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Full-waveform inversion with Mumford-Shah regularization

Ajinkya Kadu*, Rajiv Kumar®, Tristan van Leeuwen*
* Mathematical Institute, Utrecht University
¥ Georgia Institute of Technology

SUMMARY

Full-waveform inversion (FWI) is a non-linear procedure to
estimate subsurface rock parameters from surface measure-
ments of induced seismic waves. This procedure is ill-posed
in nature and hence, requires regularization to enhance some
structure depending on the prior information. Recently, Total-
Variation (TV) regularization has gained popularity due to its
ability to produce blocky structures. Contrary to this, the
earth behaves more like a piecewise smooth function. TV
regularization fails to enforce this prior information into FWI.
We propose a Mumford-Shah functional to incorporate the
piecewise smooth spatial structure in the FWI procedure. The
resulting optimization problem is solved by a splitting method.
We show the improvement in results against TV regularization
on two synthetic camembert examples.

INTRODUCTION

Full waveform inversion (FWI) is a non-linear data-fitting pro-
cedure where we iteratively estimate high-resolution velocity
models of the subsurface by minimizing the difference between
the synthetic and recorded data. These high-resolution velocity
models are used to perform reservoir characterization, time-
lapse monitoring, as well as aid in identifying potential geo-
hazards. However, FWI often suffers from so-called cycle-
skipping (Beydoun and Tarantola, 1988), which is a common
source of local-minima. Moreover, the observed seismic data
often lacks low frequencies and long offets, and are contam-
inated by noise (see Virieux and Operto (2009) for a recent
overview on FWI).

One way to overcome the non-uniqueness of FWI is to add
regularization to the data-fitting terms, which results in stable
solutions. Various strategies have been proposed to impose the
regularization such as Tikhonov (Tikhonov, 1963; Asnaashari
et al., 2013) and sparsity-promotion based regularization (Li
et al., 2012). Recently, the Total Variation (TV) regularization
method has been proposed, which resolves the sharp interfaces
via preserving the edges and discontinuities (Rudin et al., 1992;
Lin and Huang, 2014). The central idea of TV regularization
is to impose sparsity on the gradient of the model parame-
ters. Esser et al. (2018) further showed the advantages of
successively relaxed asymmetric total-variation constraints to
perform the automatic salt flooding.

Although TV regularization can circumvent the local-minima
issue, it has a tendency to reduce the contrast at edges and
over-smooth the flat regions, resulting in staircase effects in the
velocity model. To further shed light on this effect, we run
a small experiment on vertical trace from a complex velocity
model as shown in Figure 1. We can clearly see that TV
regularization approximates the smooth dipping part of the
velocity model with a constant flat velocity model.

|- True —Mumford-Shah TV

Figure 1: Comparison of the Mumford-Shah (red color) with
TV method (yellow color) on 1D example.

To preserve the piecewise smooth behavior of the velocity
models, we borrow the ideas from the image analysis literature
and propose an FWI framework, which uses the Mumford-
Shah functional as a regularizer (Mumford and Shah, 1989).
The Mumford-Shah functional provides a prototypical form of
all regularizers, which aims at combining the smoothing of
the homogeneous region with the enhancement of edges (see
Figure 1). The proposed FWI algorithm is based on splitting
the problem using a technique described in Zheng and Aravkin
(2018) and we employ an alternating minimization strategy to
solve the problem.

The paper is organized as follows: we begin with the regu-
larized FWI and discuss the drawbacks of the current regu-
larization techniques. Next we introduce the Mumford-Shah
segmentation procedure and a corresponding regularization
term which induces a piecewise smooth model. We discuss the
integration of such regularization in the FWI framework and
propose an alternate minimization strategy to solve the resulting
problem efficiently. Finally, we demonstrate the method on two
camembert models, and compare the results with the TV.

THEORY

The regularized FWI problem in its least-squares formulation
(Tarantola, 1984) reads

min  LIF(m) - d||} + R(m),
m

where F is a forward modeling operator, m defines the subsur-
face model, for instance, P-wave velocity or density or both, and
d represents the seismic data acquired at number of receivers.
|- Il represents the Euclidean norm. R (m) is the regularization
function which incorporates the prior information about the
model.

The most popular regularization strategies are Tikhonov regu-
larization and TV. Tikhonov regularization, defined as R(m) =
||Vm||§, promotes smoothness in the model parameters by
penalizing its spatial gradient. On the contrary, TV, defined
as R(m) = ||Vm||{, promotes jumps in the model leading to a
piecewise constant image (Unser et al., 2017). The sparsity in
the gradient is promoted through the £{-norm. Each of these
regularizations has its own benefits, but these methods fail
when the model we’re interested in is piecewise smooth. Hence,
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we resort to methods in the image segmentation literature to
reconstruct a piecewise smooth model.

Mumford-Shah functional

For the image segmentation problem, Mumford and Shah
(1989) have proposed the following formulation to segment
image function f : Q@ — R defined on open bounded set Q:

min {f lu(x) —f(x)|2dx+af IVu(x)|? dx + /lfdx}
u, I’ Q o\l r

where u is the segmented image and ' ¢ Q is a set of
boundaries. The first term represents the mismatch between
the true image and segmented image over domain Q. The
second term penalizes the gradient of the segmented image
outside the region I" and the last term approximates the length
of the boundary I'. In summary, the Mumford-Shah func-
tional creates a piecewise smooth image u by penalizing the
smoothness over the region Q \ I" and length of the boundary
I' simultaneously. The parameter @ controls the smoothness
of the region Q \ I" and A controls the length of the boundary.
The smoothness increases with increasing @ and similarly, the
length of boundary decreases with increase in A producing the
edges in an image.

Although this formulation has gained great popularity in the
image segmentation community a decade back, solving the
minimization problem in two variables # and I" remains hard.
It is also important to start with a right boundary I" for an
optimization method to converge (Vese and Chan, 2002). Am-
brosio and Tortorelli proposed a simpler version which approx-
imates the Mumford-Shah functional but heavily depends on
an extra parameter € (Ambrosio and Tortorelli, 1990).

Relaxation of Mumford-Shah functional

To overcome these challenges of solving the Mumford-Shah
functional, Strekalovskiy and Cremers (2014) proposed to re-
laxed the Mumford-Shah regularization function using the fol-
lowing formulation:

min fg [lu(x) = FCOP + Ry (Vu ()] dx, (1)

where  Rvs (g) = min (a|g|2, /l).

This regularization function, denoted by Rps (g), is also known
as truncated quadratic regularizer. It penalizes the gradient
till a certain threshold is reached. After the threshold, the
regularizer is constant and any extra changes are not penalized.
This regularizer indeed separates the region Q into two parts:
a smooth part and the boundary I'. The boundaries are defined
by
r={xeQ|Vux) > Va/a}.

The proposed regularization term is non-convex in nature. See
Figure 2 for comparison of the proposed regularization with £ -
and {>-norm regularization. Before we delve into solving the
problem, we define a proximal operator of a general functional
h:X—>Ras

prox, ; (%) = argmin {%llx —&13 + h(x)}
xeX

for parameter v > 0 and argument ¥ € X. The proximal
operators for data misfit D := fQ |u(x) — f(x)l2 dx and the

Figure 2: Comparison of Mumford-Shah regularizer (referred
to as MS) with other regularization (£ and ¢»).

proposed Mumford-Shah regularizer is given below:

N a+2tf
prox; p (@) = T+27°
— 7 if |13l < \/47
prox, g, (g) = | #27a8 if 18l < g +2r0)
; 8 else

Due to simplicity of the proximal operators, the relaxed prob-
lem (1) can be solved quickly using primal-dual algorithm
(Chambolle and Pock, 2011). The algorithm is described
in Algorithm 1. This algorithm has only two segmentation
parameters @ and 4. As mentioned eatlier, the @ induces the
smoothness and A controls the length of boundaries. This
algorithm produces segmented image u from a given image f
in less than a second with N = 10000 iterations.

Algorithm 1 Fast Mumford-Shah segmentation

Require: Image f, parameters «a, A, tolerance €
Initialize: u® = f,d% = u® p¥ = 0,79 = 1/4,09 = 1/2

Ensure: "V

1. forn=0to N -1do

2 p™(x) = prox, o (P"(x) + 0 Vit (x))

3 u"l(x) = prox, ¢ (u"(x) + Tndivp"“(x))

& Op= | NT+dm,

50 Tpel = OnTn, Ons1 = 0n/6n

6 attl = yntl 4 O (un+l _ un)

7. if u"*! = u||, < € then

8: break

9:  end if
10: end for

ALGORITHM

In this section, we describe the integration of Mumford-Shah
functional into FWI framework which results in a Mumford-
Shah regularized full-waveform inversion (MS-FWI). We pro-
pose an alternating minimizing strategy to solve the problem
efficiently.

MS-FWI problem

To simplify the notations, we work with the misfit function
defined by f and regularization function defined by g. We
discretize the model on a grid of total size n to make the prob-
lem computationally tractable. The full-waveform inversion
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regularized by Mumford-Shah functional takes the following
form:

min  f(m) + g(Am), 2

where  f(m) = %llF(m) - dl|§,
8(z) =Rms(2).

The matrix A denotes the discretization of the gradient using
finite-difference. This problem can be solved using various
splitting methods, including primal-dual method (Chambolle
and Pock, 2011), alternating direction method of multipliers
(Boyd et al., 2011), and split-bregman method (Goldstein and
Osher, 2009). All these methods require solving the minimiza-
tion with respect to m at each step completely, which becomes
expensive. To avoid full solve at each step, we discuss a simple
strategy to solve such problem in the next subsection.

Alternating minimization

Recently Zheng and Aravkin (2018) proposed a strategy to
solve a problem of form (2). The authors split the variables and
add a penalty term on the difference and then use the alternating
minimization strategy. We resort to a similar version of this
method and re-write equation (2) as

min f(m) + g(Az) + pllz - m]]%, 3)
where p > 0 is a parameter chosen appropriately. We make
use of an alternating minimization strategy to solve the above
problem:

m " = argmin { f(@m) + p|jm — Z~)? }, 4)

K1 = argmin { g(Az) + pllz - mF<+! ||2 } . (®)]
z

By splitting the problem as shown in (3), we are able to
decouple the FWI minimization (4) and segmentation step (5).
Moreover, the minimization in m can be restricted to a single
update at each iteration. This property of the method improves
computational time sufficiently. It is also important to note that
the minimization in variable z is a segmentation of an image
mk“, which can be evaluated within a fraction of a second.
The MS-FWI framework is described in Algorithm 2. In step
2, 1 is a step length obtained from either line-search method
or a Lipschitz constant of the gradient. Step 3 refers to fast
Mumford-Shah segmentation introduced in algorithm 1.

The convergence of our algorithm depends mildly on the pa-
rameter p. In our experiments, we have taken p = 100 and
observed a linear convergence with iterations.

EXAMPLES

To demonstrate the capabilities of the proposed method, we
present numerical experiments on two synthetic camembert
model with acoustic data. The first camembert model is the
classic model with a blob of constant velocity. The second
camembert model consists of a circular disk with linear gradient
velocity model in the oblique direction.

Experimental setup
‘We work with the models of size 1 km in each z and x direction,

Algorithm 2 MS-FWI Algorithm

Require: segmentation parameters (a, 1), optimization pa-
rameter p, initial model mo, K , tolerance €
Initialize: z° = m°
Ensure: mX - final model and zX - segmented model
. fork=0to K -1 do

2 m*tl =mk - (Vf(mk) +2p (mk - zk))

3 ZFt1 = fastMumfordShah(m¥*!)
& if |[m**! —m* ||, < e then

5: break
6

7

end if
. end for

discretized with a 10-m grid spacing. For simplicity, we
perform transmission experiment with sources placed at x =
20 m and receivers at x = 980m. A total of 21 sources were
placed 50 m apart. The source is a Ricker wavelet with a 10-Hz
peak frequency and zero time lag. The data were acquired with
receivers placed 10 m apart. To avoid a full inverse crime, we
add a Gaussian noise of 30 dB SNR to the data. We model
waves using scalar Helmholtz equation with perfectly matched
layer boundary conditions on all sides (Da Silva and Her-
rmann, 2017). For inversion, we consider data of frequencies
5, 6,7, 8 Hz. The purpose of these experiments are to show that
the Mumford-Shah functional preserves the piecewise behavior
of the velocity model, whereas TV introduces staircase effects
during FWL.

We use p = 100 and € = 1070 for MS-FWI reconstruc-
tions and perform a total of K = 500 iterations. A step
length #; has been estimated using backtracking line-search
method. To compare the MS-FWI reconstructions, we consider
three methods: 1) classical FWI without any regularization,
2) classical non-regularized FWI followed by segmentation
step (referred to as FWI-s henceforth), and 3) FWI with total-
variation regularization (TV-FWI). In FWI and FWI-s, we
perform a total of 500 L-BFGS iterations. In FWI-s, we first
invert the velocity model using the classical FWI without any
regularization, and then apply a single step of segmentation
using Mumford-Shah algorithm mentioned in Algorithm 1. We
make use of the formulation proposed in Peters and Herrmann
(2017) for TV-FWI and perform a total of 500 constrained

iterations.
. (b)
0.2
0.4
0.6
0.8
1
0 0.5 1

(a)
On
0 0.5 1

X [km] x fkm]

| SN

2500 2600 2700 2800 2900 2600 2800 3000 3200

Figure 3: True velocity (in m/s) of synthetic (a) simple
camembert model, and (b) gradient camembert model.
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(a) FWI (b) FWI-s
(c) TV-FWI (d) MS-FWI

Figure 4: Reconstruction of simple camembert model with
various methods.

(a) FWI (b) FWI-s
(c) TV-FWI (d) MS-FWI

Figure 5: Reconstruction of gradient camembert model with
various methods.

Method | Simple camembert Gradient camembert
FWI 0.2006 0.2514
FWI-s 0.1997 0.2242
TV-FWI 0.2588 0.2948
MS-FWI 0.1227 0.2078

Table 1: Normalized model misfit (NMM) for various recon-
struction methods. NMM = ||m'®® —m""¢|, /|| m™' — m'"¥¢||,.

Simple camembert model

Figure 3(a) shows a model with background velocity of 2500
m/s. It contains a circular disk of 250 m radius with velocity
of 2900 m/s. We take @ = 103 and 1 = I as segmentation
parameter in both FWI-s and MS-FWI. A constraint parameter
7 = 0.6 has been chosen for TV-FWI. The results of the
reconstructions from these methods have been presented in
Figure 4. The FWI and consequently FWI-s fail to capture the
shape of the blob, while TV-FWI incorrectly predicts the blob
velocity. It is evident from Table 1 that the MS-FWI is the
winner in this experiment.

Gradient camembert model

Figure 3(b) shows the model with background velocity of 2500
m/s and a circular disk with gradient in the velocity from 2700
m/s to 3200 m/s. We take @ = 50 and A4 = 1 as segmentation
parameter in both FWI-s and MS-FWI. Similarly, constraint
parameter 7 = (0.7 has been chosen for TV-FWI. The results of
the reconstructions from these methods have been presented in
Figure 5.

Figure 6 shows the vertical tarce extracted from the inverted
velocity models with linear gradient inside the circular disk. It
is quite evident in both the examples that MS-FWI is able to
capture and preserve the piecewise smoothness of the velocity
model compared to the TV regularizer.

[~ True -~ FWI-s—TV-FWI—MS-FWI|

velocity

z

Figure 6: Reconstruction of vertical trace of gradient camem-
bert model at x = 0.5 km.

CONCLUSIONS

In this paper, we introduce a Mumford-Shah segmentation ap-
proach to include better prior information about the model in the
seismic inversion. The Mumford-Shah regularizer make use of
a non-convex penalty which has a simple proximal operator.
This regularizer is integrated into the FWI procedure through
penalization. The resulting formulation is solved alternatively
to obtain a piecewise smooth model. We have shown that the
method outperforms Total-Variation regularization to capture
the trend on two different variants of camembert model. Our
formulation is very general and has the potential to be applied
to wide range of inverse problems.
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