNO1-IL10, which encodes the 

anti-inflammatory cytokine IL-10. The levels of this cytokine secreted by HCE-2 cells 

treated with the most effective formulations were over 1 ng/ml, which are expected to 

exert an anti-inflammatory effect. In this sense, in a recent work published by Wang et 

al. [37] IL-10 levels at 0.8 ng/mL in a three-dimensional inflammation model resulted in 

reduction of pro-inflammatory cytokines, such as TNF-α, and successful inhibition of 

inflammation. Moreover, the presence of the hybrid promoter EF-1α/HTLV in the 

plasmid that contains the IL-10 gene, will be likely useful to yield persistent expression 

of the anti-inflammatory cytokine in vivo [38].  

Regardless of the plasmid used, the P4-SLN2 formulation was found to be  less effective 

than SLN1-based vectors. Since entry into cells was not a limitation for any of the 

vectors (Figure 4), the difference in transfection levels may be related to the 

intracellular behaviour of the formulations. Plasmids must be protected if they are to 

avoid degradation by intracellular components, but they must also be released in the 

cytoplasm if they are to enter the nucleus. The intracellular disposition of the DNA 

(Figure 5), together with the only partial release of the plasmid from SLN2-based 

vectors in electrophoresis gel (Figure 2B), indicates that the plasmid was more 

condensed, even after 24 hours, than was the case with SLN1-based vectors. The degree 

of DNA condensation conditions the capacity to bind, release and protect the plasmid, 

and it depends on the electrostatic interactions with the cationic components of the 

formulations. CH, the cationic polysaccharide included in SLN2, binds electrostatically 

the DNA strongly and efficiently, and protects it from nuclease degradation, but the 

release of the DNA is compromised. In a previous work [22], in line with these results, 

non-viral vectors composed of cationic SLNs and oligochitosans, showed a high DNA 

condensation degree, that resulted in poor transfection of cultured cells in vitro. 
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However, after intravenous administration, transfection was detected in a number of 

organs. This lack of correlation highlights the necessity to develop models for the 

evaluation of new delivery systems, at earliest phases of the development process, that 

better match in vivo condictions.  

In this sense, cornea explants best mimic in vivo behaviour, as the various layers of the 

cornea are intact. The outermost layer is the epithelium, which is composed of several 

layers of cells that constantly undergo mitosis. Behind the epithelial cells, there is a 

transparent film called Bowman’s layer, which is composed of collagen. This protein is 

also the main component of the next layer, the stroma. This is the thickest layer of the 

cornea and contains fibroblasts (keratocytes), which are plane cells aligned in parallel to 

the ocular surface and produce the collagen. The layer behind the stroma is Descemet’s 

membrane, which is made up of collagen fibres synthesised by the cells that form the 

corneal endothelium, the innermost layer. Endothelial cells form a monolayer and are 

amitotic in humans. Unlike other animal models, such as rodents, corneal endothelial 

cells in rabbits have limited replicative ability and thus resemble human corneal 

endothelia [39]. All the vectors were able to transfect corneal tissue (Figure 7) in 

explants from rabbits, although the distribution of transfected corneal cells varied 

according to the ligands in the formulations. Vectors formulated with CH and BE were 

only able to transfect the epithelium, while HA also allowed the transfection of stromal 

cells to occur. The vector that was prepared with DX was observed to be the most 

effective, since the green protein was detected abundantly in the epithelium, and also in 

the stroma and in endothelium. The transfection of the endothelium, formed of non-

mitotic cells, is an appropriate target for corneal diseases, as gene expression duration, 

which is a common limitation of non-viral vectors, can be maintained for longer in cells 

that do not undergo cell division. The ex vivo transfection obtained using DX-SLN1 

vectors matches an in vivo study in rats [40], in which GFP expression was detected in 

the corneal epithelium, stroma and endothelium after topical administration of a similar 

formulation in the eye. These results confirm that the explanted corneas from rabbits are 

a good model with which to evaluate new gene therapy-based formulations .   

5. Conclusions   

SLN-based vectors are promising gene delivery systems for topical administration to the 

eye, where they can facilitate IL-10 synthesis by corneal cells, making them useful for 

treating inflammation-related eye surface diseases. Vectors were able to transfect the 
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epithelium, the stroma, and even the endothelium to varying degrees according to SLN 

composition and polysaccharide surface coating . SLN-based non-viral vectors could be 

designed to modulate biodistribution and therefore transfection within the cell layers of 

the cornea, according to expected therapeutic effect and duration of action. 

Summary Points:  

 Inflammation is an underlying process in severe ocular surface diseases that 

result in vision loss and quality-of-life impairment and that currently lacks, 

effective and safe therapy. 

 The topical administration of interleukin-10 (IL-10), a potent anti-inflammatory 

agent, to treat corneal inflammation is limited by its low bioavailability and 

short half-life  

 Gene supplementation in the cornea, with plasmids that encode for IL10 will 

lead to the sustained de novo synthesis of the cytokine in corneal cells, providing 

long-term anti-inflammatory effects, although suitable delivery systems are 

needed for this goal.  

 Non-viral vectors that are based on solid lipid nanoparticles (SLNs) can enhance 

corneal penetration and cellular uptake, extend ocular retention time and provide 

a controlled release profile, improving ocular bioavailability, and therefore 

leading to successful corneal gene therapy. 

 SLN-based vectors may be functionalized with the aim of modulating the 

interactions with target cells and improving cellular uptake in order to achieve 

suitable intracellular distribution for the genetic material as well as its entry into 

the nucleus.  

 SLN-based vectors, which were prepared using different methods and  

compositions, were able to enter corneal epithelial cells in vitro and to induce 

IL-10 synthesis. 

 SLN-based vectors were able to transfect explanted rabbit corneas. The 

distribution of the transfected corneal cells varied according to their surface 

decoration. 

 Vectors formulated with CH and BE were only able to transfect the corneal 

epithelium, HA also transfected stromal cells, and the vector prepared with DX 

also transfected the stroma and even the endothelium. 
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 SLN-based non-viral vectors could be designed to modulate biodistribution and 

therefore transfection within the cell layers of the cornea, according to expected 

therapeutic effect and duration of action.       
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