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Abstract—Power system operations are becoming more chal-
lenging with the increasing penetration of renewable-based re-
sources such as photovoltaic (PV) generation. In this regard, ob-
taining accurate solar power output forecasts allows a deepening
penetration of renewable-based resources in a secure and reliable
way. In this paper, we propose a probabilistic framework to
predict short-term PV output taking into account the uncertainty
of weather data as well as the variability of PV output over time.
To this end, we use datasets comprising of meteorological weather
data such as temperature, irradiance, zenith, and azimuth and
solar power output. We cluster these data in categories and train
a Matérn 5/2 Gaussian Process Regression model for each cluster.
More specifically, we cluster the data into one to eight different
partitions by making use of the k-means algorithm. In order
to identify the optimal number of clusters we use the Elbow
and Gap methods. We compare the results obtained for the
different number of clusters with the (i) 5-fold cross-validation;
and (ii) holding out 30 representative days as test data. The
results showed that the optimal number of clusters is four, since
in comparison to higher number of clusters the increase in the
forecast error was marginal.

I. INTRODUCTION

Nowadays power systems are facing significant challenges
from the increasing integration of renewable-based energy
resources. The use of renewable-based generation to meet the
load contributes to a sustainable future (see, e.g., [1]). As such,
many countries are trying to meet the majority of their demand
with environment friendly generation (see, e.g., [2], [3]). How-
ever, doing so is challenging due to the inherent intermittency
and uncertainty of weather characteristics on which the output
of such resources heavily relies on (see, e.g., [4], [5]). In
this regard, building an efficient forecasting model is of vital
importance.

Photovoltaic (PV) output forecast models are built based
on different techniques: (i) statistical methods; (ii) Artificial
Intelligence (AI); (iii) physical models; and (iv) hybrid ap-
proaches [6]. The statistical methods are based on analysing
historical data while AI methods focus on the nonlinear
relation between historical weather data and solar output to
construct a probabilistic model [7]. Since the results that
belong in the second group are assessed by error metrics which
are based on statistics, they can also be categorised in the
first group [8]. Physical models are mainly established based
on the monitoring of satellite images and numerical weather

forecasts to forecast the solar power output. Hybrid models
are the combination of all aforementioned methods.

In this paper, we propose a framework that predicts the
short-term solar power output based on the weather input data:
temperature, zenith, azimuth, direct solar irradiance, diffused
solar irradiance, and horizontal solar irradiance. We first cate-
gorise the data into distinct groups based on time of day and
solar generation output using the k-means algorithm, which
is a prominent clustering technique. The rationale behind this
clustering is to gather similar data in clusters and determine
a forecast model for each cluster. The clustering technique
is used as a way to cope with the inherent variability and
sparsity of PV output over time at different days and seasons.
We use the Gaussian Process Regression (GPR) with a Matérn
5/2 kernel function (see, e.g., [9], [10]) to determine the
nonlinear relationship between the input weather data and solar
power output for each cluster. This methodology is suitable
for modelling uncertainty sources of weather while being
flexible to be implemented in time-series with a wide range
of variations over time [11]. GPR takes the advantages of a
kernel function to map the weather input data to solar power
output data. The selection of the kernel function plays a crucial
role in modelling the nonlinear relationship between the input
data and the solar output [12]. By using GPR, the uncertainty
of the input data is reflected to the output forecasts since this
technique assumes each input as a random variable with an
unknown distribution. This is true due to the Bayesian nature
of GPR. Details on the proposed method may be found in [13].

The efficacy of the proposed approach is a function of the
number of GPR models that are trained for a given dataset.
In order to determine the optimal number of clusters that
a dataset needs to be categorised, i.e., the number of GPR
models used for a given dataset, we use the Elbow and Gap
tests (see, e.g., [14], [15]). The Elbow and Gap tests show
that the optimal number of clusters is four. To demonstrate
the effect of different number of clusters in the performance of
the proposed forecasting methodology, we present the results
for one to eight number of clusters. For each cluster we
use the input weather data to train our GPR model and
determine the nonlinear relationship between the solar output
and the weather data. To validate our methodology we use two
datasets, which are based on two different locations at Denver



and St. Lucia, and the 5-fold cross validation and holding-
out data techniques. More specifically, to take into account
different days in different seasons we choose 30 random days
as hold-out test dataset.

II. DATA CLUSTERING

Clustering is a machine learning technique used as an
unsupervised pattern classification learning method to partition
the similar data in the same group based on distance or
dissimilarity function [16]. In this work, we use the k-means
clustering algorithm to group the data based on time of day
and power output. Consider a set X = {x1, x2, . . . , xN} with
N elements, where xi ∈ Rn for all of i = 1, . . . , N ; the data
point cluster number C(i) ∈ {1, . . . ,K}, i ∈ {1, . . . , N}; the
cluster centroid for cluster k ck ∈ Rn, k = 1, . . . ,K; and the
Euclidean distance d(xi, ck) = ||xi−ck||, which is the distance
between xi and cluster centroid ck. Then k-means clustering
tries to minimise the following squared error function:

minimize
{ck}Kk=1

K∑
k=1

Nk
∑

C(i)=k

d2(xi, ck), (1)

where Nk is the number of points assigned to cluster k. The
performance of the k-means algorithm is greatly affected by
the number of clusters. To determine the optimal number of
clusters, we use two popular statistical algorithms, namely, the
Gap and the Elbow (see, .e.g, [15], [17]).

The basic idea of Gap Statistic is to introduce reference
datasets, which are generated with independent Monte Carlo
simulations sampling from an empirical distribution and to
calculate the sum of the squares of the Euclidean distance
between two measurements in each cluster. To describe the
Gap methodology we define the summation of all pairwise
euclidean distances for all datapoints in cluster k to be
Dk =

∑
i,i′∈Ck d(xi, x

′
i) and the normalized sum of intra-

cluster distances to be Wk =
∑K
k=1

1
2Nk

Di. Then, we use the
following function to measure the Gap value [15]:

Gapn(k) = En [log(Wk)]− log(Wk), (2)

where En[·] denotes the expectation operator under a sample of
size n from the empirical distribution of the data. The optimal
number of clusters based on the Gap statistic is the smallest
number k that satisfies the following expression:

Gapn(k) ≥ Gapn(k + 1)− sk+1, (3)

where sk =
√
1 + 1/Bsd(k) is the simulation error and is

calculated using the standard deviation sd(k) of B Monte
Carlo replicates, in this study B = 500, drawn from the
empirical distribution.

The Elbow technique uses the sum of squared errors (SSE),
which is the sum of the distances between the sample points
in each cluster and the centroid of the cluster as a performance
indicator for a set number of clusters [18]. More specifically,
the SSE is calculated over a series number of clusters. If small
SSE values are obtained then that is an indication that each
cluster is more convergent. When the number of clusters is set
to approach the optimal number of clusters K, SSE shows a

rapid decline. When the number of clusters exceeds K, SSE
continues to decline but with a slower rate. Usually the optimal
number of clusters K is obtained graphically at the point that
looks like an “elbow”, i.e., at the largest inflection point down.
Once K is determined then if the selected number of clusters
is less than K, the SSE will be greatly reduced for every 1
increase of the number of clusters. On the other hand, when
the selected number of clusters is greater than K the change
of the SSE will not be so obvious for every 1 increase of the
selected number of clusters.

III. PROPOSED GAUSSIAN PROCESS REGRESSION
FRAMEWORK

Once the data are clustered into K groups we train a GPR
with a Matérn 5/2 kernel function to determine the nonlinear
relationship between the direct solar irradiance, diffused solar
irradiance, horizontal solar irradiance, temperature, zenith, and
azimuth, which are the six weather input data and the solar
output. GPR maps the input data into the solar output by
defining a covariance function, which plays a crucial role in
the process.

Let the training set S = {(x(t), y(t))}Tt=1 be a set of
random variables from some unknown distribution, where T is
the period of available data with one hour resolution; x(t) ∈ R6

is the vector containing all input data at time t; and y(t) ∈ R
the PV output at observation t. With the use of a Gaussian
model we may relate the input with the output terms by:

y(t) = f(x(t)) + h(x(t))
>
β + ε(t), for t = 1, . . . , T, (4)

where ε(t) are i.i.d. “noise” variables with independent
N (0, σ2) distributions, f(x(t)) is the mapping function R6 →
R and h(x(t)) is a set of a fixed basis function. The explicit use
of basis functions is a way to specify a non-zero mean over
f(x(t)). In this work we assume that h(x(t)) is a 6× 1 vector
whose all entries are equal to the constant value of one, and β
is the basis function coefficient 6× 1 vector and is evaluated
by maximising a likelihood function as described below. For
notational convenience, we define:

X =

(x
(1))
...

(x(T ))

 ∈ RT×6, y =

y
(1)

...
y(T )

 ∈ RT , ε =

ε
(1)

...
ε(T )

 ∈ RT ,

f =

f(x
(1))
...

f(x(T ))

 ∈ RT , H =
[
h(x(1)), . . . , h(x(T ))

]
= 16×T ,

where 16×T is a 6 by T matrix whose all elements are one.
In matrix form we may rewrite (4) as

y = f(X) +H>β + ε. (5)

We assume a prior distribution over functions f(X) as

f(X) ∼ N (0,K(X,X)), (6)

where 0 is the mean value; K(X,X) is the covariance matrix:

K(X,X) =

k(x
(1), x(1)) . . . k(x(1), x(T ))

...
. . .

...
k(x(T ), x(1)) . . . k(x(T ), x(T ))

 ,



where k(·, ·) is the kernel function. By using the kernel
function we aim to actively model the unknown relationship
between the input and the output variables. The kernel function
is defined based on the likely pattern that we can observe in
the data. One assumption to model the kernel may be that
the correlation between any two points in the input set, i.e.,
x(t), x(t

′) ∈ S , with t, t′ = 1, . . . , T, t 6= t′, decreases with
increasing the euclidean distance between them. This means
that points with similar features behave similarly. Under this
assumption, in this work we use the Matérn 5/2 as a kernel
function, which is parameterised as follows:

k(x(t), x(t
′)) = σ2

f

(
1 +

√
5d(x(t),x(t′))

σl
+ 5d2(x(t),x(t′))

3σ2
l

)
e
−

√
5d(x(t),x(t

′))
σl , (7)

where d(x(t), x(t
′)) is the euclidean distance between any two

input observations x(t), x(t
′) ∈ S as defined in Section II;

σl and σf , are two other kernel parameters which show
respectively the characteristic length scale and the signal
standard deviation that both belong in R6. The characteristic
length scale σl defines how far the output y(t) needs to be away
from the input features x(t) to become uncorrelated. These two
parameters are greater than zero and are formulated as follows:

σl = 10θl , σf = 10θf . (8)

We now define a new parameter θ to be:

θ =

[
θl
θf

]
=

[
log(σl)
log(σf )

]
∈ R6×2. (9)

From (5) we may write that

y|f(X), X ∼ N (H>β, σ2I +K(X,X)), (10)

since both f(X) and ε have zero means. In order to determine
the distribution that y follows, we need to determine three
parameters, i.e., β, σ2 and θ. K(X,X) is a function of θ as
may be seen in (7)-(9). β, σ2, and θ are also known as the
hyperparameters of the kernel function. In order to estimate the
parameters we maximise the following marginal log-likelihood
function

logP (y|f(X), X) = logP (y|X,β, θ, σ2). (11)

Thus, the estimates of β, θ, and σ2 denoted by β̂, θ̂ and σ̂2

are given by

β̂, θ̂, σ̂2 = argmax
β,θ,σ2

logP (y|X,β, θ, σ2). (12)

We may write from (10) and (11) that

P (y|X) = P (y|X,β, θ, σ2) = N (HTβ,K(X,X) + σ2I).
(13)

Thus, the marginal log-likelihood function is

logP (y|X,β, θ, σ2) = −1

2
(y −H>β)T [K(X,X) + σ2I] −1

(y −H>β)− 1

2
log 2π − 1

2
log|K(X,X) + σ2I|.

(14)

We rewrite the likelihood function for the subset of parameters,
σ2 and θ, by expressing β as a function of the parameters of
interest and replacing them in the likelihood function. Thus,
we have that the estimate of β for given θ and σ2 is:

β̂(θ, σ2) = [H>[K(X,X|θ) + σ2I] −1H] −1

H>[K(X,X|θ) + σ2I] −1y.
(15)

By substituting (15) in (14) we have

logP (y|X, β̂(θ, σ2), θ, σ2) = −1

2
(y −Hβ̂(θ, σ2))T

[K(X,X|θ) + σ2I] −1(y −Hβ̂(θ, σ2))

−1

2
log 2π − 1

2
log|K(X,X|θ) + σ2I|.

(16)

We now may determine the hyperparameters as the output of
the above optimisation problem.

Once the hyperparameters are evaluated we may use (10)
to predict the output of solar generation based on the input
parameters.

IV. NUMERICAL RESULTS

The proposed methodology presented in Section III is
implemented in two datasets from different sites based on
available lagged historical data we gathered from National
Solar Radiation, Iowa Environmental Mesonet (IEM) and
National Renewable Energy Laboratory and the University of
Queensland. We combined all the data from these resources
and built a consistent dataset. The two sites’ details are given
in Table I. To quantify the effect of the number of clusters on
the forecasts obtained by the proposed framework, we modify
the number of clusters, which are used in the development of
the GPR models, from one to eight and compare the forecast
error metrics for the various numbers of clusters for Site A.

To obtain meaningful comparison metrics we use 5-fold
cross-validation and hold out validation as two of the most
prevalent test methods used in recent studies [20]. In 5-fold
cross validation the whole data is split into 5 folds: at each
time, 4 folds are used as a training set and a one-fold as a
testing set, until all folds are used to build the forecast model.
We randomly select 30 days of a year as hold-out data while
the remaining data are used for training and testing using 5-
fold cross-validation.

A. Optimal number of clusters

We apply the Gap and Elbow algorithms on the datasets
as described in Section II and find that the optimal number
of clusters is four. As depicted in Fig. 1, four is the smallest
number of clusters where the Gap value is higher than the
precedent and the subsequent value, and satisfies (3). In Fig. 2,
the “elbow” of the curve which happens at the optimal number
of clusters is found in K = 4. As such it was shown with the
Elbow method that the choice of four clusters means that if the

Site Location Size [MW] Latitude [◦] Longitude [◦]
A Denver Intl Airport 30 39.8561 N 104.6737 W
B St Lucia 0.433 27.498 S 153.013 E

Table I: Site description.



Figure 1: Gap optimal number of clusters

selected number of clusters is less than four, the SSE value
will be greatly reduced for every 1 increase of the number
of clusters. On the other hand, when the selected number of
clusters is greater than four the change of the SSE value will
not be so obvious for every 1 increase of the selected number
of clusters.

B. Framework Implementation on Site A
To show how the solar power forecast is affected by the

number of clusters we apply the proposed framework on Site
A for one to eight clusters. More specifically, in the case of
one cluster we only train one GPR model for the entire dataset,
in the case of two clusters we train two GPR models one for
each cluster; and so on until we have eight clusters and eight
GPR models. We use the 5-fold cross validation and hold out
validation techniques to obtain the forecast errors and be able
to analyse the clustering effect on the accuracy of the solar
power forecasting.

For Site A the available historical data comprise of hourly
input weather data: diffused solar irradiance, horizontal solar
irradiance, direct solar irradiance, temperature, zenith, and
azimuth from 2006, i.e., we have 6 × 8760 data points
for weather input data and the solar generation output. We
implement the proposed framework in one to eight number
of clusters; and select 30 random days as hold-out data as
representative of different days of the year during different
seasons. Each cluster is trained by using Matérn 5/2 GPR and
tested by 5-fold cross-validation and hold-out techniques. The
error metrics used are defined as follows:

RMSE =

√√√√ 1

T?

T?∑
t=1

(
ỹ(t) − y(t)?

)2
, (17)

Figure 2: Elbow optimal number of clusters

no. of RMSE MAE RMSE MAE
clusters [MW] [MW] [%] [%]

8 0.90 0.34 2.72 1.02
7 0.80 0.26 2.43 0.78
6 1.02 0.40 3.10 1.20
5 1.18 0.49 3.58 1.48
4 1.29 0.36 3.91 1.08
3 1.53 0.47 4.63 1.43
2 1.64 0.66 4.98 2.00
1 2.94 0.58 8.91 1.77

Table II: Training set error metrics for various number of
clusters.

MAE =
1

T?

T?∑
t=1

∣∣∣ỹ(t) − y(t)? ∣∣∣, (18)

MSE =
1

T?

T?∑
t=1

(
ỹ(t) − y(t)?

)2
, (19)

where y(t)? , is the prediction value for solar generation at time
t, and by ỹ(t) the actual value at time t; T? is the number
of hourly intervals we are forecasting the solar output. We
may also normalise values of the above metrics with respect
to peak value.

The results of the forecast error metrics for the training
and test sets for one to eight number of clusters are given in
Tables II, III. The error metrics of the training data between the
actual and the predicted values are based on the average error
of all 5 folds for the training set. It should be noted that the test
results are expected to be different from the training set results,
since 30 hold-out days are not shown to the model during the
training process. However, the results with any test set should
be approximately the same as those obtained with the training
set, as it may be seen in Tables II, III. We notice that the
error metrics are usually improved as we increase the number
of clusters. However, at the same time a choice of a large
number of clusters increases the computational complexity of
the model since for each cluster we build a GPR model. The
number of clusters needs to balance the trade-off between two
different objectives of minimum forecast error and minimum
number of clusters due to the computational complexity.

In this regard, we further study the effect of the number of
clusters in the forecast error and depict in Figs. 3, 4, 5 the
forecasts for the training set along with the actual values. As
seen in these figures the different patterns of solar generation
are better captured and modelled in the case of eight clusters.
However, partitioning the data into four clusters also leads to

no. of RMSE MAE RMSE MAE
clusters [MW] [MW] [%] [%]

8 0.80 0.38 2.41 1.14
7 1.01 0.48 3.05 1.45
6 0.95 0.41 2.87 1.25
5 1.00 0.47 3.02 1.43
4 1.08 0.50 3.26 1.52
3 1.46 0.65 4.43 1.97
2 1.44 0.68 4.36 2.05
1 2.75 1.16 8.35 3.53

Table III: Test set error metrics for various number of clusters.



Figure 3: Proposed framework predictions of the training data
set for one cluster.

good results in comparison to eight based on the results we can
see in Fig. 6, where the sensitivity on the number of clusters to
different normalised error metrics values is depicted. As such,
we partition the data into four clusters and as seen in Fig. 7,
clusters two and three, represent the seasonal variations while
clusters one and four represent early morning and night times.

C. Comparison with existing methodologies
To compare our results with the existing methodologies, we

use the same data as in [21], [22] which are available from
University of Queensland. The temporal resolution of the data
in [21] is 1-minute; however since we are interested in hourly
values we select historical data with hourly resolution. We
used 2012 data for training and 2013 data for testing. The
authors of [21], categorized the data into four different seasons,
i.e., fall, winter, spring and summer. Also, in [22], ELM
method and the traditional feed-forward back propagation
neural network (FFBPG) are used for forecast model. The
results in Table IV, clearly show that the results of prediction
for one year is better than the results in [21], [22].

V. CONCLUSION

In this work, we proposed a framework that predicts the
short-term solar output based on weather input data: temper-
ature, zenith, azimuth, direct solar irradiance, diffused solar
irradiance, and horizontal solar irradiance. We clustered the
data in a given number of groups based on time of day. We
then trained a model for each cluster using GPR in order to

Figure 4: Proposed framework predictions of the training data
set for four clusters.

Figure 5: Proposed framework predictions of the training data
set for eight clusters.

RMSE[%] MAE[%]
Proposed framework 3.48 1.85

[11]

Fall 13.85 8.48
Winter 7.67 4.16
Spring 13.6 8.08

Summer 16.43 10.73

[42] ELM 12.84 6.68
FFBPG 13.33 7.53

Table IV: Forecast error metrics based on different method-
ologies for Site B.

learn the relationship between the input weather data and the
PV generation. GPR is a kernel based nonlinear nonparametric
regression technique, in which the covariance function plays
a crucial role. In this work, we selected the Matérn 5/2 as
a covariance or kernel function. This function was selected
under the assumption that the correlation between any two
points in the input feature set decreases with increasing the
euclidean distance between them. We analysed the effect on
the performance of the proposed framework of the number
of chosen clusters. More specifically, we implemented two
statistical methods, namely Gap and Elbow, to identify the
optimal number of clusters. The methods showed that four
is the optimal number of clusters. In the numerical results’
section we used k-means algorithm to cluster the data based
on solar output and time of day into one to eight clusters and
calculated error forecast metrics. This sensitivity study also
demonstrated the improved framework performance when four
clusters are chosen in terms of balancing model complexity
and accuracy.

Figure 6: Sensitivity study on the number of clusters by
comparing different normalised error metrics values.



Figure 7: 3D graph of four clusters. Different colours represent
different clusters.
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