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Abstract 

Many real-world decisions must be made on basis of experienced outcomes. However, there is little 

consensus about the mechanisms by which people make these decisions from experience (DfE). Across 

five experiments, we identified several factors influencing DfE. We also introduce a novel computational 

modeling framework, the memory for exemplars model (MEM-EX), which posits that decision makers 

rely on memory for previously experienced outcomes to make choices. Using MEM-EX, we demonstrate 

how cognitive mechanisms provide intuitive and parsimonious explanations for the effects of value-

ignorance, salience, outcome order, and sample size. We also conduct a cross-validation analysis of 

several models within the MEM-EX framework, as well as a baseline model built on principles of 

reinforcement-learning. We find that MEM-EX consistently outperforms this baseline, demonstrating its 

value as a tool for making quantitative predictions without overfitting. We discuss the implications of 

these findings on our understanding of the interplay between attention, memory, and experience-based 

choice.  

 

Keywords:  decisions from experience; computational models; decision making; cognitive mechanisms; 

exemplar memory; reinforcement-learning.  
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1. Introduction 

Many important choices are based on past experience. In these situations, decision makers lack 

precise descriptions of their options, and must instead draw from their knowledge of previous outcomes 

to guide their behavior. Memory therefore plays a central role in experience-based decisions. In this 

article, we investigate the psychological processes by which people use memory for previously observed 

outcomes to make choices.  

1.1. The importance of Understanding Decisions from Experience 

People use past experience to guide their choices in many situations. These includes mundane 

issues, like choosing at which restaurant to eat based on past meals or choosing the route on which to 

drive home based on past traffic patterns. However, many important choices – in domains related to 

health, consumption, social interactions, and investment – also rely on previously experienced 

outcomes. In light of the recent COVID-19 pandemic, governments and public health organizations 

around the world are interested in how individuals judge the risks associated with various behaviors. 

Some worry that people will underestimate or ignore advice regarding social distancing and isolation 

because they have not personally experienced rare, but dire, consequences of the outbreak. While 

others worry that sensationalized reporting of virus-related deaths may distort decision making 

regarding the balance between tightening restrictions to reduce infections and loosening them to ease 

the economic and social costs of prolonged shutdowns to businesses, school, and public services.  

In recent years there has been an explosion of interest in decisions from experience (DfE). Much 

of this has focused on the so-called description-experience gap (see Wulff, Mergenthaler-Canseco, & 

Hertwig, 2018 for a recent review), wherein decisions from description typically result in choices that 

imply overweighting of rare events (Kahneman & Tversky, 1979; Rieskamp, 2008), whereas DfE do not 

(Camilleri & Newell, 2011b; Hertwig, Barron, Weber, & Erev, 2004; Lejarraga & Gonzalez, 2011; Rakow & 
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Newell, 2010; Yechiam & Busemeyer, 2006). However, despite these investigations, the causes of the 

gap remain elusive (e.g. Glöckner, Hilbig, Henninger, & Fiedler, 2016; Wulff et al., 2018).  

 In this article, we take a different approach. Rather than compare DfE to decisions from 

description, we use a combination of experimental manipulations and cognitive modeling to probe the 

psychological processes underlying experience-based choices. For example, through our value-ignorance 

manipulation we vary the juncture at which values and probabilities are integrated in order to 

investigate the cognitive mechanisms by which people record and update experiences in memory. In so 

doing, we aim to move beyond simple comparisons of description and experience to further elucidate 

the decision-making process.  

1.2. Types of Decisions from Experience 

 Experience-based decisions come in several forms, which can be classified into two broad 

categories. In the repeated-choice paradigm, individuals make a series of choices between two or more 

uncertain alternatives. Each choice is consequential, with the decision maker receiving the resultant 

outcome. Under this paradigm individuals learn as they choose, and must balance the competing 

interests of gathering information about outcome distributions (exploration) and maximizing payoffs 

based on their current knowledge (exploitation).  

In the present article, we focus on the alternative one-shot choice or sampling paradigm. Here, 

an individual freely samples outcomes from each alternative in an effort to learn the underlying 

distributions. After completing sampling, the individual makes one consequential choice and receives 

the resultant outcome. The advantage of using this approach to study experience-based decision making 

is that learning and choosing are separated, because individuals do not face a tradeoff between 

exploration and exploitation. In the experiments described below, we impose the additional constraint 

that individuals observe a representative sample of outcomes from each alternative before making a 

choice. That is, participants sample a predetermined set of outcomes that perfectly match the 
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underlying outcome distribution of each alternative. After completing sampling, participants make a 

single consequential choice. By virtue of using a representative sample, we also eliminate sampling error 

as a source of individual differences (Camilleri & Newell, 2011a; Rakow, Demes, & Newell, 2008). 

1.3. Models of Decisions from Experience 

Earlier work has used computational modeling to shed light on the psychology of DfE. A prime 

example comes from the Technion Prediction Tournament (Erev et al., 2010), where teams of 

researchers were challenged to submit models that were evaluated with regard to their ability to predict 

choices. Two datasets were created, with the estimation set being used to fit models and the 

competition set being used to evaluate them. Behavioral results were aggregated across individuals and 

compared to each model’s predicted choice proportions. Model performance was measured as the 

mean squared distance between predicted and observed choice proportions across the twelve choice 

problems in the competition set. For the competition involving one-shot DfE – the condition most 

relevant to this article – the winning model was an ensemble of four equiprobable choice rules: two 

variants of the natural mean heuristic (see Hertwig & Pleskac, 2008), a version of the priority heuristic 

(Brandstätter, Gigerenzer, & Hertwig, 2006), and a variant of cumulative prospect theory (CPT; Tversky & 

Kahneman, 1992). This result shows the importance of assuming multiple decision strategies, though the 

model does not specify to what degree this variability occurred within subjects versus between subjects. 

Although we view the Technion Prediction Tournament as making a valuable contribution to the 

literature on DfE, we pursue a different goal in our research. Rather than focus on predictive accuracy 

alone, we aim to develop a deeper understanding of the psychological processes underlying DfE, and 

therefore use behavioral data to test and compare how well cognitive mechanisms explain choice 

patterns.  

The instance-based learning model (IBL; Lejarraga, Dutt, & Gonzalez, 2012) has been used to 

account for DfE in both one-shot and repeated-choice paradigms. At its core, the model assumes that 
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individuals store in memory an instance representing each unique outcome type and the choice 

alternative that produced it. For one-shot decisions, after sampling is completed the decision maker 

chooses the alternative with the highest blended value. This value is the sum of all observed outcomes 

for a given alternative, weighted by their probability of being retrieved from memory. Retrieval is 

governed by recency and frequency, with more recent and more frequent outcomes having greater 

memory activation. In this article, we develop a new model that shares IBL’s foundational assumption 

that individuals draw from memory of past outcomes to make decisions. We refrain from directly 

comparing it to IBL because our primary aim is to test the explanatory value of cognitive mechanisms 

within a single modeling framework, rather than to compare theoretically similar frameworks with 

different auxiliary assumptions (i.e. noise mechanisms). To preview our results, we find evidence 

supporting IBL’s core assumption that event memory drives DfE.  

Reinforcement learning (RL; Sutton & Barto, 1998) is also a popular modeling framework for DfE. 

Two key virtues of these models lie in their relative simplicity and generality. Their success in modeling 

experience-based choice in various contexts and domains makes RL models a useful baseline for 

comparing new models. Below we develop the Value-Updating model, which uses a simple RL process in 

which the decision maker is assumed to update the subjective value of each choice alternative after 

observing each outcome it produces (see also Hertwig, Barron, Weber, & Erev, 2006). By showing that 

an alternative model outperforms this baseline, we demonstrate the utility of our approach in both 

explaining and predicting behavior.  

1.4. The Memory for Exemplars Model  

We propose a novel computational framework inspired by models of exemplar memory (see 

also Hawkins, Camilleri, Heathcote, Newell, & Brown, 2014; Lin, Donkin, & Newell, 2015). The memory 

for exemplars model (MEM-EX) posits that individuals use memory for previously experienced outcomes 

to guide their choices. Although the model can be modified for other paradigms, we will focus on the 
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version for binary one-shot decisions. We also begin with an overview of the simplest version of MEM-

EX, followed by descriptions of four additional cognitive mechanisms designed to explain the influence 

of various factors on behavior.  

According to MEM-EX, individuals represent outcomes using two stores: one for each 

alternative. The model posits that after taking each new sample (e.g. a reward of 10 points), the 

observed outcome is recorded in the appropriate store, with each new sample producing a new 

exemplar in memory. When sampling is finished, each memory store will have been populated with a 

record of the observed outcomes for that alternative. The model now calculates a subjective value, V, 

for each alternative by taking the average of these outcomes. For example, if sampling from Option A 

produced the sequence of outcomes [0, 10, 0, 10, 0, 0, 0, 0, 0, 0] and sampling from Option B produced 

the sequence [0, 0, 0, 6, 0, 6, 0, 0, 0, 6], VA = 2.0 and VB = 1.8.  

Rather than always choosing the alternative with the higher subjective value, MEM-EX uses a 

risk bias mechanism to represent that individuals have a default preference and a threshold of evidence 

– expressed in terms of a ratio of values – required to overcome that default. The riskier option – here A, 

which offers a lower probability higher value reward – is chosen if 𝑉𝑉𝐴𝐴
𝑉𝑉𝐵𝐵

> 1 − 𝛽𝛽, and the safer Option B is 

chosen if 𝑉𝑉𝐴𝐴
𝑉𝑉𝐵𝐵

< 1 − 𝛽𝛽1. ϐ is a free parameter between -3 and 0.75 representing the amount of additional 

evidence required to overcome an individual’s default preference. A value of -1 indicates a bias toward 

the safer option, with A being chosen only if its value is twice that of B. A value of .5 corresponds to an 

equally strong bias in favor of the riskier alternative, while a value of 0 indicates no bias.  

1.4.1. Value-Assignment Error 

 To this basic framework MEM-EX adds four cognitive mechanisms that influence how 

information is processed. According to the model, when an outcome is sampled, the event is recorded in 

 
1 A random choice is made if 𝑣𝑣𝐴𝐴

𝑣𝑣𝐵𝐵
= 1 − 𝛽𝛽. 
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the appropriate memory store as an exemplar and is assigned the observed value. However, the value-

assignment error mechanism allows for the possibility that people make errors in assigning values to 

exemplars. Here, we assume that these assignment errors occur within-alternative, such that 

participants may confuse outcomes sampled from one option with each other, but not with any 

outcomes sampled from the other option2. For instance, if Option A produces outcomes of either 10 or 

0, MEM-EX posits that when an outcome of 10 is observed individuals will sometimes mistakenly record 

this as a 0. The free parameter λ – with values between 0 and 0.4 – determines the probability of making 

a value-assignment error for each item in memory. These errors are assumed to occur independently – 

i.e. each exemplar has a probability λ of being assigned an incorrect value – at the same rate for both 

outcomes of both options.  

To preview a result that we find in each of our experiments, when value information was 

withheld during sampling and participants were forced to delay value assignments until the moment of 

choice (see Section 2.1.4), value-assignment errors were more likely. These additional assignment errors 

increase the frequency of rare events in memory because most errors will occur after sampling the 

common $0 outcome. Because rewards are less frequent and have a greater value for the riskier option, 

value-assignment errors increase its subjective value more than for the safer option, which in turn 

increases the likelihood that the riskier option is chosen. With this mechanism MEM-EX provides a new 

and deeper explanation – in terms of psychological processes – for behavior that might otherwise be 

described with the opaque concept of ‘overweighting’ of rare events.  

1.4.2. Memory Sampling Error 

 MEM-EX also posits that individuals do not use all available information to make their choice, 

but rather estimate the value of each option based on an imperfect sample of items in memory. This is 

 
2 Though theoretically possible, we did not encounter any observations that required between-

alternative confusion. 
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represented with the memory sampling error mechanism, according to which the individual randomly 

draws δ items from each memory store (with replacement) to compute subjective values for each 

alternative. For instance, imagine that δ = 6 and the sequences [0, 10, 0, 0, 0, 0] and [0, 6, 0, 6, 0, 6] are 

sampled from memory for Options A and B, respectively. The resulting subjective values (VA = 1.67 and 

VB = 3.0) differ from those calculated earlier, to the benefit of Option B, which now appears more 

attractive due to memory sampling error.  

1.4.3. Memory Priming  

 MEM-EX’s memory priming mechanism states that when a decision maker samples outcomes 

from memory, they may do so in a biased manner, preferentially sampling salient outcomes (Erev, 

Glozman, & Hertwig, 2008; Lieder, Griffiths, & Hsu, 2018). Formally, each outcome is assigned a weight, 

w, and the probability of sampling outcome i is 𝑤𝑤𝑖𝑖/∑ 𝑤𝑤𝑗𝑗𝑗𝑗 . Here, we assume a simple two-state salience 

framework meant to represent the impact of a single type of perceptual highlighting that is either on or 

off when an outcome is observed (See Experiment 1 for details). If an outcome was not highlighted, its 

weight was 1. If it was highlighted, its weight was 1 + ζ, with ζ being a free parameter having a value 

between 0 and 1. Thus, perceptually highlighting an outcome increases its likelihood of being retrieved 

from memory. Here again, MEM-EX provides a process account of behavior that implies overweighting 

of salient events.  

1.4.4. Memory Confusion  

 The final mechanism introduced in this article is designed to explain the effect of outcome order 

on DfE. The memory confusion mechanism represents a process by which decision makers mistake past 

outcomes for new ones. Specifically, when an outcome is sampled, there is a probability, ϕ, that each 

previously remembered outcome in memory is replaced by the currently sampled outcome. For 

example, imagine that the memory store for Option A is currently [0, 10, 0, 10, 0, 0] when a new sample 

is drawn with value 10. According to the memory confusion mechanism, each exemplar in memory has a 
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probability ϕ of having its value changed to 10 (i.e. the value of the new sample). Like with value-

assignment errors, these confusions are assumed to occur within each box, with no confusions between 

boxes (see also Hawkins et al., 2014; Lin et al., 2015).  

 This mechanism naturally produces retroactive interference because outcomes that appear at 

the beginning of a sequence of observations are more likely to be replaced in memory later. For 

example, an observation of 10 on the first sample might have eight subsequent opportunities to be 

confused with a later 0 observation, i.e. one for each 0 appearing later in the sequence. However, the 

penultimate observation will only have one such opportunity, and is therefore more likely to survive 

until choice3.  

 It is worth noting that MEM-EX is a stochastic model, with variability emerging naturally from its 

memory sampling error, value-assignment error, and memory confusion mechanisms. Consequently, the 

model provides a process account of choice variability that might otherwise be represented with 

algebraic noise (e.g. logistic choice sensitivity) or a separate heuristic process (e.g. trembling hand 

error). In this sense, MEM-EX constitutes a strong theory of choice variability because it must explain 

variability using the same mechanisms that explain people’s overall behavior. This is preferable to 

weaker theories that assume noise components that operate independently from valuation. With such 

models it can be difficult to disentangle the relative contributions of core and auxiliary (noise) 

components to performance.   

1.5. Goals 

In this article, we investigate the psychological processes involved in experience-based 

decisions. We pursue this goal via two complementary approaches. First, in a series of five experiments 

we examine the impact of several experiential factors on decision making behavior. From these we gain 

 
3 Note that, although unlikely, multiple confusions can occur sequentially to a single exemplar, 

e.g. with a 10 being switched to a 0, then later back to a 10.  
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valuable insights into the roles that value information, outcome salience, outcome order, and sample 

size play in choice. Second, we develop a new computational framework that we use to study the 

cognitive mechanisms underlying behavior. Our goal here is to provide a unified framework within 

which we can test hypotheses regarding cognitive processes, while holding constant auxiliary 

assumptions (e.g. response-error functions).  

We structure this article as follows. To begin, we present behavioral results from several 

laboratory experiments. After each of these, we use MEM-EX to present an account of the cognitive 

mechanisms that explain the key behavioral patterns we observe. Finally, we use data from all 

experiments to compare MEM-EX to an alternative model that posits that people do not store outcomes 

as exemplars but rather track a single summary value for each option, updating these value after each 

new observation. Our aim here is to test how well each theoretical framework – one using analogical 

representations vs. one using summary representations – accounts for behavior at an individual level. To 

preview our results, we find that MEM-EX provides the best account for the vast majority of individuals 

in each experiment.  

2. Experiments 1 & 2 

 All of the behavioral data reported in this article comes from an experimental paradigm where 

participants made a series of choices between two risky alternatives framed as boxes containing colored 

balls to denote outcomes (see Figure 1). The participants’ goal was to sample outcomes from each 

alternative to learn which of two boxes they would prefer to draw from ‘for real’ (i.e., for a potential 

payment) at the choice stage. Data from Experiments 1 and 2 were first reported in Hotaling, Jarvstad, 

Donkin, and Newell (2019)4. In this study, we investigated the impact of rare events on DfE using two 

manipulations.  

 
4 The present Experiments 1 and 2 were labeled as Experiments 3 and 4, respectively in Hotaling 

et al, 2019.  
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 With the first, we examine how people record and update experienced outcomes in memory by 

varying the juncture at which outcome values were presented. In the Standard condition, when a 

sample was drawn its magnitude was displayed on screen, allowing participants to learn about both the 

values and probabilities of outcomes. In contrast, for the Value-Ignorance condition magnitude 

information was absent during sampling, with participants only able to learn about the likelihood of 

receiving a reward (i.e. a blue ball) or not (red balls were always worth $0). Here, outcome values were 

revealed after sampling, at the time of choice, necessitating further processing of previously stored 

outcome information in memory. Hotaling et al. (2019) analyzed these results using cumulative prospect 

theory (CPT; Tversky & Kahneman, 1992) to measure risk preference, and found that Value-Ignorance 

led to a greater weighting of rare events in choice. In the present study, we seek to further unpack this 

result to uncover the cognitive mechanisms that produce this preference. Specifically, MEM-EX predicts 

that the Value-Ignorance condition will require additional mental operations and will therefore produce 

more value-assignment errors, which will increase the frequency of rare rewards in memory. This will 

tend to increase the subjective value of the riskier alternative more, leading to greater risk taking.  

 The second factor manipulated in Experiments 1 and 2 was outcome salience. Here we test 

whether perceptually highlighting a rare event during sampling increases its impact on choice. Hotaling 

et al. (2019) used CPT to determine that the salience manipulation led to greater weighting of rare 

events. Here we extend this work to investigate the mechanisms by which emphasizing a rare event 

influenced people’s choices. According to MEM-EX’s memory priming mechanism, highlighted outcomes 

will be more prominent or available when sampling items from memory to determine an option’s value. 

With the salience manipulation applied to the rare event of riskier alternative, greater sampling of rare 

rewards will increase risk taking.  

2.1. Method 
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2.1.1. Ethics 

Ethical approval for all experiments was obtained through the institutional review boards of the 

School of Psychology at the University of New South Wales (UNSW). 

2.1.2. Participants 

All participants were UNSW students and received course credit plus a monetary bonus ($0 - 

$20) based on a randomly selected trial. 149 (99 female, age 18-53, M = 22.93, SD = 4.63) individuals 

participated in Experiment 1, and 177 (106 female, age 18-58, M = 20.49, SD = 3.92) participated in 

Experiment 2. Experiment 2 was a preregistered replication of Experiment 1 (details can be found at 

https://osf.io/bw7ps).  

2.1.3. Procedure 

After giving informed consent, participants were placed in a computer booth where they read 

the following instructions:  

 

“In this task you will draw balls from pairs of virtual boxes. In each box, there are 100 balls, some 

of which are blue and some of which are red. Blue balls are associated with reward and red balls 

are not (reward for a red ball = $0).” 

 

Participants began by completing a practice trial to familiarize them with the task (Figure 1). They were 

instructed that each trial in the experiment involved a new pair of boxes and that they would have to 

learn anew the values and proportions of balls within each box. To emphasize that boxes were different 

across trials, each box was given a unique color. On each trial, participants were required to sample the 

entire sample set for both alternatives before making their choice. Participants were able to sample 

freely (e.g., alternating between boxes, sampling exhaustively from one then the other, etc.), with 

sampling disabled once the entire set from each box had been seen. To provide a financial incentive, 

https://osf.io/ry75j
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participants were instructed that one of their choices would be used to draw a ball for a bonus payment 

at the end of the experiment.  

 
Figure 1. Robot-sampling task A) Main design. Each trial was composed of two phases: a sampling phase 
(top row), and a choice phase (bottom row). For a given sample, participants could observe either a blue 
ball, or a red ball. Red balls were worth $0 and blue balls were worth some reward. In the Standard 
condition, the value of the blue ball was revealed during sampling (left column). In the Value-Ignorance 
condition, the value of the blue ball was not revealed until the choice stage. Thus, during sampling under 
value-ignorance, the probability of drawing a blue ball could be learned, but not its value. B) Example of 
a sampling sequence. Once a box was selected for sampling (having been clicked), an animation showed 
the box shaking (to ‘mix’ the balls), then a ‘robot arm’ reached down and grabbed a ball, lifted it up to 
reveal it and then dropped it back down again (illustrating sampling with replacement). Participants 
were required to sample each box a set number of times but were free to sample in any order. 
Reprinted from “How to Change the Weight of Rare Events in Decisions from Experience”, by J. M. 
Hotaling, A. Jarvstad, C. Donkin, and B. R. Newell, 2019, Psychological Science, 30(12), p. 1768. 
Copyrighted 2019 by Sage.  
 

Importantly, the samples that participants observed matched the true underlying probabilities 

of each outcome, thus mitigating other factors that may give rise to illusory ‘gaps’ (e.g., biased sampling 

and reliance on small samples; Hau, Pleskac, Kiefer, & Hertwig, 2008; Hertwig & Pleskac, 2010; Rakow et 

al., 2008). 

2.1.4. Materials and Design 
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The values of boxes (monetary gambles) were determined as follows. Each choice alternative 

was defined by a reward value, ν (range $1 to $20), and a probability of reward, π (range .083 to .917). 

With these values we created a sample set for each alternative representing the proportion of red and 

blue balls. The size of the sample set ranged from 10 to 12 and the frequency of rewards was 

determined by π.  

Red balls were always worth $0. The value of blue balls was fixed within each box, but varied 

across boxes and trials. For example, the value of a blue ball may be $16 in the left box and $2 in the 

right box. In the Standard condition (Figure 1A), each sampled ball was labeled with the outcome value. 

In the Value-Ignorance condition, sampled balls were not labeled with values, though the instruction 

indicated that red balls were worth $0 and the blue balls were worth some reward. Participants could 

therefore learn the relative proportions of balls in each box, but not their values, with values revealed in 

the choice phase (Value-Ignorance Figure 1A).  

Choice pairs were constructed with the goal of exposing participants to a range of problems. For 

example, problems could involve zero, one, or two risky options (i.e. π < .5), and equal or unequal 

expected values. To better understand the task, consider an example trial involving a riskier option on 

the left offering a 10% chance of winning 16 points, and a safer option on the right offering an 80% 

chance of winning 2 points. While sampling from the riskier box participants would observe one blue 

ball and nine red balls. From the safer box they would sample eight blue balls and two red balls. Each 

participant was assigned to one of four conditions in a 2 (Standard vs. Value-Ignorance) x 2 (No-Salience 

vs. Salience) factorial design and received the same twenty decision problems in a random order. See 

the Supplementary Materials for the specific gambles used in all experiments. 

2.1.4.1. Salience Manipulation. The No-Salience condition proceeded as described above, while 

the Salience condition introduced an additional manipulation whereby, during sampling, some balls 
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were perceptually highlighted. When a highlighted ball was drawn, an auditory tone played and the ball 

flashed on screen for approximately 700ms before returning to the box as usual.  

The highlighting occurred whenever participants sampled the rare event for the riskier 

alternative (defined as the alternative with the lower π). This resulted in two types of problems. For 

fourteen Type 1 (best-outcome salient) problems, salience highlighted a rare reward, and was expected 

to increase the likelihood of choosing the risky option. For six Type 2 (worst-outcome salient) problems, 

salience highlighted an outcome of $0, and could be expected to decrease the likelihood of choosing the 

risky option.  

2.2. Results 

2.2.1. Behavioral Analysis 

 Since Experiments 1 and 2 used identical methods, we analyze them together. On each trial, we 

define the risky alternative as the one giving the lower probability of reward, and the safe alternative as 

the one giving the higher probability of reward.  

Figure 2 displays the individual and group mean proportions of choices in favor of the risky 

alternative across conditions. It shows that the Value-Ignorance condition produced a higher proportion 

of risky choices than the Standard condition (Mstandard = .40, Mval-ign = .46, SDstandard = .19, SDval-ign = .26, g = 

.27)56. That is, on average, participants who did not know the values associated with each outcome 

during sampling chose the riskier option more often than participants for whom value information was 

present during sampling.  

 
5 We report Hedge’s g as a measure of effect size (Hedges, 1981). 
6 The reader may worry about the “reliability” of our description of the empirical data. To belay 

such concerns, we note that in all experiments we report (and have run) we observe the same pattern of 
increased risky choices in the value-ignorance condition. Also note that, in addition to the statistical 
analyses accompanying some claims we discuss here (and also analyzed in Hotaling et al. (2019)), our 
model-based cross-validation analyses are consistent with our statements about the empirical effects.  
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Figure 2. Behavior and MEM-EX predictions across value conditions in Experiments 1 and 2. Each dot 
represents an individual mean proportion of choices in favor of the riskier alternative. Group mean 
values are indicated by the solid lines. Dark bands indicate 95% confidence intervals, and light bands 
indicate standard deviations. 
 

The salience manipulation carried the risk of introducing a demand characteristic whereby 

participants would be encouraged to choose the highlighted option, regardless of which outcome was 

emphasized. Type 2 problems therefore served as a manipulation check because salience highlighted an 

unattractive outcome of $0, rather than a rare reward. Since our primary interest, and the majority of 

the data, involved Type 1 problems, we focus our analyses on these. In the Supplementary Materials of 

Hotaling et al. (2019), we show that the salience manipulation had no effect on choices for Type 2 

problems, therefore ruling out this potential confound.  

The effect of salience on choices in Type 1 trials can be seen in Figure 3. In the Salience 

condition, participants made riskier choices than in the No-Salience condition (Msalience = .43, Mno-salience = 

.38, SDsalience = .28, SDno-salience = .26, g = .19). That is, perceptually highlighting rare events during sampling 

increased the likelihood that participants would choose the risky option, particularly in the Standard 

condition.  
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     Behavior              MEM-EX 

 

Figure 3. Behavior and MEM-EX predictions across value and salience conditions in Experiments 1 and 2. 
Each dot represents an individual mean proportion of choices in favor of the riskier alternative. Group 
mean values are indicated by the solid lines. Dark bands indicate 95% confidence intervals, and light 
bands indicate standard deviations. 
 

2.2.2. Modeling Analysis 

 To better understand how our manipulations influenced choices, we now present an account of 

results in Experiments 1 and 2 using MEM-EX. In our Model Comparison section, we provide details of 

the modeling procedure, along with results from a comparison of several different models. Here, we 

focus on the best-performing version of the model, with the goal of demonstrating how MEM-EX uses 

cognitive mechanisms to explain key behavioral effects7.  

The value-assignment error mechanism provides an intuitive account of the value-ignorance 

effect. According to the model, after observing an outcome an exemplar is placed in memory and a 

value is assigned to that exemplar based on the observed outcome magnitude. Crucially, in the Value-

 
7 Qualitative modeling results for Experiments 1-5 are based on fitting each model at the 

individual level. The procedure for estimating optimal parameter values was otherwise identical to that 
described in the Model Comparison section for the cross-validation analysis.  



MEM-EX  19 
 

Ignorance condition, participants could not assign values online during sampling, but were instead 

required to wait until sampling was completed before values were revealed.   

MEM-EX explains that people made riskier choices under value-ignorance because value-

assignment errors were more frequent. We represent this difference by estimating separate λ 

parameters for each condition. Such an explanation makes intuitive sense, as participants in the 

Standard condition were allowed to immediately record value information, perhaps while the 

information was still perceptually available. Here we would expect relatively few errors, which fits with 

MEM-EX’s account indicating that participants assigned the wrong value for only 6.76% of samples (�̅�𝜆 = 

.068, SD = .094). In contrast, participants in the Value-Ignorance condition were required to store only 

the event that a particular colored ball was observed, with no information about the value attached to 

the ball. When values were revealed on the choice screen, they would then need to reactivate these 

memories and assign values to each outcome. According to MEM-EX, this additional processing 

introduces more errors, since it must rely on the same mechanisms that gave rise to the original errors, 

with participants assigning the wrong value for 11.23% of samples (�̅�𝜆 = .112, SD = .132). Since additional 

value-assignment errors lead to the rare events being recalled more frequently the model reproduces 

the observed behavioral effect (Figure 2).  

MEM-EX also provides an explanation of the salience effect – whereby perceptually highlighting 

rare rewards for the riskier alternative during sampling led to riskier choices – via memory-sampling 

error and memory priming. The former represents the notion that individuals do not use all available 

information to make their choice, but rather estimate the frequency of rare events by sampling items 

from memory. Model parameters indicated that participants sampled an average of four or five 

outcomes from memory for each alternative (𝛿𝛿̅ = 4.371, SD = 2.760). According to MEM-EX’s memory-
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priming mechanism, in the Salience condition this sampling was done in a biased manner8. On average, 

participants were approximately 25% more likely to sample salient outcomes from memory (𝜁𝜁  ̅= .252, SD 

= .294).  

Figure 3 shows that memory priming allows MEM-EX to capture the observed salience effect, 

with higher mean risky choice proportions in the Salience condition for both the Standard and Value-

Ignorance conditions. Thus, the model explains the salience effect by positing that perceptually 

highlighting rare outcomes during sampling led to these outcomes being more salient in the mental 

representation of a gamble, which led to an increase in the likelihood of sampling these outcomes from 

memory and using them to make a decision. Since Type 1 trials highlighted rare rewards for the riskier 

option, this resulted in more risky choices.  

2.3. Discussion 

 In Experiments 1 and 2 we saw that the presence of value information during sampling 

influenced people’s choices. We analyzed these data within MEM-EX and found that value-assignment 

errors provided an intuitive and parsimonious explanation of this effect. According to the model, 

participants in the Value-Ignorance condition were forced to perform additional mental operations to 

assign values to previously sampled events. This resulted in higher value-assignment errors rates under 

value-ignorance, which served to increase the proportion or rewards in the mental representation. 

Although this mechanism applied to both gambles, the riskier gamble had the higher reward, and its 

subjective value was therefore more greatly affected by each error.  

 We also found that our salience manipulation led participants to make riskier choices, which 

MEM-EX explained using its memory priming mechanism. That is, when outcomes were perceptually 

highlighted during sampling, they became more salient in the mental representation, and were 

 
8 MEM-EX assumed unbiased sampling in the No-Salience condition because no outcomes were 

highlighted. 
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therefore more likely to be sampled from memory when making a choice. Since we highlighted the rare 

rewards for the riskier alternative, this increased the subjective value of the riskier alternative and 

increased its choice share. This account bears some similarity to the concept of availability (Tversky & 

Kahneman, 1973) because salient outcomes were more available for sampling in memory. Under this 

view, memory sampling can be seen as a process of using past events to imagine the likely outcome of 

choosing each alternative. Salience caused some rare events to be more available, and therefore seem 

subjectively more likely.  

 It is worth comparing this model analysis with the one reported in Hotaling et al. (2019), as the 

two complement each other and provide converging evidence. Hotaling et al. used CPT as a 

measurement model to understand behavior in term of latent preference functions. That analysis 

showed that the value-ignorance and salience effects resulted from over-weighting of rare events in the 

Value-Ignorance and Salience condition, respectively. With MEM-EX, we further unpack these results by 

developing cognitive mechanisms to provide process explanations for CPT’s preference functions. Our 

central insight is that the overweighting that characterized the results of Hotaling et al.’s analysis arose 

from a systemic over-representation of rare events in memory.  

3. Experiment 3 

 The between-subjects design of Experiments 1 and 2 limited our ability to draw conclusions 

using MEM-EX because risk bias parameters were estimated separately for each participant, and might 

therefore contribute to the model’s predicted effects. To remedy this, in Experiment 3 we manipulated 

the presence of value information within-subjects. We can now assume that each individual has an 

overarching risk bias that is constant across Standard and Value-Ignorance conditions, allowing us to 

focus on the value-assignment error mechanism as the only explanation of the value-ignorance effect. 

Again, MEM-EX predicts higher value-assignment error rates under value-ignorance, leading to riskier 

choices.  



MEM-EX  22 
 

3.1. Method 

3.1.1. Participants 

42 (19 female, age 17-28, M = 19.17, SD = 1.99) UNSW students participated and received 

course credit plus a monetary bonus ($0 - $20) based on a randomly selected trial.  

3.1.2. Procedure, Material, and Design 

Experiment 3 was identical to Experiments 1 and 2, with two exceptions. First, we removed the 

Salience condition from the design. Second, we manipulated value-ignorance within-subjects. Each 

participant completed 20 trials from the Standard condition, followed by twenty trials from the Value-

Ignorance condition.  

3.2. Results 

3.2.1. Behavioral Analysis 

Figure 4 displays the individual and group mean proportions of choices in favor of the risky 

alternative across conditions. We find a within-subjects effect of value-ignorance mirroring that seen in 

Experiments 1 and 2, with participants making riskier choices in the Value-Ignorance condition (Mstandard 

= .40, Mval-ign = .45, SDstandard = .18, SDval-ign = .24, g = .25).  
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Figure 4. Behavior and MEM-EX predictions across in Experiment 3. Each dot represents an individual 
mean proportion of choices in favor of the riskier alternative. Group mean values are indicated by the 
solid lines. Dark bands indicate 95% confidence intervals, and light bands indicate standard deviations. 
 

3.2.2. Modeling Analysis 

Our modeling analysis revealed substantial individual differences with respect to the value-

ignorance effect (see Model Comparison for details). The majority of participants (64%) were best fit by 

a version of MEM-EX (MEM-EXnull, see Table 1) that assumed no difference between conditions. That is, 

this model used the same value-assignment error rate in the Standard and Value-Ignorance conditions. 

For the remaining individuals, a version of MEM-EX with separate λ parameters (MEM-EXbase, see Table 

1) again gave the best overall account.  

Focusing on the model that assumes separate value-assignment rates, Figure 4 shows that the 

model produces the same pattern seen in the behavioral data: riskier choices under value ignorance9. 

Importantly, because the presentation of value information was manipulated within subjects, the only 

parameter that varied across conditions was λ. This means that the value-assignment error mechanism 

was solely responsible for producing differences across conditions. According to this analysis, 

participants assigned the wrong value for 8.29% of samples in the Standard condition (�̅�𝜆 = .083, SD = 

.079), but made assignment errors for 11.90% of samples in the Value-Ignorance condition (�̅�𝜆 = .119, SD 

= .120). Figure 5 plots the relationship between individual value-ignorance effect sizes (Value-Ignorance 

– Standard) and the difference in value-assignment error rates across conditions (λval-ign – λstandard). Here 

we can see that this mechanism allows us to understand individual differences in terms of differences in 

cognitive mechanisms, with parameter differences closely tracking behavioral differences.   

 

 
9 These results are based on fitting MEM-EXbase to all participants, regardless of which model 

version produced the best results in cross-validation.  
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Figure 5. The relationship between value-ignorance effect size – defined as the difference in risky choice 
proportion – and the difference in value-assignment error rate parameters – defined as λval-ign – λstandard – 
in Experiment 3. Each dot represents an individual. 
 

3.3. Discussion 

In Experiment 3 we replicated the value-ignorance effect, this time at the within-subjects level. 

This change in design posed a new challenge to MEM-EX because the model was now tasked with 

explaining the observed effect without appealing to individual differences in risk bias. Its success under 

these conditions lends more support to the idea that in the Value-Ignorance condition, participants 

performed additional mental operations at the time of choice, resulting in more value-assignment 

errors. MEM-EX also explained individual differences in the value-ignorance effect as the result of 

differences in value-assignment error rates. That is, though the model-selection exercise reveals a 

number of individuals not clearly affected by the value-ignorance manipulation, a model assuming no 

effect for all participants would fail to explain those participants who showed a larger effect of the 

manipulation. In Experiment 4, we build on this insight and use MEM-EX to understand the effect of 

outcome order on DfE. 
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4. Experiment 4 

 The order in which people experience outcomes has been shown to have a significant effect on 

choice (Rakow et al., 2008; Wulff et al., 2018). Although some have explained these effects in terms of a 

recency (or primacy) bias, these accounts typically fall short of articulating a specific cognitive process. In 

Experiment 4 we test the effects of outcome order on DfE, and use MEM-EX to elucidate the mechanism 

through which they manifest. The model predicts that memory confusions will produce retroactive 

interference, with early observations partially replaced by later ones. As a result, options whose rewards 

appeared at the end of the sample sequence will appear to have a greater value and will be increasingly 

chosen. Methods and hypotheses for Experiment 4 were preregistered (details can be found at 

https://osf.io/a264x). 

4.1. Method 

4.1.1. Participants 

104 (42 female, age 17-35, M = 19.41, SD = 2.55) UNSW students participated in Experiment 4. 

Each received course credit plus a monetary bonus ($0 - $20) based on a randomly selected trial.  

4.1.2. Procedure, Material, and Design 

Experiment 4 used a 2 (Standard vs. Value-Ignorance) x 2 (Primacy vs. Recency) between-

subjects factorial design. The presentation of value information was manipulated between subjects, as 

in Experiments 1 and 2. Additionally, half of participants were randomly allocated to each order 

condition. In the Primacy condition, outcomes from both alternatives were ordered such that all of the 

rewards (blue balls) appeared at the beginning of the sequence of sampled outcomes. In the Recency 

condition, all of the non-rewards (red balls) appeared at the beginning of the sequence. Participants 

completed the same 20 gambles from Experiments 1-3.   

4.2. Results 

4.2.1. Behavioral Analysis 

https://osf.io/wfd9v
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 Figure 6 indicates two interesting findings. First, participants made riskier choices in the Recency 

condition compared to the Primacy condition (Mrecency = .51, Mprimacy = .37, SDrecency = .21, SDprimacy = .21, g 

= .66). Second, the value-ignorance effect replicated, with riskier choices under value-ignorance 

(Mstandard = .41, Mval-ign = .47, SDval-ign = .23, SDstandard = .21, g = .30).  

 
   Behavior      MEM-EX 

 
Figure 6. Behavior and MEM-EX predictions in Experiment 4. Each dot represents an individual mean 
proportion of choices in favor of the riskier alternative. Group mean values are indicated by the solid 
lines. Dark bands indicate 95% confidence intervals, and light bands indicate standard deviations. 
 

4.2.2. Modeling Analysis 

 To explain the observed effect of outcome order MEM-EX uses its memory confusion 

mechanism. Figure 6 shows that this indeed produces the kind of order effects we observe in behavior. 

When rewards appeared at the beginning of the sequence (Primacy), they were more likely to be 

replaced in memory later with $0 outcomes. This will tend to decrease the subjective value of the riskier 

option more than the safe option because the former involves a smaller number of higher magnitude 

rewards, so each replacement has a larger impact. In contrast, when rewards appeared at the end of the 

sequence (Recency), the effect was in the opposite direction. For the riskier alternative, early 0s would 

be replaced with larger magnitude rewards than for the safer option, causing its subjective value to rise 
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more. According to MEM-EX, memory confusions were made for an average of 10.07% of exemplars 

after each sample (𝜙𝜙� = .101, SD = .097).  

Once again, MEM-EX captures the observed value-ignorance effect, with higher value-

assignment error rates under value-ignorance (�̅�𝜆 = .116, SD = .109) than in the Standard condition (�̅�𝜆 = 

.077, SD = .100).    

4.3. Discussion 

 In Experiment 4 we see that the order of outcomes can influence DfE, and that MEM-EX 

provides new insights into this behavior. The memory confusion mechanism provides an intuitive 

explanation for the observed order effects. A natural interpretation of this mechanism is that, as a 

decision maker performs the operation to add a new sample to memory, this operation might also be 

mistakenly applied at the location of a previously remembered item.  

5. Experiment 5 

In Experiment 5, we investigate how the number of experienced outcomes affects DfE. MEM-EX 

predicts that sampling a greater number of items provides more opportunities for memory confusion 

errors and retroactive interference. However, the direction and magnitude of the predicted effect 

depends on several factors, including gamble variables, outcome orders, and model parameters. We 

therefore use Experiment 5 to explore the impact of sample size across of range of new gambles.  

5.1. Method 

5.1.1. Participants 

82 (23 female, age 18-27, M = 19.21, SD = 1.65) UNSW students participated and received 

course credit plus a monetary bonus ($0 - $22) based on a randomly selected trial.  

5.1.2. Procedure, Material, and Design 

Experiment 5 was similar to previous experiments, with a few exceptions. As in all experiments 

except Experiment 3, the presence of value information was manipulated between subjects. Sample size 
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was manipulated within subjects, with each participant receiving each pair of gambles twice. In the 

Small Sample condition, sample sizes ranged from 8 to 12 outcomes. In the Large Sample conditions, 

sample sizes were three times larger, and ranged from 24 to 36. Small and Large trials were randomly 

intermixed, with the restriction that the same gamble pair could not repeat on consecutive trials.  

Sixteen gamble pairs were created with the aim of presenting participants with a new and 

diverse set of problems. This new set of gambles had a wider range of expected values and of expected 

value differences between alternatives (see Supplementary Materials for details). Each gamble pair was 

presented twice, for a total of 32 trials.  

5.2. Results 

Unsurprisingly, the value-ignorance effect replicated in Experiment 5. Figure 7 shows that value-

ignorance again produced riskier choices (Mstandard = .37, Mval-ign = .46, SDstandard = .18, SDval-ign = .25,  g = 

.40). To analyze the effect of sample size we began by computing an effect score, s, for each trial and 

individual. For a given trial, if a participant chose the same option in both Sample Size conditions, s = 0. If 

they chose the safe option in the Small Size condition and the risky option in the Large Size condition, s = 

1. If they chose the risky option in the Small Size condition and the safe option in the Large Size 

condition, s = -1. Figure 8 shows that mean effect scores were roughly centered on 0, with substantial 

individual differences. There was no substantial difference in choices across size conditions (Msmall = .42, 

Mlarge = .41, SDsmall = .23, SDlarge = .23, g = .05). 
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Figure 7. Behavior and MEM-EX predictions in Experiment 5. Each dot represents an individual mean 
proportion of choices in favor of the riskier alternative. Group mean values are indicated by the solid 
lines. Dark bands indicate 95% confidence intervals, and light bands indicate standard deviations. 
 

 

Figure 8. Mean sample size effect scores in Experiment 5. Error bars indicate standard errors.  
 

 The absence of a robust group-level sample size effect fits with insights from MEM-EX. We 

found that the majority of individuals in Experiment 5 did not show evidence of the model’s memory 

confusion mechanism. They were instead best accounted for with the same version of MEM-EX used in 

Experiment 3 (MEM-EXbase, see Table 1). Again, its value-assignment errors (6.85% for Standard vs. 

10.01% for Value-Ignorance) accounting for differences across value conditions.  
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5.3. Discussion 

 These results highlight the limitations of using behavioral data alone to test hypotheses about 

cognitive mechanisms. Although we failed to detect a sample size effect in choices, we must take care to 

interpret this properly. If sample size effects varied across individuals, gambles, and outcome sequences 

– as MEM-EX predicts – collapsing across any of these factors would obscure individual-level effects. This 

poses problems for future investigations because these sources of variability are largely unavoidable. 

For example, one alternative approach would be to design trials so that predicted sample-size effects 

are extreme enough to assure that all participants’ choices move in the same directions. However, this 

amounts to finding gamble pairs for which most participants have very strong preferences, and would 

likely result in ceiling or floor effects. Designing trials where one alternative is significantly more 

attractive also runs the risk of encouraging new decision strategies.  

 Given that our theory does not predict a simple difference between experimental conditions, we 

now turn to an alternative approach focused on testing psychological theories through model 

comparison. This method has the advantage of incorporating many sources of variability because they 

naturally interact with model mechanisms. That is, models like MEM-EX provide a formal theory for how 

experimental manipulations should affect behavior in complex and hard-to-intuit ways. As we show 

below, using these models, rather than experimental variables, to organize analyses can offer a more 

comprehensive and psychologically principled means of understanding DfE.  

6. Model Comparison 

 To complement and extend our behavioral analyses, we conducted a quantitative comparison of 

models for each experimental dataset. The majority of these models are constructed within the MEM-EX 

framework, with versions sharing the same foundation, but differing in their specific cognitive 

mechanisms. In cases where we compare multiple versions of MEM-EX (Experiments 3 and 5), we can 

examine the importance of these cognitive mechanisms while holding constant less-interesting auxiliary 
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assumptions. That is, we vary hypotheses about specific mechanisms, but maintain the fundamental 

assumption that decision makers rely on an analogical representation of sampled outcomes in memory. 

To assess the overall merits of the MEM-EX framework, we also compare it to a simple alternative. The 

Value-Updating model is built of the basic principles of reinforcement learning, and provides a handy 

baseline characterization of performance for any novel model to achieve.  

6.1. MEM-EX Models 

 We focus our analyses on models that offer psychologically plausible explanations for the 

behavioral patterns we observe in each experiment. Because the experiments involved different 

manipulations, for each dataset we test the versions of MEM-EX that include only the relevant cognitive 

mechanisms. Table 1 summarizes the four versions of MEM-EX we consider. MEM-EXbase is the standard 

version of the model, with value-assignment error and memory-sampling error mechanisms. MEM-EXnull 

is a simpler model, nested within MEM-EXbase, which only uses one value-assignment error-rate 

parameter across Standard and Value-Ignorance conditions. In Experiment 3, we compare these two 

versions of MEM-EX to test if error rates differed across conditions. MEM-EXprime includes the memory-

priming mechanism to explain the salience manipulation in Experiments 1 and 2. MEM-EXconf includes 

the memory-confusion mechanism used to explain order effects in Experiments 4 and 5.  

 

Table 1. Cognitive mechanisms present in each model. 
     
Cognitive Mechanisms    
 Mechanism 

Model 
Value-

assignment 
error 

Memory-
sampling 

error 

Memory 
Priming 

Memory 
Confusion 

MEM-EXbase x x   
MEM-EXnull x x   
MEM-EXprime x x x  
MEM-EXconf x x  x 

 

6.2. Value-Updating Models 
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 The Value-Updating model (ValUp) stands in contrast to the central claim of MEM-EX. Rather 

than storing a record of each outcome, ValUp proposes that decision makers simply track the subjective 

value of each gamble, updating this impression after each new outcome. This modeling framework is 

built on principles of simple reinforcement learning, which have proved powerful tools for characterizing 

and predicting experience-based choices (Sutton & Barto, 1998). Under this view, ValUp serves as a 

theoretically relevant baseline for comparison. If MEM-EX can outperform ValUp in predicting choices 

and can also provide valuable insights into underlying cognitive mechanisms, this would support its 

theoretical claims. If instead, ValUp is the more accurate predictive model, this may lead us to question 

the utility of MEM-EX’s core memory assumptions.  

 In the Standard condition, ValUp posits that decision makers use outcomes to learn the 

subjective value of each alternative. After sampling a ball from Option A, the value for Option A is 

updated according to 𝑉𝑉𝐴𝐴𝑡𝑡+1 = 𝑉𝑉𝐴𝐴𝑡𝑡 + 𝛿𝛿(𝑜𝑜𝐴𝐴𝑡𝑡 − 𝑉𝑉𝐴𝐴𝑡𝑡), where 𝑉𝑉𝐴𝐴𝑡𝑡 is the estimated value after sample t, 𝑜𝑜𝐴𝐴𝑡𝑡  is the 

value of the sampled ball, and δ is a learning rate parameter between 0 and 1. An identical process 

governs the updating of 𝑉𝑉𝐵𝐵𝑡𝑡 . After completing sampling, the decision maker compares the estimated 

value of each option and chooses accordingly. 

 In the Value-Ignorance condition, outcome values were absent during sampling, so ValUp 

focuses on learning the reward probabilities for each alternative. After each sample, the decision maker 

updates the probability of receiving a reward from Box A, according to 𝑝𝑝𝐴𝐴𝑡𝑡+1 = 𝑝𝑝𝐴𝐴𝑡𝑡 + 𝛿𝛿(𝑐𝑐𝐴𝐴𝑡𝑡 − 𝑝𝑝𝐴𝐴𝑡𝑡 ), where 

𝑝𝑝𝐴𝐴𝑡𝑡  is the estimated probability of a reward at sample t and 𝑐𝑐𝐴𝐴𝑡𝑡  is the outcome of the sample (1 if a 

reward, otherwise 0). On the choice screen, the values of the rewards from each box are revealed, and 

the decision maker integrates these by multiplying each value with its learned probability. Again, the 

decision maker compares the estimated value of each option to make a choice. Importantly, these 

different learning methods may give rise to different behavior across conditions, potentially accounting 

for the value-ignorance effects we observe in behavior. The model uses the same simple risk bias 
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mechanism as MEM-EX to represent individual differences in overall risk attitude. To give ValUp the best 

chance of fitting behavioral data, we initialized the values of V and p to the mean expected value and 

reward probability, respectively, in each experiment.  

 This simple version of ValUp performed poorly in our model comparison, so we focus on a 

version with one additional mechanism. This model incorporates the possibility that decision makers 

sometimes ignore information. After sampling a new outcome, updating occurs with probability ψ, 

otherwise the sample is ignored and no learning occurs. This mechanism plays a similar role to MEM-

EX’s memory-sampling error mechanism by controlling the number of outcomes a decision maker uses 

to make their decision. This additional flexibility improved the model, though performance was still 

relatively poor. It is likely that the ValUp framework could be improved by introducing of additional 

components to account for specific behavioral effects, but this simple version is sufficient as a 

benchmark standard of model performance. We leave the development of a theoretical explanation for 

our results in terms of reinforcement learning for future work.   

6.3. Method 

 Our central aim in this article is to find cognitive mechanisms that give good explanations of 

behavioral phenomena in DfE. However, to test each model’s ability to predict behavior while avoiding 

the problem of overfitting, we used a cross-validation analysis (Busemeyer & Wang, 2000). For each 

participant in a given experiment, we randomly selected half of their choices to be in the training set 

and half to be in the validation set. All models assumed a binomial error process to connect their 

predicted choice probabilities to observed choices, and the parameters for each model were fit to the 

responses from each individual’s training set. We used Matlab’s ga genetic algorithm (Chipperfield & 

Fleming, 1995) to maximize the likelihood of responses according to each model. The best-fitting 

parameters value for each individual were then used to predict responses for trials in the validation set. 

The accuracy of these predictions indicates how well each model explains behavior. Comparing this 
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measure across models tests how well each accounts for behavioral patterns, while also implicitly taking 

model complexity into account. An overly flexible model might overfit the training set, causing it to 

perform badly when making out-of-sample predictions to the validation set. The entire cross-validation 

process was repeated ten times, with each replicate making a new random allocation of responses to 

training and validation sets.  

6.4. Results 

 We calculated the log-likelihood of the validation set for each model, and took the average 

across the ten replicates to summarize the results of cross-validation. Table 2 summarizes our findings in 

terms of the number and proportion of individuals for whom each model gave the largest log-likelihood 

in the validation set. Although results varied across experiments, the MEM-EX framework always yielded 

the best performing model, while ValUp struggled with cross-validation, and was the worst performing 

model in each experiment.  

 

Table 2. Number (and proportion) of participants for whom each model gives the 
best out-of-sample predictions in our cross-validation analysis.  

 

  
Cross-Validation Results 

Model Experiment 
1 & 2 3 4 5 

MEM-EXnull — 27 (64.29%) — — 
MEM-EXbase — 13 (30.95%) — 62 (75.61%) 
MEM-EXprime 282 (86.50%) — — — 
MEM-EXconf — — 91 (87.50%) 11 (13.41%) 
ValUp 44 (13.50%) 2 (4.76%) 13 (12.50%) 9 (10.98%) 

 

In the following sections, we examine the modeling results for each experiment in more detail. 

To quantify and visualize the relative performance of these models, we converted individual mean 
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(across cross-validation replicates) log-likelihoods to probabilities (labeled as model weight in the figures 

below)10. 

6.4.1. Experiments 1 & 2 

 For the dataset combining Experiments 1 and 2 we tested two models, with the goal of 

explaining both the value-ignorance effect and the salience effect. Figure 9 shows individual, mean, and 

median model weights. MEM-EXprime was the better performing model, and gave the best account of 

choices for the majority of individuals (87%). As noted earlier, this model is successful in explaining 

group-level effects; using value-assignment errors for the value-ignorance effect, and memory priming 

for the salience effect. The cross-validation results indicate that the model also best explained choices 

on an individual-level. ValUp performed poorly, and was the preferred model for only 14% of 

individuals. This result shows that MEM-EX can predict choices more accurately than a reasonable 

baseline model, while also providing new insights into the cognitive mechanisms underlying behavior.  

 

Figure 9. Cross-validation model weights for Experiments 1 and 2. Each dot represents an individual. 
Group mean and median values are indicated by the solid and dotted lines, respectively. Dark bands 
indicate 95% confidence intervals, and light bands indicate standard deviations. 
 

 
10 The weight for Model i in the set of j models was calculated as 𝑒𝑒𝐿𝐿𝐿𝐿𝑖𝑖/∑ 𝑒𝑒𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 . 
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6.4.2. Experiment 3 

 In Experiment 3 we found individual differences in the within-subjects value-ignorance effect. 

64% of participants were best characterized by MEM-EXnull, which kept value-assignment error rates 

constant across conditions. Most of the remaining participants (31%) preferred MEM-EXbase, which 

tended to estimate higher value-assignment error rates in the Value-Ignorance condition. ValUp 

struggled again, with fewer than 5% of participants attributed. These results fit nicely with those from 

Experiments 1 & 2, reinforcing the utility of the MEM-EX framework in general, and the value-

assignment error mechanism specifically.  

 

Figure 10. Cross-validation model weights for Experiment 3. Each dot represents an individual. Group 
mean and median values are indicated by the solid and dotted lines, respectively. Dark bands indicate 
95% confidence intervals, and light bands indicate standard deviations. 
 

6.4.3. Experiment 4 

 MEM-EXconf was the best performing model for 88% of individuals in Experiment 4. The model’s 

good performance here further indicates the importance of its memory confusion mechanism for 

explaining the impact of outcome order on choice. ValUp performed poorly, with 13% of participants 

best fit.  
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Figure 11. Cross-validation model weights for Experiment 4. Each dot represents an individual. Group 
mean and median values are indicated by the solid and dotted lines, respectively. Dark bands indicate 
95% confidence intervals, and light bands indicate standard deviations. 
 

6.4.4. Experiment 5 

 Experiment 5 manipulated sample size within-subjects, but failed to produce clear behavioral 

results. Due to various sources of between-subjects variability, we could not perform a satisfactory test 

of our hypotheses using independent variables alone. However, through our model comparison we 

gained insight into the psychological processes at work. The majority of participants (76%) were best 

characterized by MEM-EXbase’s value-assignment error and memory-sampling error mechanisms. A 

smaller proportion (13%) supported the addition of MEM-EXconf’s memory confusion mechanism, which 

we expected to interact with sample size. ValUp again struggled, and was the preferred model for 11% 

of individuals.  
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Figure 12. Cross-validation model weights for Experiment 5. Each dot represents an individual. Group 
mean and median values are indicated by the solid and dotted lines, respectively. Dark bands indicate 
95% confidence intervals, and light bands indicate standard deviations. 
 

6.5. Discussion 

 These results were remarkably consistent across all experiments, and – together with the 

qualitative results presented in earlier sections – provide converging evidence for the MEM-EX 

framework. In presenting the behavioral results from Experiments 1-5 we showed how MEM-EX offers 

simple, intuitive explanations for behavior using cognitive mechanisms. In our model comparison we 

used cross-validation to show that these explanations also provide parsimonious accounts of behavior, 

without overfitting. To further emphasize the utility of cognitive modeling, consider the analysis of 

Experiment 5 depicted in Figure 13. Here we see how difficult it can be to understand behavior in terms 

experimental variables alone. For each panel, gambles are sorted according to a different experimental 

variable. One might expect to see clear patterns emerge, however – with the possible exception of 

expected value differences (top row) – there are no obvious relationships linking behavior to any 

measure. This contrasts sharply with the depth of insight we can gain through MEM-EX. What might first 
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appear to be mysteriously random choice can be succinctly characterized in terms of cognitive 

mechanisms. 

 

Figure 13. Shaded bars indicate the mean proportion of choices in favor of the riskier alternative in 
Experiment 5 (left axis). Each row is sorted by the A) difference in expected value across gambles, B) 
difference in reward probabilities across gambles, C) probability of receiving a reward from safer 
alternative, D) probability of receiving a reward from riskier alternative, E) reward value for the safer 
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alternative, and the F) reward value for the riskier alternative (left axis). Error bars indicate standard 
errors. Circles indicate predictions from MEM-EX. 
 
 
 We contrasted MEM-EX with ValUp, which employs a fundamentally different approach to DfE. 

This model had consistently poor performance and never best fit more than 20% of individuals. To 

understand why, we reanalyzed Experiment 5. Rather than cross-validating the models, we fit them to 

each individual, using 100% of responses to optimize parameter values and maximize log-likelihoods. 

The results in Figure 14 show a starkly different picture to that observed in cross validation, with ValUp 

performing better than both MEM-EX models. This reversal (compared to Figure 12) indicates that 

ValUp is overfitting. In cross-validation, overfitting hurts the model’s performance because, in 

optimizing its parameter values to the training set the model tunes its predictions to random noise. The 

model then struggles to generalize to the validation set, where those noisy patterns do not hold.  

 

Figure 14. Model weights based on maximum-likelihood fit for Experiment 5. Each dot represents an 
individual. Group mean and median values are indicated by the solid and dotted lines, respectively. Dark 
bands indicate 95% confidence intervals, and light bands indicate standard deviations. 

 

In contrast, Figures 15 and 16 show how MEM-EX deals more appropriately with different 

patterns of behavior. Since Experiments 1-4 used the same gambles, we can combine their results into 
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one figure. Figure 15 plots mean choice proportions for each experiment (symbols) and mean 

predictions across all four experiments for MEM-EXbase
11 (solid line) and ValUp (dotted line). In Figure 15, 

sorting gambles by risky-choice proportion shows a reliable behavioral trend across experiments, which 

both models capture quite well. However, Figure 16 shows that the result is different when we look at 

the value-ignorance effect. This figure plots mean effect sizes, and shows much more variability, with 

values fluctuating a great deal across gambles and experiments. MEM-EX largely ignores these 

fluctuations, but nonetheless captures the overall positive effect. By contrast, ValUp make more erratic 

and variable predictions that do not match behavior. These results suggest that MEM-EX’s foundation in 

cognitive principles constrains its ability to fit cross-experiment variability. This gives the model an 

advantage over ValUp, whose general-purpose learning mechanisms lead to more variable predictions.  

 

Figure 15. Mean proportion of choices in favor of the riskier alternative in Experiments 1-4. Symbols 
denote behavior, the solid line indicates predictions from MEM-EX, and the dotted-line indicates 
predictions from ValUp. Error bars indicate standard errors across all 632 participants in Experiments 1-
4. 
 

 
11 We use MEM-EXbase, rather than the best-fitting version of MEM-EX from each experiment, 

because this allows us to examine how a single model deals with cross-experiment behavioral variability. 
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Figure 16. Mean value-ignorance effect size in Experiments 1-4. Symbols denote behavior, the solid line 
indicates predictions from MEM-EX, and the dotted-line indicates predictions from ValUp. Error bars 
indicate standard errors across experiments.  

 

7. General Discussion 

7.1. Summary of Behavioral Results 

Across five experiments, we explored several factors influencing experience-based decision 

making. Time and again, we found the presentation of outcome values to reliably affect people’s 

choices. When value information was available during sampling, participants were less likely to choose 

the risky option compared to when this information was withheld until after sampling. Although the 

magnitude of this effect was variable and subject to individual differences, it reliably replicated in each 

experiment, both within and between subjects.  

In Experiments 1 and 2 we also examined the impact of perceptually highlighting outcomes 

during sampling. In the Salience condition, we found that highlighting rare rewards led people to make 

riskier choices, as if these events were more prominent or available in memory. In Experiment 4, we also 

found choices to be affected by outcome order. When rewards appeared early in the sampling 
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sequence, participants preferred the safer alternative. However, when rewards appeared at the end of 

the sequence, people made riskier choices.  

Our effort to study the role of sample size in Experiment 5 was less successful. We failed to find 

reliable group-level effects, which may indicate that individual differences produced noisy effects that 

varied across gambles. This limitation served to emphasize the importance of using cognitive models to 

more directly interrogate the psychological processes underlying choice behavior.  

7.2. Mechanisms of Experience-Based Choice 

 We used computational models to better understand how the above factors affected decision 

making. After comparing the performance of competing models, we found strong support for the MEM-

EX framework, with four cognitive mechanisms important for explaining behavioral patterns. Value-

assignment errors accounted for differences in risky choice between Standard and Value-Ignorance 

conditions by positing that individuals misremembered outcome values with greater frequency under 

value-ignorance. Functionally, this mechanism mimics ‘overweighting’ of rare events, in that errors 

effectively reduce the difference in frequency between rare and common events. In this sense, value-

assignment errors provide a mechanistic interpretation of the results that Hotaling et al. (2019) found 

using CPT.  

 Memory-sampling error was also an important mechanism for capturing behavior in each 

experiment. It provides a psychologically plausible mechanism for explaining why decision makers fail to 

maximize. Unlike many alternative error mechanisms – such as ‘trembling-hand’ or softmax (Luce, 1959) 

– memory-sampling error is couched in terms of well-known psychological constructs. Its virtue can also 

be seen in its interaction with another cognitive mechanism, memory priming. These combine to explain 

the observed salience effects in Experiments 1 and 2. Memory-sampling error posits that decision 

makers have limited attention, and therefore sample a subset of information from memory to make a 

choice. Memory priming adds the intuition that perceptually highlighted events are more salient, and 
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are therefore more likely to come to mind when sampling from memory. These simple mechanisms 

formally instantiate many of the ideas contained within extant verbal theories, such as availability. Also, 

by connecting to concepts like attention and working memory, they yield clear predictions that pave the 

way for future tests and further theory development.  

 Finally, we found evidence that memory confusion played an important role in many people’s 

decisions. This mechanism describes a process whereby new experiences replace older ones in memory. 

Its effects are most obvious in Experiment 4, where memory confusion produced retroactive 

interference effects implying greater weighting of recent outcomes. Once again, this mechanism allows 

us to recast non-mechanistic theory in terms of cognitive mechanism. Rather than appeal to the abstract 

notion of recency bias, we can now articulate a psychological process that produces order effects.  

7.3. Reinforcement-Learning Models of Experience-Based Choice 

 In addition to the explanatory value of MEM-EX’s cognitive mechanisms, we were interested in 

the accuracy of its quantitative predictions. We contrasted the framework’s performance with that of an 

alternative baseline model, which posits that decision makers learn the subjective value of each 

alternative through repeated updating of values. Similar reinforcement-learning theories have been 

used to model choice behavior in various contexts (e.g. Hertwig et al., 2006). However, our findings 

suggest that the theoretical assumptions in MEM-EX allow the model to surpass a simple version of 

ValUp. The lack of theoretical constraint placed on the general-purpose learning algorithm used in ValUp 

grants it the flexibility to apply to various DfE phenomena. Unfortunately, this universality is a detriment 

when making predictions under cross-validation, where ValUp succeeds in fitting choice data, but fails to 

predict choices when generalized. To achieve better performance, the model requires a psychological 

theory to constrain its behavior in accordance with the experimental and psychological context under 

consideration. The introduction of additional, cognitively inspired mechanisms to the ValUp framework 

may provide the key to avoiding overfitting.  
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7.4. Future Directions 

 Our findings motivate several paths for future study. Applying our model-based analysis to other 

DfE paradigms may provide new insights into their unique behavioral patterns. For example, in repeated 

choice, where every action is consequential, how does memory for past outcomes support the balance 

between exploration and exploitation (Plonsky, Teodorescu, & Erev, 2015)? What cognitive mechanisms 

best explain learning and adaptation in dynamic environments, where payoffs change over time or as a 

consequence of the decision makers actions (Hotaling, Navarro, & Newell, 2018, accepted; Navarro, 

Newell, & Schulze, 2016)? MEM-EX represents a valuable new tool for investigating these questions.   

 We also hope to deepen our understanding of the cognitive mechanisms described by MEM-EX. 

For instance, there are presently multiple interpretations of the model’s different value-assignment 

error rates. Might the increased errors under value-ignorance result from a greater cognitive load 

imposed by the temporal separation of frequency and value information? Or is it the act of ‘reopening’ 

one’s memory to assign values during the choice phase that produces these errors? New experimental 

manipulations can shed light on these issues.   

 Future studies will also examine the role of uncertainty in DfE. To this end, we have begun 

investigations into new choice scenarios with reduced memory demands. Using a design similar to that 

of Experiment 4, we tested the effects of value-ignorance and outcome order when participants were 

certain of the observed outcome sequence. During sampling, the history of sampled outcomes from 

each box was displayed as a series of balls at the top of the screen, obviating the need to remember the 

sequence. We find a somewhat puzzling pattern of results.12 We replicate the value-ignorance effect 

from Experiments 1-5, but only in the Primacy condition, and we replicate the outcome-order effect 

from Experiment 4, but only in the Standard condition. Curiously, these effects disappear (and slightly 

 
12 Results from this pilot experiment can be found at https://osf.io/x7uqw. 

https://osf.io/x7uqw


MEM-EX  46 
 

reverse) in the Recency and Value-Ignorance conditions, respectively, suggesting that participants 

performed the task differently when they were certain of the outcomes they had sampled.  

 Future work can also elucidate individual differences by relating constructs like working memory 

capacity to cognitive mechanisms like memory sampling error (Olschewski, Rieskamp, & Scheibehenne, 

2018). Such studies may also allow greater insight into more significant differences in decision strategies 

(i.e. what factors predict whether an individual uses MEM-EX vs. ValUp?).  
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