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Abstract 

Silver nanoparticles (AgNP) emerged as a promising reagent for cancer therapy with 

oxidative stress implicated in the toxicity. Meanwhile, studies reported cold atmospheric 

plasma (CAP) generation of reactive oxygen and nitrogen species has selectivity towards 

cancer cells. Gold nanoparticles display synergistic cytotoxicity when combined with CAP 

against cancer cells but there is a paucity of information using AgNP, prompting to 

investigate the combined effects of CAP using dielectric barrier discharge system (voltage of 

75 kV, current is 62.5mA, duty cycle of 7.5kVA and input frequency of 50-60Hz) and 10nm 

PVA-coated AgNP using U373MG Glioblastoma Multiforme cells. Cytotoxicity in U373MG 

cells was >100-fold greater when treated with both CAP and PVA-AgNP compared with 

either therapy alone (IC50 of 4.30 µg/mL with PVA-AgNP alone compared with 0.07 µg/mL 

after 25s CAP and 0.01 µg/mL 40s CAP). Combined cytotoxicity was ROS-dependent and 

was prevented using N-Acetyl Cysteine. A novel darkfield spectral imaging method 

investigated and quantified AgNP uptake in cells determining significantly enhanced uptake, 

aggregation and subcellular accumulation following CAP treatment, which was confirmed 

and quantified using atomic absorption spectroscopy. The results indicate that CAP 

decreases nanoparticle size, decreases surface charge distribution of AgNP and induces 

uptake, aggregation and enhanced cytotoxicity in vitro.  

 

Keywords: Cancer, Glioblastoma Multiforme, Silver Nanoparticles, Cold Atmospheric 

Plasma, Synergy 

 

 

  



Introduction 

Glioblastoma Multiforme (GBM) is an aggressive grade IV astrocytoma. It is the most 

dominant form of central nervous system malignancy, accounting for 47.1% of all tumours 

diagnosed in the CNS[1]. The current predominant treatment is surgical resection followed 

by radiotherapy and chemotherapy with Temozolomide[2]. However, conventional 

treatments are rarely successful and are plagued with poor target delivery, poor efficacy and 

systemic toxicity. Despite intensive therapeutic strategies and medical care, approximately 

5% of GBM patients survive five years after diagnosis[1].  In addition, more than 90% of 

GBM patients reveal recurrence at or near the primary site after treatment, underlining the 

need for a new effective therapeutic approach[3]. 

Nanoparticles (NP) have been used for therapy in diverse fields as a radiosensitiser[4], 

fluorescent labels[5], transfection vectors[6] and as drug carriers[7]. The size, shape and 

material composition confer advantageous properties on NP for various applications[8]. In 

particular, silver nanoparticles (AgNP) are the most widely used nanomaterial in consumer 

products such as household, cosmetics and healthcare-related products due to its 

antimicrobial properties through the release of silver ions[9]. The generation of reactive 

oxygen species has been associated with AgNP toxicity, making it useful for anticancer 

therapy[10]. Studies have shown that AgNP induce alterations in metabolic activity, cell 

morphology and decreased cell viability. Treatment with AgNP showed higher selectivity 

towards aggressive brain cancer human glioblastoma cells (U251) compared with a normal 

human lung fibroblast cells (IMR-90), leading to mitochondrial damage and increased in 

reactive oxygen production, resulting with DNA damage[11]. The combined NPs advantages 

of small size and large surface area has led to their use as drug delivery systems. In 

particular, AgNPs have attracted attention due to their intrinsic anticancer activity and 

effective drug delivery agents in previous studies[12–14]. Studies have shown AgNPs 

capability of crossing the blood brain barrier (BBB), providing opportunities and tackling 

challenges associated with NP drug delivery to the central nervous system (CNS)[15–17]. 

Recently, metal nanoparticles have been utilised to enhance cytotoxicity in cancer cells 

using oxidising treatments such as radiation therapy[18,19]. Liu, et al, demonstrated AgNP 

outperforming gold nanoparticles (AuNP) in radiosensitising glioma cell line U251, where 

combination of AgNP and radiotherapy showed significant anti-glioma effect in vitro and in 

vivo in comparison to AuNP[4]. These studies resulted to multitude applications of employing 

NPs to cancer treatments through a vast number of strategies. 

 



More recently, plasma treatment has shown potential as a future cancer therapy. Plasma is 

the fourth state of matter next to solid, liquid and gas. It can be artificially produced for its 

versatile applications[20]. Plasmas are classified as either thermal or non-thermal, also 

known as cold atmospheric plasma (CAP). The non-thermal nature of CAP coupled with a 

wide range of biological effects has led to the emergence of CAP across a range of 

biomedical applications including wound healing, dentistry and sterilisation[21]. CAP has low 

power requirements and is achieved at low or atmospheric pressure. CAP provides a rich 

environment of reactive oxygen species (ROS) such as singlet oxygen (1O2), superoxide 

(·O2
-), ozone (O3), hydroxyl radicals (·OH), hydrogen peroxide (H2O2) and generates reactive 

nitrogen species (RNS) such as nitric oxide (·NO) nitrite and nitrate anions (NO2 and 

NO3)[22]. Recent studies have shown CAP’s potential application in cancer therapy with 

biochemical features of cancer cells including high levels of ROS due to oncogenic 

transformation and with the application of CAP triggered self-perpetuating process of RONS 

induction, which  effectively showed to induce apoptosis selectively against cancer cells 

overcoming the problem with conventional treatments[23]. In contrast to NPs systemic 

application, the effects of CAP are mostly associated with the location of treatment with few 

systemic effects observed and hence the recent trend in research of CAP is the interaction 

at cellular level [24]. The localised interaction of CAP with mouse fibroblast cells, BEL-7402 

liver cancer cells and PAM212 cancer cells demonstrated detachment from extracellular 

matrix when treated[25]. CAP’s ability to change biochemical signalling intracellularly without 

thermal and electrical damage creates a suitable biomedical application[26]. The operating 

system of plasma discharged used in this study is the dielectric barrier discharge (DBD), DIT 

120, which generates high voltage output of non-thermal plasma between two aluminium 

electrodes[27]. CAP induced by the DIT 120 system has previously been reported to induce 

cell death at higher exposures and enhance uptake of gold nanoparticles at lower exposures 

in U373MG glioblastoma multiforme cancer cells, the cell line used in this study[28,29]. 

A synergistic cytotoxic effect has been reported when CAP and various nanoparticles are 

combined, as first reported in 2009 by Kim, et al.,  who found a 5-fold increase in cytotoxicity 

on G361 melanoma cancer skin cells when treated with ambient air CAP combined with 

antibody-conjugated AuNP [30]. Since then, studies using nanomaterials with various sizes 

and compositions have been used. For example, electrosprayed core-shell nanoparticle 

fabricated with 5- Fluorouracil synergistically inhibited cell growth of epithelial breast cancer 

cells MBA-MD-231 when used with CAP[31]. The plasma jet device using helium and 

oxygen gas in combination with Iron NPs significantly decreased viability of human breast 

adenocarcinoma cancer cells, MCF-7[32]. Our own group unveiled 25-fold enhanced 

cytotoxicity on U373MG cells when 20 nm citrate-capped AuNP were combined with non-



toxic doses of CAP, demonstrating enhanced AuNP endocytosis and subcellular 

trafficking[29]. Meanwhile, interest in AgNP has shifted beyond antimicrobial use to potential 

additional anticancer applications[33–35]. Evidence is emerging that oxidative stress 

induced by low dose AgNP is implicated in their cytotoxicity[36–39]. Despite AgNP being the 

main commercial nanomaterial used worldwide, there are limited reports on combining AgNP 

with other current therapies to investigate its possible enhanced effect in comparison to 

various type of nanoparticles studied.  

In consideration of the advantages of both AgNP and CAP, the importance of oxidative 

stress in both modes of cytotoxicity, the enhancement of AgNP toxicity when combined with 

other oxidising treatments and the finding that CAP can induce cellular uptake of 

nanomaterials, we chose to investigate whether synergistic cytotoxicity exists between AgNP 

combined with CAP and to explore the interaction using the U373MG GBM cell line model.  

 

Methods 

Chemicals 

All chemicals used were obtained from Sigma-Aldrich (Vale Road, Arklow, County Wicklow, 

Ireland) unless specified otherwise.  

 

Cell culture 

Human Glioblastoma Multiforme cells U373MG-CD14, (ECACC 09063001; U-251 MG, 

formerly known as U-373 MG) derived from a malignant tumour were obtained from Dr. 

Michael McCarthy (Trinity College Dublin)[40]. U373MG cells were maintained in DMEM/F-

12 Ham (Sigma-Aldrich, D8062) and were supplemented with 10% v/v foetal bovine serum. 

The cell line was incubated at 37°C and 100% humidity containing 5% CO2. U373MG were 

sub-cultured at 70-80% confluency using 1:1 ratio of 0.25% trypsin (Gibco by Life 

Technologies, UK) in Hank’s balanced salt solution and 0.1% EDTA in phosphate buffer 

saline. 

 

AgNP preparation 

The top-down synthesis used in the study was previously reported by Mavani et al[41]. Cold 

synthesis was employed with chemical reduction of silver nitrate (AgNO3) of 0.001M with ice-

cold reducing agent sodium borohydride (NABH4) of 0.002M in the presence of a stabiliser 



formed AgNP. 2ml of 1% polyvinyl alcohol (PVA) in millipore water (Simplicity 185, 18.2 

MΩ.cm at 25°C resistivity) was added with 2ml of silver nitrate and mixed well[42]. The ice-

cold reducing agent was stirred for 20 minutes and 2 ml of mixed AgNO3/PVA were added 1 

drop per second approximately and reaction was stopped. PVA stabilised silver 

nanoparticles (PVA-AgNP) mixture was concentrated by using an ultrafiltration tube of 3kDa 

(Sartorius, UK) with centrifuge, Heraeus Megafuge 16R (Thermo Scientific) at 5000 rpm. 

PVA-AgNP were stored away from direct exposure to light at 4ºC. The chemical reduction of 

AgNO3 can be written as: 
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AgNP characterisation 

The primary characterisation of synthesised PVA-AgNP was achieved by Ultra-Violet 

Spectroscopy (UV-Vis) (Shimadzu, UV-1800) and the stability of PVA-AgNP prepared were 

observed for 6 months. Dynamic Light Scattering (DLS) was used to measure the 

hydrodynamic diameter (Dh) and zeta potential of PVA-AgNP (Malvern Instruments, UK). 

The size, shape and morphology of PVA-AgNP was assessed by scanning transmission 

electron microscopy (STEM) (Hitachi SU 6600) with 3µl of PVA-AgNP aqueous solution 

placed on a carbon-coated copper grid and the samples were allowed to dry to obtain the 

highest yield of particles on the grid. PVA-AgNP concentration measurements were 

performed by atomic absorption spectroscopy (AAS) using (Varian SpectrAA 200) against 

Ag calibration standard at 1, 2, 3, 4, 5 µg Ag/ml prepared from 1 g/L standard. AgNP 

samples were prepared by 1/10 dilution by adding 1ml concentrated PVA-AgNP to 9 mL of 

millipore water.  

 

Cold atmospheric plasma device 

The CAP system used was a dielectric barrier discharge (DBD) device. It is a novel 

prototype atmospheric low temperature plasma generator[27]. The CAP-DBD is composed 

of a variable high voltage transformer with an input voltage of 230 V at 50 Hz and a 

maximum high voltage output of 120kV. It consists of two 15-cm-diameter aluminium disc 

electrodes, separated by 26.6 mm and a 1.2mm thick polypropylene sheet which is used as 

a dielectric barrier and platform for holding cell samples. The voltage was monitored using 

an InfiniVision 2000 X-Series Oscilloscope (Agilent Technologies Inc., Santa Clara, CA, 

USA). DIT-120 is calibrated on a yearly basis. There is a rebuild of the system in which the 



generated ozone and ROS produced are regularly compared to identify the time exposure to 

give the equivalent dose and effect in the study. 

Cell viability assay 

Alamar Blue was used as a parameter for measuring cytotoxicity[28,43]. Alamar blue assay 

was analysed according to manufacturer’s protocol (Invitrogen by Thermo Fisher Scientific, 

USA). Firstly, U373MG cells (1x104 cells per well) were seeded into 96-well plates and 

allowed to adhere overnight. After seeding, 100µl of various concentration with 1:3 serial 

dilution of PVA-AgNP in DMEM were added between 0 µg/ml and 17.54 µg/ml. 1mM H2O2 

was used as a positive control for all cell viability assays. GBM cells were preloaded with 

PVA-AgNP for 24 hrs to allow maximum uptake of AgNP with low doses in cells, the cells 

were then exposed to CAP from 0-80s at 75kV as outlined above. For U373MG exposure to 

CAP, culture media was removed prior to CAP exposure leaving 10 µl of existing culture 

media with AgNP in 96 well plates and 500 µl of existing culture media containing AgNP in 

60mm petri dishes to avoid sample drying. Fresh culture media without AgNP was added 

immediately after exposure to CAP with a total of 100 µl in 96 well plates and 3 ml in 60mm 

petri dishes. The plates were incubated for a total of 48h post CAP treatment at 37°C. Cells 

were then washed with PBS and 10% Alamar blue was added into the wells for 3h at 37°C. 

The fluorescence was measured using excitation wavelength of 530nm and emission 

wavelength of 590nm on plate reader (SpectraMax M3, Molecular Devices (UK) Ltd). The 

protective effect of N-Acetyl Cysteine (NAC) was evaluated by pre-treating 4mM NAC on 

U373MG cells for 1h followed by treatment of PVA-AgNP at stated concentrations for 24h 

and exposed to CAP at 0s, 25s and 40s for another 24h. 

 

Flow Cytometry Analysis 

Propidium iodide (PI) was used to demonstrate live and dead cell staining with flow 

cytometer BD Accuri C6 (BD, Oxford, UK). U373MG cells were seeded in 6-well plate at 2.5 

x 105 cells per well and was incubated at 37ºC overnight to allow adherence. Cells were 

treated with PVA-AgNP at low-nontoxic dose of 0.07µg/mL for 24h and were exposed to 

CAP at 75kV for another 24h. Cells were harvested including pre-existing media and 

centrifuge to form a pellet. The pelleted cells were resuspended in 1ml PBS and was stained 

with PI for 1 minute with concentration of 10µg/mL. PI fluorescence was detected using FL2 

vs FSC demonstrating binding of PI to nuclear degradation from dead cells. 

H2DCFDA (Thermo Fisher Scientific) was used to measure ROS production induced by 

AgNP-CAP using flow cytometry. The cells were rinsed with PBS twice and incubated with 



25µM of H2DCFDA in the dark with serum-free media for 30 mins at 37ºC. U373MG cells 

were treated with low dose of PVA-AgNP of 0.09µg/mL for 24h an exposed to CAP. DCF 

fluoresce was immediately measure after CAP exposure using BD Accuri flow cytometer 

with filters count vs FL1. 

 

Measurement of CAP effect on AgNP size 

The effect of CAP on PVA-AgNP size was measured as follows: concentrated PVA-AgNP 

obtained from ultrafiltration to remove excess unwanted reactants including NaBH4 was 

resuspended in millipore water, in synthesis solution containing unwanted reactants and 

resuspending concentrated PVA-AgNP in 4mM NaBH4. The samples were exposed to CAP 

at different exposure times from 0-80s. The hydrodynamic size of the NPs was determined 

using DLS, Zetasizer Nano ZS. The morphology was determined using STEM (Hitachi SU 

6600), as described above. 

 

Darkfield spectral imaging of AgNP uptake: image acquisition and uptake analysis  

Optical observation of AgNP uptake was performed using darkfield spectral imaging (SI). 

The darkfield microscopy system utilised in this study consists of a  darkfield microscope 

(BX51, Olympus, Ltd) coupled to a Vis-NIR spectrograph (ImSpector V10E, Specim Ltd) and 

a Pelier cooled CCD detector, combined with a metal halide light source, liquid light guide 

and Cytoviva optical illuminator (CytoViva Inc., Auburn, AL, USA) and a motorised XY stage 

controller Images were obtained using a 100X oil immersion objective and oil immersion 

swing condenser.  

Detection and confirmation of AgNP uptake were determined by spectral mapping, using 

samples of fixed U373MG cells alone (38 images from slides), cells treated with AgNP (42 

images from slides), cells treated with CAP (42 images from * slides) and cells treated with 

combined AgNP-CAP (50 images from slides). U373MG cells were fixed by 4% 

paraformaldehyde on cover glass slip mounted with Mowiol 4-88 onto a rectangular cover 

glass slide (Corning cover glass, Sigma-Aldrich). Images were obtained over a time period of 

10 weeks as each image took approx. 15 minutes to obtain. 

The spectral images were acquired using ENVI 4.8 software and analysed using MATLAB 

(MATLAB R2019a, The MathWorks Ltd) functions written in house and from the image 

processing toolbox.  



False colour red-green-blue (RGB) images were constructed from the spectral images by 

assigning the following wavebands to each channel: 

Red: calculate mean image of waveband channels from 516 – 552 nm and scale to intensity 

values between 0-2000. 

Green: calculate mean image of waveband channels from 544 – 618 nm and scale to 

intensity values between 0-2000. 

Blue: calculate mean image of waveband channels from 704 – 735 nm and scale to intensity 

values between 0-2000. 

PCA was applied to the false colour images to create a mask between the cell and 

background (thresholding the first principal component score image such that all pixels with 

a values below 2 were set to one provided sufficient separation between cells and 

background). In some cases, multiple cells were attached to each other in the mask images. 

In order to be able to analyse each cell individually, these cells were separated manually by 

drawing a line across the narrowest connecting point in the mask image. In addition, some 

cells were only partially represented in a given field of view – such cells were removed from 

the analysis. Further, some pixels that were not identified as cells were highlighted in the 

mask – in order to remove them from the analysis, any regions with a pixel size smaller than 

300 pixels were automatically removed from the analysis. 

Standard normal variate pre-processing (i.e. subtracting the mean from each spectrum and 

dividing by the standard deviation) was applied to spectra and a partial least squares 

discriminant analysis model was developed to discriminate between NPs and cells. This 

model was subsequently applied to all images, facilitating identification of NPs from their 

spectra. Using the ‘regionprops’ function of the MATLAB image processing toolbox, the size 

and circularity of each cell and number and size of NPs per cell was calculated. The median 

number of NPs identified per cell was then calculated for each treatment. 

 

AAS measurement of AgNP uptake 

Atomic Absorption Spectroscopy (AAS) was further employed to measure uptake of AgNP. 

U37MG cells were grown in petri dishes with cell density of 2.5 x106 cells per dish. The 

samples were negative control with U373MG cells alone, cells treated with AgNP, cells 

exposed to CAP, the combined therapy on U373MG cells and positive control treated with 

1mM H2O2. The cells were treated with AgNP for 24h and after with 25s CAP for another 

24h. The cell samples were trypsinised and resuspended in the existing culture media. The 



samples were then analysed by AAS for AgNP detection. Triplicate readings were analysed 

for each sample and the results were expressed as the mean amount of Ag in pg/cell. 

Statistical analysis 

The data of the experiments are expressed as mean ± standard deviation of replicates from 

at least three independent experiments, unless specified otherwise. Statistical analysis and 

curve fitting presented in results were completed using Prism 7 (GraphPad Software). 

Analysis of data distribution was performed using two-way ANOVA and three-way ANOVA 

where indicated to analyse the differences of significance between the control group and 

treated groups. The following P values were deemed statistically significant, **P<0.01, 

***P<0.001, ****P<0.0001. Therapeutic synergism between PVA-AgNP and CAP was 

evaluated using isobologram analysis. CompuSyn software determined the combinational 

index (CI) where, CI>1 is antagonism, CI=1 is additive and CI<1 is synergism. Descriptive 

statistics (median, standard deviation) were calculated on cell size, circularity, NP size and 

number as derived from spectral imaging measurements.  

 

Results 

Silver Nanoparticles Characterisation 



 

Figure 1. Characterisation of Silver Nanoparticles (AgNP). (A) Representative scanning 

transmission electron microscopy images of AgNP was spherical in shape and well dispersed in 

aqueous solution. (B) Representation of AgNP maximum absorbance by UV-Visible spectrum of 

stable aqueous AgNP mixture observed for 6 months. (C, D) Size distribution measurement of stable 

PVA-AgNP for six months by dynamic light scattering 10.68 ±1.98nm to 9.59 ±2.52nm.  

PVA-AgNP were prepared and characterised as indicated in the methods section. STEM 

analysis of PVA-AgNP confirmed production of nanoparticles that are spherical in shape, 

approximately 10nm in size and well dispersed (see Figure 1a). The presence of a plasmon 

absorption band (400 nm), which is a main characteristic of AgNP, was evident and 

remained relatively unchanged over 6 months indicating the production of highly stable 

AgNP (see Figure 1b)[44]. The particle size range by DLS analysis was determined to be 8-

12 nm with an average of 10.68 ± 1.98 nm diameter size on first synthesis and after 6 

months of 9.59 ± 2.52 nm (see Figure 1c and 1d). PVA-AgNP polydispersity index (PDI) at 

first synthesis was 0.415 and after 6 months of 0.155, which is deemed acceptable with ISO 

standard document 22412:2008 with data remaining between the acceptable PDI range 

values of 0.05 to 0.7. 

 



Cytotoxic Effect of AgNP in Combination with CAP on Cellular Viability 

Cytotoxicity was examined using Alamar Blue and propidium iodide. U373MG cells were first 

treated with different concentrations of PVA-AgNPs (0-17.54 ��/��) in combination with 

CAP (0-40s at 75kV) and incubated for 48 hours prior to measuring viability using Alamar 

blue (see Figure 2a). The cell viability decreased in a dose-dependent manner after AgNP 

treatment alone with IC50 of 4.730 µg/mL (95% confidence range from 3.094 to 6.084 

µg/mL). From previous work with the same DBD prototype used in this study, it was 

determined that the IC50 with CAP treatment alone is 74.26s (95% confidence range of 

47.24-116.8s) on U373MG cells[28]. In the current study, we combined treatment of AgNP 

with a range of low CAP exposures (i.e. 5s, 10s, 25s and 40s at 75kV). We found that cells 

displayed significant cytotoxicity with IC50 of 0.079 µg/mL and 0.01 µg/mL when treated with 

CAP for 25s and 40s respectively (95% confidence range from 0.0539 to 0.1139 µg/mL for 

25s and 0.0069 to 0.0138 µg/mL for 40s) (see Figure 2a). Two-Way ANOVA with Tukey’s 

multiple comparison post hoc test in figure 2b confirmed significant decrease in IC50 values 

caused by 25s and 40s CAP exposure (see Figure 2c, **P<0.01, ***P<0.001, ****P<0.0001). 

The combined AgNP and CAP treatment exhibited 67-fold increase in cytotoxicity (IC50) 

when combined with 25s CAP and greater than 100-fold increase in cytotoxicity (IC50) with 

40s CAP, which indicates a beneficial combinational anti-cancer therapy. This shows an 

enhanced toxic effect on U373MG cells when treated with combined therapy than with AgNP 

or CAP alone. No enhanced cytotoxicity was noted for 5s or 10 s doses with CAP in 

combination with AgNP, suggesting synergistic cytotoxicity only occurs between a minimum 

and maximum threshold dose for CAP. The isobologram on figure 2c determined the 

synergistic effect of PVA-AgNP combined with CAP resulting to combination index value (CI) 

of less than 1.00. The CI of PVA-AgNP with 25s CAP is 0.35 and 0.54 with 40s CAP. PVA-

AgNP with shorter CAP exposure time resulted to CI of 0.93 and 0.96 with 5s CAP and 10s 

CAP respectively suggestive to an additive effect.  



 

Figure 2. Synergistic Cytotoxicity of combined AgNP with Cold Atmospheric Plasma (CAP). (A) 

Combinational therapy effect of AgNP with CAP on U373MG cells. Cells were treated with different 

concentration of AgNP for 24h followed by different time exposure with CAP at 75kV. Untreated GBM 

cells are used as negative control and cells treated with 1mM H2O2 was used as positive control. (B) 

Heat map representation of results from Figure 2A, showing the darkest region with the least viable 

cell to the lightest region with the most viable cell from combinational AgNP with CAP at different time 

exposure. Statistical analysis carried out using two-way ANOVA for Figure 2A, two-way ANOVA with 



Tukey’s multiple comparison post-test (**P<0.01, ***P<0.001, ****P<0.0001). All experiments were 

repeated at least three times. (C) Isobologram analysis of the combinational effect of AgNP-CAP. The 

single doses CAP on y-axis and AgNP on x-axis were used to draw the line of additivity. The 

localisation of combined AgNP-CAP at different time exposures can be translated to synergism CI<1, 

additivity CI=1 or antagonism C1>1. (D) Apoptotic nuclear membrane degradation was validated for 

the combined PVA-AgNP and CAP at 75kV using propidium iodide (10µg/ml) with flow cytometry. The 

represented data was normalised to the negative control and is displayed as %mean ± SD (n=3). 

 

GBM cells treated with plasma activated AgNP solution was explored, which is an off-site 

treatment where the NP solution is exposed to the plasma source for a pre-determined time 

and in this case for 25s CAP exposure. Due to previous reports on plasma activated liquids 

(PAL) showing effectivity against cancer cells after duration of storage, the current study 

explored the efficacy of PAL with AgNP on GBM cells. As can be seen in supplementary 

data file in supplementary figure 1, pre-CAP exposure on AgNP and treated on GBM cells 

displayed cytotoxic effect but not as significant with the original method of on-site CAP 

treatment. Plasma activated AgNP treated GBM cells has IC50 value of 1.549 µg/ml and was 

deemed not as significant (P<0.05) in comparison with the technique applied for figure 2b 

(P<0.0001).  

The enhanced cell death was confirmed and quantified by employing propidium iodide with 

flow cytometry. Figure 2d demonstrates the enhanced uptake of PI with the combined 

therapy of PVA-AgNP and CAP, in which PI has bound to the nucleic acids within the 

nucleus of AgNP-CAP treated GBM cells and compared to the negative untreated control. 

The size and granularity of dying cells changes, where dead cells are smaller and more 

granular resulting in high PI fluorescence in FL2 and live cells are larger and less granular 

resulting in low PI fluorescence as can be seen in the dot plot of figure 2d with FL2 in log 

scale vs. FSC in linear scale, which was used to distinguish live from dead GBM cells. 

 

 

 

ROS Detection Induced by AgNP-CAP 

The main component of CAP is the generation of RONS and many have linked oxidative 

stress with AgNPs toxicity in previous studies[36–39]. NAC is a scavenger of oxygen-free 

radicals and directly interacts with reactive ionised species. The protective effect of NAC on 

AgNP and in combination with CAP can be seen in figure 3a. The IC50 value for AgNP 



control was 4.9 µg/ml with 95% confidence range of 3.759 to 6.081µg/ml. The IC50 value for 

AgNP with pre-treated NAC was 6.57 µg/ml with 95% confidence range of 5.989 to 7.130 

µg/ml. The IC50 value for the combinational AgNP-CAP without NAC at 25s was 0.06 µg/mL 

(95% confidence range of 0.0355 to 0.112 µg/mL), whereas a 10-fold decrease in toxicity 

was observed when cells were pre-treated with NAC with IC50 of 0.7 µg/mL (95% confidence 

range of 0.383 to 1.655 µg/mL). Three-Way ANOVA with Tukey’s multiple comparison post 

hoc test in figure 3b confirmed to be statistically significant (see figure 3b, **P<0.01, 

***P<0.001, ****P<0.0001).  

 

 

Figure 3. Protective effect of NAC. (A) Pre-treatment of N-Acetyl-L-cysteine (NAC) showed 

protective effects against AgNP combined with CAP after 48h using Alamar Blue assay. (B) Heat map 

interpretation of protective effects of NAC on combined therapy with the lighter the colour the more 

viable cells and the darker the heat map with less viable cells. Statistical analysis carried out on data 

presented in figure 3A using three-way ANOVA for 2C and 2D with Tukey’s multiple comparison post-



test (**P<0.01, ***P<0.001, ****P<0.0001). All experiments were repeated at least three times. (C) 

Representation of the significant production of ROS by PVA-AgNP combined with CAP that is 

statistically significant according to Tukey’s test, one-way ANOVA (*P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001). 

 

The protective effect of ROS-scavenger, NAC was validated when production of ROS by the 

combined therapy was explored. H2DCFDA a fluorescent probe was used to measure ROS 

production induced by AgNP-CAP. In presence of ROS, the non-fluorescent H2DCFDA is 

converted to the highly fluorescent DCF, which was observed with the combination therapy 

of PVA-AgNP with CAP. Figure 3c shows AgNP-CAP resulted to higher ROS levels in 

comparison to AgNP alone at low dose and CAP alone for 50s at 75kV when compared to 

the untreated control. The differences between the test were examined by Tukey’s multiple 

comparison test, one-way ANOVA, where statistically significant tests were presented as 

**P<0.01, ***P<0.001, ****P<0.0001 in figure 3c. 

 

The effect of CAP on AgNP size 

Our data indicate that ROS-dependent cytotoxicity is induced in GBM cells treated with a 

combination of CAP and AgNP. The toxicity is likely due to one or more of the following: 

cellular rate of uptake, increase in cell membrane permeability, changes to nanoparticle size 

and morphology, altered dispersion or agglomeration and rate of dissolution. It has been 

reported that NPs can be prepared using an electrical discharge[45–47]. We therefore 

investigated the effect of CAP on AgNP. 10nm freshly synthesised AgNP including unwanted 

reactants in the existing solution containing excess NaBH4 (4mM) were exposed to the DBD-

CAP device (75kV, 0-80s). The size of AgNP significantly decreases in a dose-dependent 

manner when exposed to CAP (Figure 4a). In contrast to this, purified AgNP resuspended in 

fresh millipore water without unwanted reactants with CAP did not change significantly in 

size. We confirmed this using STEM. AgNP in a solution of the reductive agent, NaBH4 

(4mM) showed decrease in size (5 nm) when exposed to 25s CAP compared with controls 

without CAP treatment (10 nm) (see Figure 4b). Nanoparticle morphology and dispersion did 

not change during CAP exposure, and AgNP remained spherical in shape, uniformly 

dispersed with no visible aggregation in the samples was observed.  

 



 

Figure 4. Comparative Results on the Effect of CAP on AgNP Physical Properties. (A) Overview 

of PVA-AgNP size change with different time exposure to CAP with and without presence of reductive 

agent. Data represented mean ± standard error of the mean (n=9). (B) STEM images displaying size 

variation of AgNP in aqueous solution without CAP exposure and 25s exposure with CAP at 75kV. (C) 

Zeta potential of AgNP before and after CAP treatment in millipore water (mH2O), in presence of 

100µM H2O2 and culture media (DMEM). Representation of zeta potential of AgNP before CAP 



treatment with -55.6 ±8.06mV to -26.8 ±9.08mV after 25s CAP exposure in mH2O and -18.0 ± 8.70mV 

without CAP exposure to 11.40 ± 5.06mV after CAP exposure at 75kV in culture media. 

 

The recognised value for zeta potential that is anything higher than positive or negative 

30mV is a stable suspension[48]. Figure 4c shows an electrostatically stabled nanoparticle 

suspension of -55.6 ± 8.08mV with conductivity of 0.360mS/cm and after CAP exposure of 

25s the nanoparticle suspension has zeta potential of -26.80 ± 9.08mV with conductivity of 

0.25mS/cm for PVA-AgNPs suspended in millipore water. The production of ROS, H2O2 by 

DIT-120 was examined by our group previously to generate 100µM in 60s[49]. The change 

of zeta potential on AgNP were explored with the presence of 100 µM H2O2 in mH2O and 

have shown to change the zeta potential to -20.4 ± 8.03mV (figure 4c). In contrast to PVA-

AgNP in millipore suspension, PVA-AgNPs in culture media (DMEM-F12) has changed the 

zeta potential value of -18.0 ± 8.70mV with conductivity of 0.011mS/cm and after CAP 

exposure of PVA-AgNP in DMEM-F12 the zeta potential decreased further to -11.40 ± 

5.06mV with conductivity of 0.30mS/cm. The statistical difference between zeta potential test 

with CAP exposure and resuspended in DMEM have deemed to be statistically significant 

when compared to AgNP in mH2O (**P<0.01 and ***P<0.001). The difference between zeta 

potential test of AgNP in DMEM and AgNP in DMEM exposed to CAP resulted as not 

significant according to Tukey’s one-way ANOVA comparison post hoc test (P>0.05). The 

change of zeta potential of NPs was previously reported in other studies that affects the 

internalisation process during uptake of NPs by cells. Uptake of PVA-AgNP was further 

explored and can be seen in figure 5. 

 

Uptake of AgNP in U373MG cells 

The study further investigated whether the significant difference on cytotoxicity of AgNP 

treated alone compared to combination of AgNP-CAP could be explained by differences in 

cellular uptake and localisation intracellularly. Visualisation of cell morphology, nanoparticle 

distribution and particle localisation after treatment with low dose of 0.07 µg/ml AgNP alone 

and in combination with 25s CAP at 75kV was investigated using Spectral imaging (SI) at 

60X oil immersion (see Figure 5a). SI offer quantitative analysis capturing both biological 

and materials at nanoscale level. The classification tools with dominant spectral signatures 

enables to characterise nanoparticles in populations and individually and morphology of cells 

prior and after treatment. Figure 5a shows images of in-vitro cells with false RGB setting 

derived from SI Cytoviva and a comparison mathematical modelling analysed from Matlab 

viewing cell morphology of brain cancer cells U373MG without NP treatment showing a 



healthy astrocyte-shaped cells, followed by U373MG remaining its healthy astrocyte-shape 

treated with low dose of PVA-AgNP present, cells treated with CAP for 25s showing cellular 

stress with morphological changes losing the astrocyte shape with no NPs evident and the 

combination therapy of AgNP-CAP presenting cell disruption and increase of PVA-AgNP 

visible in the cells. The comparison of the mathematical with false-RGB images allows to 

visualise and localise PVA-AgNP present in U373MG cells when treated. A library of spectra 

was derived from the scattered light of cells and PVA-AgNP identifying unique spectral 

signatures that is highly repeatable in approx. 50 images per sample (see Figure 5a). The 

spectral profile is graphed as wavelength (nm) versus intensity of scattered light (a.u.) 

presenting spectral signatures and interaction of NPs to cells with spectral response showing 

a broad scattering spectrum of U373MG cells alone are at 520nm with low intensity, PVA-

AgNPs spectral response in cells is at 520nm with higher intensity and an enhanced 

intensity of PVA-AgNP when exposed to CAP showing a shift of the resonance peak to 

570nm represents NPs aggregating into larger sizes. Previous study have shown shifting of 

spectral peak is suggestive to agglomeration in suspension and in cells and also change in 

NP physical property such as zeta potential is also suggestive to agglomeration[50,51]. SI 

allows to quickly identify, map PVA-AgNP present in cells and provide class distribution 

confirming the total number and size of NPs in cell. Figure 5b displays NPs class distribution 

with only the combination therapy of AgNP-CAP detecting median number of 47 NPs per cell 

with standard deviation of 84.42 NPs and a median NP size of 8nm with standard deviation 

of 9.7nm. However, numerical data derived from analysis of spectral images should be 

considered approximate, as threshold is applied to disregard any NPs <2 pixels in size (see 

supplementary data for figure 5b) since light scattering from different cellular compartments 

may hinder thorough viewing or may cause false positive detection of NPs as can be seen in 

figure 5b with negative control and the higher signal detected in CAP samples is due to the 

effect of CAP on U373MG morphology, losing GBM’s healthy astrocyte shape to a damaged 

circular shape intensifying the light scatter of cellular compartments (see figure 5a).  The 

data shown in figure 5b was normalised to the untreated negative control and represented 

as %median ± S.E.M. To further verify the uptake of AgNP as observed from SI, the cellular 

dose of AgNPs in U373MG cells was quantified using Atomic Absorption Spectroscopy. The 

mean concentration of Ag per cell was observed to be 0.030 pg Ag/ cell for AgNP treatment 

alone (95% confidence range of 0.022 to 0.083 pg Ag/ cell) and 0.89 pg Ag/ cell for 

combined therapy AgNP-CAP (95% confidence range of 0.50 to 1.28 pg Ag/ cell) (see 

Figure 2d). The data presented in figure 5c is displayed as %mean ± SD.  This correlates 

with our previous study (He et al) when we found that combination of gold nanoparticles with 

CAP increased nanoparticle uptake[29]. 



 

 

Figure 5. Uptake and Dissolution of AgNP by CAP. (A) Spectral imaging of mapped GBM cells 

presenting PVA-AgNP treated alone with magenta pixels and the combined AgNP-CAP with red 

pixels in GBM cells in blue pixels. The scale bar for RGB images is 21.5µm. Representative spectral 

response of GBM cells (blue), background (black), PVA-AgNP (magenta) in cells and the combined 

treatment of AgNP-CAP (red). (B) Representation of SI analysis on quantifying median number of 

AgNP/cell with only the combined therapy of AgNP-CAP resulted to 47 NPs per cell. Data shown was 

normalised to the negative untreated control and is shown as %median ± S.E.M. (n=3) (C) AgNP 



uptake before and after CAP treatment was confirmed and quantified using AAS. The mean 

concentration of silver per cell was 0.030pg Ag/cell for PVA-AgNP treatment alone and 0.89pg Ag/cell 

for combined treatment of AgNP-CAP. The represented data was normalised to the negative control 

and is displayed as %mean ± SD (n=3).   

 

Discussion  

The advancement of nanotechnology and plasma medicine in biomedical applications tackle 

the same set of challenges but have been developed independently and often along different 

routes. The similarities and contrast of nanoparticles and cold atmospheric plasma have 

scoped their intriguing predetermined therapeutic use, particularly the selectivity against 

cancer cells with the selective application process of CAP as well as functionalising 

nanoparticles for targeted delivery to cancer cells, chemical reactivity through generation of 

ROS by CAP and AgNP, finally the safety to healthy cells and tissue. Concurrently, synergy 

captured from the combination of nanoparticle and cold atmospheric plasma with recent 

studies including gold nanoparticles, iron nanoparticles and drug-loaded core shell 

nanoparticles with cold atmospheric plasma have demonstrated highly promising benefits for 

medicine[23,27–29]. Despite the reports of CAP sensitivity to cancer cells, we and others 

have demonstrated that the Glioblastoma multiforme cell line U373MG is relatively resistant 

to CAP treatment[28] and approaches to overcome this inherent resistance will be necessary 

in a clinical setting. In addition, with the ever-growing interest of combined cancer therapy 

with nanotechnology and plasma medicine, the combination of AgNP with CAP has not yet 

been reported. In this study, the combined synergistic effect of PVA stabilised AgNP with 

CAP on U373MG was evaluated and the interaction between CAP and AgNPs physical 

properties and its effect on cell morphology were demonstrated. 

The restrictive approach in this study focuses on strategic minimal dosing of AgNP in 

combination with CAP to achieve a targeted cytotoxic effect on Glioblastoma cell line 

U373MG. NPs physico-chemical characteristics and their effects play a major role on 

biological systems, where NPs are reported to penetrate and accumulate in different tissues 

showing high mobility. The shape, morphological structure and size are the principal 

parameters of NPs along with its chemical composition and its inherent toxicological 

properties[8,52]. Consequently, the characterisation of NPs physical properties is key to 

compare its biological and toxicological response. In this study, an in-house synthesised 

spherical AgNP stabilised with PVA with size 10.68 ± 1.98 nm showed high stability in 

aqueous solution for six months, which is in agreement with previous studies on size-

controlled synthesis of AgNP stabilised with PVA[42,53]. Toxicological studies were 

implemented to determine in vitro synergistic cytotoxic effects of AgNP when combined with 



CAP. The results confirmed a dose-dependent reduction in cell viability with the control 

group (PVA-AgNP alone treated U373MG cells) with IC50 of 4.74 µg/ml. Many studies have 

shown AgNPs cytotoxic effect on variety of cancer cells, with all noticeably reporting AgNP 

inducing dose-dependent cytotoxicity including DNA damage and oxidative stress resulting 

in cell death[36–39]. Interestingly as viewed in figure 2a, the combination of AgNP with CAP 

increased more than 100-fold of cytotoxicity in comparison to AgNP treatment alone with 

IC50 of AgNP combined with 25s CAP at 75kV is 0.077 µg/ml and when combined with 40s 

CAP at 75kV, IC50 was 0.0087 µg/ml. Our current group have previously demonstrated the 

synergistic effect of 25-fold of AuNP with CAP on GBM cells, meanwhile the current study 

shows about a 100-fold synergy of the combined therapy with AgNP-CAP[29]. The 

difference in anticancer activities of varying NPs can be explained based on the composition 

such as varying metal properties. AgNPs are known to impart toxicity to cells by efficiently 

producing ROS leading to decreasing mitochondrial function, cell cycle deregulation and 

induction of apoptosis while AuNPs are known for its inertness and have been used in 

imaging from surface-functionalisation, diagnostics and drug delivery[35,54,55]. Although 

both NPs elicit toxicity towards cells, AgNPs famous for their antimicrobial potential and 

production of free radicals is reliant on their internalisation and oxidative nature, leading to 

enhanced cytotoxic events in comparison to AuNPs[56,57]. CAP similarly generates ROS 

and can be localised by selective application process at a milli or micro scale to cancer 

cells[58,59]. Consistent with the findings regarding to oxidative stress correlation to cell 

death with AgNP and CAP continuously mounts the evidence to show that generation of 

ROS is highly related to the mechanism of AgNP and CAP with the results in current study 

showed that the cytotoxicity induced by AgNP alone, as well as the combinational treatment 

AgNP-CAP were efficiently prevented prior NAC treatment up to 10-fold (see Figure 3). The 

results determine that oxidative stress is responsible for the cytotoxicity of AgNPs and CAP, 

which is compliant with previous studies portraying the protective effect of NAC when treated 

with either AgNP or CAP resulting to recovery of proliferative cells[60–63]. Cancer cells 

exists under oxidative stress with elevated levels of ROS than normal cells. Studies have 

shown accumulation of ROS results to cell death causing cancer cells to reach oxidative 

threshold[64]. The beneficial effects of the highly reactive AgNPs other than its composition 

is due to their surface area to volume ratio leading to increase production of ROS within 

cells. ROS are natural by-products of enzymatic and non-enzymatic sources of cellular 

metabolism. It has been published that generation of ROS is also contributed by ionising 

radiation and metal complexes[65]. AgNPs have been reported to have the ability to donate 

electron to molecular oxygen and sets off a cascade of radical forming reactions[66]. Over 

generation of ROS by AgNP have been reported to damage pathological processes such as 



damage to mitochondria, DNA breaks, oxidation of lipids and proteins and apoptosis cell-

induction[67].  

Tseng et al, has previously reported metal nanoparticle fabrication using CAP in the form of 

electric discharge machine, where the generation of arc discharge between two electrodes 

disintegrate silver rod in liquid producing silver nanoparticles[46,68,69]. Due to this 

phenomenon, the current study next investigated the effects of CAP on AgNP physical 

properties. CAP evidently reduced the diameter size of AgNP with longer exposure time in 

presence of reducing agent (see Figure 4a). A study has investigated hydrolysis of NaBH4 in 

aqueous solution, it was reported that the stability of NaBH4 decreases with elevated 

temperature[70–72]. It can be hypothesised with the findings that CAP’s effect on AgNP 

leads to generation of discharge between two electrodes producing a thermal effect on 

AgNP solution with borohydride present, this increases temperature and thus accelerates 

hydrolysis reaction. Furthermore, CAP’s alteration on PVA-AgNP size in our study resulted 

in altered electronic properties on the surface of NP (see figure 4C). Several studies have 

shown size-dependent effects on cytotoxicity using silver nanoparticles[73–75]. In many 

cases, the levels of cell death are increased when smaller nanoparticles are used, and this is 

believed to be due to a larger surface area and enhanced rates of endocytosis. However, the 

effect of size on cytotoxicity in these studies is relatively small (approx. 2-5 fold) and unlikely 

to be solely responsible for the synergistic cytotoxicity between CAP and AgNP observed in 

our study. Many reports stated the standard stable nanoparticle suspension is anything 

higher than positive or negative 30mV. The higher value of positive or negative zeta potential 

has been studied to show in nature to repel each other and not come together. The particles 

tend to aggregate and flocculate with lower zeta potential values due to the absence of 

repulsive forces that hinders agglomeration[76–78]. Studies have reported that the greater 

the negative charge the less toxic the nanoparticles[79,80]. In our study CAP have 

decreased the zeta potential of PVA-AgNP, which may be associated with absence of 

repulsive forces at the double layer leading to the likelihood of agglomeration that can be 

seen in uptake of PVA-AgNP in figure 5. Another reason for the agglomeration of NPs 

evident in the uptake of PVA-AgNP with CAP in figure 5a is due to serum proteins in culture 

media absorbed on NPs surface. Studies have reported the nanoparticle protein corona 

adds complexity to biological system interactions that cannot be limited to electrostatic 

binding alone. The new biological identity of the nanoparticle influences cell behaviour 

interaction[81–83]. 

Nanoparticle detection in cells and tissues are often achieved by employing electron 

microscopy techniques and confocal microscopy to investigate translocation of NPs in 

cells[84–86]. While these techniques have extensively accomplished identification of NPs, 



they lack the potential to validate NPs presence in cells or tissue via spectral mapping. The 

spectral imaging technique provides each pixel of SI image a spectral response for each 

spatial area of a pixel[87]. SI of NPs in cells provides the feasibility of detecting NPs, partial 

size, surface modification, spatial location, presence of NP agglomeration and wavelength 

differentiation[88,89]. In this study, we used SI to asses uptake of PVA-AgNP when exposed 

to CAP resulting to an enhanced PVA-AgNP uptake when cells are exposed to CAP than of 

NP treatment alone. This was quantified using atomic absorption spectroscopy where we 

confirmed a 50-fold increase in Ag/cell following CAP treatment. Our group demonstrated 

the direct and indirect chemical effects generated by CAP DIT-120 is a mediator of the 

uptake increase of AuNPs[29]. Our data here provide further evidence that CAP DIT-120 can 

stimulate uptake of nanomaterials of different sizes and compositions in addition to 

significantly enhancing cytotoxicity. Interestingly, Au/cell is increased by 50% following 

exposure to CAP, whereas Ag/cell is increased 50-fold under similar conditions. This may be 

due to nanomaterial size, the direct effect of CAP on the AgNP or due to a cellular process. 

Further investigation of the biological processes that regulate CAP-stimulated uptake of 

nanomaterials and cytotoxicity in GBM are ongoing and will offer future insights into adapting 

these combinational approaches for development of therapeutics for treatment of GBM and 

other solid tumours. 

In conclusion, the current study reports the enhanced synergistic cytotoxic effect of the 

combined PVA-AgNP and CAP on U373MG cells in vitro. The study showed the ROS-

dependent toxicity of the combined therapy, which was prevented by NAC. Enhanced uptake 

of PVA-AgNP followed by CAP treatment was confirmed using spectral imaging and AAS. 

Overall, the results indicate the effect of CAP on the physical properties of PVA-AgNP 

leading to decrease in nanoparticle size, decrease in surface charge distribution and 

inducing enhanced uptake, aggregation and synergistic cytotoxicity. The findings in the study 

demonstrated the combination therapy of PVA-AgNP with CAP can be further evaluated for 

its potential use in cancer therapy. 
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Highlights 

• Cold Atmospheric Plasma (CAP) triggered a decrease in PVA coated silver nanoparticles 

(PVA-AgNP) size and a change in surface charge distribution.  

• More than 100 fold increase in cytotoxicity of PVA-AgNP was observed in U373MG brain 

cancer cells when combined with subtoxic doses of CAP. 

• Reactive Species necessary for enhanced cytotoxicity.  

• Novel darkfield spectral imaging method used to determine significantly enhanced uptake, 

aggregation and subcellular accumulation of PVA-AgNP following CAP treatment. 
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