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Abstract—This paper proposes a distributed multi-period op-
timal power flow (OPF) formulation for unbalanced three-phase
radial distribution systems over time-varying communication
networks. To this end, we model the three-phase unbalanced
network, distributed generators (DG), and electric vehicles’
(EV) behaviour with inter-temporal constraints. Moreover, we
represent the objectives of the distribution system operator and
those of prosumers, e.g., who wish to minimise the cost of DG
or the degradation cost of the EV batteries. We first formulate
the centralised OPF that requires knowledge of DG costs; EV
information in terms of desired energy, departure and arrival
times that prosumers are reluctant in providing. Moreover, the
computational effort required to solve the centralised OPF in
cases of numerous DGs and EVs is very intensive. As such, we
propose a distributed solution of the OPF over a time-varying
communication network. We illustrate the proposed framework
through a 33-bus distribution feeder.

I. INTRODUCTION

Power systems are changing radically with the deepening
penetration of distributed generation resources and flexible
demand, e.g., electric vehicles (EVs). All these changes are
leading towards the development of “fractal” grids that yield
flexible, controllable, and interoperable systems that may be
operated in an efficient and safe manner [1]. Fractal grids are
more complex due to the numerous small scale devices that
are connected to the system. As such centralised power system
operation approaches are harder to implement due to the
computational complexity as well as privacy concerns of the
entities involved. Decentralised approaches for all timescales
of power system operations, i.e., primary control occurring in
real time to optimal power flow (OPF) occurring in an hour to
days timescale, have been proposed in the literature to cope
with the aforementioned challenges (see, e.g., [2], [3], [4]).

OPF is usually formulated as an optimisation problem with
the objective of cost minimisation subject to network and
variables’ limit constraints. Historically OPF was implemented
in transmission systems, since distribution systems were not
very “active” with minimum presence of distributed generation
and flexible demand. As such, recent efforts have been made
in proposing distributed solutions for OPF in distribution
systems. In [5] a semidefinite program is proposed with
relaxations that are shown to be exact for radial networks
to solve the OPF in a distributed manner. In [6], the au-
thors proposed an alternating direction method of multipliers
(ADMM) based algorithm to solve the second-order cone
program (SOCP) relaxation of the OPF problem for balanced

radial networks over a time-invariant communication network.
In [7], the authors proposed a distributed algorithm to solve
the SOCP OPF relaxation for radial distribution systems over
time-varying networks. The authors in [8] developed a chordal
conversion based convex iteration algorithm to solve the three-
phase OPF problem that improves computational efficiency
and guarantees optimality in some distribution feeders. Inter-
temporal constraints and privacy concerns are not addressed in
this paper. In [9] a distributed strategy for the optimal dispatch
of islanded microgrids where units can communicate only with
their neighbours is presented; the primary, secondary as well
tertiary control is modelled, however, without taking network
effects into account. The authors in [10] used a machine
learning model to reconstruct the optimal set points to OPF
problems; thus developing a decentralized OPF methodology.

In this paper, we propose a distributed multi-period OPF
formulation for unbalanced three-phase distribution systems
over time-varying communication networks. The entities that
participate in the OPF are the distribution system operator
(DSO), distributed generators (DGs) and EV owners. The
objective of the DSO is to minimise cost subject to the
physical limits of the network. A linear model is used for
the modelling of three-phase unbalanced networks, which is
based on a fixed-point interpretation of the AC power flow
equations [11]. DGs wish to minimise their cost of operation
while the generators’ operation is within their limits. Last, EV
owners wish to charge their vehicle at minimum cost without
degrading their battery while operating within its charging rate
limits. We use the aforementioned objectives and constraints
to formulate the centralised OPF. Such a formulation requires
knowledge of DG costs; EV information in terms of desired
energy, departure and arrival times that prosumers are reluctant
in providing. Moreover, the computational effort required to
solve the centralised OPF in cases of numerous DGs and
EVs is very intensive. In this regard, we propose a distributed
solution of the multi-period OPF over a time-varying commu-
nication network using the algorithm presented in [12]. The
contributions of the paper are as follows: development of a
distributed OPF methodology that (i) allows for inter-temporal
constraints, e.g., EV charging constraints; (ii) explicitly models
unbalanced three-phase networks; (iii) guarantees convergence
to the set of optimal primal solutions under a time-varying
communication network; and (iv) maintains privacy concerns
by using only local information.



II. PRELIMINAIRIES

A. Network Modelling

A linear model is used for the modelling of three phase
unbalanced networks, as described in [11]. The authors have
validated its accuracy compared to a full AC power flow.
Let us assume that the system has Nbus three-phase buses
denoted by the sets Nbus = {1, . . . , Nbus} and the phases
Φ = {a, b, c}; and ` lines denoted by the set L = {1, . . . , `}.
The study period is denoted by T = {1, . . . , T} with T
intervals of size ∆t. For simplicity, we assume that the
network has only phase to line connections. We denote by
Y ∈ C3Nbus×3Nbus the admittance matrix; by s ∈ C3Nbus the
complex power injections at each bus and by v ∈ R3Nbus the
magnitude of the bus complex voltages. We assume node 0
is the slack bus and partition the admittance matrix and the

voltage magnitude vector as follows Y =

[
Y00 Y0L

YL0 YLL

]
, where

Y00 ∈ C3×3, YL0 ∈ C3(Nbus−1)×3, Y0L ∈ C3×3(Nbus−1), and
YLL ∈ C3(Nbus−1)×3(Nbus−1); and v = [v0, vL]> where v0 ∈ R3

is the slack bus voltage magnitude and vL ∈ R3(Nbus−1) the
voltage magnitudes at remaining buses. Let us assume that the
real (reactive) power injections are denoted by p ∈ C3(Nbus−1)

(q ∈ C3(Nbus−1)) and the real (reactive) power phase to line
load is denoted by pd ∈ C3(Nbus−1) (qd ∈ C3(Nbus−1)) for all
buses than the slack bus, i.e., ∀ n ∈ Nbus/{0}. We consider
D DG owners denoted by the set D = {1, . . . , D}. In order
to determine the location of the DGs, we need to determine
the node and the phase that they are connected to. To this end,
each DG owner r ∈ D has a duplet Rr = {nr, φr}, where
nr ∈ Nbus is the node that the DG is connected to and φr ∈ Φ
the phase. We also consider a collection of E EVs denoted by
the set E = {1, 2, . . . , E}. Similarly, in order to determine the
location of the EVs, we need to determine the node and the
phase that they are connected to. To this end, we define for
each EV j ∈ E the duplet Hj = {nj , φj}, where nj ∈ Nbus
is the node that the EV is connected to and φj ∈ Φ the phase.
The set of all duplets for DGs and EVs are denoted by H and
R respectively. We denote by yj(t) the charging power of EV
j at time t; and ỹ(t) ∈ R3Nbus vector that has zero entries for
buses and phases that do not have an EV, and is yj(t) for bus
nj and phase φj as determined by the duplet Hj = {nj , φj}.

The fixed-point linearisation around a nominal point (ŝ, v̂)
renders the following relationships for the network represen-
tation:

v(t) = K

[
p(t)− pd(t)− ỹ(t)

q(t)− qd(t)

]
+ b,∀t ∈ T , (1)

where K = diag(h)Re(diag(h)−1M), b = |h|, with

M =

[
03×3(Nbus−1) 03×3(Nbus−1)

Y −1
LL diag(v̂L)−1 −jY −1

LL diag(v̂L)−1

]
, and h =[

v̂0

−Y −1
LL YL0v̂0

]
, where Re(·) denotes the real part of a complex

number and (·) its conjugate. The complex power at the
substation denoted by s0 = p0 + jq0 ∈ C3 is given by:

s0(t) = G

[
p(t)− pd(t)− ỹ(t)

q(t)− qd(t)

]
+ c,∀t ∈ T , (2)

where G = diag(v̂0)Y 0LM , and c =

diag(v̂0)
(
Y 00v̂0 − Y 0LY

−1

LLY L0v̂0

)
. Equation (2) represents

two equations, one for the real and one for reactive component.

B. EV Modelling
We introduce the energy consumed by EV j for commuting

at period T by ej , j ∈ E . We denote by πj(t) the availability
of EV j at time t, i.e., if πj(t) = 1 then EV j is available for
charging at time t, if πj(t) = 0 then EV j is not available. The
charging constraints associated with the charging variables are
the following: ∑

t∈T

πj(t)yj(t)∆t = ej ,∀j ∈ E , (3)

which ensures that each vehicle has received the right amount
of energy at the end of the time horizon. The initial and final
SOC are implicitly represented in (3) by appropriately defining
ej , for j ∈ E . There are limits associated with each charging
power which can be expressed as follows:

0 ≤ yj(t) ≤ πj(t)ymax
j (t), (4)

where ymax
j (t) is the maximum value, e.g., 3.7 kW for slow

charging. Equation (4) ensures that at times when the EV j is
not available for charging yj(t) will be zero. In this work, we
consider one-directional charging; this can be easily extended
to bi-directional charging. The degradation cost of the EV
battery is taken into account by minimising the second order
polynomial of the charging rates [13]:∑

t∈T

∑
j∈E

y2
j (t). (5)

III. CENTRALISED OPTIMAL POWER FLOW FOR
DISTRIBUTION SYSTEMS

A. Objectives
The objectives of the DSO refer to the minimisation of the

cost of real power procured at the substation:∑
t∈T

∑
φ∈Φ

λ0(t)pφ0 (t)∆t, (6)

where λ0(t) is the locational marginal price (LMP) at the
substation at time t and pφ0 (t) is the injection at phase φ at time
t at the substation and ∆t is the time interval, e.g., 5 minutes.
A byproduct of (6) is that each EV j ∈ E procures the desired
energy ej at minimum cost, as stated in Section II-B. The DSO
objective also includes a term that ensures that voltage levels
throughout the network are operating close to the reference
voltage: ∑

t∈T

∑
n∈Nbus

∑
φ∈Φ

(vφn(t)− vref)
2, (7)

where vref is the reference voltage. The objective of DG owners
r ∈ D is that the cost of DG is minimised, which may be
defined as follows:∑

t∈T

∑
r∈D

cr(t)p
φr
nr (t)∆t, (8)

where cr(t) is the cost of DG generation connected to node nr
and phase φr as defined by the duplet Rr = {nr, φr}at time



t. The EV owners wish to minimise the effect of charging in
the degradation of EV batteries, as given in (5).

B. Constraints

The network constraints are represented in (1), (2). The
EV charging related constraints given in (3), (4) that describe
the inter-temporal state of charge dynamics, non-negativity
and charging rate constraints are also included. The voltage
magnitude constraints are denoted by

vφ,min
n ≤ vφn(t) ≤ vφ,max

n ,∀n ∈ Nbus, φ ∈ Φ,∀t ∈ T . (9)

The real and reactive power injections by DG are:

pφ,min
n ≤ pφn(t) ≤ pφ,max

n ,∀{n, φ} ∈ R,∀t ∈ T , (10)
qφ,min
n ≤ qφn(t) ≤ qφ,max

n ,∀{n, φ} ∈ R,∀t ∈ T . (11)

For {n, φ} /∈ R we have pφn = qφn = 0.

C. OPF Formulation

The decision variables for each n ∈ Nbus and φ ∈ Φ is the
real power injection pφn(t); the reactive power injection qφn(t);
the voltage magnitude vφn(t); and for each EV j ∈ E is the
charging schedule yj(t), for all t ∈ T . The centralised OPF
is formulated as follows:

min
{pφn(t),qφn(t),vφn(t),yj(t)}
t∈T ,n∈Nbus,φ∈Φ,j∈E

(5) + (6) + (7) + (8)

subject to (1)− (4), (9)− (11). (12)

The proposed framework can directly capture the case where
positive weights are attached to each term in the objective
function; minimising the weighted sum of objective functions;
and obtaining different points on the Pareto front of (12). This
is constitutes a topic of current research. The coefficients of
(5) and (7) may be interpreted as the cost (in pounds) of EV
battery degradation and voltage deviation from the reference
respectively. So then the objectives are expressed in the same
units; thus comparable.

IV. PROPOSED DISTRIBUTED OPTIMAL POWER FLOW FOR
DISTRIBUTION SYSTEMS

We consider K + 1 entities, i.e., agents, that participate in
the OPF solution. These are K agents that are either DG or
EV owners or both and one agent that is considered to be
the DSO. We assume that the communication network that
these agents use to exchange information is time-varying as
is in reality. The optimisation problem given in (12) may be
seen as an optimisation problem where each agent optimises a
local objective subject to local constraints, but needs to agree
with the other agents in the network on the value of some
decision variables that refer to the usage of shared resources,
i.e., the power at the substation and the network usage, which
are represented by coupling constraints. More specifically,
each agent i has its own vector xi ∈ Rni of ni decision
variables, e.g., the voltage magnitude, the charging schedule;
its local linear constraint set Aixi = bi and Dixi ≤ 0, these
include constraints such as (3), (4), (9)-(11); and its objective
fi(xi) : Rni → R, e.g., (5), (6)-(8). The coupling constraints
refer to (1) and (2); (1) has 3NbusT constraints and (2) has 6T

(since (2) refers to two equality constraints per time step) thus
in total the coupling constraints are 3T (Nbus + 2). We denote
the total number of coupling constraints by w = 3T (Nbus +2)
and the coupling constraints as

∑K+1
i=1 Zixi = ζ, where

Zi ∈ Rw×ni and ζ ∈ Rw. Each agent contributes to the
coupling constraints with Zi. Now we may rewrite (12) in
compact form as

min
{xi}K+1

i=1

K+1∑
i=1

fi(xi)

subject to Aixi = bi, i = 1, . . . ,K + 1,

Dixi ≤ 0, i = 1, . . . ,K + 1,
K+1∑
i=1

Zixi = ζ, (13)

where Ai, bi, Di for each agent i are defined as follows for the
three different types of agents, i.e., DSO, DG owners and EV
owners. The nodes/phases that do not contain an EV or DG
are considered to be a responsibility of the DSO agent and are
equal to 3Nbus−E−D. The DSO agent, which without loss of
generality, is indexed by 1, has a decision variable x1 ∈ Rn1

with n1 = 3(3Nbus − E −D)T . More specifically:

x1 = [pφn(t), qφn(t), vφn(t) : {n, φ} /∈H ∪R, n ∈ Nbus, φ ∈ Φ, t ∈ T ]>.

Its objective is defined as f1 =
∑
{n,φ}/∈{H ∪R}
n∈Nbus,φ∈Φ
t∈T

fφn (t), where

fφn (t) =

{
(vφn(t)− vref)

2, {n, φ} /∈ {H ∪R}, n ∈ Nbus, φ ∈ Φ,

λ0(t)pφ0 (t) + (vφ0 (t)− vref)
2, n = 0, φ ∈ Φ

.

The limiting constraints for agent 1 given in (9)-(11) may be
represented as the matrix D1 = [Cφn(t) : {n, φ} /∈ {H ∪
R}, n ∈ Nbus, φ ∈ Φ, t ∈ T ]>, where Cφn ∈ R6n1×n1 , i.e.,
one block row for the minimum and one for the maximum
limit associated with each of the three variables. In this case
Ai, bi are a zero matrix and vector respectively since the DSO
agent does not have any local equality constraints. For agent i
that is an EV owner of EV j connected to node nj and phase
φj determined by the duplet {nj , φj} ∈ Hj , we define the
vector xi ∈ Rni with ni = 4T by

xi = [pφjnj (t), q
φj
nj (t), v

φj
nj (t), yj(t) : t ∈ T ]>,

and the objective function

fi =
∑
t∈T

(
(vφjnj (t)− vref)

2 + y2
j (t)

)
.

We rewrite (3) as Aixi = bi, where Ai ∈ R1×ni and bi ∈
R and the limiting constraints given in (4) and (9)-(11) as
Di = [C

φj
nj (t) : t ∈ T ]>, where Cφjnj ∈ R8×ni , i.e., one block

row for the minimum and another one for the maximum limit
associated with each of the four variables.

For agent i that is a DG owner r ∈ D connected to node
nr and phase φr determined by the duplet {nr, φr} ∈ Rr, we
define the vector xi ∈ Rni with ni = 3T by

xi = [pφrnr (t), q
φr
nr (t), vφrnr (t) : t ∈ T ]>,



and the objective function

fi =
∑
t∈T

(
(vφnrnr (t)− vref)

2 + cr(t)p
φnr
nr (t)

)
.

We rewrite the limiting constraints given in (9)-(11) as Di =
[Cφrnr (t) : t ∈ T ]>, where Cφrnr ∈ R6×ni , i.e., one block row
for the minimum and one for the maximum limit associated
with each of the four variables. In this case Ai, bi are a zero
matrix and vector respectively since agent i that owns a DG
does not have any local equality constraints.

The problem given in (13) satisfies the convexity assump-
tions and connectivity properties of the communication net-
work of [12]; thus the distributed algorithm below may be used
to reach the optimal solution, without disclosing information
about their local objective and constraint functions, nor about
the function encoding their contribution to the coupling con-
straint. The proposed method can handle time-varying com-
munication networks since it is based on an extension of dual
decomposition based algorithms. Traditional dual decomposi-
tion techniques (see, e.g., [14]) or the ADMM (see, e.g., [15])
require time-invariant communication networks since they
involve communication among all agents that are coupled via
the constraints, which may not be possible in a time-varying
connectivity set-up. To this end, notice that the adopted
algorithm does not require the dual variable updates to be
performed in a centralised manner, and each agent maintains a
different estimate of the dual variables. This is in contrast with
standard algorithms based on the alternating direction method
of multipliers. Moreover, there is no Augmented Lagrangian
term, as one would typically encounter in the alternating direc-
tion method of multipliers. Moreover, primal-dual subgradient
based consensus algorithms (see, e.g. [16]) that could also be
used in a time-varying setup assume that coupling constraints
are known to all agents, thus violating privacy concerns. As
such the proposed framework exhibits attractive features to
reach the optimal solution in a time-varying communication
network while preserving privacy since agents do not have to
share their local information.

A distributed solution of (13) based on [12] is as follows:

Algorithm Distributed OPF

1: Initialization
2: k = 0.
3: Consider x̂i(0) such that Aix̂i(0) = bi, Dix̂i(0) ≤ 0,

for all i = 1, . . . ,K + 1.
4: Consider κi(0) ∈ Rw, for all i = 1, . . . ,K + 1.
5: For i = 1, . . . ,K + 1 repeat until convergence
6: `i(k) =

∑K+1
j=1 aij(k)κj(k).

7: Xi = {xi : Aixi = bi, Dixi ≤ 0}
xi(k + 1) ∈ arg minxi∈Xi fi(xi) + `i(k)>Zixi.

8: κi(k + 1) = `i(k) + c(k)(Zixi(k + 1)− ζ
K+1 )

9: x̂i(k + 1) = x̂i(k) + c(k)∑k
γ=0 c(γ)

(xi(k + 1)− x̂i(k)).

10: x̃i(k + 1) =

x̂i(k + 1) , k < ki,s∑k
γ=ki,s

c(γ)xi(k+1)∑k
γ=ki,s

c(γ)
, k ≥ ki,s

.

11: k ← k + 1.

Fig. 1: LMP at the substation over a 24 hour period.

In the Algorithm above w is the row dimension of the Zi
matrices, i.e., the number of coupling constraints which are
w = 3T (Nbus + 2), c(k) is the subgradient step-size usually
set to c(k) = β

k+1 for some β > 0, ks,i ∈ N+ is the iteration
index related to a specific event, namely, the convergence of
the Lagrange multipliers, as detected by agent i. The use of
this algorithm ensures that no local information related to the
primal problem is exchanged between the agents. In particular,
only the estimates of the dual vector are communicated; thus
addressing privacy concerns of the agents. The communication
network between the agents may be time-varying and has to
satisfy the following constraints: aij(k) ∈ [0, 1), for all k ≥ 0,∑K+1
j=1 aij(k) = 1, ∀i = 1, . . . ,K + 1,

∑K+1
i=1 aij(k) = 1,

∀j = 1, . . . ,K + 1. The interpretation of these constraints is
that each agent is mixing information received by other agents
at a non-diminishing rate in time. Moreover, this mixing is a
convex combination of the other agent estimates, assigning a
non-zero weight to its local one. The communication graph is
strongly connected, i.e., for any two agents there exists a path
of directed edges that connects them. Step 9 of the algorithm is
a running average of the primal iterates which are constructed
as they are shown to exhibit superior convergence properties
with respect to xi(k) while step 10 performs a reset of this
average at a certain iteration index as this has been shown to
speed up practical convergence. It has been shown that the
dual iterates κi(k) generated by the algorithm converge (by
means of the gradient ascent computation of step 8) to an
optimal dual vector which x̂i(k) achieve asymptotically the
optimal objective value. Notice that κi(k) are mixed in step 6
to generate the weighted average `i(k). The stopping criterion
of the algorithm is that the primal variables of the problem do
not change (up to a numerical tolerance) across a number of
iterations equal to the period of the graph for all agents. More
details about the algorithm may be found in [12].

V. NUMERICAL RESULTS

In this section, we use the 141-bus distribution feeder to
validate the proposed framework [17]. We consider a col-
lection of 10 EVs and a study period of T = {1, ..., 24}

agent 1

agent 2

agent 3

agent 4

agent 5

agent 6

agent 10

agent 7

agent 8

agent 9

agent 11

Fig. 2: Time-varying communication network.



Fig. 3: Evolution of the agents estimates {κi(k)}11
i=1.

with intervals of size ∆t = 1 h. The minimum (maximum)
allowed voltage level is 0.95 pu (1.06 pu). The maximum
charging value is ymax

j = 10 kW for all j = 1, . . . , 10. The
LMP at the substation is depicted in Fig 1. In this example,
we divide the participants into 11 agents, i.e., the EVs (10)
and the DSO. The optimisation problem of the DSO has
9408 decision variables and local constraints set defined by
18816 inequalities. The optimisation problem of each EV
has 96 decision variables and local constraints set defined
by 1 equality and 192 inequalities. There are 3408 coupling
equality constraints, and therefore we have 3408 Lagrange
multipliers associated with them. The communication network
is depicted in Fig. 2 where approximately only half the
agents communicate with the other half at any time-step.
More specifically, the communication network corresponds
to a graph, whose edges are divided into two groups: the
blue and the red ones, which are activated alternatively. We
set c(k) = 1000

k+1 , ki,s = 600 for i = 1, . . . , 11. We ran
the proposed algorithm for 1500 iterations with κi(0) = 0,
i = 1, . . . , 11 and the evolution of the Lagrange multipliers is
depicted in Fig. 3. As we may see they converge to the optimal
value from around 600 iterations. In Fig. 4 the evolution of
the objective value is depicted. We may see a jump at iteration
number ki,s = 600 for i = 1, . . . , 11 since the Lagrangian
multipliers have converged and we only use estimates for x̂i(k)
based on values after iteration ki,s. According to step 10 of
the proposed distributed algorithm the “jump” at iteration ki,s
speeds up practical convergence by “resetting” the running
average estimate. The run time for this specific case study is
3.7 minutes in a Macbook Pro with 3.1 GHz Dual-Core Intel
Core i5 with 8 GB memory.

VI. CONCLUSIONS

In this paper, we developed a distributed multi-period OPF
for radial distribution systems. More specifically, we repre-
sented the unbalanced three-phase network; we provided a

Fig. 4: Evolution of objective function until it reaches the
optimal value (red line).

detailed modelling of EVs, i.e., representing their times of
arrival and departure, SOC, required energy, inter-temporal
constraints and objectives. Next, we formulated the centralised
multi-period OPF that incorporates the objectives and con-
straints of DGs and EVs; and has a detailed representation
of the underlying three-phase power network. We proposed
a distributed solution to the multi-period OPF that converges
to the optimal solution under a time-varying communication
network with no exchange of sensitive information. Through
the numerical examples, we demonstrated that the proposed
framework performs well and the optimal solution is achieved.
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