
Charting the Design Space ofQuery Execution using VOILA
Tim Gubner

CWI
tim.gubner@cwi.nl

Peter Boncz
CWI

peter.boncz@cwi.nl

ABSTRACT
Database architecture, while having been studied for four decades
now, has delivered only a few designs with well-understood prop-
erties. These few are followed by most actual systems. Acquiring
more knowledge about the design space is a very time-consuming
processes that requires manually crafting prototypes with a low
chance of generating material insight.

We propose a framework that aims to accelerate this exploration
process significantly. Our framework enables synthesizing many
different engines from a description in a carefully designed domain-
specific language (VOILA). We explain basic concepts and formally
define the semantics of VOILA. We demonstrate VOILA’s flexibility
by presenting translation back-ends that allow the synthesis of
state-of-the-art paradigms (data-centric compilation, vectorized
execution, AVX-512), mutations and mixes thereof.

We show-case VOILA’s flexibility by exploring the query engine
design space in an automated fashion. We generated thousands of
query engines and report our findings. Queries generated by VOILA
achieve similar performance as state-of-the-art hand-optimized im-
plementations and are up to 35.5× faster than well-known systems.

PVLDB Reference Format:
Tim Gubner and Peter Boncz. Charting the Design Space of Query
Execution using VOILA. PVLDB, 14(6): 1067 - 1079, 2021.
doi:10.14778/3447689.3447709

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/t1mm3/vldb_voila.

1 INTRODUCTION
Analytical queries process large data sets and their performance
matters to users. Low runtimes can be achieved by a combination of
efficient query execution operators that are arranged in an efficient
plan, i.e. query optimization. While query optimization regressions
or improvements strongly influence runtime, the execution engine
can also significantly influence runtime 1and, thus, cannot be ig-
nored. The search for the best physical execution method features
a very unfortunate risk-reward trade-off: (a) it requires exploring
1Using tuple-at-a-time iterator-based interpretation – that was the dominant execution
engine architecture up until the first decade of this millennium – as the baseline, we
roughly estimate the overall performance improvement on TPC-H Q1 using results
from papers: Vectorized execution [8] improves runtime by 40×. Data-centric compi-
lation [22] is 2× faster than Vectorized execution. BiPie [32] further improves runtime
by 3×. Then one can add morsel-driven parallelism [26] and gain another 48× (48
cores); or ≈ 10.000× in total without changing the plan.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.
doi:10.14778/3447689.3447709

Table 1: VOILA-synthesized queries are significantly faster
than other open-source systems. DuckDB&LegoBase do not
support parallelism. Runtimes in s, on TPC-H SF 10.

System Q1 Q3 Q6 Q9
Single-threaded

VOILA 0.59 0.93 0.15 2.07
DuckDB 5.71 (9.5×) 2.25 (2.4×) 0.64 (4.3×) 36.26 (17.5×)
LegoBase 0.78 (1.3×) 5.19 (5.5×) 0.29 (1.3×) 32.69 (15.8×)

24 threads
VOILA 0.05 0.25 0.03 0.19
MonetDB 1.15 (24.3×) 0.36 (1.5×) 0.72 (28.8×) 0.30 (1.6×)
Weld 0.39 (8.3×) 3.05 (12.3×) 0.11 (4.3×) 6.90 (35.5×)

an extremely large space, (b) exploration itself is extremely work-
and time-intensive and (c) has a very low success rate.
Vast Design Space. For a non-trivial query, the physical execution
design space easily exceeds the logical query plan space (every
operator can have multiple implementations) and grows, at least,
exponentially (tree of operators with many possible implementa-
tions). The space is theoretically infinite, as, regardless of the actual
space, the program can be inflated via No-Ops, or operations that
compensate each other. In practice, due to memory constraints, the
design space is finite but of astronomical size.
Slow Exploration. Exploring a single point (or a handful of points)
typically requires either (a) engineering rather generic engine pro-
totypes or (b) simulating an engine by hand-writing specific bench-
mark queries. The optimal choice depends on the scenario, e.g. for
many queries it would advisable to rather have an engine instead of
hand-rolling each query. In either case, for non-trivial benchmarks
the exploration process requires tedious and time-intensive manual
labor. For instance, implementing a query by hand typically takes
days whereas developing an engine will require weeks to months.

To judge the relative performance, related work – the competi-
tors – also have to be implemented. Often, the competitors are not
readily available or contain slight nuances (e.g. different plans, dif-
ferent data structures, hash table sizes, SIMD) that render a fully fair
("apples-to-apples") comparison impossible. Consequently, more
prototypes have to be implemented, increasing the development
time even further.
Low Success Rate. Once a prototype has been created, its perfor-
mance (runtime, memory footprint, energy-efficiency, etc.) can be
measured and investigated. An exploration can be declared as a suc-
cess, if it yields new insights into the design space. The initial bar
is high, as reasonably "good" points have already been discovered
(e.g. column-at-a-time [20], vectorized execution [8], data-centric
compilation [31]), and a new, successful, exploration would need
to improve upon them, e.g. by reducing runtime. Alternatively,
one can declare success, when a new method has been discovered
improves our understanding of the space.
Consequences. The unfortunate risk-reward ratio and high initial
cost dis-incentives prototyping revolutionary new ideas. To reduce

1067

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/389056268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.14778/3447689.3447709
https://github.com/t1mm3/vldb_voila
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447709


Query Operator Library

...

Build Scan

ProbeBuild

...

...

HashJoin

HashGroupBy

...

Back-Ends

Direct

Vector. Data-
Volcano Centric

FUJI. Mixes of:

Computation

Vector. Scalar

AVX

Control

Goto FSM ...

...

Prefetch

HashGroupBy

HashJoin

Select

Lineitem Orders

Select

VOILA
Machine

|pred = seltrue(T.A < 42)
EMIT (T.A) |pred

Select(T):

pos = scan_pos(morsel)
|valid = selvalid(pos)
LOOP |valid:
a = scan(orders.A, pos)
EMIT (a)
pos = scan_pos(morsel)
|valid = selvalid(pos)

Orders():

h = hash(T.A)
write(HT1._hash, h)
write(HT1.A, T.A)

HashJoinBuild(T):
Pipeline 1

HashGroupByBuild

HashJoinProbe

Select

Lineitem

Pipeline 2

HashGroupByScan
Pipeline 3

Code

3: Scalar
2: Vector.

Payload:
1: Vector.Scalar

HashGroupBy

HashJoin

Select

Lineitem Orders

Select

+Prefetch

+Goto

+Goto

+FSM

...

Figure 1: Architecture of our VOILA-based synthesis framework with various back-ends.

risk, new database architecture design points are typically chosen
in proximity to already well-known points, i.e. improving a method.
This leads to a vicious cycle where, we as a community, are stuck
with further evolving already explored points in the design space.
Contributions. This project attempts to break this vicious cycle by
making exploration significantly faster and far less work-intensive.
Automating the exploration process can reduce months of develop-
ment time into seconds and is, thus, literally millions of times faster
than the state-of-the-art, whichmeans: manually engineering proto-
types. We present an extensible framework for exploring the design
space of query execution. Figure 1 illustrates our framework. It is
based on a novel domain-specific language (VOILA) that abstracts
physical (low-level) query execution. VOILA is prudently designed
to hit the sweet spot between performance (data-parallelism) and
abstraction. It allows describing algorithms (e.g. a hash join probe)
in a abstract fashion while achieving competitive performance. We
demonstrate that state-of-the-art techniques (data-centric compi-
lation [31] and vectorized execution [8]) can be synthesized from
our high-level description. However, the flexibility of our language
VOILA, is not limited to only these two techniques. Therefore, we
present our novel and flexible code generation layer: FUJI. Through
its artful design, FUJI can not only generate a plethora of different
flavors as well as mixes thereof, but also reduces the manual effort
required to add new code generators. We show VOILA’s flexibility,
by exploring the design space of well-known queries.
Results. Queries synthesized from VOILA, perform on par with
optimized implementations of state-of-the-art query execution
paradigms (data-centric compilation [31], vectorized execution [8],
InterleavedMulti-Vectorization [13] , Relaxed Operator Fusion [29]).
Compared to other state-of-the-art open-source systems optimized
for fast data analytics, VOILA-generated queries are up 35.5× faster
(see Table 1). VOILA’s code generation modules are up to 33× more
than well-known compilers and up to 18× faster to implement
than engineering prototypes by hand. Consequently, VOILA can be
translated into extremely efficient code and opens the way to quick
prototyping and testing of new ideas, with limited manual effort.
Structure. The remaining paper is structured as follows: First, we
introduce our novel language VOILA and, afterwards, formally de-
fine its semantics. With the basics of VOILA at hand, we describe
how to translate VOILA to state-of-the-art paradigms data-centric
compilation and vectorized execution. Afterwards, we present our
novel flexible translation layer (FUJI). Finally, we evaluate the flex-
ibility of our framework and discuss its performance. Then, we
discuss related work and, afterwards, conclude the paper.

2 VOILA
During query evaluation, database systems often apply the same al-
gorithms and data structures i.e. the same physical operators (hash
join, hash group-by etc.). The major difference lies in their physical
execution strategy (compiled/interpreted tuple/vector/column-at-
a-time). We argue that operators should be described in a way
such that we, later, can synthesize different execution strategies.
Our domain-specific language VOILA (Variable Operator Imple-
mentation LAnguage) is tailored for this purpose. It describes the
algorithmic details of an operator while abstracting the physical
execution strategy away.

2.1 Core Concepts
High-level Languages are not well-suited. Various high-level
languages can express algorithms relevant to database engines for
which one can generate many different implementations (flavors).
Notable examples are MIL/MAL [7], Voodoo [34], QMonad [40] and
Weld [33]. However, these languages lack the ability of describing
algorithmic details. Suppose we want to express a hash table lookup.
Due to their level of abstraction, MAL, QMonad and Voodoo are
unable to represent a simple hash table lookup. Instead, they enforce
the usage of higher level concepts, like a hash join. Consequently,
when generating many flavors from this description, one would
have to re-implement many different joins. Being slightly more
low-level, Weld can represent dictionary lookups via a primitive
building block. This has two major disadvantages: (a) It is not
easily possible to optimize specific fragments of the hash table
lookup (e.g. fusing key checks for composite keys) without requiring
a new lookup implementation. (b) When synthesizing different
execution strategies, new black-box hash table lookups have to be
re-implemented for each strategy.

Besides their inability to express algorithmic details, high-level
languages often introduce complex nested data structures for inter-
mediate values. Compared to simple intermediates (scalars, arrays),
complex intermediates are typically slower to access (e.g. compare
accessing a nested linked-list to a flat array) and consume more
memory. To mitigate this problem, high-level languages have op-
timization passes that deal with removing complex intermediates.
However removing these intermediates is a very costly process (in
NP-time), called deforestation [43].

Both properties, the inability to express algorithm details and
the problems caused by complex intermediates, render high-level
languages unsuited for our purpose.

1068



VOILA to the rescue. To mitigate these disadvantages, we pro-
pose to decompose data-structure specific operations (e.g. hash table
lookup) into multiple simpler operations. In VOILA, we decompose
a hash table lookup into: hash computation, bucket lookup, key
check (gather & equality check), navigation to the next bucket and
a loop to iterate over hash collisions. This decomposition describes
how a hash table lookup is to be performed, but still leaves out
specific details such as hash table design (bucket-chained, linear
probing, ...), data layout (row-wise, columnar, hybrid) or execu-
tion strategies (data-centric, vectorized, interleaved prefetching,
...). From the example it is evident that VOILA is more high-level
than low-level languages (e.g. C, LLVM IR [25] or ScalLite [40]), but
more low-level than languages such as Voodoo andMIL/MAL. Thus,
it bridges the gap between typical high- and low-level languages.
After decomposing algorithms into high-level primitives, we can
synthesize a specific implementation for each primitive and, thus,
the whole algorithm.
Block-wise Execution. To abstract the physical execution from
the logical description, operations in VOILA always operate on
multiple values (vectors) at once. Scaling the vector size allows
covering value-at-a-time (vector size 1) to column-at-a-time (vector
size ∞) as well as the design points in between (e.g. SIMD).Most
operations on vectors can happen completely data-parallel. The
rationale of first-class support of block-wise execution is that re-
discovering data-parallelism from sequential code is very hard, e.g.
neither GCC nor LLVM properly vectorize loops with branches.
Inferred Types. Expressions and variables in VOILA do not specify
data types, because they can be inferred automatically, from schema
and program. This provides additional flexibility to add type-based
optimizations (e.g. thinner data types for faster arithmetic [18]).
Predication. In our use-case, it is common to only process parts
of the data, e.g. when tuples get logically removed (filtered out).
In VOILA, filters create predicates. Predicates can be attached to
operations, but can also be inferred from expressions. Note that we
need predicates to synthesize efficient vectorized implementations
á la Vectorwise [8].
Operator Context. Commonly, when lowering a higher-level into
a lower-level language, e.g. physical plan into LLVM IR, the operator
context disappears. After lowering, it will be very hard or impossible
to determine which operations belong to which operators. To be
able to, later, synthesize iterator-based operators from VOILA, we
chose to keep the operator context.

2.2 Language
VOILA describes relational operators as imperative programs with
high-level primitives. Each description consists of a list of state-
ments (evaluation, assignment, LOOP, EMIT). Statements contain ex-
pressions. Expressions can either be literals (variables, constants)
or functions on expressions (see Table 2). Statements, as well as ex-
pressions, logically operate on data vectors. Filters typically remove
tuples from the flow. Instead of forcing materialization of vectors i.e.
physically removing the deselected items, VOILA allows augment-
ing statements and expressions with predicates (op |predicate).
Predicates can be thought of as (bit)masks that annotate whether
an operation can safely be applied. If the predicate yields true for
the tuple, the operation can be applied. Otherwise, the result of the
operation is undefined. Though, that representation is conceptual,

Listing 1: Hash group-by operator in VOILA.
1LOCAL HASHTABLE ht(k1 KEY , sum1 VALUE)

3GroupBy(T) {
h = hash(T[0])

5|miss = seltrue(true)

7LOOP |miss { // repeat until every tuple is processed
bucket = bucket_lookup(ht, h)

9empty = eq(bucket , 0)
|hit = selfalse(empty)

11|miss = seltrue(empty)

13LOOP |hit { // hash probing
htkey = gather(ht.k1, bucket)

15equal = eq(htkey , T[0])
|found = seltrue(equal)

17
// compute aggregates

19aggr_sum(ht.sum1 , bucket |found , T[1])

21// continue with non -matching tuples
|hit = selfalse(equal)

23bucket = bucket_next(ht, bucket |hit)
empty = eq(bucket , 0)

25|miss = selunion (|miss , seltrue(empty))
|hit = selfalse(empty)

27}

29// optimistically insert non -matching tuples
new_pos = bucket_insert(ht, h |miss)

31// copy key T[0] into column 'k1'
|can_scatter = selvalid(new_pos)

33scatter(ht.k1, new_pos |can_scatter , T[0])
} }

in the data-centric VOILA back-end, no such bitmasks exist and the
predicate will be translated into a branch. In VOILA, operators, as
well as statements therein, are stateful, they e.g. maintain a hash
table. The EMIT statement moves tuples of vectors, resulting from
expressions, to the following operator. Logically, all expressions
and statements operate on data vectors. Expressions either, in case
of functions, apply the function element-wise on the data vector(s)
– all vectors are required to have the same length – or, in case of a
constant, broadcast a constant to all elements. The result of expres-
sions can be stored in variables. Assignments behave similarly to
other imperative languages and, logically, copy all values of data
vector into the destination variable. This allows updating the same
variable. Using different predicates, one can overwrite different
positions of the same variable. Besides assignments, VOILA also
allows fixed-point iteration via loops, similar to C’s while statement.
Different is that in VOILA the loop condition is a predicate and is
only true, as long as at ≥ 1 items in the vector qualify.
Example. We explain VOILA using the hash-based group-by in
Listing 1 as an example. First we declare the required data struc-
tures (line 1), then we describe the operator: Commonly an operator
receives an input (T) which is a tuple of vectors. In this case, we use
the T to find the final hash bucket, and to directly compute aggre-
gates. We first extract the key (T[0]) and hash the value. Afterwards
we initialize the predicate miss to select all tuples. As long as there
are misses, we repeat the following process (7):

We lookup the first bucket and check whether it is 0, i.e. empty.
For buckets that are ≠ 0, we repeatedly follow the bucket chain
(13), check the keys (13 & 14) and compute the aggregate(s) using
these positions (19). Afterwards, we continue with the buckets that
did not match any keys (21) and follow the bucket chain (23). If we
noticed the end of the bucket chain, we have new misses (values
that have to be inserted) and append them to the existing misses

1069



Table 2: Expressions & Statements in VOILA. x, y denote val-
ues or expressions. c denotes a table column. ht denotes a
hash table. b denotes a hash bucket, also an expression.

Operation Description

Comparison/arithmetic/logic
eq(x, y) x == y

not(x) !x

add(x, y) x + y

cast_i32(x) Casts x to (signed) 32-bit integer
hash(x) Computes hash of x
...

Hash Table
bucket_insert(ht, b) Create new bucket(s) in hash table
bucket_lookup(ht, b) Given hash values, find initial buckets
bucket_next(ht, b) Given bucket(s), find next bucket(s) in chain

Table/Array
scatter(c, b, x) Scatter values into bucket(s)
gather(c, b) Gather values from buckets
read_pos(t) Allocate next consecutive read position

from table t

write_pos(t) Allocate next consecutive write position
from table t

write(c, p, x) Consecutive write data to column starting
from position p

read(c, p) Consecutive Read from column starting
from position p

Table Aggregates
aggr_count(c, b) Count active values (via predicate) in

table’s column c at index b

aggr_sum(c, b, x) Sum values in table’s column c at index b

...

Data Inflow
scan_pos(t) Allocate next consecutive scan position
scan(c, p) Returns column chunk from position p

Predicate
seltrue(x) Selected if x is true
selfalse(x) seltrue(not(x))

selvalid(x) Selected if x is valid.
[read, write, scan]_pos can return an
invalid position

selunion(x, y) Selected if x is true or if y is true
(x and y are both predicates)

(25). Then, we try to insert the misses (30) and copy the keys (33)
which might fail. Finally, we repeat the insertion process until we
found a bucket for every tuple.

3 FORMAL SEMANTICS OF VOILA
We formally define VOILA’s semantics bottom-up: We start with
basic expressions, afterwards step-wise broaden the semantics to
statements, operators and, finally, the query.

3.1 Expressions
In VOILA, expressions logically apply functions to values. For ex-
ample in Listing 1 (line 9), the expression eq(bucket, 0) applies the
equality comparison on its arguments (bucket and 0). Expressions
can have predicates attached. Predicates indicate which values in-
side vectors are valid. In case there is no predicate attached, we
attach a predicate that will return true for every value. We only

define the actual result of an expression, when predicate is true (1),
otherwise we define it as undefined (⊥).
Predicates. To conveniently apply predicates to functions, we de-
fine ϕ as the application of function f on its arguments a1, a2, . . .
in the presence of a predicate p ∈ {0, 1}:

ϕ(p, f ,a1,a2, . . . ) :=

{︄
f (a1,a2, . . . ) if p = 1
⊥ otherwise

Element-wise Application. To apply regular functions onto vec-
tors, we define element-wise application (π ). Let vectors be func-
tions from an index set I to the result set R (I → R). For a vector v⃗ ,
we can define I = {1, 2, . . . ,dim(v⃗)}. Let Ia⃗ denote the index set of
vector a⃗. We define the trivial element-wise application (π ′) as:

π ′(i, f ,a1,a2, . . . ) :=

{︄
f (a1(i),a2(i), . . . ) if c(i,a1,a2, . . . )
⊥ otherwise

with
c(i,a1,a2 . . . ) :=

(︁
(a1(i) ≠ ⊥) ∧ (a2(i) ≠ ⊥) ∧ . . .

)︁
∧
(︁
(i ∈ Ia1 ) ∧ (i ∈ Ia2 ) ∧ . . .

)︁ .

The function c defines which elements of the vectors are valid.
An element is valid, if it is defined in terms of (a) ⊥ and (b) the
index set. The resulting index set of π ′ is the intersection of all
input index sets: Iπ ′ = Ia1 ∩ Ia2 . . . .

We define the element-wise application (π ) as the inverse trans-
formation of vectors to functions applied on π ′.
Expressions apply a function f to its arguments and a global state
W . We define the result of an expression η as the composition of
predication (ϕ) and application (π ):

η(W , f , p⃗, a⃗1, a⃗2 . . . ) := π (ϕ(f ,W ), p⃗, a⃗1, a⃗2, . . . )

Using η, we define the expressions in VOILA as the element-wise
application of a function f . Some expressions, namely read and
scan, allow sequential access. These expressions behave similarly se-
mantics to gatherwith the difference that the indices are sequential
starting from a scalar offset (o). We transform expressions with se-
quential access into the same shape as normal expressions in VOILA
described by a function f . Therefore, we add the identity vector
i⃗d as an additional argument to π and, consequently, f (a1,a2 . . . ).
We denote such modified functions as fseq (a1,a2, . . . , i) where a1,
a2 are the arguments and i the i-th position of the identity vector
id (i.e. idi = i).

Table 3 defines most expressions as such a function f . To keep
the notation concise, we implicitly broadcast scalar expressions (ht,
c, p) to a constant vector with infinite dimension. The remaining
expressions (read_pos, scan_pos and write_pos, bucket_insert) can
have side-effects. Thus, we postpone their definition to the next
section by rewriting them into statements: Let e be such an expres-
sion and x some unique identifier, then we rewrite e(a⃗1, a⃗2, . . . )
into assign(x , e(a⃗1, a⃗2, . . . )) and reference x in the expression(s)
referring to the result of e .

3.2 Statements
As opposed to expressions, statements do not directly produce a
result, but produce a side-effect (e.g. modifying a data structure,
assigning variable) instead. For example in Listing 1 (line 4), the
result of an expression is assigned to a variable i.e. modifies the
variable’s state.

1070



Table 3: Expressions in VOILA defined as function f .
Operation Semantics

Comparison/arithmetic/logic
eq(x, y) f (W , x,y) = x = y
eq(x, y) f (W , x) = ¬(x)
add(x, y) f (W , x,y) = x + y
cast_i32(x) f (W , x) = x
hash(x) f (W , x) = hash(x)
...

Hash Table
bucket_lookup(ht, b) f (W ,ht,b) = дet(W ,Dht ;bucket [b])
bucket_next(ht, b) f (W ,ht,b) = дet(W ,Dht ;next [b])

Table/Array
gather(c, b) f (W , c,b) = дet(W ,Dc [b]).
read(c, p) fseq (W , c,p, i) = дet(W ,Dc [p + i]).

Data Inflow
scan_pos(t) read_pos(t)

scan(c, p) read(c, p)

Predicate
seltrue(x) f (W , x) = x
selvalid(x) f (W , x) ≠ ⊥

selunion(x, y) or(x, y)

...

Other
Variable v f (W ,v) = дet(W ,Vv )
Constant c f (W , c) = bcast(c)

Side-Effects. To formally encapsulate side-effects, we define a
"world state"W . Each statement S :: (W ,A) →W has input argu-
ments A and "modifies"W . A chain of two statements S1, S2 would
hand though the world stateW :Wf inal = S2(S1(Winit ,A1),A2). By
induction we can construct chains of arbitrary length.
Global State. Our constructed world, or global state,W contains
mappings for variables (W .Vvar name), as well as mappings for data
structures (W .Dstruct name). Further we define getters and setters:
A getter returns the specified value i.e. дet(W ,m) :=W .m. A setter
"modifies" the global stateW by creating a new stateW ′.W ′ :=
set(W ,m,v) creates a copy ofW , namelyW ′, withW ′.m = v . Using
both, getters and setter, we can modify data structures and values
assigned to variables in the global stateW .
Element-wise Application. Similar to Expressions, we define the
element-wise application for statements. The difference is that
statements and (rewritten) expressions have side-effects and, thus,
we need to (a) carry the global state around and (b) specify an
evaluation order. Therefore, we define the element-wise application
until an indexm as:

A′
m (W , s, i, p⃗, a⃗1, a⃗2, . . . ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A′
m (W ′, s, i + 1, if i ≤ m

p⃗, a⃗1, a⃗2, . . . )

W ′ otherwise

withW ′ =

{︄
s(W , i, ⃗a1,1, ⃗a2,1, . . . ) if (p = 1) ∧ (i ≤ m)

W otherwise
.

Using A′
m , we define the element-wise application A as:

A(W , s,p,a1,a2, . . . ) := A′
m (W , s, 1, p⃗, a⃗1, a⃗2, . . . )

with m = min
{︁
dim(p⃗),dim(a⃗1),dim(a⃗2), . . .

}︁
, p⃗ = θ (W ,p), a⃗1 =

θ (W ,a1), a⃗2 = θ (W ,a2) ... Using A, we define statements as the

Table 4: Statements in VOILA. i is the index inside vectors.
Pattern Semantics

assign(W ,v, e⃗) s(W , i,v, e⃗) = set
(︁
W ,Vv , θ (W , e⃗)i

)︁
Writers
write(c, epos , ⃗eval ) scatter(c,bcast(epos ), ⃗eval )
scatter(c, ⃗eidx , ⃗eval ) s(W , i, c, ⃗eidx , ⃗eval ) = set

(︁
W ,

Dc
[︁
θ (W , ⃗eidx )[i]

]︁
, θ (W , ⃗eval )[i]

)︁
Aggregates
Let f be an aggregation function, e.g. fsum(eold , eval ) := eold + eval
aggr_∗(c, ⃗eidx , ⃗eval ) s(W , i, c, ⃗eidx , ⃗eval ) =W

′ with
k = θ (W , ⃗eidx )[i]
W ′ = set(W ,Dc [k],

f
(︁
дet(W ,Dc [k]), θ (W , ⃗eval )

)︁
(Rewritten) Position Allocators
For ∗_pos ∈ {read_pos, scan_pos, write_pos}
assign

(︁
W ,v, W ′ = set(T ,Vv , θ (W , r )) with

∗_pos(t)
)︁

r = дet(W ,Dt ;∗_pos )

T = set
(︂
W ,Dt ;∗_pos , θ

(︁
W , add(r ,dim(r ))

)︁ )︂
application of a function s onto each element. With the element-
wise application and the following helpers, most statements can be
defined as in Table 4:

• θ (W , e) evaluates an expression e and returns its value.
• C[i] accesses a value inside C at position i . This makes C a
mapping from i to values.

• e⃗ = bcast(d) broadcasts d to all entries of e⃗ (∀ie⃗i = d).
bucket_insert tries to create k = dim(b) buckets. It is possible that
collisions happen (conflicting indices inside a vector), therefore the
result can be (a) a successful insertion of the bucket or (b) a failure
to insert. In the latter case, the insertion procedure will have to
be repeated. bucket_insert either returns a bucket index, or ⊥ for
failure. We define assign(W ,v, bucket_insert(ht,b)) as:

s(W , i,ht,b) =

{︄
set(W3,Vv , r ) if conf lict(b⃗, i) = 0
set(W ,Vv ,⊥) otherwise

with:
• W1 := set

(︁
W ,Dht ;next [b],дet(W ,Dht ;bucket [b])

)︁
,

• (W2, r ) := allocate(W1) allocates a position in the hash table
and returns new stateW2 and position r .

• W3 := set(W2,Dht ;bucket [b], r )

conf lict(b⃗, i) :=

{︄|︁|︁|︁{b⃗[i]} ∩ {︁
b⃗[1], . . . , b⃗[i − 1]

}︁|︁|︁|︁ if i > 1

0 otherwise
LOOP repeats a statement S until a fixed-point is reached i.e. condi-
tion is not satisfied. We define LOOP as:

L(W , S, P) =

{︄
L(S(W ), S, P) if count(θ (W , P), 1) > 0
W otherwise

3.3 Operators
In VOILA an operator is described by a function op(input). For
example in Listing 1 (line 3), this is GroupBy(T).
EMIT. The EMIT statements transports tuples from the current op-
erator to the next operator in the pipeline, or outputs tuples, last
operator in the last pipeline, to the user. With knowledge of the
current pipeline P , the following operator is known and static (will

1071



Translate(Operator o, Input T ):
(1) Loops: LOOP |p ... → while (p) { ... }

(2) Remove predicates:
• r = x |p → if (p) { r = x }

• p = seltrue(x) → p = x

• p = selfalse(x) → p = !x

(3) Implement operations:
• r = hash(x) → r = HASH(x)

• r = read(col, idx) → r = col[idx]

• scatter(col, idx, val) → col[idx] = val

• EMIT x → Translate(o + 1, x)
• ...

Figure 2: Translation of statements/expression from VOILA
to data-centric program. Order of application matters.

not change). This allows rewriting the VOILA program into a pro-
gram without EMIT. To handle EMIT, we fully transform the VOILA
program. Let the current pipeline be P , |P | the number of operators
in P and Pi the specific function of operator i . For every operator o
(with operator function Po (W , x), with x being its input, or ∅ for
scans), we replace every occurrence of EMIT(x) (typically only one),
with Po+1(x) when o + 1 < |P | (otherwise it would print tuples to
the user). We repeat this process until no EMIT can be replaced. As
a consequence, there will only be one remaining operator function
(every operator has been inlined into the scan operator P1) and the
remaining EMITs add tuples to the result R. We define the result R as
a list, part of the global stateW , and let append(L, x) a function that
appends a value x at the end of the list L. Like regular statements,
we define (the remaining) EMIT as:

W ′ =

{︄
set(W ,R,append(дet(W ,R), x)) if p = 1
W otherwise

Execution&Termination.With the above toolkit, we can answer
a query Q . Let the query consist of multiple pipelines Q1,Q2, . . . .
We construct an initial stateW0 with empty result R, empty set of
variables V and set of data structures D consisting of base tables.
Using the initial stateW0, we can evaluate each pipelines consec-
utively, resulting in a new state (aW ′) and feedW ′ into the next
pipeline, and so on. We evaluate a pipeline using eval(W ,Qn ) :=
eval(W ,Qn;1)which evaluates the first operator function (Qn;1, the
P1 of a Qn ) of the pipeline until the end of the operator function
is reached. We repeat this process until all pipelines have been
evaluated. Afterwards the final result of the query is stored asW .R,
in the final stateW .

4 DIRECT SYNTHESIZER BACK-ENDS
Using descriptions in VOILA, we can synthesize different execution
styles. We created simple back-ends that directly generate the state-
of-the-art paradigms in C++: data-centric as used in HyPer [31],
and iterator-based vectorized [8] code, as used in Vectorwise.

4.1 Data-Centric Program
We first re-cap data-centric compilation and afterwards describe
how to synthesize data-centric code.
Data-Centric Compilation, first, splits query plans into pipelines.
Pipelines start from scans (base table, group-by etc.) and end in a
materializing operator. For each pipeline, data-centric compilation
fuses all operators into one loop while, typically, generating scalar

code for the operator’s body. Thus, we focus on synthesizing scalar
code, but our synthesis strategy is not limited to it.
Synthesis. Similar to the original approach by Neumann [31], we
first split the query plan into pipelines and inline all operators in
one pipeline into one loop. This gives us data-centric pipelines
in VOILA, which we then lower to executable code. During the
translation, we assume a vector size of 1 (i.e. scalar) and directly
expand operations in VOILA using the set of rules listed in Figure 2.

4.2 Iterator-based Vectorized Program
Alternatively, one can also translate VOILA into an iterator-based
and vectorized program. Currently, our framework can only syn-
thesize unary operators and, thus, we split binary operators into
pipelines as for data-centric code.
Iterator-based Operators. It is a traditional approach to imple-
ment physical operators as iterators by providing an open-next-
close interface. Using this interface, operators pull the next tuple
from the child operator(s) by calling next. This both reduces the
size of intermediates materialized in memory (one tuple) as cache-
efficiency (tuple is produced and immediately consumed).
Vectorized Interpretation.Traditionally, the iterator-basedmodel
only returns one tuple at a time. This leads to high interpretation
overhead [8]. As a mitigation, the iterator-model can be extended
to return multiple tuples. To further cut down interpretation costs,
basic expressions also need to operate on multiple tuples. This is
known as "vectorized interpretation" [8].
Synthesis. To generate an iterator-based vectorized program, we
synthesize an operator implementation that implements the open-
next-close interface. Inside the operator we need to construct ex-
pressions (open), evaluate them (next), deallocate resources (close),
as well as, maintain the operator’s state. Since we keep the operator
context for each operator, we expand a basic operator template.

For each expression in VOILA, we need to generate code that
constructs an expression (Expr a_plus_b("add", a, b);). At a later
point, the top-most expression will trigger the recursive evalua-
tion of its input expressions (lazy evaluation). For statements we
generate specialized code:

• EMIT is translated into code that moves tuples (expressions)
into the operator’s output and returns tuples.

• LOOP translates into a loop including evaluating the loop
predicate. It can happen that loops refer to in-flight, not yet
evaluated, expressions either from out-side the loop, or from
a previous iteration. In such cases, we need to evaluate these
in-flight expressions.

• All remaining statements enforce the evaluation of their
respective input expressions.

For each operator, we build expression trees which are evaluated
either via statements, or when the result of the operator is requested
(next).

5 FUJI – THE FLEXIBLE BACK-END
Our two direct back-ends can generate executable code for queries,
using operators described in VOILA according to two completely
different state-of-the-art flavors: data-centric and vectorized. How-
ever, many more flavors can be generated from VOILA. Therefore,
we designed a third, more generic, back-end: Flexible Unified JIT

1072



Table 5: Known points in the FUJI’s design space
Flavor Computation Control Prefetch Buffer

Data-centric [31] Scalar Goto ✗ ✗

Vectorized [8] Vec. Primitive Goto ✗ ✗

AMAC [24] Scalar Conc. FSMs ✓ ✗

ROF [29] Scalar Goto ✓ ✓

IMV [13] SIMD Conc. FSMs ✓ ✓

Infrastructure (FUJI). FUJI makes code generation (1) more flexible
and (2) easier to extend and debug. It (a) decomposes code gener-
ation into components, (b) allows freely mixing them, and (c) is
logically splitting code generation into different modules serving
different purposes.

5.1 Component-based Flavor-Generation
We decompose code generation into basic components: Computa-
tion, Prefetching, Control and Buffering.
Computation. The computation component translates expression
trees into scalar operations (e.g. Hyper), SIMD operations or calls
to vectorized primitives (functions that process column chunks in
a tight loop).
Prefetching. Recent work has shown that software prefetching
can significantly improve performance [13, 24, 29] and therefore
should be part of modern query engines.
Control. The Control component decides how EMIT and LOOP state-
ments are translated. This can be a goto-based program or multiple
finite state machines (FSMs). Multiple FSMs have the advantage
that each FSM can run concurrently and allow overlapping prefetch-
ing with other operations, e.g. one FSM issues memory loads via
prefetch instructions, while waiting the other FSMs can proceed.
Buffering. Selective operators (e.g. filters) or predicates can re-
move tuples from the flow. However, to achieve full utilization of
SIMD lanes (or ALU in general) it is, in some cases, advisable to
physically eliminate filtered-out tuples (i.e. typically materializ-
ing a chunk of the relation). Typically, buffering becomes more
expensive with more columns, but leads to gains in subsequent
operators/operations.

This decomposition covers the state-of-the-art, as Table 5 shows,
as well as the space in between.

5.2 Flexible Unified JIT Infrastructure (FUJI)
Typically, code generators tend to be huge monoliths. For example,
the early code generator of Hyper was about 10K lines of code [31].
To increase flexibility and extensibility, we split the logic of our FUJI
back-end into multiple modules: Target Codegen, Generic Codegen
and CLite.
Target Codegen. The target specific code generators synthesize
optimized CLite code for specific implementations for expressions,
buffering of intermediates and prefetching. We implemented 3 tar-
gets: scalar, vector and avx512. The scalar target generates data-
centric code [31] similar to Section 4.1. The vector target generates
calls to vectorized primitives which is an alternative implementa-
tion of vectorized execution, compared to iterator-based vectorized
program (Section 4.2). In addition, FUJI currently provides an avx512

target, which processes blocks of 8 values-at-a-time and, if possible,
uses AVX intrisincs to process data. Note, not all operators are (a)

possible using only the AVX instruction sets (e.g. bucket_insert),
nor (b) benefit from it (e.g. aggregations or sub-word gathers). Se-
lective processing is implemented using AVX-512 bit-masks. If AVX
cannot be used, we check the mask and generate scalar code for
each of the 8 values.
Generic Codegen. The generic code generator simplifies the tar-
get code generators by synthesizing code for frequently occurring
patterns i.e. operator handling (generic operator template, transport-
ing tuples i.e. EMIT), LOOP, buffering logic (buffer refill and flushing),
variables and position allocators. This removes repetitive code from
the target code generators, consequently, making them easier to
engineer. Together with the target code generator, the generic code
generator provides one set of translation rules.
CLite. Both, generic and target code generators, generate CLite
code, our second domain-specific language. CLite is a simplified
version of C without infix operators, macros, loops (go-to instead)
i.e. VOILA can be lowered into a simpler language than C++ and C. It
constitutes a lightweight abstraction that (a) provides a convenient
interface to construct programs, (b) allows specific optimizations
and (c) helps synthesizing different control-flow techniques. From
the program in CLite, we generate a C++ program, but plan to
compile to LLVM IR or machine code directly.
Synthesizing Control Flow.When synthesizing code, we differ-
entiate between two control flow strategies: (a) simple goto-based
programs and (b) finite state machines (FSMs). Both can easily
be synthesized from CLite which can be seen in Figure 3: For a
goto-based program, CLite blocks are lowered into a labels (LABEL:
BODY) and branches into go-to statements (goto NEXT;). To generate
a FSM, CLite blocks are lowered into a FSM state (case STATE_-

ID: BODY) and branches schedule the next states (state.state =

NEXT; break;). The generated code is, then, wrapped into a loop
and switch statement. To generate concurrent FSMs, we extend the
FSM-code by wrapping local variables into a per-FSM state (S), and
adding scheduling logic (lwt).
Minimizing State S. Especially the performance of concurrent
FSMs is very sensitive to the number of variables stored in the
per-FSM state S, as additional overheads occur when variables
are accessed: (a) indirection overhead because, instead of in CPU
registers, variables are stored inside an array of struct and (b)
additional cache pressure with an increasing size of S. Therefore,
we added an optimization pass, that promotes CLite variables to
regular variables (can be stored in regular CPU registers). This
is possible whenever variables are only read/written inside the
same block, and, obviously, for constants. This optimization pass
minimizes indirections as well as eases cache pressure.

5.3 Mixing Flavors
To finally generate an astronomical number of engines, the FUJI
back-end should allow combining different flavors. Therefore, we
extended VOILA with operations that allow changing the generated
flavor, and extended FUJI with the ability to generate transitions
between flavors.
One Flavor per Pipeline. One of the easiest ways of mixing fla-
vors in a query is to choose a different flavor per pipeline. In FUJI,
this is trivial because it just means instantiating a different code
generator for each pipeline.

1073



Fragment f;

Block l1(f), l2(f);

Builder b(l1);

Var x = f.var("int", "x");

Var y = f.var("int", "y");

Expr c = f.literal (42);

b.assign(y,

b.func("+", b.ref(x), c));

b.effect(

b.func("print", b.ref(y)));

b.branch(l2);

(a) Simple CLite example

int x,y;

{

l1:

y = x + 42;

print(y);

goto l2;

l2:

...

}

(b) Goto Program

int state=1,x,y;

while (1) {

switch (state) {

case 1:

y = x + 42;

print(y);

state = 2; break;

case 2:

...

} }

(c) Finite State Machine

struct {int state=1,x,y;} S[N];

unsigned lwt = 0;

while (1) {

auto& s = S[(lwt++) % N];

switch (s.state) {

case 1:

s.y = s.x + 42;

print(s.y);

s.state = 2; break;

case 2:

...

} }

(d) N Concurrent FSMs
Figure 3: Synthesizing Control-Flow from CLite.

Table 6: Highly diverse runtimes. SF 100. 24 threads.
#BLENDs #Queries Runtime (s)

Min Q0.25 Median Q0.75 Max

5 1 7.22 7.22 7.22 7.22 7.22
6 11 3.87 6.54 8.03 9.86 17.85
7 85 5.18 7.20 8.16 10.14 311.77
8 449 4.81 8.30 10.06 13.32 353.42
9 1511 4.70 9.05 10.98 15.51 318.32
10 9216 3.90 9.75 12.19 17.21 347.92

Total 11273 3.87 9.63 11.92 16.85 353.42

Mixing Flavors in a Pipeline. A more flexible method is to com-
bine multiple flavors inside a pipeline what we call blending. We
extended VOILA with BLEND, a statement which defines a flavor for
a scope (sub-program with its statements and in-flight variables).
Then, we can create different blends by setting a default/main flavor
and introducing BLENDs which define flavors for program fragments.
Note that this allows recursive stacking of BLENDs.
Translating BLEND. A BLEND defines a child flavor within a parent
flavor. When translating a BLEND, we compose a new code generator
(as described in Section 5.1) and buffer in-flight data during the
transition from parent to child flavor, and back. Buffering can be
done in many ways. One can imagine buffering columnar, row-
wise buffers or mixes. To allow different buffering implementations,
we construct an extremely versatile, yet simple, buffering inter-
face: (1) buffer_read_pos/buffer_write_pos allocate slots for read-
ing/writing, (2) buffer_read/buffer_write read/write data from/to
the buffer, and (3) buffer_read_commit/buffer_write_commit com-
mit used slots. For example, to write a row to the buffer, we first
allocate a destination slot using p = buffer_write_pos. Then, we
write each attribute/cell a to the slot p via buffer_write(p, a). Af-
terwards, we complete the write via buffer_write_commit(p). As
this interface allows many possible buffer implementations, FUJI
leaves specific implementation choices to the code generators.

Using the buffering interface, we implement BLEND. A BLEND in-
troduces two buffers: an input and an output buffer. Data flows
from a source into the input buffer. When the input buffer is full,
we read values from the input buffer, and run the code inside BLEND

(generated in a different flavor). This is producing output values
which are then written into the output buffer. When the output
buffer is full, we read values from the output buffer which then
flow towards the sink. We use source and sink rather generically:
In the trivial case, one BLEND inside a pipeline, the source refers to
the VOILA code before the BLEND whereas the sink is the code after
the BLEND. However, when nesting or chaining BLENDs, source/sink
can as well read/write another BLEND’s buffer.

Buffering Design Choices. To minimize allocation overheads,
we use fixed-sized ring buffers. Typically, when wrapping around,
vectorized writes can become non-contiguous. In that case, we leave
empty space at the end, wrap around and write contiguously. The
buffer size impacts performance significantly. A buffer that is too
small will be flushed too often, incurring branch miss-predictions. If
the buffer is too large, additional cache misses can have a negative
impact. We differentiate between the physical buffer size and a high
watermark, the effective size. The buffer size ensures the writes
fit, whereas the high watermark controls buffer performance. We
use high watermark of max(2*n, 2k) and a size of max(2*s*n, 64k)

with n being the input vector size (e.g. 8 for AVX-512) and s the
number of concurrent FSMs.

6 EVALUATION
We implemented the VOILA compiler with the two direct back-ends
and FUJI in C++. All queries use the TPC-H dataset with varying
scale factors (SF). The experiments were performed on a dual-socket
Intel Xeon Gold 6126 with 24 SMT cores (12 physical cores) and
19.25 MB L3 cache each. The system is equipped with 384 GB of
main memory.

6.1 Design Space Exploration
We explored the design space of TPC-H Q9 span through mixing
different flavors per pipeline and BLENDing different flavors inside
the same pipeline. Instead of allowing fully flexible BLEND operations,
we limited them to specific points: (a) hash join key check, (b) hash
join payload gather, (c) projections/arithmetic and (d) filters. Further,
we limited base flavors to the pipelines that contribute > 15% to
total performance. We further restricted the space by restricting the
essential parameters: computation type to the basic types (scalar,
avx512 and vector), prefetching to a boolean (0, 1) and the number
of concurrent state machines to reasonable small values (1, 2, 4, 8).
Since the design space of Q9 is too large for full exploration, we used
sampling of the design space, in spirit of [15], as a robust way of
exploring its performance diversity. We synthesized roughly 10,000
queries from VOILA using uniformly random combinations of base
flavors (data-centric, prefetching, state machines etc.) as well as
mixes of them, inside the same pipeline and between pipelines. This
covers roughly 4 ∗ 10−4% of the described space. The runtimes are
summarized in Table 6.

Our uniform space sample frequently contains many BLENDs.
Compared to the best runtime found (3.87), many queries perform
worse (≥ 2× higher median). There is a tail of runtimes > 4×
slower than best time and extreme outliers that are ≈ 100× slower.

1074



250 500 750 1000 1250 1500
Runtime (ms)

0

10

20

30

40

C
ou

nt

avx512
scalar

v(1024)

v(2048)

v(256)

v(512)

(a) Computation Type

250 500 750 1000 1250 1500
Runtime (ms)

0

10

20

30

40

C
ou

nt

1
2
4
8
16
32

(b) Concurrent State Machines

250 500 750 1000 1250 1500
Runtime (ms)

0

10

20

30

40

C
ou

nt

0
1
2
3
4

(c) Prefetching

Figure 4: Q1: Breakdown of the same histogram into computation type, prefetching and concurrent state machines. Many
flavors are far from optimal. No benefit from prefetching. 24 threads, SF 100

2000 3000 4000 5000
Runtime (ms)

0.0

2.5

5.0

7.5

10.0

12.5

C
ou

nt

avx512
scalar

v(1024)

v(2048)

v(256)

v(512)

(a) Computation Type

2000 3000 4000 5000
Runtime (ms)

0.0

2.5

5.0

7.5

10.0

12.5
C
ou

nt
1
2
4
8
16
32

(b) Concurrent State Machines

2000 3000 4000 5000
Runtime (ms)

0.0

2.5

5.0

7.5

10.0

12.5

C
ou

nt

0
1
2
3
4

(c) Prefetching

Figure 5: Q9: Breakdown of the same histogram into computation type, prefetching and concurrent state machines. Runtimes
vary. scalar flavors tend to lead to worse performance. 24 threads, SF 100

With an increasing amount of BLENDs (mixes) the space increases
exponentially. Further, there is a tendency that more BLENDs lead to
higher runtime (increasing median, increasing 25- and 75-percentile
Q0.75). This can be explained by the increasing buffering effort per
BLEND. Indicating that further methods to reduce buffering overhead
are required. Besides that tendency, there are still positive outliers
i.e. using 10 BLEND operations the minimum runtime is competitive
to the best runtime using 5 mixes.

6.2 Impact of Components on Runtimes
Given a specific query, we investigate the impact of specific flavors
and their components on the total runtime. Therefore, we generated
roughly 150 base flavors (combinations of paradigms, prefetching
and concurrent state machines) and ran the compiled query. The
option we call prefetching encodes different prefetching localities
as follows: 0 means no prefetching, 1 locality 0 (prefetch into all
cache levels up to L1), 2 locality 1 (prefetch up to L2), 3 locality 2
(prefetch into L3), 4 non-temporal (short-term/evict soon) [2]. The
precise meaning of the locality hints depends on the hardware. In
particular, we analyze the impact of FUJI’s components on two
queries: TPC-H Q1 and Q9.
Q1. The results for Q1 are visualized in Figure 4. On first sight, the
plot reveals that most flavors are sub-optimal, but outliers, positive
as well as negative, exist. The best flavors are roughly 3× better
than average. These are based on scalar processing and do not use
concurrent state machines. There is no clear benefit of prefetch-
ing as Q1 fits into cache, but incurs no significant overhead either.
Vectorized (vector) flavors tend to perform worse than scalar and
avx512 due to (a) materialization overhead (reading/writing vectors)

and (b) in-efficient access to row-wise data when updating the ag-
gregates. Further overhead is introduced by adding concurrent state
machines, leading to the worst flavors being up to 50% worse than
average. avx512’s performance is in between scalar and vector.
Q9 paints a different picture, as Figure 5 shows. In general, block-
based flavors (avx512, vector) tend to outperform scalar. The best
flavors are vectorized ones, with ≤ 8 concurrent state machines
and prefetching. As opposed to Q1, we observed benefit from using
concurrent state machines and prefetching. Similar to Q1, avx512
tends to be in the middle between vector and scalar.
Summary. From both queries, we can see that neither flavor is
optimal for all queries. The benefit from elaborate prefetching tech-
niques (using concurrent state machines) on non-trivial queries
appears to be rather limited and can even be detrimental to perfor-
mance due to the overhead for small vector sizes (scalar, avx512).

6.3 VOILA vs. Hand-Optimized Code
We compare the runtime of VOILA-synthesized queries to state-of-
the-art paradigms (a) data-centric compilation and (b) vectorized
execution. As a baseline, we used the hand-written and optimized im-
plementations by Kersten et al. [22]. Kersten et al. have shown that
their implementations behave similar to the original systems Hyper
and Vectorwise. We synthesized code for the basic data-centric and
vectorized flavors (no prefetching, only one state-machine/goto-
based) (a) (scalar, 1, 0), (b) (vector(1024), 1, 0), (c) using the
direct hyper back-end and (d) using the Iterator-based vectorized
back-end. Table 7 shows our results.

Besides the vectorized Q6, we observed similar performance over
all queries in a range of ±30%.

1075



Table 7: Competitive performance. Runtimes of flavors
generated from VOILA are comparable with recent hand-
written implementations. Runtimes in s.

Flavor Q1 Q3 Q6 Q9
SF 10

Typer [22] 0.5 1.1 0.2 3.1
Direct Hyper 0.6 (0.9×) 1.2 (0.9×) 0.3 (0.9×) 3.1 (1.0×)
FUJI Scalar 0.5 (1.1×) 1.2 (0.9×) 0.2 (1.3×) 3.1 (1.0×)

Tectorwise [22] 1.0 0.7 0.2 1.6
Direct Vector 1.0 (1.0×) 0.8 (0.8×) 0.2 (1.1×) 2.0 (0.8×)
FUJI Vector 1.0 (1.0×) 0.7 (0.9×) 0.3 (0.7×) 1.8 (0.9×)
SF 100

Typer [22] 5.5 13.3 1.8 40.9
Direct Hyper 5.9 (0.9×) 12.2 (1.1×) 2.8 (0.6×) 31.9 (1.3×)
FUJI Scalar 6.0 (0.9×) 11.5 (1.2×) 1.8 (1.0×) 32.7 (1.2×)

Tectorwise [22] 9.2 8.0 1.7 21.2
Direct Vector 10.6 (0.9×) 7.6 (1.1×) 2.3 (0.7×) 17.7 (1.2×)
FUJI Vector 10.4 (0.9×) 6.7 (1.2×) 3.6 (0.5×) 16.0 (1.3×)

Vectorized Q6. Q6 is slower, because our synthesized code di-
verges from the Tectorwise implementation. Our implementation,
first, computes all predicates and, afterwards, builds the selection
vector from the conjunction of the predicates. For very selective
queries, Q6 in particular, this introduces overhead for eliminated
rows. Tectorwise builds a selection vector for every predicate and,
therefore, can avoid this additional computational effort. There-
fore, we modified the plan to build the selection vector for every
predicate, similar to Tectorwise. With the modified plan, the FUJI-
generated vectorized Q6, runs in 1.6s and performs roughly on par
with Tectorwise (1.7s).

6.4 VOILA vs. State-of-the-Art Prefetching
The recent re-emergence of prefetching methods highlighted the
importance of intelligent data structure access for overall query
performance. In this experiment, we compare VOILA-synthesized
queries to hand-optimized implementations such as Interleaved
Multi-Vectorization (IMV) [13] and RelaxedOperator Fusion (ROF) [29].

The source code of IMV [12] revealed an already allocated per-
fectly sized hash table (size taken from a previous run). At run-
time IMV, just inserts values into that hash table and builds bucket
chains on-the-fly. Therefore, we implemented a flavor of IMV that
can build a hash table of unknown size (HyperBuild). Our current
implementation of VOILA lacks filter buffering and produces more
intermediate states in concurrent state machines than strictly neces-
sary. To enable an "apples-to-apples", in IMV, we disabled buffering
(NoBuffering) and added 3 additional states (Indirections).As baseline
we chose a FUJI flavor that resembles IMV: (avx512, 8, 1). Both are
using prefetching, multiple concurrent state machines and feature
an implementation in AVX-512. We ran all queries single-threaded
and used SF 10. Table 8 shows our results.

Compared to IMV, the VOILA-generated query achieves a similar
performance. Once we remove certain factors that ensured a fair
comparison (Indirections, NoBuffering, HyperBuild), IMV becomes
up to 60% faster. We see this as an indication that future versions
of VOILA should include (a) buffering and (b) further measures to
minimize the number of states (in concurrent state machines). Com-
pared to ROF, VOILA is roughly 20% slower. A crucial difference is
that VOILA does not support buffering yet.

Table 8: VOILA can compete with hand-optimized prefetch-
ing, with further optimizations. Time in ms.

Name Time Speedup over
FUJI (avx512, 8, 1)

FUJI (avx512, 8, 1) 1358
Interleaved Multi-Vector. (IMV) [13] 1297 1.1 ×
-Indirections 912 1.5 ×
-HyperBuild 825 1.6 ×
-NoBuffering 800 1.7 ×
Relaxed Operator Fusion (ROF) [29] 1141 1.2 ×

6.5 VOILA vs. State-of-the-Art Open-Source
We compare VOILA to high-performance open-source systems:
Weld [33], a domain-specific language for data analytics, DBLAB/Le-
goBase [1, 40], an elaborate query compiler, DuckDB [37], a vector-
ized in-memory DBMS, and MonetDB [20], an in-memory DBMS
executing queries column-at-a-time. In the process, we had to make
adjustments to the queries in Weld and LegoBase. Weld does not
support group-by on strings – required for Q9 – therefore, we gave
Weld the unfair advantage of using string dictionaries. We trans-
lated n_name into an integer and resolve the string at the end of
the query. LegoBase allows many different query-specific optimiza-
tions, e.g. string compression and partitioning, that are not "TPC-H
compliant" [40]. To enable a fair comparison, we used the TPC-H
compliant settings proposed by Shaikhha et al. [40]. We compare
the performance of queries generated by these systems to the best
flavor synthesized from VOILA. Table 1 shows the results.

Queries generated from VOILA are up to 17.5× faster, without
parallelism, and up to 35.5× faster, using all cores.
Single-threaded, VOILA-synthesized queries ran, across the board,
30% – 17.5× faster than DuckDB and LegoBase. Due to its early
stage, DuckDB does not extensively focus on query performance,
which explains its 4.3× – 9.5× slower performance on simple ag-
gregation queries (Q1 & Q6). However, performance is the main
focus of LegoBase compiler. LegoBase performs similarly (±30%)
on simple aggregation queries. For complex join queries, LegoBase
performs significantly worse (5.5× – 15.8× slower), than VOILA.
LegoBase tends to produce sub-optimal code, partly caused by
complex intermediate structures resulting from expressing a join
(dict[(key1, key2), list[val]]) which are hard to remove [43].
Multi-threaded. All queries generated using Weld are 4.3 – 35.5×
slower than queries generated from VOILA. Weld tends to perform
better on simple aggregation queries and ran only 4.3× – 8.3×
slower than VOILA. Weld performs worse on complex join queries,
12.3× – 35.5× slower than VOILA. Part of this overhead in Weld is
caused by complex intermediate structures. Additionally, in Weld,
it is impossible to express primary-foreign-key joins (joins that
can only produce one or none match) which further exaggerates
already existing inefficiencies. We noticed that, for Q1 and Q6,
single-threaded Weld is substantially faster and performs roughly
on par with VOILA. VOILA outperforms MonetDB, especially on
simple queries by up to 28.8×. On complex join queries, MonetDB
performs better, but VOILA is still 50% faster.

6.6 Engineering Aspects
We investigate the complexity of our code generation modules and
compare development times to hand-writing queries.

1076



Back-End Complexity. To understand the complexity of back-
end modules, we measured the lines of code (LOC) excluding debug
information, comments and empty lines.

Our compilation back-end modules are rather compact (600 –
1300 LOC). Direct back-ends tend to be simpler as they just con-
catenate strings (600 – 700 LOC). FUJI back-ends are more complex
(600 – 1300 LOC) as (a) they include buffering logic for BLEND and (b)
interact with other modules (FUJI front-end, FUJI generic back-end).

Compared to the code generator of Weld [33] which contains
20k LOC, our back-ends are 16 – 33× more compact. Compared to
Hyper’s code generator, which was 10k LOC in size [31], our data-
centric back-end modules are 16.7× more compact. The smaller
size of our back-end modules makes them rather easy to engineer.
Personal Experiences. In our personal experience, writing a di-
rect back-end took roughly 5 days. Compared to 1-3 months ex-
pected to hand-written specific flavors for the queries, this is a 6
– 18× speedup! FUJI back-ends, without buffering, were roughly
equivalent. Buffering, to enable BLENDing, provided a small extra
hurdle of roughly 1-2 extra days. Overall, most time was consumed
by engineering a generic runtime framework.

7 RELATEDWORK
First, we discuss related works that explore semantically equivalent
programs. Afterwards, we discuss related languages and intermedi-
ate representations and, finally, relate to works on code generation,
as well as query paradigms.

7.1 Exploring Equivalent Programs
Our approach of automatically generating semantically equivalent
query implementations is related to super compilation [42]. Super
compilation tries to explore all possibilities by modifying/mutating
the program’s instructions. Our approach is limited to the programs
generatable from our domain-specific language and a specific back-
end. Both, super compilation as well as our approach, have advan-
tages and disadvantages. Super compilation will take a extremely
long time to discover non-trivial structurally different programs,
e.g. re-discovering vectorized execution [8] from a data-centric pro-
gram [31]. Our approach goes into the opposite direction, we want
to explore combinations of "good" points. This limits the search
space and allows practical exploration of non-trivial programs.

Kersten et al.[22] studied the performance differences between
the two state-of-the-art query execution paradigms: vectorized ex-
ecution [8] and data-centric compilation [31]. As they did not have
an elaborate synthesis framework, Kersten et al. had to engineer a
basic framework and implement the required queries by hand.
Microbenchmark-based Approaches.Most works focus on ex-
ploring the very narrow design space of certain operations to (a)
understand the space better and (b) find optima [3–6, 13, 23, 28, 30,
35, 36, 38, 39, 44]. These works contain substantial contributions.
Arguably, the impact of certain optimizations on the whole query
(or multiple queries) is significantly under-explored, a problem we
address. Related to our synthesis framework is the Data Calcula-
tor by Idreos et al. [21], a tool able to predict the access cost of a
data structure. The Data Calculator decomposes data structures,
e.g. list, hash table, into specific primitives. During re-composition

from these primitives, the Data Calculator can compute the perfor-
mance of the final data structure. However, the effect of specific
data structures on the holistic query performance is unclear, as it de-
pends on context. For instance, vectorized hash lookups have better
performance than data-centric lookups into large hash tables [22].
This interaction between execution flavor and data structure is
ignored by the Data Calculator, whereas our framework focuses on
exploring it.

7.2 Languages and Representations
We abstract implementation details using a domain-specific lan-
guage. We classify related languages into categories: plans, com-
prehensions, vector models and imperative languages.
Plans are frequently used in data management systems. Most com-
monly, they either describe logical or physical execution strate-
gies. Recent works using the concept of low-level plan operators
(LOLEPOPs) [19, 27] break queries and operators into primitive
operations and are conceptually very similar to VOILA. In a query
engine, LOLEPOPs might not be so low-level (e.g. describe a hash
join via FindMatch and GatherPayload), or require a more complex
environment in order to function (program instead of directed
acyclic graph). More high-level LOLEPOPs tend to lead to higher (re-
)implementation effort as the operator needs to be implemented for
every flavor. Very low-level LOLEPOPs would be similar to VOILA
which requires state management/update. Needless to say,this also
holds LOLEPOP-based representations such as Hawk [10].
Comprehensions describe enumerations as composition of scalar
operations. Well-known classes are Monad [16] (e.g. Weld [33]) and
Monoid [14] comprehensions. In general, comprehensions heavily
rely on scalar operations and, therefore lose information about data-
parallelism, e.g. branches are introduced. This requires re-discovery
of data-parallelism , when e.g. SIMD or GPUs are supposed to
be used. Like many high-level languages, Weld [33] allows the
creation of temporary collections (arrays, lists, etc.) and, therefore,
requires deforestation [43] to eliminate unnecessary intermediate
data structures. Deforestation is a very hard optimization problem
and not fully solvable in a reasonable time. VOILA avoids creating
such intermediates through a more complex program.
Vector Models describe queries as the application of certain prim-
itive functions onto vectors of data. Notable examples are MIL and
VOODOO. MIL [9] (or now MAL) has been the foundation of query
execution in MonetDB [20]. It defines operations in a column-at-
a-time fashion. However, non-trivial plan operators, such as hash
join or hash group-by, commonly translate to complex primitive
expressions in MIL. For example, a join in MonetDB translates into
a JOIN primitive. For design space exploration, this would require
re-implementing many different joins. Instead, VOILA decomposes
complex operators into sequences of statements and expressions,
e.g. a hash join will end up as a sequence of hash table lookup, hash
table insert, gather, etc. VOODOO [34] has no notation of hash
tables (hash join, hash group-by) and "deliberately omits control-
statements" [34], instead VOILA embraces both.
Low-level Imperative Languages typically break complex opera-
tions (e.g. hash join) into smaller very specific instructions. To allow
fast execution (of generated) programs, their instructions tend to
be close to the actual hardware. Due to their performance, low-
level languages are frequently used as compilation target. Most

1077



notably SystemR [11] generated assembly code, as well as Hy-
Per [31] which generated LLVM IR [25]. Compared to LLVM IR [25],
VOILA is much less low-level. For instance, VOILA supports multi-
ple execution strategies (tuple-at-a-time, vector-at-a-time). LLVM’s
auto-vectorization could come somewhat "close". However, not
all algorithms are vectorizable, e.g. a selection might introduce a
branch and, hence, breaking possible auto-vectorization for the
whole operator/pipeline. Similar low-level languages to LLVM IR
are assembly or C. These require re-discovering data-parallelism
via auto-vectorization to have VOILA-like functionality.

7.3 Code Generation/Compilation
Code generation and compilation are well studied topics. Typically,
compilers shrink the search space by choosing specific implemen-
tations, usually cost-based optima. Our approach does the opposite,
we expand the search space, hoping to explore many new points.

Shaikhha et al. [40] propose a stack of domain-specific languages,
namely QPlan, ScaLite[Map,List], ScaLite[List], ScaLite and C. A
query is described in QPlan and then lowered through the stack
until C is reached. There is some similarity to our approach: from
query to VOILA to CLite to C++, which exists mainly because stack-
ing languages simplifies each language/compiler layer. ScaLite and
VOILA might seem similar but they are not. The main difference
lies in the semantics, ScaLite relies on sequential evaluation and,
hence removes data-parallelism, whereas VOILA embraces data-
parallelism. Compared to ScaLite, VOILA has certain advantages:
(a) In its core VOILA is a simpler language as there is no need
for complex statements such as if/case. (b) VOILA only operates
on flat data structures (intermediate arrays or (hash) tables), as
opposed to allowing nested data structures. Consequently, this min-
imizes the time spent on removing complex nested data structures
at compile-time i.e. reduce deforestation overhead [43]. However,
these advantages do not come for free. One disadvantage of VOILA
is its reliance on very specialized primitive operations.

Tahboub et al. [41] argue that such a language stack can be flat-
tened into one language using partial evaluation. . Our program
synthesis from VOILA is similar: the direct back-ends directly gen-
erate C++ code from VOILA. FUJI back-ends, however, translate
into our C-like language CLite and from there into C++. The trans-
lation from CLite to C++ is very lightweight and straight-forward.
However, the extra step – translating into CLite – allows more
flexibility, e.g. one could generate LLVM IR [25] instead of C code.

7.4 Query Paradigms
For analytical queries, many basic execution paradigms have been
proposed. VOILA synthesizes the two most established state-of-
the-art paradigms, data-centric [31] and vectorized [8]. Hence, we
focus on the more elaborate paradigms.
Relaxed Operator Fusion (ROF) [29] aims at combining vector-
ized execution and data-centric compilation while improving the
final result using prefetching. We, too, use buffering when mixing
multiple flavors. ROF buffers on the operator-level whereas our
approach allows much more fine-grained buffering on the language-
level. Our approach is more generic, but comes with a higher over-
head as the current context (alive variables) needs to be preserved
instead of, in case of ROF, only buffering an operator’s output.

Interleaved Multi-Vectorizing (IMV) [13] describes a method
for efficient prefetching during particular operations (hash join,
tree lookup etc.). In essence, IMV interleaves prefetching with other
operations through state machines, one per "lightweight thread".
In a hash join, these "other operations" are buffering, to keep all
SIMD lanes busy, and key checking i.e. while prefetches are running
(in the background), less memory-heavy operations can proceed.
Further, IMV fully relies on AVX-512 intrinsics (compress/expand)
to achieve fast buffering. Unfortunately, IMV[13] exists only as a
single hand-coded hash join query; the authors deferred developing
IMV for more complex queries (e.g. TPC-H Q9) and in a generic way,
to future work. We showcase, with our VOILA-generated queries,
an approach to broaden IMV to non-trivial queries. However, a com-
plete and fast IMV implementation, would require hand-optimized
kernels (using AVX-512) for buffering, as well as, the whole query.

8 CONCLUSIONS & FUTUREWORK
We think the design space of query execution is under-explored be-
cause it is (a) extremely large, (b) tedious to explore and (c) features
a low chance of success. Our approach is a first step into the explo-
ration by automatically synthesizing query engines. Automating
this process is much faster than implementing prototypes by hand,
as it reduces months of development time to seconds.

Our framework synthesizes engines from descriptions in our
prudently designed domain-specific language VOILA. Programs
in VOILA describe algorithmic details (of operators) while hiding
physical implementation details. Many state-of-the-art languages
and compilers do not achieve performance on par with "good" im-
plementations of state-of-the-art paradigms. But, VOILA does! Our
code generation back-ends are up to 33× smaller than comparable
code generators, outperform competing analytical systems, and
approach the performance of hand-written implementations.

An important contribution is our success in generating the state-
of-the-art paradigms vectorized execution [8] and data-centric com-
pilation [31] from a single algorithmic description. VOILA thus is
flexible enough to capture two opposite ends in the design space.

With our novel component-based code generator (FUJI), we fur-
ther open the way towards generating new and novel execution
paradigms. We currently can generate thousands of different execu-
tion tactics by adding in SIMD, prefetching and blending different
paradigms, where the execution tactic can change within a single
pipeline. This way of generating many "new" paradigms can be
criticized as rehashing existing ideas, so we hope that our work on
automatic engine generation in general, and VOILA specifically,
will encourage follow-on work by the community in creative new
directions. This can include new query operators, new operator
algorithms, data structures, but also the creation of back-ends that
target non-CPU hardware (GPU, FPGA). Furthermore, VOILA can
be also used as the foundation for highly flexible and efficient data-
base engines. Such a next generation engine could operate as a
virtual machine (VM), using VOILA as its instruction set. During
query execution, the VM can start interpreting code fragments
using highly efficient vectorized interpretation. Later, the VM can
generate optimized code for expensive fragments, tailored specifi-
cally to the current workload and hardware [17].

1078



REFERENCES
[1] [n.d.]. https://github.com/epfldata/dblab.
[2] 2017. What are _mm_prefetch() locality hints? https://stackoverflow.com/

questions/46521694/what-are-mm-prefetch-locality-hints. Accessed: 2021-01-
28.

[3] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. 2012. Massively
Parallel Sort-merge Joins in Main Memory Multi-core Database Systems. PVLDB
5, 10 (2012), 1064–1075.

[4] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. 2013. Multi-
core, Main-memory Joins: Sort vs. Hash Revisited. PVLDB 7, 1 (2013), 85–96.

[5] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In
ICDE. 362–373.

[6] Ronald Barber, Guy M. Lohman, Ippokratis Pandis, Vijayshankar Raman, Richard
Sidle, Gopi Attaluri, Naresh Chainani, Sam S. Lightstone, and David Sharpe. 2014.
Memory-Efficient Hash Joins. PVLDB 8, 4 (2014), 353–364.

[7] Peter Boncz. 2002. Monet: A next-generation DBMS kernel for query-intensive
applications. Universiteit van Amsterdam.

[8] Peter Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In CIDR. 225–237.

[9] Peter A. Boncz and Martin L. Kersten. 1999. MIL Primitives for Querying a
Fragmented World. VLDB Journal 8, 2 (1999), 101–119.

[10] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann Rabl,
and Volker Markl. 2018. Generating custom code for efficient query execution
on heterogeneous processors. VLDB Journal 27, 6 (2018), 797–822.

[11] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen, Jim N. Gray,
William-Frank. King, Bruce G. Lindsay, Raymond Lorie, JamesW.Mehl, ThomasG.
Price, Franco Putzolu, Patricia G. Selinger, Mario Schkolnick, Donald R. Slutz,
Irving L. Traiger, Bradford W. Wade, and Robert A. Yost. 1981. A History and
Evaluation of System R. Commun. ACM (1981), 632–646.

[12] Zhuhe Fang, Beilei Zheng, and ChuliangWeng. [n.d.]. https://github.com/fzhedu/
db-imv/blob/master/src/imv/engine.cpp, line 226. Accessed: 2021-01-28.

[13] Zhuhe Fang, Beilei Zheng, and Chuliang Weng. 2019. Interleaved Multi-
vectorizing. PVLDB 13, 3 (2019), 226–238.

[14] Leonidas Fegaras. 2016. An Algebra for Distributed Big Data Analytics. (2016).
[15] César A. Galindo-Legaria, Arjan Pellenkoft, and Martin L. Kersten. 1994. Fast,

Randomized Join-Order Selection - Why Use Transformations?. In VLDB’94.
85–95.

[16] Torsten Grust. 2004. Monad comprehensions: a versatile representation for
queries. In The Functional Approach to Data Management. Springer, 288–311.

[17] Tim Gubner. 2018. Designing an adaptive VM that combines vectorized and JIT
execution on heterogeneous hardware. In ICDE.

[18] Tim Gubner and Peter Boncz. 2017. Exploring Query Execution Strategies for
JIT, Vectorization and SIMD. In ADMS.

[19] Laura M. Haas, Wendy Chang, Guy M. Lohman, John McPherson, Paul F. Wilms,
George Lapis, Bruce Lindsay, Hamid Pirahesh, Michael J. Carey, and Eugene
Shekita. 1990. Starburst Mid-Flight: As the Dust Clears. IEEE Trans. on Knowl.
and Data Eng. (1990), 143–160.

[20] S Idreos, F Groffen, N Nes, S Manegold, S Mullender, and M Kersten. 2012. Mon-
etdb: Two decades of research in column-oriented database. IEEEData Engineering
Bulletin (2012).

[21] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, and
Demi Guo. 2018. The Data Calculator: Data Structure Design and Cost Synthesis
from First Principles and Learned Cost Models. In SIGMOD. 535–550.

[22] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. 2018. Everything you always wanted to know about compiled

and vectorized queries but were afraid to ask. PVLDB (2018), 2209–2222.
[23] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,

Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009. Sort
vs. Hash Revisited: Fast Join Implementation onModernMulti-core CPUs. PVLDB
2, 2 (2009), 1378–1389.

[24] Onur Kocberber, Babak Falsafi, and Boris Grot. 2015. Asynchronous Memory
Access Chaining. PVLDB 9, 4 (2015), 252–263.

[25] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO. Palo Alto, California.

[26] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven Parallelism: A NUMA-aware Query Evaluation Framework for the Many-
core Age. In SIGMOD. 743–754.

[27] Guy M. Lohman. 1988. Grammar-like Functional Rules for Representing Query
Optimization Alternatives. SIGMOD Rec. (1988), 18–27.

[28] Stefan Manegold, Peter Boncz, and Martin Kersten. 2000. What Happens During
a Join? Dissecting CPU and Memory Optimization Effects. In PVLDB. 339–350.

[29] Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. 2017. Relaxed Opera-
tor Fusion for In-memory Databases: Making Compilation, Vectorization, and
Prefetching Work Together at Last. PVLDB 11, 1 (2017), 1–13.

[30] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz Färber.
2015. Cache-Efficient Aggregation: Hashing Is Sorting. In SIGMOD. 1123–1136.

[31] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB (2011), 539–550.

[32] Michal Nowakiewicz, Eric Boutin, Eric Hanson, Robert Walzer, and Akash Kati-
pally. 2018. BIPie: Fast Selection and Aggregation on Encoded Data Using Opera-
tor Specialization. In SIGMOD. 1447–1459.

[33] Shoumik Palkar, James J. Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford
InfoLab. 2017. Weld: A common runtime for high performance data analytics. In
CIDR ’17.

[34] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo - a
Vector Algebra for Portable Database Performance on Modern Hardware. PVLDB
(2016), 1707–1718.

[35] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In SIGMOD. 1493–1508.

[36] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
2017. Interleaving with Coroutines: A Practical Approach for Robust Index Joins.
PVLDB 11, 2 (2017), 230–242.

[37] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In SIGMOD. 1981–1984.

[38] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional
Analysis of Hashing Methods and Its Implications on Query Processing. PVLDB
9, 3 (2015), 96–107.

[39] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. In SIGMOD. 1961–1976.

[40] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad
Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In
SIGMOD. 1907–1922.

[41] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect
a Query Compiler, Revisited. In SIGMOD. 307–322.

[42] Valentin F. Turchin. 1986. The Concept of a Supercompiler. ACM TPLS 8, 3 (1986),
292–325.

[43] Philip Wadler. 1988. Deforestation: Transforming Programs to Eliminate Trees.
In ESOP. 231–248.

[44] Jingren Zhou and Kenneth A. Ross. 2002. Implementing Database Operations
Using SIMD Instructions. In SIGMOD. 145–156.

1079

https://github.com/epfldata/dblab
https://stackoverflow.com/questions/46521694/what-are-mm-prefetch-locality-hints
https://stackoverflow.com/questions/46521694/what-are-mm-prefetch-locality-hints
https://github.com/fzhedu/db-imv/blob/master/src/imv/engine.cpp
https://github.com/fzhedu/db-imv/blob/master/src/imv/engine.cpp

