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Bayesian uncertainty estimation for full waveform inversion: A numerical study
Muhammad Izzatullah⇤, Tristan van Leeuwen†, and Daniel Peter⇤
⇤ King Abdullah University of Science and Technology, Saudi Arabia † Utrecht University, The Netherlands

SUMMARY

Full waveform inversion enables us to obtain high-resolution
subsurface images. However, estimating the associated uncer-
tainties is not trivial. Hessian-based method gives us an oppor-
tunity to assess the uncertainties around a given estimate based
on the inverse of the Hessian, evaluated at that estimate. In this
work we study various algorithms for extracting information
from this inverse Hessian based on a low-rank approximation.
In particular, we compare the Lanczos method to the random-
ized singular value decomposition. We demonstrate that the
low-rank approximation may lead to a biased conclusion.

INTRODUCTION

Full-waveform inversion (FWI) was proposed to estimate phys-
ical parameters of the subsurface by fully exploiting infor-
mation embedded in seismic waveforms and it enables us to
obtain high resolution subsurface images (Pratt et al., 1998;
Virieux and Operto, 2009; Virieux et al., 2017). However,
quantifying the uncertainties in the reconstructed model is still
a challenge. The studies and discussions related to uncertainty
quantification and resolution analysis (Fichtner and Trampert,
2011; Martin et al., 2012; Trampert et al., 2013; Fichtner and
Leeuwen, 2015) are relatively few compared to the discussions
on efficiency and accuracy in searching the best-fitting mod-
els. However, without proper uncertainty analysis, the inverted
subsurface models are difficult to interpret and assess.

Recently, uncertainty quantification has become an active of
research area within exploration geophysics especially to esti-
mate model uncertainties associated with FWI within the Bayesian
inference framework (Tarantola, 2004). Based on Tarantola
(2004), in the vicinity of the global minimum of an optimiza-
tion problem, the inverse Hessian operator could be taken as
the posterior covariance matrix. This leads to the recent tech-
nique which has been implemented to estimate model uncer-
tainties based on a low-rank approximation of the Hessian (Mar-
tin et al., 2012; Bui-Thanh et al., 2013; Chen and Ghattas,
2018; Zhu et al., 2016).

In this abstract, we numerically study the performance of the
low-rank approximation of the posterior covariance operator.
In particular, we compare the randomized singular value de-
composition (SVD) (Halko et al., 2011; Halko, 2012) to the
Lanczos algorithm (Parlett, 1998; Golub and van Loan, 2013).
We study the effect of the truncation rank on the estimated un-
certainty.

The outline of this work is as follows. First, we discuss the the-
oretical foundation of uncertainty estimation within the Bayesian
inference framework and its relationship to the non-linear least
squares problem i.e., FWI. Secondly, we briefly discuss the

randomized SVD and Lanczos algorithm used to construct the
low-rank approximation of the posterior covariance operator.
Next, we present numerical examples in frequency domain
FWI based on these two algorithms. Finally, we discuss the
results and present conclusions.

THEORY

In FWI, we assume that the observations, d, are given by

d = F(m)+ e , (1)

where m denotes the medium parameters, F is the known for-
ward operator and e ⇠ N (0,CD) is additive, normally dis-
tributed noise with zero mean and covariance CD.

With the prior assumption that m ⇠ N (0,(aLT L)�1) we can
define the posterior density as

rpost(m|d) µ exp
h
�V (m)

i
, (2)

where V (m) is the misfit function defined as

V (m) =
1
2

���
���F(m)�d

���
���
2

2
+

a
2

���
���Lm

���
���
2

2
. (3)

The misfit function defined above resembles the Tikhonov reg-
ularization least-squares approach where the first and second
terms on the right hand side are equivalent to our likelihood
and prior PDFs, both of which are Gaussian. The posterior is
not Gaussian, however, due to the non-linearity of F . A Gaus-
sian approximation of the posterior may be constructed how-
ever, by linearizing around the maximum a posteriori model
estimate, mMAP (Martin et al., 2012; Bui-Thanh et al., 2013),
and the approximated posterior PDF can be defined as

rpost(m|d) µ exp
h
� 1

2
(m�mMAP)

T C�1
post(m�mMAP)

i
.

(4)

The maximum a posteriori model, mMAP, can be determined
by solving a non-linear least-squares problem. Here, Cpost is
the posterior covariance operator, evaluated at the maximum a
posterior model mMAP which can be described as

Cpost = (H(mMAP)+aLT L)�1 (5)

where H(m) = J(m)T J(m) with J the Jacobian of F is the
Gauss-Newton approximation of the Hessian (Pratt et al., 1998)
evaluated at mMAP.

Low-rank approximation of the Hessian
Here, we will review the low-rank approximation of the pos-
terior covariance proposed by (Martin et al., 2012; Bui-Thanh
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Bayesian uncertainty estimation for FWI

et al., 2013). The Gauss-Newton Hessian H is a symmetric
positive semi-definite matrix and admits an eigen-value de-
composition,

H = UrLrUT
r (6)

where U contains the eigenvectors and L is a diagonal matrix
containing the eigenvalues. In the formulation above, the sub-
script r is refer to the first r most dominant eigenvectors, this
giving a rank r approximation of the Gauss-Newton Hessian
H.

The corresponding low-rank approximation of the posterior
covariance matrix is given by Bui-Thanh et al. (2013)

Cpost = L�1
⇣

a�1I�a�2L�1UrSrUrL�T
⌘

L�T

+O(
nX

i=r+1

li
li +1

).
(7)

where Sr := diag(l1/(l1 + 1), . . . ,lr/(lr + 1). Equation (7)
also shows the truncation error due to the low rank approxima-
tion based on the first r eigenvalues.

The randomized SVD and Lanczos algorithms
Randomized SVD is used to reduce the computational cost
when computing the several most dominant eigenpairs of the
Hessian H since it is considered more efficient compared to
the classical SVD algorithm in terms of computational time
(Halko et al., 2011). Meanwhile, the Lanczos algorithm (Golub
and van Loan, 2013; Parlett, 1998) is a deterministic algorithm
that is an adaptation of power method to find the r most domi-
nant eigenvalues and eigenvectors for symmetric matrices.

The advantage of the randomized SVD and Lanczos algorithms
is they only require matrix-vector products (”matvecs”), and
therefore there is no need to explicitly form and store the dense
Hessian in the memory.

In terms of the computational cost, as mentioned in Halko
et al. (2011), for matrix-vectors multiplications, the random-
ized SVD algorithm has the same computational cost as Lanc-
zos algorithm which is proportional to rTmult + (m + n)r2 ,
where Tmult denotes the cost of a matrix-vector multiplication
with the input matrix for approximating r leading singular vec-
tors of the input matrix. Moreover, the advantage of random-
ized algorithm here compared to Lanczos algorithm is in the
way of data is being accessed, where the r matrix-vector mul-
tiplies can be executed in parallel.

A point to highlight here that these algorithms are not comput-
ing the exact singular values as in SVD but an approximation.
Moreover, an additional approximation error is incurred when
using the dominant eigenvectors of the Hessian to approximate
the posterior covariance, which is based on the inverse of the
Hessian. For further discussions on the accuracy and computa-
tional cost of these algorithms, reader may refer to (Golub and
van Loan, 2013; Parlett, 1998; Halko et al., 2011).

NUMERICAL EXAMPLE - MARMOUSI MODEL

In this numerical example, we use the Marmousi model, de-
picted in the top in Figure 1 to test the proposed methodol-
ogy. A standard finite-difference method is used to solve the
Helmholtz equation (van Leeuwen, 2019). The grid size is
61⇥220, and grid spacing is 50⇥50m. 50 shots at every 100m
and 100 receivers at every 50m are used in this numerical ex-
ample. We use frequency content from 0.5 Hz to 3.5 Hz with
frequency sampling of 0.5 Hz.
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Figure 1: Top: True slowness-squared model. Middle: Initial
slowness-squared model. Bottom: Reconstructed slowness-
squared model (mMAP) with 100 nonlinear CG iterations.

We performed 100 nonlinear conjugate gradient iterations, start-
ing from the initial model depicted in the middle in Figure 1
to obtain the maximum a posteriori model mMAP shown in the
bottom of Figure 1. As regularization, we use the Tikhonov
regularization method with regularization operator L as first
order derivative operator and regularization parameter a equals
to 0.1.

In practice, the Hessian is not store explicitly in memory and
only its matrix-vectors product are being computed. For analy-
sis purposes, in this numerical example we explicitly compute
the Hessian for comparison but all the computations through
randomized SVD and Lanczos algorithm were performed us-
ing matvecs. We compute the first 150 eigenvalues and eigen-
vectors of H.

In Figure 2, we show the first 150 eigenvalues of H computed
by these two algorithms. The eigenvalues computed by Lanc-
zos algorithm are very close to the exact eigenvalues computed
from the explicit Hessian using SVD. This result is aligned
with one reported by Chen and Saad (2009). However, the
eigenvalues computed by the randomized SVD are a good ap-
proximation for the first 10 eigenvalues while the rest are un-
derestimated. The percentage error between exact and approx-
imated eigenvalues is computed by ||lreal�lapprox.||

||lreal || ⇥ 100. The
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Bayesian uncertainty estimation for FWI
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Figure 2: Comparison of first 150 eigenvalues obtained from
randomized SVD and Lanczos Algorithm with the exact eigen-
values computed using SVD of explicit Hessian.
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Figure 3: Comparison of (a) 1st, (b) 2nd, (c) 5th, and (d) 25th
singular vectors obtained from randomized SVD.

percentage error for randomized SVD and Lanczos algorithm
are 8.702% and 7.4571⇥10�13%,respectively. This variations
in eigenvalues could leads to different results in sampling the
posterior distribution.
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Figure 4: Comparison of (a) 1st, (b) 2nd, (c) 5th, and (d) 25th
eigenvectors obtained from Lanczos algorithm.

We illustrate several dominant eigenvectors of the Hessian com-
puted by these two algorithms in Figures 3 and 4. We observe
as the order of the eigenvector increases, the energy distribu-
tion in the eigenvectors moves gradually from the top to the
bottom of the subsurface model. This gives us information
about certainty where the region with high energy distribution
contains the most information. For example, the first eigen-
vector in Figures 3 and 4 shows that the shallow region has
the most energy distribution and we are certain that this region
contains the most information because it is close to the acqui-
sition setup.

For numerical comparison of eigenvectors, the eigenvectors
computed by Lanczos algorithm is much ”cleaner” compared
to randomized SVD where noise is obviously visible in the ran-
domized SVD singular vectors. Furthermore, in this compari-
son we sample the random matrix W with maximum number of
over-samples which equals to 10 as suggested in Halko et al.
(2011), however, the presence of noise in the singular vectors
is pretty obvious.

In Figure 5 and Figure 6, we demonstrate the standard devi-
ations computed from diagonal elements of the low-rank ap-
proximation of the posterior covariance matrix constructed by
using first 50, 100, and 150 eigenvectors and eigenvalues ob-
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Figure 5: Comparison of standard deviations obtained from
diagonal elements of posterior covariance matrix constructed
with (a)50, (b) 100, and (c) 150 singular vectors of randomized
SVD.

tained from R-SVD and Lanczos algorithms. Also, we illus-
trated the explicitly computed posterior covariance matrix for
comparison purposes in Figure 7. As we observe, both al-
gorithms gave different range and intensity of standard devi-
ations. This is related back to the accuracy of the algorithms in
approximating the eigenpairs of the Hessian. Also, the range
of standard deviation is changing for different number of r
eigenvectors and eigenvalues chosen. Furthermore, compared
to the true standard deviation of posterior covariance matrix,
the standard deviations obtained from low-rank approximation
of posterior covariance matrix are underestimated. In this sit-
uations we could say that our standard deviations are biased.
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Figure 6: Comparison of standard deviations obtained from
diagonal elements of posterior covariance matrix constructed
with (a)50, (b) 100, and (c) 150 eigenvectors of Lanczos algo-
rithm.

CONCLUSION

In conclusion, based on the numerical studies conducted, the
Lanczos algorithm performs better with high accuracy than the
randomized SVD in approximating the eigenpairs of the Hes-
sian. The randomized SVD still has a computational advantage
due to the ease of parallelization of the algorithm. A further
study is needed to asses the trade-off between accuracy and
computational efficiency.
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Figure 7: True standard deviation of posterior covariance ma-
trix computed explicitly from equation 5.

In estimating the uncertainty, the important issue need to be
taken seriously here is that by taking low-rank approximation
of the Hessian in analyzing the uncertainties, we need to pay
the price that our conclusion is biased. This is a serious is-
sue because for different numbers of r taken in the low-rank
approximation, the variance and the standard deviation would
be different as well and this leads to a biased conclusion. The
cause for this bias is the relationship between the inverse Hes-
sian and the posterior covariance matrix. As commonly under-
stood, the most dominant singular vectors of Hessian are the
least dominant singular vectors of posterior covariance matrix.
Further analysis of this approach will be included in our future
works.
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