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A B S T R A C T

Apple juice is typically marketed as a clear juice, and hence enzymatic treatments are common practices in juice
industry. However, enzymatic treatments have been shown to face some challenges when process efficiency, and
cost effectiveness are concerned. Therefore, it is necessary to optimize the enzymatic treatment process to
maximize efficiency, and reuse enzymes to minimize the overall cost via immobilization. In this context, the
present work features the immobilization of pectinase and xylanase fromM. hiemalis on genipin-activated alginate
beads, with subsequent evaluation of its efficacy in apple juice clarification. A central composite rotatable design
(CCRD), coupled with artificial neural network (ANN) for modeling and optimization was used to design the
experiments. Deploying a coupling time up to 120 min, and an agitation rate of 213 rpm (pectinase) - 250 rpm
(xylanase), a maximum fractional enzyme activity recovered was observed to be about 81–83% for both enzymes.
Optimum enzyme loading and genipin concentration were found to be 50 U/ml and 12% (w/v), respectively. The
immobilized enzyme preparations were suitable for up to 5 repeated process cycles, losing about 45% (pectinase)
- 49% (xylanase) of their initial activity during this time. The maximum clarity of apple juice (%T660, 84%) was
achieved at 100 min when pectinase (50 U/ml of juice) and xylanase (20 U/ml of juice) were used in combination
at 57 �C. The immobilized enzymes are of industrial relevance in terms of biocompatibility, recoverability, and
operational-storage stability.

1. Introduction

Unlike animal counterparts, plant cells are surrounded by an extra-
cellular matrix known as the cell wall which comprises polysaccharide
and protein polymers. Protein accounts for only 5–10% of this structure,
whereas polysaccharides constitute 90–95% of the cell wall (Jacq et al.,
2017). Such polysaccharides are predominantly pectin, hemicellulose,
and cellulose (Broxterman and Schols, 2018). In a typical cell of hard-
wood, such as apple, the wall possesses high pectin levels, and the pre-
dominant hemicellulose fraction is xylan (Donev et al., 2018). However,
structural non-cellulosic polysaccharides, such as pectin and xylan, are
indigestible by human digestive enzymes in the upper gastrointestinal
tract (Tappia et al., 2020). Additionally, the presence of colloidal parti-
cles of pectin and xylan results in an undesirable cloudiness in apple juice
(Kuddus, 2018). Hence, pectinase and xylanase enzymes have been

commonly applied to clarification in the apple juice industry (Garg et al.,
2016; Nagar et al., 2012; Sharma and PatelSugandha, 2017).

A key concern with the use of enzymes in cost-sensitive food pro-
cessing operations is the relative expense of such biocatalysts. In this
context, immobilization technology affords the key advantage of enzyme
re-use, and can also enhance their operational and/or storage stability
(Cao and Moo-Young, 2011). Among various immobilization techniques
available, while the use of covalent binding to solid insoluble carriers has
extensively appeared in the literature (Novick et al., 2005), its use within
the food sector is relatively under-developed.

The main advantage of the covalent approach is the strength of
enzyme binding to a solid phase, theoretically minimizing in-process
enzyme leachate from the carrier (Mohy Eldin et al., 2011). Natural
polymers such as alginate beads have received considerable attention
due to their potential applications in the food and pharmaceutical
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industries (Mart�au et al., 2019). The continued search for adoption of
natural materials in food processing has also pointed to the exploitation
of genipin (from gardenia fruitGardenia jasminoides) as a potentially safer
alternative to the conventional crosslinker, glutaraldehyde, for activation
of alginate beads prior to covalent binding to enzymes (Tacias-Pascacio
et al., 2019). To the best of our knowledge, enzyme immobilization with
genipin-activated alginate beads for juice clarification has received little
attention. Thus, this work investigates the covalent coupling of pectinase
and xylanase to genipin-activated alginate beads for application in apple
juice clarification. The immobilized enzyme preparations were subse-
quently evaluated in terms of reusability and operational-storage
stability.

For process optimization purposes, a one-factor-at-a-time (OFAT)
approach is a traditional choice which requires changing only one factor
at any given time and keeping all other factors constant. Nevertheless,
the need for a non-laborious approach that considers the combined
interaction of the factors calls for the use of model-based optimization,
employing a statistical approach. Nonetheless, a statistical approach does
not serve the purpose of optimization for complex, and nonlinear sys-
tems. Therefore, an artificial neural network (ANN) is proposed as a
computational modeling technique that offers prominent advantages
over statistical modeling techniques in capturing non-predefined re-
lationships and non-linearity behaviour in complex systems (Sargent,
2001). Moreover, multiple studies have demonstrated that computa-
tional modeling (e.g. artificial neural network) is more accurate than
statistical modeling (e.g. response surface methodology) in enzyme
immobilization and juice clarification processes (Talib et al., 2019;
Youssefi et al., 2009). Hence, an artificial neural network was employed
to achieve the maximum recovery of enzyme fractional activity (%) of
pectinase and xylanase, as well as maximum apple juice clarification
using the immobilized enzymes. For instance, trained ANN model has
been successfully employed to optimize the immobilization process of
lipase from Candida rugosa on Amberjet® 4200-Cl using a multilayer
perceptron (Fatiha et al., 2013). Furthermore, back-propagation algo-
rithm has been employed to optimize the immobilization process of
cellulase from Trichoderma viride on Eudragit® L-100 (Zhang et al.,
2012). Moreover, trained ANN model has been successfully employed to
optimize apple juice clarification by ultrafiltration using Bayesian regu-
larization algorithm (G€okmenAçar et al., 2009), suggesting that incor-
poration into the present study could be beneficial, The results of the
algorithms were compared by minimized root mean squared error
(RMSE) and maximized coefficient of determination (R2).

2. Material and methods

2.1. Enzymes

Pectinase (912 U/ml) and xylanase (455 U/ml) were produced from
Mucor hiemalis AB1 (GenBank accession number: JQ912672.1) in our
laboratory (Hassan et al., 2020). Enzyme activity was determined by the
dinitrosalicylic acid (DNS) method of Miller (1959) using pectin (citrus
peel) or xylan (beechwood) as standards. Unless stated, all the chemicals
used in this work were commercial products of analytical grade (Sig-
ma-Aldrich, Ireland).

2.2. Enzyme immobilization

2.2.1. Experimental design and data acquisition for ANN modeling
Optimizations were based on the protocol established by (Khairudin

et al., 2015). Experimental design was carried out using STATGRAPHICS
Centurion XV software (StatPoint Technologies Inc. Warrenton, VA,
USA). A four-factor-five-level central composite rotatable design (CCRD)
was used to evaluate the fractional enzyme activity (%) recovered after
immobilization. The selected CCRD model consisted of four factors, viz.
genipin concentration (%) for alginate bead activation, enzyme loading
(U/ml), coupling time (min), and agitation rate (rpm). The factors and

their levels were obtained through preliminary tests and based on pre-
vious results from the literature (Pal and Khanum, 2011a). Table 1
summarizes the range and levels of the four factors.

The central composite design requires 30 experiments consisted of 16
factorial points, 8 axial points, and 6 central points. The design is rotatable
(CCRD) since the axial parameter value is α ¼ F1/4 ¼ 2, where F is the
number of factorial points (Asghar et al., 2014). Once the experimentswere
performed, the experimental dataset (30 experiments) were randomly
divided into two sets - training set and testing set - whereas experimental
values at predicted optimum conditions were used as the validating set.

2.2.2. Covalent immobilization of pectinase and xylanase
Initially, alginate beads were prepared by manually dropping sodium

alginate solution (3%, w/v) into the hardening solution (calcium chlo-
ride, 0.2 M) using a peristaltic pump (Bhushan et al., 2015). The beads
were collected using a filter funnel through a Whatman® (No. 1) paper
after 3 h of gentle stirring on a magnetic stirrer, and maintained in the
gelling solution (CaCl2, 0.02 M) overnight at 4 �C to harden. Afterwards,
the beads were washed with deionized water and further activated by
mixing with genipin solutions of varying concentrations, ranging from 3
to 12% (w/v) in citrate buffer (0.05 M, pH 5.0), and gently stirred to
ensure a homogeneous coating of cross-linker. Finally, the beads were
removed by filtration and washed with distilled water to remove the
unbound genipin. The resulting activated beads were used as carrier in
enzyme immobilization experiments.

The immobilization of pectinase and xylanase was performed by
orbital mixing (50–250 rpm) of an equal volume (1:1 ratio) of enzyme
solution (50–450 IU/ml) with activated beads for different durations
(30–150 min). The beads were removed by filtration and washed with
distilled water until no enzyme activity could be detected in the wash-
ings. The fractional enzyme activity (FEA, %) recovered after immobili-
zation was calculated using the following equation (Zhou et al., 2013):

Fractional enzyme activity (%) ¼ (A � Ainit) * 100

where A is the activity of immobilized enzyme on beads and Ainit is the
initial (free) enzyme activity.

2.2.3. Evaluation of the immobilized enzymes
The optimum reaction pH of the immobilized enzymes was measured

in the range between 2.0 and 11.0 using glycine-HCl buffer (0.1 M, pH
2.0), citrate buffer (0.1 M, pH 3.0–6.0), phosphate buffer (0.1 M, pH
7.0–8.0) and glycine-NaOH buffer (0.1 M, pH 9.0–11.0); and the opti-
mum temperature was measured in the range between 20 �C and 80 �C.
To evaluate the storage stability, immobilized enzymes were held for 30
days at 4 �C. For a reusability assessment, immobilized enzymes were
recovered by magnetic separation after each cycle of use and washed
with deionized water, and then a new cycle was run under the same
conditions for a total of 6 cycles. The enzyme activity in the first cycle
was assigned a value of 100%, and relative activity was calculated for the
successive cycles. All experiments were performed in triplicate.

2.3. Enzymatic treatment of apple juice

2.3.1. Experimental design and data acquisition for ANN modeling
A four-factor-five-level central composite rotatable design (CCRD)

that required 30 experiments was used to evaluate the juice clarification

Table 1
Independence factors and corresponding levels for enzyme immobilization.

Code Factors Units Levels

-α �1 0 þ1 þα

A Genipin %, w/v 0 3 6 9 12
B Enzyme load U/ml 50 150 250 350 450
C Coupling time min 30 60 90 120 150
D Agitation rate rpm 50 100 150 200 250
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(%). The selected CCRD model consisted of four factors, viz. pectinase
loading (U/ml of apple juice), xylanase load (U/ml of apple juice),
holding time (min), and temperature (�C). The factors and their levels
were obtained through preliminary tests and based on previous results
from the literature (Ravindran et al., 2019). Table 2 summarizes the
range and levels of the four factors.

The CCRD contained 16 factorial points, 8 axial points, and 6 central
points, with α value fixed at 2.0 for a total of 30 experiments. Once the
experiments were performed, the experimental dataset (30 experiments)
were randomly divided into two sets - training set and testing set - while
experimental values at predicted optimum conditions were used as the
validating set.

2.3.2. Clarification of apple juice using immobilized enzymes
Fresh apple fruits (Malus domestica) of Royal Gala variety (without

any visual defects) at commercial maturity were purchased from a local
market (Dublin, Ireland). The apples were washed with tap water,
chopped into small pieces, and later macerated in a domestic blender,
without addition of water, until a homogenous juice was obtained. The
concentrated juice was then pasteurized for 1 h at 60 �C (Naga Padma
et al., 2017). The filtered juice (pH 5.0) was used for the clarification
studies.

Fig. 1 illustrates the laboratory scale set up of a packed-bed reactor
using a glass column for enzymatic clarification of apple juice using the
immobilized enzymes (pectinase and xylanase) on alginate beads. The
enzymatic clarification experiments were performed by subjecting 25 ml
of apple juice to different concentrations of pectinase and xylanase
(10–50 U/ml of juice) for varying duration of holding times
(40–120min) within the range of temperatures between 40 �C and 60 �C.
Finally, the enzyme beads were removed, and treated apple juice
centrifuged (10,000 rpm, 15 min), followed by filtration using Whatman
no 1 filter paper, and this juice filtrate was used for further analysis. The
clarity of juice was expressed as percentage transmission (%T) that was
determined using a UV-1800 UV-VIS spectrophotometer (Shimadzu
Scientific Instruments, Columbia, USA) at a wavelength of 660 nm, and
using distilled water as a reference (Dey and Banerjee, 2014).

2.4. Artificial neural network (ANN) modeling and analysis

The commercial artificial intelligence software, NeuralPower® (CPC-
X Software, version 2.5, Carnegie, PA, USA) was employed for ANN
modeling and analysis. The networks were trained in a supervised
learning environment by different learning algorithms (incremental back
propagation, IBP; batch back propagation, BBP; quickprob, QP; and
Levenberg-Marquardt algorithm, LM). Multilayer normal feed-forward
was used to predict the response and the hyperbolic tangent function
(a.k.a. tanh) used as transfer function in the hidden and output layers. To
determine the optimal network topology, only one hidden layer with
varying number of neurons was used to develop different networks. The
comparison between the models were assessed using root mean square
error (RMSE) and correlation coefficient (R2). Models were further
assessed using a testing dataset to predict the unseen data (data not used
for ANN training). For process optimization, three different optimization
algorithms were employed, namely rotation inherit optimization (RIO),
particle swarm optimization (PSO), and genetic algorithm (GA). After
determination of optimum conditions, experimental validation was

carried out to calculate the percentage error between the experimentally
measured values and the ANN predicted value using the formula (Zhang
et al., 2020) as follows:

Error (%) ¼ [(P0-P)/P] *100

where, P0 is the ANN-predicted recovery of enzyme fractional activity,
and P is the observed recovery of enzyme fractional activity measured in
the experiment.

3. Results and discussion

3.1. Enzyme immobilization

3.1.1. The ANN model training
A neural network with optimal number of neurons is required to

avoid over- or undertraining of the training dataset. If neurons are lower
than the optimum range, undertraining would result in a poor fit to the
training dataset. On the other hand, increasing the number of hidden
neurons above the optimum rangemay lead to overfitting, as the network
may end up memorizing the training data. Although this would result in
very good fit to the training dataset, the model would have poor gener-
alization ability to handle testing and unseen datasets.

The larger subset (n¼ 25) comprising more than 80% of the available
experimental data was used for the ANN training and model building. To
determine the optimal topology for the networks, the number of neurons
in the hidden layer was varied from 1 to 7. Subsequently, the decision on
the optimum topology was based on the minimum RMSE (and the closer
R2 to 1) of testing set values. Fig. 2 illustrates the performance of the
network for testing data versus of the number of neurons in the hidden
layer using different learning algorithms.

According to the RMSE, the network with 3 hidden neurons produced
the optimum performance when any of the four algorithms (IBP, BBP, QP
and LM) was employed. Therefore, the optimum topology of the net-
works (Fig. 3) was 4-3-1 (four neurons in the input layer, three neurons in
the hidden layer and one neuron in the output layer).

Table 2
Independence factors and corresponding levels for clarification of apple juice.

Code Variables Units levels

-α �1 0 þ1 þα

A Pectinase load U/ml of apple juice 10 20 30 40 50
B Xylanase load U/ml of apple juice 10 20 30 40 50
C Holding time min 40 60 80 100 120
D Temperature �C 40 45 50 55 60

Fig. 1. Schematic diagram of the experimental set-up for clarification of
apple juice.
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3.1.2. Selection neural network model
The model architecture of 4-3-1 was selected as the best topology for

the four learning algorithms. Moreover, as shown in Fig. 4, LM and QP
were at maximum R2, while its RMSE were at the lowest value in com-
parison with the other algorithms for predicting the recovered fractional
enzyme activity (%) of pectinase and xylanase, respectively. Back-
propagation is an extensively used family of supervised training algo-
rithms based on the error-correction learning rule and can be
implemented in either incremental or batch mode (Kahraman, 2012).
Backpropagation algorithm has been improved for a faster training pro-
cess (‘quick propagation- QP- algorithm’ (Awolusi et al., 2018);), and
enhanced performance (‘Levenberg Marquardt – LM - algorithm’ (Reddy
et al., 2018);). It was reported that QP gave the best performance in
modeling the enzymatic synthesis of betulinic acid ester when compared
with IBP, BBP, and LM (Moghaddam et al., 2010). On the other hand,
Adnani et al. (2011) employed the LM algorithm for lipase-catalyzed
synthesis of sugar alcohol ester. It is worth noting that there is no ideal
algorithm per se that will give the best results in the training of any
dataset, and the result of training is highly dependent on the architecture
of the network, the training algorithm, the size of training dataset and
data noise levels (Jacobsson, 1998).

Table 3 displays the ANN predicted values for the training datasets
using LM-4-3-1 for pectinase immobilization and QP-4-3-1 for xylanase
immobilization. The results revealed the close correlation between the
experimental and the predicted values. The R2 and RMSE metrics were
used to evaluate the developed models. The R2 value was 0.99 for both
models, where RMSE values were 1.37 and 1.48 for pectinase and xyla-
nase immobilization models, respectively. The obtained R2 of the two
models is very close to 1, indicating a good adjustment between the
observed and predicted values. Moreover, the obtained low RMSE values
of the two models did not show significant disparity, indicating relatively
similar performance.

A subset (n ¼ 5) comprising just above 15% of the available experi-
mental data was used for ANN testing to predict the unseen data (data not
used for ANN training). Hence, the trained ANNs was tested against the
corresponding testing datasets to assess the predictive power of the
developed ANN models. Table 4 displays the ANN predicted values for
the testing datasets using LM-4-3-1 for pectinase immobilization and QP-
4-3-1 for xylanase immobilization. The R2 value was 0.99 for both
models, where RMSE values were 1.73 and 1.86 for pectinase and xyla-
nase immobilization models, respectively. The obtained R2 indicated that
the regression predictions perfectly fit the data. In addition, the obtained
RMSE values showed a small difference between training and testing
datasets (0.36 for pectinase immobilization model, and 0.38 for xylanase
immobilization model), indicating good generalization capability and
accuracy of the trained ANN models.

3.1.3. Optimization of enzyme immobilization process using trained ANNs
The optimum conditions for enzyme (pectinase and xylanase)

immobilization were determined by comparing three different algo-
rithms, which were rotation inherit optimization (RIO), particle swarm
optimization (PSO), and genetic algorithm (GA). However, there was no
significant difference in values of fractional enzyme activity (%) pre-
dicted by the three different algorithms. The predicted conditions for
optimum pectinase fractional activity (82.56%) were 50 U/ml xylanase
with 12% of genipin crosslinker, with a coupling time of 120 min and
agitation rate of 213 rpm. Similarly, the predicted conditions for opti-
mum xylanase fractional activity (83.89%) were also 50 U/ml xylanase
with 12% of genipin crosslinker and coupling time of 120 min, but with
an agitation rate of 250 rpm. The grid color charts of pectinase and
xylanase fractional activity (%) are shown in Figs. 5 and 6, respectively.

Pal and Khanum (2011a) reported a slightly higher RSM-predicted
recovery of xylanase fractional activity (89.5%) on alginate beads
compared to our ANN-predicted values (84%) using 8.31% gluterdehyde
crosslinker, 250 U/ml of xylanase from Aspergillus niger, coupling time of
120 min and an agitation rate of 200 rpm. On the other hand, Abdel
Wahab et al. (Abdel Wahab et al., 2018) reported a slightly lower
RSM-predicted recovery of fractional activity for pectinase (80.43%)
comparing to our ANN-predicted values (83%) using 5% poly-
ethyleneimine (PEI), 1.5% gluteraldehyde, 15 U/ml of pectinase from
Aspergillus awamori, and a coupling time of 6 h.

From Figs. 5a and 6a, it is observed that with increase in genipin
concentration, immobilization efficiency will also theoretically increase,
as more attachment points become available for enzyme immobilization
on the alginate beads. However, increasing the enzyme load (pectinase or
xylanase) will not always lead to an increase in immobilization effi-
ciency, presumeably due to insufficient attachment points of genipin for
enzyme. Similar results were reported by Sukri and Munaim (2017)
where the highest recovery of xylanase fractional activity was achieved
when the alginate beads were activated by a higher concentration of
glutaraldehyde and a lower enzyme loading. As one might expect, a
longer coupling time and higher genipin concentration resulted in higher
immobilization efficiency at constant enzyme loading, as shown in
Figs. 5b and 6b. On the other hand, longer coupling time and higher
enzyme loading did not result in higher immobilization efficiency at
constant genipin concentration, as shown in Figs. 5d and 6d.

The effect of agitation rate on the immobilization efficiency (Figs. 5c
and 6c) was less significant compared to the effect of other variables,
most probably as mixing serves the single purpose of generating a ho-
mogeneous suspension of bead- and enzyme solution. Such a homoge-
neous suspension improves contact of the free enzyme with the beads,
which results in higher immobilization efficiency. Hence, as the agitation
rate increases above the optimum rate, immobilization efficiency shows
no significant improvement. Sukri et al. (Sabrina et al., 2020) reported an
equivalent result, reporting that an agitation rate of 200 rpm resulted in
an optimum recovery of fractional activity (83.93%) of xylanase (200 U)
on alginate beads activated by glutaraldehyde (12%, w/w), but no im-
provements could be achieved in using a higher rate.

Fig. 2. The performance of different learning algorithms (Incremental backpropagation algorithm, IBP; Batch backpropagation algorithm, BBP; Quick propagation
algorithm, QP; and Levenberg-Marquardt algorithm, LM) for training data versus of the number of neurons in the hidden layer for predicting the recovery of enzyme
fractional activity of pectinase (A) and xylanase (B) onto alginate beads.
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The model validation was carried out by running at the predicted
conditions (Table 5). As a result of three successive runs, only slight
variation (1.5–1.6%) in the value of recovered enzyme fractional activity
was observed, suggesting that the optimal recovery conditions for
enzyme fractional activity of both enzymes generated by the ANN algo-
rithms were reliable and valid.

3.1.4. Evaluation of the immobilized enzymes
Immobilized enzymes were evaluated by studying their key required

operational parameters (temperature, pH, storage and recycle stability)
in comparison with free forms (Fig. 7). As shown in Fig. 7a, the
immobilization did not change the optimal temperature of xylanase
(60 �C) at pH 5. However, the optimum temperatures of the free and
immobilized pectinase were 50 �C and 60 �C, respectively. Such a for-
ward shift in the temperature optimum of immobilized pectinase by
10 �C could be the result of improved enzyme rigidity after covalent
binding on alginate beads (Ortega et al., 2009). To study the
pH-dependent activities of the free and immobilized enzymes, the
temperature of assay mixtures was maintained at 60 �C while pH values
were varied from 2.0 to 11.0 (Fig. 7b). Although the immobilized

enzymes retained the optimal pH (5.0) of their free pectinase and
xylanase counterparts, the pH scope of the immobilized pectinase was
expanded, and it retained more than 80% activity over a wider pH
range of 4.0–8.0 than that of the free form (pH range of 5.0–7.0).
Similarly, the immobilized xylanase exhibited improved pH stability,
and retained greater than 80% activity over a wider pH range of 3.0–7.0
than that of the free form (pH range of 4.0–6.0). These results may be
attributed to the free protein undesired aggregation that is prevented by
the covalent bonding of the enzyme onto alginate beads during the
immobilization process (Mostafa et al., 2019).

The data in Fig. 7c show the storage stability of enzymes immobilized
onto alginate beads over 30 days at 4 �C. Immobilized pectinase and
xylanase retained 60% and 51%, respectively, of their initial activity after
30 days of storage. In contrast, the free pectinase and xylanase lost more
than 46% and 51%, respectively, of their initial activity after 20 days of
storage. The multiple re-use capability of immobilized enzymes can be
achieved by recovering the beads from the reaction mixture, thereby
reducing costs. As shown in Fig. 7d, the residual activity of the immo-
bilized enzymes was 55% (pectinase) and 51% (xylanase), after five
consecutive cycles. The activity loss of the immobilized enzyme may be

Fig. 3. The illustration of multilayer normal feed-forward neural network. The neural network having three inputs of variables (genipin, enzyme load, coupling time,
and agitation rate), one hidden layer with three neurons (nodes) and one output of response (enzyme activity recovery).

Fig. 4. Comparison of different learning algorithms (Incremental backpropagation algorithm, IBP; Batch backpropagation algorithm, BBP; Quick propagation algo-
rithm, QP; and Levenberg-Marquardt algorithm, LM) with 6 neurons in the hidden layer for predicting the recovery of enzyme fractional activity of pectinase and
xylanase onto alginate beads.
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due to a combination of inactivation and enzyme leakage from the sup-
port (Mohamad et al., 2015).

3.2. Enzymatic treatment of apple juice

3.2.1. The ANN model training
The larger subset (n¼ 25) comprising more than 80% of the available

experimental data was used for the ANN training and model building. To
determine the optimal topology for the networks, the number of neurons
in the hidden layer was varied from 1 to 7. A decision on the optimum
topology was subsequently based on the minimum RMSE (and the closer
R2 to 1) of the testing set values. Fig. 8a illustrates the performance of the
network for testing data versus the number of neurons in the hidden layer
using different learning algorithms. According to the RMSE, the network
with 3 hidden neurons produced the optimum performance when any of

the four algorithms (IBP, BBP, QP and LM) was employed. Therefore, the
optimum topology of the networks (Fig. 8b) was 4-3-1 (four neurons in
the input layer, three neurons in the hidden layer and one neuron in the
output layer).

3.2.2. Selection neural network model
The model architecture of 4-3-1 was selected as the best topology for

the four learning algorithms. Fig. 9 presents the predictions using
different learning algorithms with optimum architecture (4-3-1) versus
the observed values of the juice clarification (%) which were obtained in
the laboratory.

The comparison of the RMSE proved that the BB with 4 nodes in
input, 3 nodes in hidden, and 1 node in the output layer (BB-4-3-1)
presented the minimum RMSE, while its R2 was at the maximum
value. As illustrated, the RMSE was 1.21, and the R2 was 0.998 which

Table 3
Experimental design showing the observed and predicted recovery values of fractional enzyme activity (%) as output for training dataset.

Run Independent Variables Response

A B C D Fractional enzyme activity (%)

Pectinase Xylanase

Observed Predicted Observed Predicted

Training Data
1 3 150 60 100 18.66 16.96 16.86 16.77
2 3 150 120 200 62.25 63.77 61.51 61.52
3 6 250 90 150 31.04 31.93 30.81 31.95
4 6 50 90 150 60.44 60.37 61.12 61.30
5 12 250 90 150 42.95 42.95 41.16 42.49
6 9 350 120 200 25.49 25.85 26.24 26.08
7 9 350 60 100 36.24 36.04 34.66 35.14
8 3 350 120 200 31.89 31.55 29.22 28.00
9 3 150 60 200 26.98 25.53 26.99 26.28
10 9 350 120 100 36.49 36.21 35.91 34.26
11 6 250 30 150 30.64 30.67 28.48 25.97
12 3 350 120 100 20.56 20.56 21.94 21.50
13 9 150 60 100 42.5 44.18 44.35 46.67
14 6 450 90 150 18.83 18.83 16.3 16.85
15 0 250 90 150 10.41 12.34 12.00 13.50
16 6 250 90 150 32.01 31.93 31.27 31.95
17 3 350 60 100 15.92 13.37 17.28 20.27
18 6 250 90 50 41.81 41.84 40.68 37.55
19 6 250 90 150 31.92 31.93 31.23 31.95
20 9 150 120 200 83.26 80.23 80.53 79.01
21 6 250 90 150 33.19 31.93 31.83 31.95
22 3 350 60 200 15.85 18.87 16.04 14.55
23 9 150 60 200 51.61 52.33 48.53 46.75
24 6 250 90 150 31.74 31.93 31.14 31.95
25 6 250 90 250 43.75 42.32 42.86 43.83
R2 0.99 0.99
RMSE 1.37 1.48

Table 4
Experimental design showing the observed and predicted recovery values of fractional enzyme activity (%) as output for testing dataset.

Run Independent Variables Response

A B C D Fractional enzyme activity (%)

Pectinase Xylanase

Observed Predicted Observed Predicted

Testing Data
1 3 150 120 100 46.07 45.78 44.02 42.33
2 0 250 250 150 64.49 62.56 63.45 61.40
3 6 250 90 150 32.41 31.93 31.46 32.01
4 9 150 120 100 75.91 73.89 74.56 72.35
5 9 350 60 200 15.92 13.62 17.45 18.68
R2 0.99 0.99
RMSE 1.73 1.86
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indicated the great predictive accuracy of the model. Therefore, BB-4-
3-1 was selected as the final optimum provisional model of the juice
clarification for an evaluation test. Table 6 displays the ANN predicted
values for the testing datasets using BB-4-3-1 for juice clarification
(%). It is worth noting that the batch algorithms are effective in
training small datasets with small network topologies (Plagianakos
et al., 2001).

A subset (n ¼ 5) comprising just above 15% of the available experi-
mental data was used for ANN testing to predict the unseen data (data not
used for ANN training). Hence, the trained ANNs was tested against the
corresponding testing datasets to assess the predictive power of the
developed ANN models (Table 7). The R2 value was 0.99, where RMSE
value was 1.84 for the trained ANN. Such an R2 value indicates that the

regression predictions perfectly fit the data. In addition, the obtained
RMSE values showed a small difference between training and testing
datasets (0.62), indicating good generalization capability and accuracy of
the trained ANN model (BB-4-3-1).

3.2.3. Optimization of juice clarification process using trained ANNs
The optimum points for juice clarification were determined by

comparing three different algorithms, namely rotation inherit optimization
(RIO), particle swarm optimization (PSO), and genetic algorithm (GA).
However, there was no significant difference in values of enzyme activity
recovery (%)predictedby the algorithms.Thepredicted conditions for juice
clarification (85.62%) were 50 U of pectinase/ml of juice and 20 U of
xylanase/ml of juice for 100min at 57 �C. Thus, ourfindings are in linewith

Fig. 5. Grid color charts representing the effect of independent variables on recovery of pectinase enzyme fractional activity (%): (a) Effect of genipin concentration
and pectinase load on enzyme fractional activity recovered when coupling time and agitation rate are fixed at 120 min and 213 rpm, respectively; (b) Effect of genipin
concentration and coupling time on enzyme fractional activity recovered when pectinase load and agitation rate are fixed at 50 U/ml and 213 rpm, respectively; (c)
Effect of genipin concentration and agitation rate on enzyme fractional activity recovered when pectinase load and coupling time are fixed at 50 U/ml and 120 min,
respectively; (d) Effect of pectinase load and coupling time on enzyme fractional activity recovered when genipin concentration and agitation rate are fixed at 12% (w/
v) and 213 rpm, respectively; (e) Effect of pectinase load and agitation rate on enzyme fractional activity recovered when genipin concentration and coupling time are
fixed at 12% (w/v) and 120 min, respectively; and (f) Effect of coupling time and agitation rate on enzyme fractional activity recovered when pectinase load and
genipin concentration are fixed at 50 U/ml and 12% (w/v), respectively.
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previous literature (Rai et al., 2004; Sin et al., 2006) confirming that
enzymatic treatment for juice clarification is greatly influenced by enzyme
loading, holding time and temperature.After the experimental validation of

themodel using the optimization conditions, it was found that the observed
value (84.33� 0.32%)was close to that predicted (85.62%), suggesting the
appropriateness of the developed ANN model.

Similarly, Singh and Gupta (2004) achieved apple juice clarification of
85% (%T650) using polygalacturonase from Aspergillus niger (15 IU/ml) in
the presence of 0.01% gelatin at 45 �C and with a 6 h holding time. The
most effective clarification (%T660, 97%) was reported by Dey and Bane-
rjee (2014) with 1% polygalacturonase fromAspergillus awamoriNakazawa
(9.87 U/ml) and 0.4% α-amylase from A. oryzae (899 U/ml), in the pres-
ence of 10 mM CaCl2 at 50 �C and with a 2 h holding time. Also, Dey et al.
(2014) reported the maximum transmittance of 93% (%T660) in clarified
apple juice upon enzymatic treatment using polygalacturonase from
Aspergillus awamoriNakazawa (9.87 U/ml) at 50 �C and a 2 h holding time.

Additionally, researchers have previously reported that the treatment
with xylanase positively contributes to the clarity of apple juice. For

Fig. 6. Grid color charts representing the effect of independent variables on recovery of xylanase enzyme fractional activity (%): (a) Effect of genipin concentration
and xylanase load on enzyme fractional activity recovered when coupling time and agitation rate are fixed at 120 min and 250 rpm, respectively; (b) Effect of genipin
concentration and coupling time on enzyme fractional activity recovered when xylanase load and agitation rate are fixed at 50 U/ml and 250 rpm, respectively; (c)
Effect of genipin concentration and agitation rate on enzyme fractional activity recovered when xylanase load and coupling time are fixed at 50 U/ml and 120 min,
respectively; (d) Effect of xylanase load and coupling time on enzyme fractional activity recovered when genipin concentration and agitation rate are fixed at 12% (w/
v) and 250 rpm, respectively; (e) Effect of xylanase load and agitation rate on enzyme fractional activity recovered when genipin concentration and coupling time are
fixed at 12% (w/v) and 120 min, respectively; and (f) Effect of coupling time and agitation rate on enzyme fractional activity recovered when xylanase load and
genipin concentration are fixed at 50 U/ml and 12% (w/v), respectively.

Table 5
Experimental validation of the optimization values predicted by ANN for re-
covery of fractional enzyme activity (%).

Replicates Pectinase Xylanase

Predicted Observed Predicted Observed

1 82.56 80.57 83.89 82.56
2 81.96 81.92
3 81.45 83.14

Mean 81.33 Mean 82.54
Error (%) 1.52 Error (%) 1.64

S.S. Hassan et al. Current Research in Food Science 3 (2020) 243–255

250



instance, the treatment of juice with xylanase (15 IU/g of apple pulp)
from Bacillus pumilus SV-85S lead to a clarity in terms of % transmittance
of approximately 42 (%T660) at 40 �C, with a 30 min holding time (Nagar
et al., 2012). Adigüzel and Tunçer (2016) reported the maximum

transmittance of about 18% (%T660) in clarified apple juice upon enzy-
matic treatment using xylanase from Streptomyces sp. AOA40 (12.5 U/ml
of apple juice) at 60 �C and a 90 min holding time. Also, Phadke and
Momin (2015) reported a maximum transmittance of 20% (%T650) in

Fig. 7. Panels (A–C) shows the effect of temperature (A), pH (B), storage time (C), and recycle count (D) on relative activity of immobilized pectinase and xylanase in
comparison with free enzyme.

Fig. 8. The left panel (a), shows the performance of different learning algorithms (Incremental backpropagation algorithm, IBP; Batch backpropagation algorithm,
BBP; Quick propagation algorithm, QP; and Levenberg-Marquardt algorithm, LM) for training data versus of the number of neurons in the hidden layer for predicting
the apple juice clarification (%) using pectinase and xylanase immobilized onto alginate beads. The right panel (b), shows schematic diagram of the optimal multi-
layer, normal feed-forward neural network architecture for apple juice clarification.

S.S. Hassan et al. Current Research in Food Science 3 (2020) 243–255

251



clarified juice upon enzymatic treatment using xylanase from Bacillus
megaterium (20 U/g of apple pulp) at 37 �C and a 4 h holding time.

Madhu et al. (2015) achieved apple juice clarification of approxi-
mately 42%, and 49% (%T650) using enzyme cocktails (cellulase,

pectinase and xylanase) from P. exigua and A. niger, respectively, at 60 �C
and a 50 h holding time. The study of Pal and Khanum (2011b) explored
a synergistic effect of xylanase, pectinase and cellulase to improve clarity
of pineapple juice, achieving about 81% (%T650) clarity.

Fig. 10 demonstrates the importance of effective parameters on
apple juice clarification as an output of the model. The importance
values of the parameters were pectinase loading > xylanase
loading > temperature > holding time in the selected range of the
variables. Thus, the effects of the two most important parameters
(pectinase and xylanase loadings) on apple juice clarification are pre-
sented in Fig. 11, where temperature and time were kept constant at
the optimal values (100 min, and 57 �C, respectively). As shown in
Fig. 11, apple juice clarity increased with an increase in pectinase
rather than xylanase loading at optimum reaction conditions (100 min,
and 57 �C). This can be attributed to the fact that apples are particu-
larly rich sources of pectin rather than xylan.

Finally, Table 8 summarizes application data sheets of different
commercial enzyme preparations available in the market for apple juice
clarification and suggests a role for the use of immobilized enzyme beads
developed in our study.

Fig. 9. The scatter plots of the predicted juice clarification versus the observed juice clarification for training dataset that shows the performed R2 and RMSE of
different learning algorithms at optimal neural network architecture (4-3-1).

Table 6
Experimental design showing the observed and predicted values of juice clari-
fication (%) as output for training dataset.

Run Independent Variables Response

A B C D Juice clarification (%)

Observed Predicted

Training Data
1 40 20 60 55 50.46 50.32
2 30 30 80 50 33.79 32.84
3 20 40 100 55 29.96 30.21
4 50 30 80 50 44.79 44.68
5 20 20 60 55 30.19 29.86
6 20 40 60 55 20.27 17.34
7 40 40 60 45 36.48 35.51
8 20 20 100 45 47.46 47.20
9 30 50 80 50 15.14 18.24
10 20 20 100 55 67.49 67.73
11 40 20 60 45 50.84 49.79
12 20 40 100 45 25.75 23.80
13 30 30 80 50 33.79 34.36
14 40 40 100 55 29.69 28.82
15 30 30 80 50 33.79 34.63
16 40 20 100 55 85.80 84.82
17 30 30 40 50 28.97 28.34
18 30 30 80 50 33.79 34.63
19 40 20 100 45 79.37 79.99
20 20 20 60 45 16.96 17.73
21 30 30 80 50 33.79 34.17
22 40 40 60 55 18.59 20.19
23 10 30 80 50 11.19 10.84
24 30 30 80 40 42.48 44.02
25 30 30 80 60 46.31 46.64
R2 0.99
RMSE 1.22

Table 7
Experimental design showing the observed and predicted values of juice clari-
fication (%) as output for testing dataset.

Run Independent Variables Response

A B C D Juice clarification (%)

Observed Predicted

Testing Data
1 30 10 80 50 67.02 64.36
2 40 40 100 45 39.09 39.88
3 20 40 60 45 21.18 22.09
4 30 30 120 50 68.87 71.61
5 30 30 80 50 33.79 32.90
R2 0.99
RMSE 1.84
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4. Conclusion

The artificial neural network (ANN) modeling was adopted to simu-
late and predict the activity recovery of enzymes (pectinase and xyla-
nase) immobilized onto genipin-activated alginate beads, as well as their
application in apple juice clarification. The predicted conditions for

optimum recovery of pectinase fractional activity (~83%) were 50 U/ml
pectinase with 12% of genipin crosslinker and a coupling time of 120min
(agitation rate of 213 rpm). On the other hand, the predicted conditions
for optimum recovery of xylanase fractional activity (~84%) were also
50 U/ml xylanase with 12% of genipin crosslinker and coupling time of
120 min, but at an agitation rate of 250 rpm. A maximum recovery of

Fig. 10. Importance of effective parameters on apple juice clarification.

Fig. 11. Three-dimensional surface plot of pectinase load and xylanase load effects on apple juice clarification. The other variables (temperature and time) were kept
constant at the optimal values.

Table 8
Application of different commercial enzyme preparations in apple juice clarification.

Company Product Description Dosage Application Ref.

pH Temp. (�C) Time (min)

DSM RAPIDASE Pectinases from A. niger and A. aculeatus 20–40 mL/1000 L of Juice 3.5–5.5 45–55 90–120 Mecti (2015)
Biovet Pectinase Pectinesterase, polygalacturonase, pectinlyase

from A. niger
2–20 g/ton 3.5–6.0 50–55 30–60 Biovet (2020)

Eaton Panzym Pro Clear Polygalacturonase from A. niger and A. aculeatus 20–50 mL/1,000 L of Juice – 50–55 60–120 Eaton (2015)
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fractional activity was observed to be about 81–83% for both enzymes.
Moreover, the predicted conditions for juice clarification (85.62%) were
50 U/ml of pectinase, 20 U/ml of xylanase for 100 min at 57 �C. It was
found also that the observed value (84.33 � 0.32%) was close to that
predicted (85.62%). The developed model indicated pectinase loading as
the most important factor, having a dramatic influence on apple juice
clarification. Enzyme beads prepared at optimum activity recovery con-
ditions were suitable for up to 5 repeated uses, losing only ~45% (pec-
tinase) and ~49% (xylanase) of their initial activity.
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