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SUMMARY

Recent research resolves the challenging problem of building biophysically plausible spiking neural models
that are also capable of complex information processing. This advance creates new opportunities in neuro-
science and neuromorphic engineering, which we discussed at an online focus meeting.
INTRODUCTION

Neurons communicate and compute via discrete sparse events:

spikes. This mechanism is radically different from digital com-

puters and the analog activations of deep neural networks un-

derlying modern artificial intelligence. To understand the brain

and mimic its supreme abilities in neuromorphic hardware, we

need to understand how networks of spiking neurons learn and

exhibit complex, intelligent behavior. The path to this goal has

been frustrated by a seeming contradiction. Traditional spiking

models closely resemble the mechanisms observed in the brain,

but it has proven hard to build models that are capable of

learning behaviors with similar complexity and performance as

biological circuits. In contrast, deep neural networks are quite

unlike biological brains. However, for the first time in history,

they can solve complex problems at levels that rival the abilities

of real brains.

What causes this difference in functional capability? As in

deep artificial neural networks, computation in the brain arises

from the intricate web of connections that allow large popula-

tions of neurons to function in unison as networks capable of

complex information processing. As the activity flows through

these connections, it undergoes high-dimensional nonlinear

transformations. With the appropriate connectivity, this process

results in meaningful computation at the network level. Finding

the right connections is problematic because it requires knowl-
edge about how individual neurons deep inside the network

affect the output of the whole network. This requirement is

known as the credit assignment problem. What distinguishes

deep learning is that this problem is solved algorithmically

through gradient-based optimization, where tuning synaptic

connections and neuronal parameters throughout the entire

network gradually reduces output errors (Figure 1A). This algo-

rithm relies on gradient information flowing through the network,

which is ensured by well-behaved differentiable neuronal activa-

tion functions. The existence of such optimization algorithms is

what makes deep learning one of the most promising avenues

to understand the brain’s inner workings through functional

models (Richards et al., 2019).

Unfortunately, gradient-based optimization fails in spiking

neural networks, in which the non-differentiable nature of

neuronal spiking dynamics prevents gradients from flowing.

However, sustained joint efforts by neuromorphic engineers

and computational neuroscientists have resulted in several

recent developments that allow translating the algorithms under-

lying the revolution of deep learning to the domain of biologically

constrained spiking neural networks.

To provide an interdisciplinary forum for this emerging field,

which closes the gap between spiking networks and deep

learning, we organized a focus meeting entitled ‘‘Spiking neural

networks as universal function approximators.’’ Over 2 days, ex-

perts in the field shared recent work in talks, discussed novel
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Figure 1. Schematic of different training methods for spiking neural networks
(A) Instilling functions at the network level requires hidden neurons, which are neither connected to the input nor the network’s output, to reduce their contribution
to errors at the output level. The algorithmic feat of assigning credit or blame to individual hidden neurons and synapses, allowing these neurons to learn, is called
the credit assignment problem.
(B and C) Schematic view of the two principal schemes underlying the majority of optimization approaches for solving the credit assignment problem in spiking
networks.
(B) In a spike timing-based representation, gradient-based updates operate directly on smoothly differentiable spike times.
(C) In an activity-based representation, spikes fall onto a time grid whose values are given by thresholding neuronal membrane potentials. Because the spikes’
binary functional character precludes computing derivatives, optimizing this representation requires surrogate gradients where a smooth surrogate replaces the
nondifferentiable step function.
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ideas, and plotted ways to move forward in open panel discus-

sions. Because of coronavirus disease 2019 (COVID-19), it was

an online meeting and attracted over 700 registered participants

from all over theworld who actively engaged in vivid discussions.

This meeting report summarizes the key outcomes of this

gathering. Central are several innovations that herald a funda-

mental shift in spiking neural network modeling that combine

the best of traditional biologically plausible models and modern

performance-optimized artificial neural networks. Importantly,

these developments allow building models that

(1) Take advantage of temporal spiking dynamics to effi-

ciently encode and process information;

(2) Embrace the computational value of neuronal heteroge-

neity and multi-time-scale dynamics by jointly optimizing

neuronal parameters with the connectivity;

(3) Learn through biologically plausible learning rules derived

from a normative gradient-based framework, providing

new vistas on their mechanistic underpinnings at the

micro-circuit level.

These advances give us a principled and general new

approach to tackle questions about neuronal heterogeneity,

specific circuit motifs, and the role of temporal spiking dynamics

in the nervous system.

The importance of temporal dynamics in neural
processing
Previous work on training spiking neural networks at complex

tasks used only the stationary firing rates of neurons, which

allowed straightforward translation of results from the conven-

tional artificial neural networks used in machine learning. How-

ever, as a consequence, these networks were unable to take

advantage of the temporal structure spikes can carry, a mecha-

nism the brain exploits extensively for rapid processing and

sparse information coding. The work featured in this meeting
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report overcomes the technical problems of previous studies.

It allows us, for the first time, to explore the unique temporal cod-

ing strategies spiking networks can employ to solve complex

information-processing tasks. What made this possible was to

find ways of directly translating gradient-based learning to fine-

grained temporal spiking while keeping the number of emitted

spikes minimal (Neftci et al., 2019). This operating setting, with

sparse but precisely timed action potentials, is not only reminis-

cent of cortical processing, but it also renders spiking neural

network implementations more efficient to run on hardware.

We now discuss three major learning paradigms exemplifying

this new approach: FORCE training in spiking networks, gradi-

ents with respect to single spike times, and surrogate gradients.

Time-continuous processing with instantaneous rates
One of the first studies to showcase the potential of approaches

to build spiking neural networks that solve concrete biological

problems adapted the classic FORCE training algorithm for

recurrent spiking neural networks (Nicola and Clopath, 2017).

The central idea, which sidesteps the problem of having to

compute gradients through spikes, is to solve a regression prob-

lem at every instant of time over linear combinations of tempo-

rally filtered spike trains while using the postsynaptic potential

as the filter kernel. This approach does not require stationary

firing rates, readily solves complex sequence generation prob-

lems, and is robust to the choice of neuron model.

Efficient low-latency processing with single precisely
timed spikes
Another approach assumes that each neuron spikes precisely

once in a given time period and computes gradients with respect

to these spike times (Figure 1B). Kheradpisheh and Masquelier

(2020) showed that it yields state-of-the-art accuracy for spike

latency-encoded versions of MNIST and fashion MNIST. In

similar work, Comsa et al., 2019 not only achieved competitive
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performance on latency MNIST, but they also proved that such

encoding schemes provide a class of universal approximators.

Göltz et al. (2019) demonstrated competitive performance on

spike latency-encoded tasks using the accelerated Brain-

Scales-2 analog neuromorphic system. Not only does this lead

to vastly reduced latency and power consumption of only 200

mW, allowing processing ofmore than 10,000 inputs per second,

but the learning scheme is robust to small manufacturing imper-

fections of the underlying neuromorphic substrate, which is also

an essential requirement for any biological system.

By design, timing-based approaches are well suited for static

stimuli encoded using a latency code. The method assumes

extreme sparseness of spiking because every neuron emits, at

most, one spike. This representation allows efficient event-

driven algorithms in which time represents itself, which trans-

lates algorithmically into a small memory footprint and low-

power computation at the network level (Kheradpisheh and

Masquelier 2020; Göltz et al., 2019). Similar to a binary neural

network, all processing occurs as a single volley of spikes prop-

agates through the network. Therefore, the result is ready with

low latency. Despite these advantages, only using single spikes

in each neuron has its limits and is less suitable for processing

temporal stimuli, such as electroencephalogram (EEG) signals,

speech, or videos. This limit, however, can be overcome by

training networks with surrogate gradients.

Flexible information processing through surrogate
gradient learning
Instead of operating on firing times, surrogate gradients are

computed in neuronal simulations with a discrete time grid,

similar to conventional recurrent neural networks in machine

learning (Figure 1C). To capture the essence of spiking dy-

namics, the approach assumes a binary neuronal output in

each time step. Because the binary neuronal activation function

is not differentiable, the standard procedures of computing

objective function gradients in these networks fail. The trick is

to approximate the non-differentiable step function with a

smooth differentiable function, which then yields a surrogate

gradient that allows optimizing spiking networks efficiently using

standard machine learning software (Neftci et al., 2019).

Because surrogate gradient learning does not impose any strict

constraints on the number of spikes emitted by any neuron, it can

flexibly handle temporal stimuli in which input neurons spike

more than once (Kheradpisheh and Masquelier 2020).

The computational value of coordinated neuronal
heterogeneity
Another exciting development in building spiking neural network

models is that surrogate gradient techniques can optimize

essential neuronal and synaptic parameters, like time constants,

jointly with the connectivity. This twist offers exciting new oppor-

tunities for modelers to allow parameter heterogeneity. For

instance, Yin et al., 2020 showed that, instead of giving each

neuron the same adaptation time constant, a common simpli-

fying model assumption, optimizing the time constants on a

per-neuron basis offers decisive computational advantages on

several classification benchmarks. Optimizing neuronal parame-

ters is a notable departure from previous modeling standards
and opens the way to understanding the functional role of the

brain’s cellular diversity.

The importance of multi-timescale dynamics
More generally, several studies have shown how individual neu-

rons’ dynamical complexity plays a crucial role in shaping compu-

tation at the network level. Thus, we now have the essential tools

to harness such complexity in spiking network models. Bellec

et al. (2020) showedhowa slowlymoving neuronal firing threshold

drastically improved computational performance, allowing

spiking networks to solve a plethora of complex computational

problems like, for instance, playing Atari games. In a similar vein,

Yin et al., 2020 showed that networkswith optimal heterogeneous

adaptation timescales consistently outperformed networks

without such heterogeneity on several time-series classification

tasks. In addition to improving overall computational perfor-

mance, spike frequency adaptation also leads to a significant

reduction of spike countswith the potential of further reducing en-

ergy consumption of neuromorphic implementations.

Linking normative and biologically plausible plasticity
models
Theworkdiscussed so far usesgradient-basedoptimization algo-

rithms,which are not biologically plausible. For instance, the stan-

dard algorithm for training recurrent neural networks in machine

learning is back-propagation through time (BPTT). It cannot be in-

terpreted as a biologically plausible learning rule because it re-

quires propagating information backward through time. Further,

its computation requires knowledge to which individual synapses

physically do not have access. This means we can use the algo-

rithm to optimize network models, but it does not provide useful

ideas regarding how neurobiologywould achieve a similar optimi-

zation. In the context of spiking networks, BPTT has another

notable disadvantage. Its memory requirements grow linearly

with stimulusduration, creating issueswhensimulatingprolonged

stimuli and large networks at high temporal resolution.

Real-time recurrent learning (RTRL) is an alternative algorithm

that does not have this issue and only requires propagating infor-

mation forward in time. It still requires non-local information, pre-

cluding a direct interpretation as a biologically plausible learning

rule. But approximations of this algorithm can be interpreted as

local learning rules (Bellec et al., 2020; Zenke and Neftci, 2021).

For example, the local learning rule, ‘‘e-Prop,’’ derived in this

way, allows recurrent spiking neural networks with slow spike-

triggered adaptation to learn to solve a diversity of challenging

tasks, including speech recognition and playing Atari games

(Bellec et al., 2020).

Moreover, Zenke and Neftci, 2021 introduced a general math-

ematical framework that presents a new view on auto-differenti-

ation, allowing flexibly combining elements of BPTT and RTRL

with pproximations. The framework exposes the fundamental

link of local learning rules with approximate forms of RTRL and

numerous online learning rules; i.e., e-Prop, Online Spatio-Tem-

poral Learning (OSTL), Random Feedback Local Online Learning

(RFLO), Deep Continuous Local Learning (DECOLLE), and

SuperSpike, which can all be derived by ignoring specific contri-

butions to the gradient from recurrent connections. Intriguingly,

the notion of synaptic eligibility traces, known to exist in biology,
Neuron 109, February 17, 2021 573
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falls out of this normative framework and is tied to synaptic and

neuronal dynamics (Bellec et al., 2020; Neftci et al., 2019). Com-

mon to these approximations is their improved efficiency, bio-

logically interpretability, and implementability on neuromorphic

hardware.

Biologically plausible solutions to the spatial credit
assignment problem
Although eligibility traces can solve the temporal credit assign-

ment problem (i.e., which past network activity contributed to a

specific error or reinforcement signal later in time), solving the

spatial credit assignment problem (i.e., which neuron’s activity

contributes strongly to a particular network-level output) re-

quires dedicated circuits that compute and communicate

learning signals between neurons. How the brain accomplishes

this feat remains an open question.

Bellec et al. (2020) explored one conceivable way in which a

separately trained network module acts as a learning signal

generator. Its task is to provide precisely timed and spatially

segregated learning signals to a population of neurons as a pu-

tative solution to the spatial credit assignment problem. Never-

theless, the precise circuit mechanisms that could exert such

control over plasticity are left open in the model.

Payeur et al. (2020) approached this question in a biophysical

circuit model using experimentally verified micro-circuit ele-

ments and cell types. The model uses burst multiplexing, where

isolated spikes have a different meaning than high-frequency

bursts, thereby maintaining two separate information channels

through each neuron that allow for simultaneous flow of feedfor-

ward information and feedback errors. To achieve this, the

model relies solely on biologically plausible properties, such as

dendritic compartments, short-term plasticity, inhibitory micro-

circuits, and burst-dependent plasticity. Using a reduced-

complexity version of their model, the authors demonstrate

that it achieves competitive performance on large-scalemachine

learning benchmarks like ImageNet.

Future challenges and research directions
Although our newly gained ability to build functional spiking neu-

ral networks holds the potential to revolutionize how we

construct biologically inspired neural network models, there

are several notable difficulties ahead. We broadly distinguish be-

tween conceptual and technical challenges.

Conceptual challenges

How can we best use functional spiking neural network models

to further our understanding of information processing in the

brain? Establishing a rapport between artificial and biological

spiking networks will be a crucial first step. Doing so will require

quantitative ways of comparing network representations across

different networks. Initially, it may be viable to adapt and gener-

alize representational similarity analyses currently used to

compare neural data with deep neural networks. It is conceivable

that the intrinsic temporal structure of neuronal spike trains may

require entirely novel analysis techniques.

Another essential step will be to incrementally move toward

more plausible architectures by gradually incorporating biolog-

ical wiring constraints, cell type diversity, and circuit motifs

into our network models. Training such networks on particular
574 Neuron 109, February 17, 2021
tasks will shed light on the role of such restrictions in efficient in-

formation processing and open up new vistas to translate these

insights into more efficient generations of neuromorphic

hardware.

We should expect different outcomes depending on whether

visual inputs use a latency code, a rate code, or a mixture be-

tween the two. Therefore, architecture refinement has to go

hand in hand with biologically plausible inputs to provide inter-

pretable results. Hence, detailed knowledge about the brain’s

input encoding is a prerequisite for making the best of our

newfound ability to train spiking neural networks.

Although current work focuses on supervised learning, future

applications to build better hardware and gain a deeper under-

standing of the brain require studying unsupervised learning. In

doing so, we can hope to answer questions about which objec-

tive functions the brain optimizes and how.

Technical challenges

One primary goal is to scale up training of spiking neural net-

works to larger systems. Although the technical possibilities to

simulate large-scale spiking neural networks have existed for

years, current training algorithms are not well adapted for these

large-scale and often event-based implementations. The current

size limitations for functional networks are mainly due to the

auto-differentiation libraries used to train spiking networks. Their

design has poor support for sparse connectivity and sparse

spiking, which renders them inefficient for simulating large

network models. Consequently, most models highlighted here

consisted of hundreds of neurons, a small number compared

with most biological circuits and typical deep neural networks

in machine learning. Moving toward neuron numbers compara-

ble with biology and applying these networks to real-world data-

sets will require the development of novel algorithms, software

libraries, and dedicated hardware accelerators that perform

well with the specifics of spiking neural networks. Another

essential aspect of achieving this goal is developing effective

parameter initialization strategies, which are crucial for success-

ful training, leading to high task performance.

Finally, to further devise meaningful comparisons between

artificial and biological networks, we need to dedicate time and

effort to build plausible spike-based datasets that mimic the in-

puts seen by sensory neurons in the brain. As in deep learning,

large datasets are a prerequisite to forming functional networks

from optimization principles that generalize well to unseen data.

Designing datasets that closely resemble the inputs experienced

by sensory neuronswill thus be crucial to allow quantitative com-

parisons between the internal representations of artificial and

experimental data from biological neural networks. Finally, an

important question remains open: which tasks do spiking neural

networks solve better than their non-spiking relatives?

CONCLUSIONS

Although our newly gained ability to instantiate spiking neural

networks that perform complex information-processing tasks

is an exciting advance, demanding technical and conceptual

challenges lie ahead to reap its full benefits. When addressing

these challenges, we expect a significant shift from the often

hand-crafted spiking network models, which solve simplistic
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computational problems, toward sophisticated spiking net-

works that solve demanding computational challenges. This

transformation will have a lasting effect on the practical applica-

tions in brain-inspired hardware and modeling in computational

neuroscience. In particular, it allows building spiking network

models that implement the hypothesized function of specific

brain circuits and directly compare the model activity to experi-

mental data. So far, such comparisons only exist with artificial

neural networks whose architecture and dynamics are markedly

different from neurobiology. Ultimately, this may well be the

beginning of a new era in spiking neural network research, which,

when brought to full fruition, may provide us with concrete an-

swers to a long-standing question: why spikes?
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