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Abstract

New asymptotic expansions are derived of the Kummer functionsM(a, b, z) and U(a, b+1, z)
for large positive values of a and b, with z fixed. For both functions we consider b/a ≤ 1
and b/a ≥ 1, with special attention for the case a ∼ b. We use a uniform method to handle
all cases of these parameters.
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1 Introduction

Many asymptotic expansions of the Kummer functions (or confluent hypergeometric functions)
M(a, b, z) and U(a, b, z) are available in the literature. With the results of this paper we fill a
gap regarding the case of large positive parameters a and b, with real or complex argument z
fixed or bounded.

For b → ∞, with |z| ≪ b and a ≪ b, we can use the defining convergent power series given
in (9.1), which has an asymptotic character. An asymptotic expansion in negative powers of b
can be found in §13.8(i) of [1], together with other asymptotic forms. We can also refer to [2,
Chapter 10], where several expansions of the Kummer functions for large a or b are considered.
Usually the available asymptotic relations are in terms of the argument z in combination with
one or both parameters.

In the present paper we derive new asymptotic expansions of the Kummer functionsM(a, b, z)
and U(a, b+1, z) for large values of a and b, with z fixed. Special attention is required when a ∼ b,
in which case we derive expansions that are uniformly valid when the ratio a/b approaches 1. We
give new results for the following four cases, which are not considered earlier in the literature:

1. M(a, b, z), b ≥ a; §2; expansion (2.15).

2. M(a, b, z), b ≤ a; §3; expansion (3.15).
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3. U(a, b+ 1, z), b ≥ a; §4; expansion (4.14).

4. U(a, b+ 1, z), b ≤ a; §5. expansion (5.12).

Throughout the paper we assume that both a and b are large, with z = O(1) and for the
U -functions ℜz > 0. When a or b are of order O(1), the existing literature gives sufficient
information.

For the asymptotics we use a rather simple uniform method to derive the large-w asymptotic
expansion of the Laplace-type integral

Fλ(w) =
1

Γ(λ)

∫ ∞

0

sλ−1e−w sf(s) ds, (1.1)

which expansion is uniformly valid with respect to λ ≥ 0. A similar contour integral is also used.
We summarise this method in Appendix A, using details of [2, Chapter 25]. In Appendix B we
cite the most relevant formulas of the Kummer functions used in this paper.

2 M(a, b, z), b ≥ a

In this section we use the notation and condition

λ = b− a, µ =
λ

a
=
b− a

a
, z ∈ C, |z| ≤ z0, (2.1)

where z0 is a fixed positive number. We use the Kummer relation for the M -function in (9.7)
together with (9.2). This gives

M(a, b, z) =
Γ(b)ez

Γ(a)Γ(λ)

∫ 1

0

e−zte−aφ(t)
dt

t(1− t)
, (2.2)

where
φ(t) = − ln(1− t)− µ ln t. (2.3)

The saddle point t0 follows from the zero of φ′(t). We have

φ′(t) =
t(1 + µ)− µ

t(1− t)
=⇒ t0 =

µ

1 + µ
. (2.4)

When the saddle point is properly inside the interval [0, 1] we can use the standard method for
obtaining an asymptotic expansion by using the substitution φ(t) − φ(t0) = 1

2w
2, sign(w) =

sign(t − t0). However, when t0 → 0, that is, when b ↓ a, the standard method is no longer
applicable, and we use a uniform method in which b = a can be used.

The uniform method is based on a transformation of the integral in (2.2) into the standard
form in (1.1) by writing

φ(t)− φ(t0) = ψ(s)− ψ(s0), sign(t− t0) = sign(s− s0), (2.5)

where
ψ(s) = s− µ ln s, s0 = µ; (2.6)
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Figure 1: Curves of the functions φ(t) − φ(t0) (left) and ψ(s) − ψ(s0) (right) that we use in the
transformation in (2.5), displayed for µ = 1

3
.

s0 is the zero of ψ′(s) = (s− µ)/s.
In Figure 1 we show the curves of the functions φ(t) − φ(t0) (left) and ψ(s) − ψ(s0) (right)

that we use in the transformation in (2.5); we use µ = 1
3 . The convex curves touch the real

axes at t0 = µ
1+µ = 1

4 and s0 = µ = 1
3 . The condition sign(t − t0) = sign(s − s0) means that

the function values at the left of t0 and s0 correspond to each other, and the same holds true
for those at the right of these points. Clearly, in this way, the transformation is one-to-one for
t ∈ (0, 1) and s > 0.

The transformation gives

M(a, b, z) =
Γ(b)

Γ(a)
ez−aAFλ(a), Fλ(a) =

1

Γ(λ)

∫ ∞

0

e−assλ−1f(s) ds, (2.7)

where

A = φ(t0)− ψ(s0) = (1 + µ) ln(1 + µ)− µ, f(s) =
e−zt

1 + µ

s− µ

t− t0
, (2.8)

because

f(s) = e−zt
s

t(1− t)

dt

ds
,

dt

ds
=
ψ′(s)

φ′(t)
=
s− µ

s

t(1− t)

t(1 + µ)− µ
. (2.9)

Using the expansion given in (8.7), we obtain

M(a, b, z) ∼ ez−aA
Γ(b)

Γ(a)
a−λ

∞∑

n=0

fn(µ)

an
, a→ ∞, b ≥ a. (2.10)

The coefficients fn(µ) are linear combinations of the derivatives of f(s) at the saddle point s = µ.
To find f0(µ) we observe that in the definition of f(s), see (2.8) and (2.9), we need the

derivative dt/ds at s = µ. Because s = µ corresponds with t = t0, we need to evaluate dt/ds by
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using l’Hôpital’s rule. We have

dt

ds

∣∣∣∣
s=s0

=
ψ′′(s0)

φ′′(t0)
dt
ds

∣∣
s=s0

. (2.11)

This gives

(
dt

ds

∣∣∣∣
s=s0

)2

=
ψ′′(s0)

φ′′(t0)
=

1

(1 + µ)3
=⇒ f0(µ) = e−zt0

√
1 + µ. (2.12)

We take the coefficient f0(µ) in front of the expansion and write

M(a, b, z) ∼ ez−aA
Γ(b)

Γ(a)
a−λf0(µ)

∞∑

n=0

f̃n(µ)

an
, f̃n(µ) =

fn(µ)

f0(µ)
, a, b→ ∞, b ≥ a. (2.13)

We evaluate the front factors by using the definition of A in (2.8) and the scaled gamma functions
defined in (9.10), and obtain

ez−aA
Γ(b)

Γ(a)
a−λf0(µ) = ez/(1+µ)

Γ∗(b)

Γ∗(a)
. (2.14)

This gives the final result

M(a, b, z) ∼ ez/(1+µ)
Γ∗(b)

Γ∗(a)

∞∑

n=0

f̃n(µ)

an
, a, b→ ∞, b ≥ a. (2.15)

If we wish we can expand the ratio of scaled gamma functions in front of this expansion in powers
of a−1, using b = a(1 + µ) (see [2, §6.5]).

The first few coefficients of this expansion are f̃0(µ) = 1,

f̃1(µ)=
µ
(
(µ+ 1)2 + 6z2

)

12(µ+ 1)3
,

f̃2(µ)=
µ
(
µ(µ+ 1)4 + 12(µ− 12)(µ+ 1)2z2 + 96(µ2 − 1)z3 + 36µz4

)

288(µ+ 1)6
.

(2.16)

These follow from the scheme given in Appendix A. For the analytical evaluation of these co-
efficients we refer to §6, where also numerical details of the performance of the expansion are
given.

Remark 2.1. To obtain a qualitative bound of the remainder EK of the expansion shown in
(8.6), we observe that the function f(s) defined in (2.8) behaves as f(s) = O(s) as s → ∞,
because t ∈ [0, 1] and z is assumed to be fixed. From the representation in terms of rational
functions in (8.13), and because Rn(σ, s, µ) = O(1/s) for large s1 we conclude that fn(s) = O(1)
for large s. We infer that the remainder EK in the finite expansion in (8.6) for the present case
is O(1) with respect to the large parameter a. The rational functions are also bounded functions
as µ→ ∞.

1This follows from the first functions given in (8.14) and induction with respect to n.

4



2.1 Details about the transformation

We give details about the transformation used in (2.5), the singularities of the function f(s),
and the uniform character of the expansion for µ ≥ 0.

The nonlinear transformation (2.5) can be inverted by using the Lambert W function that
satisfies the equation

W (z)eW (z) = z. (2.17)

See [3] for details. For a proper description of W (z) for z ∈ R and z ∈ C, several branches of
this function have to be considered. Write s = −µσ. Then for µ > 0 the transformation (2.5)
can be written in the form

σeσ = − t

µ
(1− t)1/µeA(µ)/µ, (2.18)

where A(µ) is given in (2.8). We need to solve this equation for σ < 0, with the condition
sign(σ + 1) = sign(t0 − t). For σ = −1 and t = t0 both functions in (2.18) have the value −1/e.

In [4] we have shown that an expansion as the one obtained in (2.15) is uniformly valid with
respect to µ ≥ 0 when f(s) can be bounded by an algebraic function. Also, the singularities of
f(s) should be bounded away from the positive axis, and the distance of the singularities from
the saddle point s0 = µ is larger than d

√
µ, for some d > 0. The singularities of the present

function f(s) satisfy these conditions. In some other sections we cannot give an algebraic bound.
We can find the singularities by observing that these are generated by the multivalued loga-

rithmic term − ln(1− t) of φ(t). The derivative dt/ds, which is part of f(s), has singularities for
t-values t0e

2πik, k ∈ Z \ {0} outside the standard domain of the logarithm; dt/ds is well defined
for k = 0.

The singularities in the s-plane follow from the equation

− ln
(
(1 − t0)e

2πik
)
− µ ln(t0)− φ(t0) = s− µ ln(s)− µ+ µ lnµ, k 6= 0, (2.19)

or
− 2πik = s− µ ln(s)− µ+ µ lnµ, k 6= 0. (2.20)

There is no need to consider the logarithm −µ ln t in the transformation, because we have chosen
the logarithm in ψ(s) with the same pre factor µ. This gives an analytic relation between t and
s at the origins.

The solutions sk(µ) of (2.20) with k = ±1 are closest to the domain of integration. We have

s±1(0) = ∓2πi, s±1(µ) ∼ µ+ 2
√
πµ e∓

1

4
πi, µ→ ∞. (2.21)

A graph given in [4] shows that indeed |s±1(µ)−µ| ≥ d
√
µ for some d > 0. For the loop integrals

in the s-plane in later sections it is good to know that there are no singularities in the left half
plane ℜs < 0.

3 M(a, b, z), b ≤ a

In this section we use the notation and conditions

λ = a− b, µ =
λ

b
=
a− b

b
, µ ≤ µ0, z ∈ C, |z| ≤ z0, (3.1)
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Figure 2: Left: the steepest descent path of the integral in (3.2) described by equation (3.5). Right:
the steepest descent path of the integral in (3.8). In both cases we take µ = 3.

where µ0 and z0 are fixed positive numbers. The condition on µ means that a/(1+µ0) ≤ b ≤ a,
and that, say, b = o(a) is not allowed.

We use the integral representation given in (9.3) and write it in the form

M(a, b, z) =
Γ(b)Γ(1 + λ)

Γ(a)

1

2πi

∫ (1+)

0

eztebφ(t)
dt

t(t− 1)
, (3.2)

where
φ(t) = (1 + µ) ln t− µ ln(t− 1). (3.3)

The saddle point t0 follows from φ′(t) = 0, where

φ′(t) =
t− µ− 1

t(t− 1)
=⇒ t0 = 1 + µ. (3.4)

The path of steepest descent of the integral in (3.2) through t0 follows from the equation ℑφ(t) =
0. Using polar coordinates t = r · eiθ we find that it is given by

r =
sin((1 + µ)θ/µ)

sin(θ/µ)
, − µ

1 + µ
π ≤ θ ≤ µ

1 + µ
π. (3.5)

In Figure 2 (left) we show this path for µ = 3.
The standard saddle point method is not valid when b ↑ a and we use a uniform method

transforming the integral in (3.2) into the standard form (8.2). We use the transformation

φ(t)− φ(t0) = ψ(s)− ψ(s0), sign(t− t0) = sign(s− s0), (3.6)

where
ψ(s) = s− µ ln s, s0 = µ; (3.7)
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s0 is the zero of ψ′(s) = (s− µ)/s.
We obtain

M(a, b, z) =
Γ(b)

Γ(a)
ebAGλ(b), Gλ(b) =

Γ(λ+ 1)

2πi

∫ (0+)

−∞

ebss−λ−1g(s) ds, (3.8)

where
dt

ds
=
ψ′(s)

φ′(t)
=
t(t− 1)(s− s0)

s(t− t0)
, g(s) =

s ezt

t(t− 1)

dt

ds
= ezt

s− s0
t− t0

, (3.9)

and
A = φ(t0)− ψ(s0) = (1 + µ) ln(1 + µ)− µ. (3.10)

The saddle point contour of the integral in (3.8) is the image of the contour in the t-plane
described in (3.5). It runs through s0 = µ and is defined by ℑψ(s) = 0. With polar coordinates
s = ρ · eiτ , we see that the contour is given by ρ = µτ/ sin τ , with −π < τ < π. In Figure 2
(right) we show this path for µ = 3.

Using the expansion given in (8.18), we obtain

M(a, b, z) ∼ Γ(b)

Γ(a)
ebAbλ

∞∑

n=0

(−1)n
gn(µ)

bn
, a, b→ ∞, a ≥ b. (3.11)

To find g0(µ) we evaluate (see the explanation as given for obtaining f0(µ) in (2.12))

(
dt

ds

∣∣∣∣
s=s0

)2

=
ψ′′(s0)

φ′′(t0)
= 1 + µ =⇒ g0(µ) =

ez(1+µ)√
1 + µ

. (3.12)

We take the coefficient g0(µ) in front of the expansion and write

M(a, b, z) ∼ ebA
Γ(b)

Γ(a)
bλg0(µ)

∞∑

n=0

(−1)n
g̃n(µ)

bn
, g̃n(µ) =

gn(µ)

g0(µ)
, a, b→ ∞, a ≥ b. (3.13)

We evaluate the front factors by using the definition of A in (3.10) and the scaled gamma
functions defined in (9.9), and obtain

ebA
Γ(b)

Γ(a)
bλg0(µ) = ez(1+µ)

Γ∗(b)

Γ∗(a)
. (3.14)

This gives the final result

M(a, b, z) ∼ ez(1+µ)
Γ∗(b)

Γ∗(a)

∞∑

n=0

(−1)n
g̃n(µ)

bn
, a, b→ ∞, b ≤ a. (3.15)

If we wish, we can expand the ratio of scaled gamma functions in front of this expansion in
powers of b−1 by using a = b(1 + µ).

The first few coefficients of this expansion are g̃0(µ) = 1,

g̃1(µ) =
µ
(
6z2ν2 + 1

)

12(1 + µ)
, ν = 1+ µ

g̃2(µ) =
µ
(
36z4ν4µ+ 96z3ν3(2µ+ 1) + 12z2ν2(13ν − 1)− 1

)

288(1 + µ)2
.

(3.16)
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The coefficients gn(µ) are linear combinations of the derivatives of g(s) at the saddle point s = µ
and follow from the scheme given in Appendix A.

The function g(s) defined in (3.9) behaves as g(s) = O(se(1+µ)ℜz) as s, µ → ∞, because
t0 = 1 + µ and the path of integration in t-plane extends to t-values of O(µ). Although the
expansion in (3.15) is scaled by putting the exponential e(1+µ)z in front of the expansion, it
is not possible to give a uniform bound for all µ ≥ 0 of the iterates of g(s) in the remainder.
Therefore we have given the condition in (3.1) on µ to be bounded. From the shown coefficients
in (3.16) we also see that µ should be bounded, except when z = 0.

4 U(a, b + 1, z), b ≥ a

For the U -function we consider U(a, b+1, z) because this yields similar results as for M(a, b, z).
We have the special value U(a, a+ 1, z) = z−a.

In this section we use the notation and condition

λ = b− a, µ =
λ

a
=
b− a

a
, ℜz > 0, |z| ≤ z0, (4.1)

where z0 is a fixed positive number.
We use the contour integral in (9.6) and the Kummer relation for the U -function. This gives

U(a, b+ 1, z) =
z−bΓ(λ+ 1)

2πi

∫ (0+)

−∞

eztt−λ−1(1− t)−a dt. (4.2)

We write this in the form

U(a, b+ 1, z) =
z−bΓ(λ+ 1)

2πi

∫ (0+)

−∞

eaφ(t)ezt
dt

t
, (4.3)

where
φ(t) = − ln(1− t)− µ ln t. (4.4)

The saddle point t0 follows from

φ′(t) =
(1 + µ)t− µ

t(1− t)
= 0 =⇒ t0 =

µ

1 + µ
. (4.5)

The saddle point contour is the curve through t0 defined by ℑφ(t) = 0. We write t = r · eiθ
and it follows that the contour is given by

r =
sin(µθ)

sin((1 + µ)θ)
, − π

1 + µ
< θ <

π

1 + µ
. (4.6)

We use the transformation

φ(t)− φ(t0) = ψ(s)− ψ(s0), ψ(s) = s− µ ln s, (4.7)

where s0 = µ is the zero of ψ′(s). This gives the representation

U(a, b+ 1, z) = z−beaAGλ(a), Gλ(a) =
Γ(λ+ 1)

2πi

∫ (0+)

−∞

eass−λ−1p(s) ds, (4.8)
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where

p(s) = ezt
s

t

dt

ds
= ezt

(1− t)(s− µ)

(1 + µ)(t− t0)
, A = φ(t0)− ψ(s0) = (1 + µ) ln(1 + µ)− µ. (4.9)

The saddle point contour in the s-plane is the same as the one for the integral in (3.8); see the
right figure in Figure 2.

We have the expansion

Gλ(a) ∼ aλ
∞∑

n=0

(−1)n
pn(µ)

an
, a, b→ ∞, b ≥ a. (4.10)

The first coefficient is

p0(µ) =
ezµ/(1+µ)√

1 + µ
. (4.11)

The first-order asymptotic approximation is

U(a, b+ 1, z) ∼ z−bab−aeaAp0(µ). (4.12)

Using the definition of A(µ) given in (4.9) this becomes

U(a, b+ 1, z) ∼ z−ba−abbea−bp0(µ). (4.13)

When a = b, that is, µ = 0, we obtain the value z−a, which is the special value given in (9.8).
The full expansion can be written as

U(a, b+ 1, z) ∼ z−ba−abbea−bp0(µ)

∞∑

n=0

(−1)n
p̃n(µ)

an
, a, b→ ∞, b ≥ a, (4.14)

where p̃n(µ) = pn(µ)/p0(µ). We have p̃0(µ) = 1 and

p̃1(µ) =
µ
(
ν2 + 6z(z − 2− 2µ)

)

12ν3
, ν = 1 + µ,

p̃2(µ) =
µ
(
µν4 − 24(µ− 12)ν3z + 12(25µ− 36)ν2z2 − 48(5µ− 2)νz3 + 36µz4

)

288ν6
.

(4.15)

The function p(s) defined in (4.9) behaves like O(s) as s, µ → ∞, the exponential function
not being relevant in this case. By using the rational function representations as mentioned
in Remark 2.1, we can find a uniform bound of the remainder in the expansion. The shown
coefficients in (4.15) indicate that large values of µ are allowed.

5 U(a, b + 1, z), b ≤ a

In this section we use the notation and conditions

λ = a− b, µ =
λ

b
=
a− b

b
, µ ≤ µ0, ℜz > 0, |z| ≤ z0, (5.1)

9



where µ0 and z0 are fixed positive numbers. The condition on µ means that b ≥ a/(1+µ0), and
that, say, b = o(a) is not allowed.

We use the Kummer relation in (9.7) and the integral representation in (9.5). This gives

U(a, b+ 1, z) =
z−b

Γ(a− b)

∫ ∞

0

e−ztta−b−1(1 + t)−a dt, ℜ(a− b) > 0, ℜz > 0, (5.2)

which we write in the form

U(a, b+ 1, z) =
z−b

Γ(λ)

∫ ∞

0

e−zte−bφ(t)
dt

t
, (5.3)

where
φ(t) = (1 + µ) ln(1 + t)− µ ln t. (5.4)

We calculate the saddle point t0:

φ′(t) =
t− µ

t(1 + t)
= 0 =⇒ t0 = µ. (5.5)

We use the function ψ(s) = s− µ ln s and transform

φ(t) − φ(t0) = ψ(s)− ψ(s0), s0 = µ, sign(t− t0) = sign(s− s0), (5.6)

and write the result in the standard form

U(a, b+ 1, z) = z−be−bAFλ(b), Fλ(b) =
1

Γ(λ)

∫ ∞

0

e−bssλ−1q(s) ds, (5.7)

where

q(s) = e−zt
s

t

dt

ds
= e−zt

(1 + t)(s− µ)

t− µ
, A = φ(t0)− ψ(s0) = (1 + µ) ln(1 + µ)− µ. (5.8)

We have the expansion

Fλ(b) ∼ b−λ
∞∑

n=0

qn(µ)

bn
, a, b→ ∞, a ≥ b. (5.9)

The first-order asymptotic approximation is

U(a, b+ 1, z) ∼ z−bbb−ae−bA(µ)q0(µ), q0(µ) = e−zµ
√
1 + µ. (5.10)

Using the definition of A(µ) given in (5.9) this becomes

U(a, b+ 1, z) ∼ z−ba−abbea−bq0(µ). (5.11)

When a = b, that is, µ = 0, we obtain the value z−a, which is the special value given in (9.8).
The full expansion can be written as

U(a, b+ 1, z) ∼ z−ba−abbea−bq0(µ)
∞∑

n=0

q̃n(µ)

bn
, a, b→ ∞, b ≤ a, (5.12)

10



where q̃n(µ) = qn(µ)/q0(µ). We have q̃0(µ) = 1 and

q̃1(µ)=
µ
(
6z2ν2 − 12zν + 1

)

12ν
, ν = µ+ 1,

q̃2(µ)=
µ
(
36z4ν4µ− 48z3ν3(7ν − 5) + 12z2ν2(61ν − 25)− 24zν(13ν − 1) + µ

)

288ν2
.

(5.13)

Again, as in §3, we see that the coefficients grow with large values of µ, and that we need
to use the condition as shown in (5.1). Although the exponential function e−zt can be bounded
uniformly for t ≥ 0, this function has its influence in the s-variable. For large t and s, the
transformation in (5.6) takes the form ln t ∼ s, or t ∼ es. Because for the evaluation of the
coefficients we need values of the derivatives of the function q(s) at s = µ, the exponential
function has much influence on computing a uniform bound. When we take z = 0 in the
coefficients, we notice the influence of the exponential function: the coefficients are bounded
functions of µ. Recall that z = 0 is not allowed in this section.

6 Numerical evaluations

We give details on the numerical implementation of the expansions, and we consider the case of
§2 for M(a, b, z), b ≥ a.

The transformation in (2.5) can be written in the form

∞∑

n=2

1

n!
φ(n)(t0)(t− t0)

n =

∞∑

n=2

1

n!
ψ(n)(s0)(s− s0)

n, (6.1)

where the series converge in certain neighbourhoods of t0 and s0. To invert the transforma-
tion near the saddle points, that is, to find t when s is given, we use the expansion t =

t0 +

∞∑

n=0

tk(s − s0)
n, and find tk by standard inversion methods for formal series. We have

t1 =
√
ψ′′(s0)/φ′′(t0) = (1 + µ)−

3

2 , where the square root has to be positive, in agreement with
the condition sign(t− t0) = sign(s− s0) imposed on the transformation in (2.5). The next terms
are

t2 = −
√
µ+ 1 (µ− 1) + µ+ 1

3µ(µ+ 1)
5

2

, t3 =

√
µ+ 1 (µ2 − 4µ+ 8) + 8µ2 − 8

36µ2(µ+ 1)3
. (6.2)

These are analytic at µ = 0, and we have

t2 = − 1
2 + 25

24µ+O
(
µ2
)
, t3 = 1

6 − 11
24µ+O

(
µ2
)
, µ→ 0. (6.3)

The next step is to find the coefficients an(µ) in the expansion (8.8), with f(s) defined in
(2.8), and finally we compute the coefficients fn(µ) by using the relations in (8.11). The first
scaled versions of these coefficients of the expansion in (2.15) are given in (2.16).

For a numerical verification of the expansion we have used the expansion (2.15) with terms
up to n = 5 and we have used a stable recursion relation (see (9.9)) in the form

zM(a+ 1, b+ 1, z) + bM(a, b, z)

bM(a+ 1, b, z)
− 1 = 0 (6.4)
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Table 1: Relative errors in the computation of M(a, b, z) for b = 1010.2, z = 2.5, several values
of a by using expansion(2.15) with terms up to n = 5. The errors are computed by using the
recurrence relation in (6.4).

a n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

5.1 0.27e− 02 0.32e− 04 0.83e− 05 0.39e− 07 0.13e− 06 0.19e− 08

205.1 0.15e− 06 0.18e− 08 0.12e− 11 0.13e− 13 0.00e− 00 0.10e− 14

405.1 0.96e− 07 0.27e− 08 0.25e− 11 0.08e− 14 0.00e− 00 0.00e− 00

605.1 0.84e− 06 0.23e− 08 0.79e− 11 0.17e− 13 0.00e− 00 0.20e− 15

805.1 0.20e− 05 0.94e− 09 0.39e− 11 0.28e− 13 0.00e− 00 0.00e− 00

1005.1 0.31e− 05 0.78e− 08 0.26e− 10 0.10e− 12 0.25e− 14 0.80e− 15

to verify the relative error in the approximations. In Table 1 we show these errors for b = 1010.2,
z = 2.5; n = 0, 1, 2, 3, 4, 5 means that we have used terms up to and including index n. We notice,
for each n, a rather uniform error for all values of a, except for a = 5.1. Computations are done
with Maple, with Digits = 16.

7 Concluding remarks

In Section 2 and 4 we have given expansions in negative powers of a, although in both sections
b ≥ a. In Sections 3 and 5, the expansions are in negative powers of b, although a ≥ b. For
the asymptotics it is not relevant which parameter to choose, because both a and b are assumed
to be large. In Sections 3 and 5 the representation of the coefficients is more attractive with
negative powers of b than with negative powers of a. This choice has no influence on whether
or not we can take large values of µ, which is only possible in Sections 2 and 4, where b ≥ a.
It appears that b ≥ a gives a better asymptotic condition for this type of asymptotic expansion
for the Kummer functions. The starting point of these investigations was to obtain expansions
valid for a ∼ b, which always corresponds with µ ∼ 0, and it is an extra bonus when we have
expansions that are valid for larger values of µ as well.

8 Appendix A: The vanishing saddle point

The asymptotic methods that we consider in this paper are for integrals of Laplace-type of the
form

Fλ(w) =
1

Γ(λ)

∫ ∞

0

sλ−1e−wsf(s) ds, (8.1)

with w as a large parameter. The method is also for loop integrals of the form

Gλ(w) =
Γ(λ+ 1)

2πi

∫ (0+)

−∞

s−λ−1ewsf(s) ds, (8.2)
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where the contour runs from −∞ with ph s = −π, encircles the origin in anti-clockwise direction,
and returns to −∞ with ph s = π. The negative axis is a branch cut and we assume that s−λ−1

has real values for s > 0 (when λ is real). In this paper we assume that w > 0 and λ ≥ 0.
When Watson’s lemma is used for the integral in (8.1), with w as the large parameter, the

parameter λ is assumed to be fixed. On the other hand, when, say λ = O(w), Watson’s lemma
cannot be used. When w and λ are large, the dominant part of the integral in (8.1) is

sλ e−ws = e−wψ(s), ψ(s) = s− µ ln s, µ =
λ

w
. (8.3)

The function ψ has a saddle point at s = µ. When w is large and λ is fixed µ tends to zero, and
the saddle point vanishes. When µ is bounded away from zero, we can transform the integral by
using Laplace’s method. To describe an alternative method, we summarise the treatment given
in [4]; see also [2, Chapter 25], where the method is called the vanishing saddle point.

Consider (8.1) and write f(s) =
(
f(s)− f(µ)

)
+ f(µ). Then we have

Fλ(w) = w−λf(µ)− 1

wΓ(λ)

∫ ∞

0

f(s)− f(µ)

s− µ
de−wψ(s)

= w−λf(µ) +
1

wΓ(λ)

∫ ∞

0

sλ−1e−wsf1(s) ds,

(8.4)

where

f1(s) = s
d

ds

f(s)− f(µ)

s− µ
. (8.5)

Continuing this procedure we obtain for K = 0, 1, 2, . . .

wλ Fλ(w) =

K−1∑

k=0

fk(µ)

wk
+

1

wK
EK(w, λ),

fk(s) = s
d

ds

fk−1(s)− fk−1(µ)

s− µ
, k = 1, 2, . . . , f0(s) = f(s),

EK(w, λ) =
1

Γ(λ)

∫ ∞

0

sλ−1e−wsfK(s) ds.

(8.6)

Eventually we obtain the complete asymptotic expansion

Fλ(w) ∼ w−λ
∞∑

n=0

fn(µ)

wn
, w → ∞. (8.7)

The coefficients fn(µ) can be expressed in terms of the coefficients an(µ), which are defined
by

f(s) =
∞∑

n=0

an(µ)(s− µ)n. (8.8)

To verify this, we write

fn(s) =

∞∑

m=0

c(n)m (s− µ)m. (8.9)
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Then am(µ) = c
(0)
m , fn(µ) = c

(n)
0 and we have from (8.6)

fn+1(s) =
∞∑

m=0

c(n+1)
m (s− µ)m = s

∞∑

m=1

c(n)m (m− 1)(s− µ)m−2. (8.10)

This gives the recursion

c(n+1)
m = mc

(n)
m+1 + µ(m+ 1)c

(n)
m+2, m, n = 0, 1, 2, . . . , (8.11)

and the few first relations are2

f0(µ) = a0(µ), f1(µ) = µa2(µ), f2(µ) = µ (2a3(µ) + 3µa4(µ)) ,

f3(µ) = µ
(
6a4(µ) + 20µa5(µ) + 15µ2a6(µ)

)
,

f4(µ) = µ
(
24a5(µ) + 130µa6(µ) + 210µ2a7(µ) + 105µ3a8(µ)

)
.

(8.12)

The functions fn(s) can be written as Cauchy-type integrals. Write R0(σ, s, µ) = 1/(σ − s).
Then

fn(s) =
1

2πi

∫

C

Rn(σ, s, µ)f(σ) dσ, Rn+1(σ, s, µ) =
−1

σ − µ

d

dσ
(σRn(σ, s, µ)) , (8.13)

where C is a simple closed contour in the domain where f(s) is analytic, and encircles the points
s and µ. For large values of s and µ it is not needed to take a large contour around the points
σ = s and s = µ, because the contour C can be split up into two circles around these points.

The next rational functions are

R1(σ, s, µ) =
s

(σ − µ)(σ − s)2
, R2(σ, s, µ) =

s(µs+ µσ − 2σ2)

(σ − µ)3(σ − s)3
. (8.14)

Under mild conditions on an(µ), that is, on f , the expansion in (8.7) is uniformly valid with
respect to λ ∈ [0,∞), and in a larger domain in the complex plane. The main condition on f
is that its singularities are not too close to the point t = µ and that |f(s)| is bounded by an
algebraic factor.

Initially we have assumed for the integral in (8.1) that λ > 0. However, the reciprocal gamma
function 1/Γ(λ) in front of the integral makes the integral regular when λ ↓ 0. This can be seen
by using integration by parts (writing sλ−1 ds = (1/λ) d

(
sλ
)
), and in this way it can be shown

that analytic continuation of Fλ(w) of (8.1) is possible into the domain ℜλ ≥ 0. We will see that
the asymptotic expansion of Fλ(w) allows taking λ = 0. In fact the obtained expansion will be
valid for w → ∞, uniformly with respect to λ ≥ 0.

A similar integration by parts procedure gives the expansion of the loop integral in (8.2). We
use the integral of the reciprocal gamma function

wλ

Γ(λ+ 1)
=

1

2πi

∫ (0+)

−∞

s−λ−1ews ds, (8.15)

2The reviewer observed: It seems that the numerical coefficients are the same as the sequence A269940 in the

OEIS. It would be worth investigating this in the future. See also https://oeis.org/A269940 .
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where the contour is a Hankel loop as in (8.2). Writing µ = λ/w and g(s) = g(µ)+(g(s)− g(µ)),
we obtain

Gλ(w) = wλg(µ) +
1

2πiw

∫ (0+)

−∞

g(s)− g(µ)

s− µ

d

ds

(
ewψ(s)

)
, ψ(s) = s− µ ln s. (8.16)

Performing integration by parts, and repeating the procedure gives

w−λGλ(w) =

K−1∑

k=0

(−1)k
gk(µ)

wk
+

1

wK
EK(w, λ),

EK(w, λ) =
Γ(λ+ 1)

2πi

∫ (0+)

−∞

s−λ−1ewsgK(s) ds,

(8.17)

where the coefficients gk(µ) can be obtained by the same recursive scheme as for fk(µ) shown in
(8.6). Eventually this gives the expansion

Gλ(w) ∼ wλ
∞∑

k=0

(−1)k
gk(µ)

wk
, w → ∞. (8.18)

Under conditions on g(s), this expansion holds uniformly with respect to λ ≥ 0.

9 Appendix B

The defining power series is

M(a, b, z) =
∞∑

n=0

(a)n
(b)n

zn

n!
, (a)n =

Γ(a+ n)

Γ(a)
, (9.1)

with the usual condition that b is not a nonpositive integer. The standard integral is

M(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1 dt, (9.2)

where ℜa > 0, ℜ(b − a) > 0. A contour integral is

M(a, b, z) =
Γ(b)Γ(1 + a− b)

Γ(a)

1

2πi

∫ (1+)

0

ezssa−1(s− 1)b−a−1 ds, ℜa > 0, (9.3)

where the contour starts at s = 0, encircles the point s = 1 in the anti-clockwise direction, and
returns to s = 0. Also,

M(a, b, z) =
Γ(b)z1−b

2πi

∫

C

ezss−b (1− 1/s)
−a

ds, (9.4)

where the contour C starts at −∞, with ph s = −π, encircles the points 0 and 1 in anti-clockwise
direction, and returns to −∞, where ph s = +π. At the point where the contour crosses the
interval (1,∞) the functions s−b and (1− 1/s)−a assume their principal values.
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The standard integral for U(a, b, z) is

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1 dt, ℜa > 0, ℜz > 0, (9.5)

and a loop integral is

U(a, b, z) =
Γ(1− a)

2πi

∫ (0+)

−∞

ezssa−1(1− s)b−a−1ds, ℜz > 0, (9.6)

where a 6= 1, 2, 3, . . .. The contour cuts the real axis between 0 and 1. At this point the fractional
powers are determined by ph (1− s) = 0 and ph s = 0.

The Kummer relations are

M(a, b, z) = ezM(b− a, b,−z), U(a, b, z) = z1−bU(a− b+ 1, 2− b, z). (9.7)

Special values are
M(a, a, z) = ez, U(a, a+ 1, z) = z−a. (9.8)

In numerical computations we have used the relation

zM(a+ 1, b+ 1, z) + bM(a, b, z) = bM(a+ 1, b, z) (9.9)

to check the relative accuracy.
We use also the scaled gamma function

Γ∗(z) = ezz−z
√

z

2π
Γ(z) ∼ 1 +

1

12z
+

1

288z2
+ . . . , z → ∞. (9.10)
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