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Abstract—This paper focuses on the problem of sensing
throughput optimization in a fading multiple access cognitive
radio (CR) network, where the secondary user (SU) transmit-
ters participate in cooperative spectrum sensing and are capable
of harvesting energy and sharing energy with each other. We
formulate the optimization problem as a maximization of the
expected achievable sum-rate over a finite horizon, subject to
an average interference constraint at the primary receiver, peak
power constraints, and energy causality constraints at the SU
transmitters. The optimization problem is a non-convex, mixed
integer non-linear program (MINLP) involving the binary action
to sense the spectrum or not, and the continuous variables, such
as the transmission power, shared energy, and sensing time.
The problem is analyzed under two different assumptions on
the available information pattern: 1) non-causal channel state
information (CSI), energy state information (ESI), and infinite
battery capacity and 2) the more realistic scenario of the causal
CSI/ESI and finite battery. In the non-casual case, this problem
can be solved by an exhaustive search over the decision vari-
able or an MINLP solver for smaller problem dimensions, and
a novel heuristic policy for larger problems, combined with an
iterative alternative optimization method for the continuous vari-
ables. The causal case with finite battery is optimally solved
using a dynamic programming (DP) methodology, whereas a
number of sub-optimal algorithms are proposed to reduce the
computational complexity of DP. Extensive numerical simulations
are carried out to illustrate the performance of the proposed
algorithms. One of the main findings indicates that the energy
sharing is more beneficial when there is a significant asymme-
try between average harvested energy levels/channel gains of
different SUs.

Index Terms—Energy harvesting, cognitive radio, multiple
access channel, spectrum sensing, fading channel.

I. INTRODUCTION

TWO OF the essential and limited resources in wireless
communications are radio spectrum and energy. With the

advent of advanced data hungry mobile devices, the demands
for both of them have increased significantly. The demands
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for spectrum usage have been increasing due to applications
consuming high bandwidth. The traditional rigid spectrum
allocation policy is found to be fairly inefficient to mitigate
this problem [1]. To combat this issue, a dynamic spectrum
allocation policy paradigm of cognitive radio (CR) network
has been proposed in the literature [2]. In particular, in the
interweave paradigm of CR, the unlicensed secondary users
(SU) are capable of actively sensing the licensed primary user
(PU) spectrum and using it whenever it is detected to be
not utilized by the PU [3]. Similarly, the SUs have to vacate
the PU spectrum as soon as it senses PU activity. In such a
framework, sensing of PU spectrum has become a significant
task. Significant research has been focused on different spec-
trum sensing algorithms like energy detection, cyclostationary
detection, matched filter detection etc [4]. The main focus of
such algorithms is to increase the efficiency of spectrum uti-
lization, while protecting PU from harmful interference. In a
multiuser secondary network with varying degree of sensing
performances, it has been well established that cooperative
spectrum sensing improves the PU detection performance. A
contemporary survey of energy-efficient cooperative spectrum
sensing algorithms can be found in [5] (see also references
therein).

Alongside spectrum utilization efficiency, the efficiency in
utilizing the energy has also become a significant issue. Just
like the spectrum requirement, the communication overhead,
signal transmission and detection at the receiver all require
significant amounts of energy depending on the application.
The usual battery powered electrical sources are unable to
fully replenish these ever-growing requirements because of
its non-renewable feature. In many applications, it is difficult
to replace the batteries attached to the wireless devices peri-
odically because of their remote locations and the required
labour costs. To address this issue, the usage of renewable
energy has been proposed in the literature [6]. Such energy
from the wind, solar or other unconventional power sources
are not only efficient in terms of fulfilling the energy require-
ment but environmentally sustainable as well. This has led to
extensive research activities in the domain of energy harvesting
wireless communications and networking [7], [8].

Significant recent research has been directed towards the
utilization of energy harvesting in wireless networks. The
transmission policies have been investigated for minimization
of transmission time completion with infinite battery capac-
ity [9] and finite sized battery [10]. Similar problems have
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been addressed in the context of different channel models. The
optimal policies have been derived in the context of multiuser
settings with relay channel [11], broadcast channels [12],
interference channels [13] and multiple access channels [14].

CR network with energy harvesting capabilities effectively
use both of the above mentioned resources, which is the focus
of the present work. There has been significant research in
this domain. Opportunistic channel access and energy harvest-
ing process has been studied in this framework in [15], [16].
Optimal spectrum sensing policy in an energy harvesting CR
network has been investigated in [17]. Opportunities and chal-
lenges in such a network has been surveyed in [18]. The energy
harvesting feature creates a reliable energy efficient system,
while the dynamic spectrum allocation leads to more efficient
spectrum utilization. The cooperative energy sharing feature
has been incorporated into the system to satisfy the energy
requirements of the more vulnerable users in terms of average
harvested energy.

A. Background

This paper focuses on the specific case of CR networks
with SUs having energy harvesting and sharing capabilities.
The channels between SUs and the fusion centre (FC) consti-
tute a fading multiple access channel. For such a network, the
achievable sum-rate is generally used as a throughput measure.
Optimizing the achievable sum-rate in a CR network has been
investigated with respect to different fading channel models
in [19], [20]. As spectrum sensing is one of the primary func-
tionalities in CR networks, the sensing throughput tradeoff has
been rigorously studied in [21]. Capacity analysis of wireless
systems with energy harvesting capabilities has been studied
as well in [22]. Such analysis has also been extended to the
CR networks in the literature [23], [24]. In a separate field of
literature, distortion minimization in a multi-sensor setting has
been studied in an energy harvesting wireless sensor network
(WSN) with wireless energy transfer mechanisms [25].

There has been some recent research in CR networks
with SUs having energy harvesting capabilities. In [26], the
spectrum sensing strategy is studied for a system with non-
linear energy harvesting model. In [27], achievable throughput
optimization has been investigated with respect to sensing time
and sensing threshold, whereas [28] addresses the problem
of optimizing the throughput with respect to sensing energy,
transmission energy and spectrum sensing time. In [29], the
authors analyze the asymptotic activity behavior of a single SU
in a hybrid energy harvesting scenario, and subsequently ana-
lyze the optimal sum throughput with respect to optimization
parameters such as asymptotic active probabilities, sensing
durations and detection thresholds over a single time slot for
a collection of heterogenous SUs, followed by an algorithm
for selecting the best subset of cooperating SUs. In [30], the
authors of [29] tackled the problem of throughput optimization
with different sets of fusion rules. In [31], the same authors
addressed the issue of protecting PU from collision with SU
traffic. In [32], the cross-layer problem involving physical
layer transmission power and network layer delay is addressed
with a game-theoretic formulation. In [33], throughput is

optimized with respect to the sensing threshold and the amount
of energy being harvested. In [34], the problem of optimal
spectrum sensing strategy is studied in energy harvesting CR
networks. In [35], this optimization is investigated with respect
to sensing time and energy harvesting time, considering a slot-
ted energy arrival policy. In [36], the problem is studied in the
scenario of multislot spectrum sensing and energy harvest-
ing. In [37], the optimal energy scheduling problem is studied
in the fading multiple access channel with energy harvest-
ing. In [38], optimal power allocation policy is analyzed when
only causal information is available to the energy harvesting
transmitters.

We partially addressed the problem of throughput
optimization in a CR fading multiple access channel with
energy harvesting secondary transmitters in [39] in a coop-
erative spectrum sensing framework. It is obvious that there
is a trade-off between the accuracy of spectrum sensing pro-
cess and the throughput measure. This is due to the fact that,
if the sensing time is long enough, then the sensing accu-
racy is high, but on the other hand, the transmission time
decreases, which in turn reduces the throughput. In [39], the
optimization was carried out with respect to the sensing time,
SU transmission power, and the binary decision variables con-
cerning (i) whether to sense (as sensing also costs energy) and
(ii) the outcome of the spectrum sensing decision regarding
whether to access the spectrum or not. In our current submis-
sion, we remove the binary variable regarding the spectrum
access decision by considering explicit expressions for detec-
tion and false alarm probability for the cooperative spectrum
sensing process, and we extend the paper to consider the addi-
tional feature of energy sharing between neighbouring sensors.
The energy sharing mechanism considered here is assumed
to be directional, which can be achieved via non radio-
frequency wireless power transfer over shorter distances or
radio frequency based wireless power transfer over longer dis-
tances employing energy beamforming technology [40], [41].
In addition, as opposed to [39], where the PU interference at
the secondary base station was ignored, we consider the pres-
ence of PU interference explicitly in the SU sum-throughput
expression when the PU is present. In this setting, we study
the problem of jointly maximizing the achievable sum-rate for
a CR fading multiple access channel with respect to the binary
decision variables regarding whether each SU senses for the
PU, and the continuous variables such as the SU transmission
powers, sensing times and energy transferred between neigh-
bouring sensors under an average interference constraint at
the PU receiver, energy causality and peak power constraints
at the SU transmitters.

B. Contributions

We consider the problem of maximizing the achievable sum-
rate with respect to the four optimization variables mentioned
above. The specific contributions of this paper are listed below:

• We solve the problem of expected sum throughput
maximization over a finite time horizon in a fading
multiple access cognitive network where the SUs having
energy harvesting and sharing capabilities. We explore
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the problem in both finite and infinite battery capac-
ity settings, and with non-causal and causal information
patterns. In the case where all channel conditions and
harvested energy realizations are known non-causally for
the entire time horizon, an analysis is provided for the
optimization of the continuous variables (SU transmis-
sion power, shared energy and sensing times) for the
infinite battery capacity setting, using an iterative alter-
nating optimization approach, which only ensures locally
optimal solutions, as the problem is jointly non-convex
in the continuous variables.

• In case of a non-causal information pattern, the over-
all optimization problem is a mixed integer nonlinear
programming problem, where the underlying nonlinear
programming problem is non-convex. It is well known
that (see [42], [43]) determining of a global solution of
the non-convex MINLP problem is NP-hard. We do not
pursue global optimization methods to avoid their pro-
hibitive computational complexity in the case of longer
horizons. Instead, for smaller problem dimensions (small
number of SUs and a short time horizon), we use an
exhaustive search policy to find the optimal binary vari-
ables regarding the SUs’ decision to sense the spectrum.
We also provide a numerical study comparing the results
with those obtained using a global optimization software.
For larger problem dimensions, using either the exhaus-
tive search or global optimization is impractical, and
therefore we propose a heuristic policy to solve the mixed
integer non-linear program with respect to the spectrum
sensing decisions resulting in a moderate computational
complexity.

• The problem pertaining to the finite battery capacity with
causal CSI and ESI is studied using a dynamic program-
ming based stochastic control algorithm resulting in the
optimal sequence of the binary spectrum sensing deci-
sion variables, and discretized values of the continuous
variables in order to facilitate practical implementation.

• We also propose two other sub-optimal policies to mit-
igate the exponential complexity associated with the
dynamic programming (DP) algorithm. The first one is
a moving-horizon limited look-ahead policy, which has a
relatively low complexity especially when the length of
the finite horizon is high. The second one is an ad-hoc
policy to find sub-optimal values of all three continu-
ous optimization variables without involving the dynamic
programming algorithm, based on insights obtained from
the non-causal case.

• Finally, we compare a non-adaptive policy for sensing
time optimization (i.e., a fixed sensing time is adopted
across all time slots) with an adaptive sensing time
optimization (where the sensing time is optimized in a
dynamical fashion across the time slots) in the above
mentioned setting.

C. Organization

The rest of the paper is organized as follows. In Section II
we discuss the system model. In Section III we describe the

Fig. 1. Figure of System Model.

optimization problem and the procedure for finding the optimal
solution. In Section IV we provide an analysis for the optimal
solution of the problem for the infinite battery and non-
causal CSI/ESI scenario. In Section V we discuss the proposed
policy for causal CSI and finite battery scenario using the
dynamic programming algorithm. In Section VI we propose
two sub-optimal policies in order to mitigate the complex-
ity of dynamic programming algorithm. Section VII contains
simulation results followed by some concluding remarks in
Section VIII.

II. SYSTEM MODEL

We consider a system model (see Figure 1) comprised of
a PU, N SUs and a FC, the role of which can be performed
by a secondary base station (SBS). We adopt a cooperative
spectrum sensing model, where individual SUs sense the PU
spectrum locally and transmit their local decisions to the SBS.
The SBS collates all the information from the SUs and arrives
at a global decision, which in turn is broadcast to the SUs by a
control channel, so that the SUs can decide to transmit or not.
We assume that time is slotted as shown in Fig. 2. the energy
harvesting and sharing process is assumed to be independent
of the sensing and data transmission process, as we do not
restrict the harvesting and sharing to be based on RF energy
harvesting only, and these actions are carried out by the sensor
via a unit separate from the transceiver. We consider a finite
time horizon of M slots, where each slot is assumed to be T
time units in size. In each slot, the PU is either present with
probability μ or absent with probability (1 − μ). In the k th

time slot, as illustrated in Fig. 2, τk time units are used for
the spectrum sensing process and the residual (T − τk ) time
units are used for the transmission process, provided the PU
spectrum is found to be vacant. Since sensing costs energy,
in the k th time slot, the i th SU decides to either sense the
PU spectrum or be idle based on the binary decision variable
ai ,k , 1 ≤ i ≤ N , 1 ≤ k ≤ M . ai ,k ∈ {0, 1}, where 1 (or 0)
represents the decision to sense the PU spectrum (or not).
Note that if Bi ,k , the battery energy level of the i th SU at the
beginning of the k th time slot, is smaller than psτk , where
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Fig. 2. Frame Structure.

ps is the sensing power, ai ,k = 0. However, if Bi ,k > psτk ,
ai ,k ∈ {0, 1}.

A. Energy Harvesting and Battery Dynamics

As indicated in Fig. 2, we assume an energy full-duplex
energy harvesting scenario [29], where each SU has sep-
arate energy harvesting/sharing units and spectrum sensing
and information transmitter/receivers so that these harvest-
ing/energy sharing and spectrum sensing/information trans-
mission/reception processes can occur simultaneously and
independently. This is not unusual where the SU can harvest
energy from non-radio frequency sources, such as solar, wind
or vibrations etc. We also make the standard assumption that
the energy harvested in slot k is available for use in slot k + 1
onward.

When the spectrum sensing decision ai ,k = 1, the SU trans-
mits with a transmission power pi ,k . With the assumption of a
finite battery size of Bmax at each SU, Bi ,k can be expressed
as follows:

Bi,k+1 = min

⎧
⎨

⎩
Bmax ,Bi,k − Ei,k + Hi,k −

∑

m∈NT ,i

Ti,m(k)

+
∑

m∈NR,i

ηm,iTm,i(k)

⎫
⎬

⎭
(1)

where Hi ,k is a random process denoting the amount of energy
harvested by the i th SU in the k th time slot. Ti ,m (k) is the
amount of energy transferred from the i th SU to the mth

SU in the k th time slot. Ei ,k , ηm,i ,NT ,i ,NR,i represents the
amount of energy used by the i th SU in the k th time slot,
the energy transfer efficiency from the mth SU to the i th SU,
the set of SUs which i th SU shares its energy to and the set
of SUs that the i th SU received shared energy from, respec-
tively. Although our subsequent analysis does not strictly need
it, we assume that Hi ,k is independent and identically dis-
tributed (i.i.d.) across time and independent across the SU
terminals.

In the case where ai ,k is a variable of optimization, Ei ,k ,
can be subdivided into sensing energy and transmission energy
as follows:

Ei ,k =
{
ai ,kpsτk + pi ,k (T − τk )

× {
(1− Pd (τk ))μ+

(
1− Pfa(τk )

)
(1− μ)

}}
(2)

where Pd (τk ) and Pfa(τk ) denote the probability of detection
and the probability of false alarm at the FC in the k th time
slot, respectively. Note that in order to avoid an additional
binary decision variable regarding whether to access the spec-
trum or not, we consider the above energy consumption model,
which is equivalent to accessing the spectrum with probabil-
ity (1 − Pd (τk ))μ + (1 − Pfa(τk ))(1 − μ) in the k th slot.
This approximation becomes exact when the time horizon M
becomes sufficiently large. See [39] for a treatment where the
spectrum access decision is also treated as a binary variable.

Applying the recursive definition of (1) we can write:

Bi,k = min

⎧
⎨

⎩
Bmax ,Bi −

k∑

r=1

Ei,r +
k−1∑

r=1

Hi,r −
k∑

r=1

∑

m∈NT ,i

× Ti,m(r) +
k−1∑

r=1

∑

m∈NR,i

ηm,iTm,i(r)

⎫
⎬

⎭
(3)

where Ei ,k is defined in (2) and Bi represents the initial bat-
tery state for the i th SU. In the case of infinite battery capacity,
the above expression in (3) simplifies to:

Bi ,k = Bi −
k∑

r=1

Ei ,r +

k−1∑

r=1

Hi ,r −
k∑

r=1

∑

m∈NT ,i

Ti ,m (r)

+

k−1∑

r=1

∑

m∈NR,i

ηm,iTm,i (r). (4)

B. Spectrum Sensing Model

If an SU decides to sense the PU spectrum, the spec-
trum sensing time τk for the k th time slot is divided into
a number of mini-slots, where the length of each mini-slot is
pre-decided. In each mini-slot the SUs take sensing samples
and try to determine the PU spectrum availability by using
a binary hypothesis testing problem based on the following
signal model:

H0 : yi ,k ,m = ni ,k ,m

H1 : yi ,k ,m =
√
qixk + ni ,k ,m (5)

where xk is the PU transmitted signal for the k th time slot,
which is real valued and distributed as xk ∼ N (0, σ2x ). qi is
the channel power gain between the PU transmitter and the i th

SU receiver, which is assumed to be constant throughout the
sensing process. yi ,k ,m and ni ,k ,m are the real valued received
signal and noise signal component respectively at the i th SU
receiver for the mth mini-slot of the k th time slot. The noise
is distributed i.i.d. as ni ,k ,m ∼ N (0, σ2n ). For the spectrum
sensing rule, we use an energy detection policy [44] in each
SU, such that the local spectrum sensing decision at the k th

time slot in the i th SU is determined by the following rule:

θi ,k = I
⎛

⎝
1

Sk

Sk∑

m=1

y2i ,k ,m ≥ ε

⎞

⎠

where I is the indicator function, Sk is the number of mini-
slots in a particular time slot τk and ε is the detection
threshold. However, we should note the fact that the number
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of mini-slots Sk being a discrete variable doesn’t imply that
the spectrum sensing time τk being a discrete variable. Thus
in general if the length of each mini-slot is τmini , a continu-
ous variable, the corresponding number of mini-slots can be
determined as Sk = � τk

τmini
�. All the local decisions θi ,k from

the SUs are sent to the FC by control channels and collated
using an OR logic fusion rule to achieve the global decision
θk . Note once again that our analysis is not restrictive to any
particular type of a fusion rule and other fusion rules such as
the “majority logic” rule can also be easily considered (see
Remark 2 below).

Remark 1: A number of additional sources of energy con-
sumption has been ignored in this work, such as circuit power
consumption, energy consumption due to signalling overhead
of side-information over control channels etc. The rationale
is that (i) the circuit power consumption is assumed to be
much lower compared to energy consumption in communi-
cation, especially over longer distances, and (ii) a non-trivial
circuit power consumption can be grouped together with the
sensing energy (whenever ai ,k = 1) whereas energy consump-
tion due to signalling overhead can be easily subtracted from
the maximum battery capacity without affecting the analysis.
The nature of the numerical results will not be affected consid-
erably as long as such energy consumption is small compared
to energy consumed due to communication.

The probability of detection and false alarm for the OR
fusion rule then can be written as Pd = Pr{θk = 1|H1} and
Pfa = Pr{θk = 1|H0}. Pd (τk ) and Pfa(τk ) is given by the
following:

Pd (τk ) = 1−Πi∈Ak

(
1− p

(i)
d (τk )

)

Pfa(τk ) = 1−Πi∈Ak

(
1− p

(i)
fa (τk )

)

where Ak is defined as the set Ak = {i : ai ,k = 1}, and

p
(i)
d (τk ) and p

(i)
fa (τk ) are the probability of detection and the

probability of false alarm at the i th SU in k th time slot, given
the sensing time τk and they can be computed by the following
expressions [21]:

p
(i)
d (τk ) = Q

{(
ε

σ2n
− γi − 1

)√
τk fs

2γi + 1

}

p
(i)
fa (τk ) = Q

{(
ε

σ2n
− 1

)
√
τk fs

}

(6)

In the above two equations fs is the sampling rate and γi =
qi
σ2
n

is the signal to noise ratio corresponding to the channel

between the PU transmitter and the i th SU receiver.
Remark 2: If majority logic fusion rule is implemented with

identical detection and false alarm probabilities pd , pfa respec-
tively, for all SUs, then Pd and Pfa can be calculated as
follows:

Pd (τk ) =

|Ak |∑

l=�|Ak |/2�+1

(|Ak |
l

)

pld (1− pd )
|Ak |−l

Pfa(τk ) =

|Ak |∑

l=�|Ak |/2�+1

(|Ak |
l

)

plfa
(
1− pfa

)|Ak |−l

TABLE I
SYSTEM PARAMETERS

where |Ak | denotes the cardinality of the set Ak , and �x�
denotes the nearest integer less than x.

C. Communication Channel Models

We assume that the spectrum sensing channel gain (qi ), and
the communication channel gains between the SU transmitters
and PU receiver (gi ,k ), as well as the SU transmitters and the
FC (hi ,k ) are i.i.d. exponentially distributed with unity mean
unless otherwise stated. All channel gains are assumed to be
mutually statistically independent. Interference caused by the
PU at the FC is treated as noise.

For easier readability we have summarized the relevant
parameters for our subsequent problem formulation in Table I.

III. PROBLEM FORMULATION

In this section, we formulate the optimization problem
considered in this paper, namely, an achievable sum rate
maximization for a SU multiple-access channel, under the
above mentioned cooperative spectrum sensing framework,
with an average interference constraint [45] at the PU receiver,
and energy harvesting as well as peak transmit power con-
straints at the SU transmitters.

A. Achievable Sum Rate Maximization

The achievable sum-rate expression, also weighted by the
probability of spectrum access, has two components. One com-
ponent corresponds to the case when the PU is active but
not detected by the spectrum sensing process, and the other
one corresponds to when it is not active and is also cor-
rectly detected to be idle. The respective weighted achievable
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sum-rate can be expressed as the following:

D1
(
pi ,k , τk

)
=

μ

M

T − τk
T

(1− Pd (τk ))

× log2

{

1 +

∑N
i=1 pi ,khi ,k

σ2 + σ2in

}

D2
(
pi ,k , τk

)
=

1− μ

M

T − τk
T

(
1− Pfa(τk )

)

× log2

{

1 +

∑N
i=1 pi ,khi ,k

σ2

}

(7)

where the PU interference (treated as noise) is given by
σ2in . The sensing throughput maximization problem can be
formulated as the following (for all 1 ≤ i ≤ N, 1 ≤ k ≤ M):

max
ai,k ,pi,k ,τk ,Ti,m(k)

E

{
M∑
k=1

{D1
(
pi,k , τk

)
+D2

(
pi,k , τk

)}}

(8)

s.t.
1

M

M∑
k=1

E

{
T − τk

T
(1− Pd (τk ))

N∑
i=1

pi,kgi,k

}
≤ Qavg

(9)

0 ≤ pi,k ≤ Pmax ; ∀i , k ; 0 ≤ τk ≤ T ; ∀k
0 ≤ Ti,m (k)∀i ,m, k (10)
k∑

r=1

(
ai,rpsτr + pi,r (T − τr )((1− Pd (τr ))μ

+
(
1− Pfa (τr )

)
(1− μ)

)) ≤ Bi +
k−1∑
r=1

Hi,r

−
k∑

r=1

∑
m∈NT,i

Ti,m (r) +
k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i (r) a.s.; ∀i , k

ai,k =

{
0 if Bi,k < psτk
∈ {0, 1} otherwise

a.s.; ∀i , k (11)

where a.s. stands for almost surely.
Remark: It is important to note that the average interference

term in constraint has been normalized by the primary activ-
ity factor μ, where Qavg = Q/μ, Q being the true average
interference limit, since no interference is caused when the
primary is not active. We would also like to point out that
the achievable sum-throughput expression used in the above
optimization problem for the multiple access channel has the
underlying assumption that the codewords used for data trans-
mission at each SU are independently generated from the cor-
responding statistically independent Gaussian codebooks [46],
followed by successive decoding at the receiver.

The problem under consideration is a joint optimization
with respect to the transmission power pi ,k , transferred energy
Ti ,m (k), sensing time τk and the decision to sense ai ,k . The
objective is to maximize the weighted achievable sum rate
expression (8), with respect to an average interference con-
straint (9) imposed over the entire time horizon, whereas (10)
signifies the short term transmission power and sensing time
and transferred energy constraints imposed at each time slot.
The last constraint (11) is the energy causality constraint which
ensures for every SU, Ei ,k ≤ Bi ,k ∀i , k , and states that
ai ,k = 0 (no sensing is possible) when there is not enough

energy to sense in the beginning of the k-th time slot, whereas
ai ,k ∈ {0, 1} otherwise.

This optimization problem is a mixed-integer nonlinear pro-
gramming (MINLP) problem with respect to the binary vari-
able ai ,k , and the continuous variables pi ,k , τk and Ti ,m (k).
In this particular case, the nonlinear programming problem
with respect to the continuous variables is non-convex, and
hence the associated MINLP problem is NP-hard [42], [47].
In the non-causal case where all channel and harvested energy
information is known a priori, one can still use global
optimization tools, which demand exponential computational
complexity with respect to M, N. Consequently, for the case
of small M, N, we use an exhaustive search method to deter-
mine ai ,k , followed by an alternative iterative optimization
method for the continuous optimization variables as described
below. Noting that for a fixed τk , the resulting problem
becomes jointly convex in pi ,k ,Ti ,m (k) and can be solved
efficiently. On the other hand for fixed pi ,k and Ti ,m(k), it
results in a non-convex problem in τk , which can also be
locally optimized. This iterative process is continued until a
locally optimum solution is found and the algorithm converges
within a certain tolerance. We compare the performance of this
approach with a global optimization tool based solution and
reveal that the corresponding solutions are very close. For large
values of M, N, both approaches quickly fail to be scalable.
Note however, that a global optimization approach cannot be
used in the causal case, as this involves a dynamic program-
ming based approach, where the associated value functions
at each iteration of the dynamic programming do not have a
closed form expression.

B. Heuristic Policy for ai ,k

In the case of medium to large M, N, one cannot employ the
exhaustive search method to optimize over the binary variable
ai ,k . Instead, we propose a heuristic policy to determine ai ,k .
The policy focuses on the fact that an upper bound on proba-
bility of false alarm, i.e., Pfa ≤ κ, for some κ > 0, which, in
turn imposes a lower bound on sensing time as τl ≤ τk . The
value of such a lower bound τl can be determined according

to [21] τl =
1
fs
{Q−1(Pfa )

ε

σ2
n
−1 }2, where Q is the cumulative dis-

tribution function of the standard Gaussian random variable.
This heuristic policy proposes that if a particular SU has more
than enough energy in its battery to perform the spectrum sens-
ing operation for τl time units, the decision to sense is taken
affirmatively, i.e., ai ,k = 1, and vice versa. It should be noted
that the decision making of spectrum access decision variable
ai ,k for this sub-optimal heuristic policy is taken by individ-
ual SUs without any centralized control, which is different
from the optimal policy. Thus for this policy, if a particular
SU decides not to sense, i.e., ai ,k = 0, implying that the i-th
SU doesn’t have enough energy for sensing for the k-th time
slot, therefore setting the transmission power pi ,k = 0. In the
optimal policy however, ai ,k = 0 does not necessarily imply
pi ,k = 0, as an SU may choose not to participate in sensing,
but still may access the spectrum if dictated by the optimum
solution.
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In the following section we analyze the optimization
problem in the context of non-causal CSI and ESI and infinite
battery capacity. For a general M-horizon problem we provide
an analysis for determining pi ,k and Ti ,m (k) for a fixed τk ,
and discuss feasibility conditions for finding a locally optimal
sensing time given fixed pi ,k and Ti ,m (k).

IV. NON-CAUSAL OPTIMIZATION WITH

INFINITE BATTERY

We discuss the non-causal throughput maximization
problem over a finite time horizon in the context of infinite
battery in two different settings: adaptive and non-adaptive
sensing time scenarios. Section IV-A focuses on the adaptive
sensing time strategy, where the sensing time is optimized for
each time slot, whereas Section IV-B describes the algorithm
for the optimization. We study the non-adaptive sensing time
optimization strategy in Section IV-C, where the sensing time
is kept at a fixed optimized value for all time slots.

A. Adaptive Optimization With Non-Causal CSI

In this subsection we derive the optimal transmission power
(pi ,k ) and shared energy (Ti ,m (k)) while keeping the sensing
time τk fixed. The optimization problem under consideration
is then a jointly convex problem in pi ,k and Ti ,m,(k). In
the following subsection, we derive the optimal sensing time
keeping pi ,k and Ti ,m (k) fixed. The channel state information
gi ,k , hi ,k and the energy state information of the battery Hi ,k
are assumed to be known non-causally for this scenario. The
following derivation assumes that ai ,k is pre-determined either
according to an exhaustive search strategy or the heuristic
policy proposed in Section III-B. The optimal values are deter-
mined using the KKT necessary conditions. As the overall
problem is non-convex, only local optima can be guaranteed.

1) Transmission Power and Transferred Energy
Optimization: We first provide an analysis for obtain-
ing the optimal transmission power and shared energy
parameters in the context of non-causal CSI and ESI,
assuming the battery capacity is infinite.

The problem for optimizing the transmission power and
transferred energy for an M-horizon setting is the following:

max
pi,k ,Ti,m (k)

M∑

k=1

{D1
(
pi ,k

)
+D2

(
pi ,k

)}
(12)

s.t.
1

M

M∑

k=1

T − τk
T

(1− Pd (τk ))

N∑

i=1

pi ,kgi ,k ≤ Qavg (13)

0 ≤ pi ,k ≤ Pmax ; ∀i , k , 0 ≤ Ti ,m(k), ∀i ,m, k (14)
k∑

r=1

(
ai ,rpsτr + pi ,r (T − τr )

{
(1− Pd (τr ))μ+

(
1− Pfa(τr )

)
(1− μ)

})

≤ Bi +

k−1∑

r=1

Hi ,r −
k∑

r=1

∑

m∈NT ,i

Ti ,m (r)

+

k−1∑

r=1

∑

m∈NR,i

ηm,iTm,i (r);∀i , k . (15)

Remark: In the objective function, D1 and D2 are defined
in (7). The expectations from (12) and (13) are removed with
respect to (8) and (9), because the random parameters such
as channel gains and energy arrival process are known non-
causally in this case.

We formulate the Lagrangian for the problem as following:

L({pi ,k
}
,
{
Ti ,m (k)

}
, λ,

{
δi ,k

}
,
{
αi ,k

}
,
{
υi ,m,k

}
,
{
βi ,k

})

=

M∑

k=1

D1
(
pi ,k

)
+

M∑

k=1

D2
(
pi ,k

)

− λ

{
1

M

M∑

k=1

T − τk
T

(1− Pd (τk ))

N∑

i=1

pi ,kgi ,k −Qavg

}

+

M∑

k=1

N∑

i=1

δi ,kpi ,k −
M∑

k=1

N∑

i=1

αi ,k

(
pi ,k − Pmax

)

+

M∑

k=1

N∑

i=1

N∑

m=1,m �=i

υi ,m,kTi ,m (k)−
M∑

k=1

N∑

i=1

βi ,k

×
⎧
⎨

⎩

k∑

r=1

(
ai ,rpsτr + pi ,r (T − τr )

{
(1− Pd (τr ))μ+

(
1− Pfa(τr )

)
(1− μ)

})

− Bi −
k−1∑

r=1

Hi ,r +
k∑

r=1

∑

m∈NT ,i

Ti ,m (r)

−
k−1∑

r=1

∑

m∈NR,i

ηm,iTm,i (r)

⎫
⎬

⎭
(16)

where ai ,k satisfy the constraint in (11). λ, δi ,k , αi ,k , υi ,m,k
and βi ,k are the non-negative dual variables associated with
the average interference constraint, transmission power lower
and upper limits, transferred energy constraints and energy
causality constraint respectively.

We define C as a set of pi ,k and Ti ,m (k)’s which sat-
isfy (13), (14) and (15). We also define the vector of Lagrange
parameters as ~λ = (λ,

{
δi ,k

}
,
{
αi ,k

}
,
{
υi ,m,k

}
,
{
βi ,k

}
).

Then the Lagrange dual function is expressed as:

g
(~λ

)
= max

{pi,k ,Ti,m (k)}∈C
L({pi,k}, {Ti,m(k)}, λ, {δi,k},

{αi,k}, {υi,m,k}, {βi,k}) (17)

The dual problem is defined as:

min
~λ�0

g
(~λ

)
(18)

where 
 denotes elementwise inequality. The above men-
tioned dual problem can be solved using a sub-gradient
method [48]. We determine the dual function g(λ) by
solving the KKT conditions for the optimization problem,
where the primary and dual solutions are denoted as
p�i ,k , δ

�
i ,k , α

�
i ,k ,T

�
i ,m (k), υ�i ,m,k , β

�
i ,k . The optimality condi-

tions are given as the following:

∂L
∂pi ,k

= χ1 + χ2 + δ�i ,k − α�
i ,k − T − τk

MT
λgi ,k (1− Pd (τk ))
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× (T − τk )
(
(1− Pd (τk ))μ+

(
1− Pfa(τk )

)
(1− μ)

)

×
M∑

r=k

β�i ,r = 0 ∀i , k

∂L
∂Ti ,m (k)

= 0 ∀i ,m, k

λ

{
1

M

M∑

k=1

T − τk
T

(1− Pd (τk ))
N∑

i=1

pi ,kgi ,k −Qavg

}

= 0

δ�i ,kp
�
i ,k = 0 ∀i , k ; υ�i ,m,kT

�
i ,m (k) = 0 ∀i ,m, k

α�
i ,k

(
p�i ,k − Pmax

)
= 0 ∀i , k

~λ 
 0, (13), (14), (15) hold. (19)

where χ1, χ2 represents the gradients of the achievable sum
rate with respect to pi ,k when the PU is active and idle,
respectively. The expression for χ1 and χ2 can be written as:

χ1 =
dD1

pi ,k
=

μ(T − τk )

MT log 2

hi ,k (1− Pd (τk ))

σ2 + σ2in +
∑k

l=1 p
�
l ,khl ,k

(20)

χ2 =
dD2

pi ,k
=

(1− μ)(T − τk )

MT log 2

hi ,k
(
1− Pfa(τk )

)

σ2 +
∑k

l=1 p
�
l ,khl ,k

. (21)

a) Optimal transmission power: From the above men-
tioned KKT conditions we find p�i ,k by following the same
approach as [19]. To derive p�i ,k we propose the following
lemma:

Lemma 1: Let i and j be two arbitrary SUs, where i , j ∈
{1, 2, . . . ,N } with p�i ,k > 0 and p�j ,k = 0, then the fol-

lowing must be satisfied:
di,k

λei,k+fi,k
≥ dj ,k

λej ,k+fj ,k
∀k , where

di ,k , ei ,k , fi ,k are given by the following expressions:

di ,k =
T − τk
MT log 2

hi ,k ; ei ,k =
T − τk
MT log 2

gi ,k (1− Pd (τk ))

fi ,k = (T − τk )
(
(1− Pd (τk ))μ+

(
1− Pfa(τk )

)
(1− μ)

)

×
M∑

r=k

β�i ,r .

Proof: Please refer to Appendix A.
Now let π be a permutation over the set {1, 2, . . . ,N }

such that
dπ(i),k

λeπ(i),k+fπ(i),k
≥ dπ(j),k

λeπ(j),k+fπ(j),k
when i < j,

i , j ∈ {1, 2, . . . ,N }. Suppose that there are |I| SUs that can
transmit where I ⊆ {1, 2, . . . ,N }. It can be checked that
I = {π(1), π(2), . . . , π(|I|)}. The following lemma provides
a way to determine |I|.

Lemma 2: |I| is given by the largest value of x such that:

dπ(x),k

λeπ(x),k + fπ(x),k
>

{
μ(1− Pd (τk ))

σ2 + σ2in +
∑x−1

y=1 Pmaxhπ(y),k

+
(1− μ)

(
1− Pfa(τk )

)

σ2 +
∑x−1

y=1 Pmaxhπ(y),k

}−1

and the optimal transmission power for the π(I)th SU
can be expressed as p�π(|I|),k = min{Pmax ,P

∗
k }, whereas

p�π(a),k = Pmax , a < |I| and p�π(a),k = 0, a > |I|, and
P∗
k is the solution to the nonlinear (quadratic) equation (43)

(see Appendix B).
Proof: Please refer to Appendix B.

b) Optimal transferred energy: The KKT conditions
corresponding to Ti ,m(k) are as follows:

∂L
∂Ti ,m (k)

{≥ 0 for T �
i ,m(k) = 0

= 0 for T �
i ,m(k) > 0

(22)

The necessary condition for the energy transfer is summarized
in the following lemma.

Lemma 4: If it is optimal to transfer energy from the i th

SU to the mth SU at time slot k, i.e., T �
i ,m(k) > 0, then

νm,k+1 = ηi ,mνi ,k , where νm,k is the inverted sum of the
future Lagrangian multipliers and expressed as : νm,k =

{∑M
r=k βm,r}−1.

Proof: As according to the KKT condition (22), we know
that if T �

i ,m (k) > 0 then ∂L
∂Ti,m (k)

= 0, and υ�i ,m,k = 0. Thus,

we have
∑M

r=k β
�
i ,r = ηi ,m

∑M
r=k+1 β

�
m,r , which leads to the

required result.
Similar to [25], the above result can be used to show that

energy transfer in both directions between a pair of SUs at
the same time slot cannot be an optimal since the efficiency
factor ηi ,m ≤ 1 .

2) Optimal Sensing Time: Fixing the transmission power
and the transferred energy would result in the optimization
problem:

max
{τk}∈(0,T)

M∑
k=1

{D1(τk ) +D2(τk )}

s.t.
1

M

M∑
k=1

T − τk
T

(1− Pd (τk ))

N∑
i=1

pi,kgi,k ≤ Qavg

k∑
r=1

(
ai,rpsτr + pi,r (T − τr )((1− Pd (τr ))μ

+
(
1− Pfa (τr )

)
(1− μ)

)) ≤ Bi +

k−1∑
r=1

Hi,r

−
k∑

r=1

∑
m∈NT,i

Ti,m (r) +

k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i (r), 0 ≤ τk ≤ T

(23)

where the lower bound on τk is changed to τl in case of the
heuristic policy for determining ai ,k .

We formulate the Lagrangian for the problem as follows:

L =

M∑

k=1

D1(τk ) +

M∑

k=1

D2(τk )

− λ

(
1

M

M∑

k=1

T − τk

T
(1− Pd (τk ))

N∑

i=1

pi,kgi,k −Qavg

)

−
M∑

k=1

N∑

i=1

βi,k

⎛

⎝
k∑

r=1

(ai,rpsτr + pi,r (T − τr )((1− Pd (τr ))μ

+
(
1− Pfa (τr )

)
(1− μ)

))− Bi −
k−1∑

r=1

Hi,r

+

k∑

r=1

∑

m∈NT,i

Ti,m (r)−
k−1∑

r=1

∑

m∈NR,i

ηm,iTm,i (r)

⎞

⎠

(24)
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The gradient of the Lagrangian with respect to τk can be
written as:

∂L
∂τk

=
(
λω

(3)
k − ω1

k

)
(1− Pd )− ω

(2)
k

(
1− Pfa

)− ω
(4)
k

+
(
λω

(3)
k + ω5

k − ω
(1)
k

)
(T − τk )

∂Pd

∂τk

+
(
ω
(6)
k − ω

(2)
k

)
(T − τk )

∂Pfa

∂τk

where ω
(1)
k , ω

(2)
k ω

(3)
k ω

(4)
k ω

(5)
k ω

(6)
k are given by the following

expressions:

ω
(1)
k =

μ

MT
log

{

1 +

∑N
i=1 pi ,khi ,k

σ2 + σ2in

}

ω
(2)
k =

(1− μ)

MT
log

{

1 +

∑N
i=1 pi ,khi ,k

σ2

}

ω
(3)
k =

1

MT

N∑

i=1

pi ,kgi ,k

ω
(4)
k =

N∑

i=1

(
ai ,kps − pi ,k

(
(1− Pd )μ+

(
1− Pfa

)
(1− μ)

))

×
M∑

r=k

βi ,r

ω
(5)
k =

N∑

i=1

μpi ,k

M∑

r=k

βi ,r ; ω
(6)
k =

N∑

i=1

(1− μ)pi ,k

M∑

r=k

βi ,r

This optimization problem is not convex in τk and a locally
optimum solution for the sensing time can be found by solv-
ing the necessary KKT conditions ∂L

∂τk
= 0 for 0 < τk < T ,

while ∂L
∂τk

≥ 0 for τk = T and ∂L
∂τk

≤ 0 for τk = 0
or τk = τl .

The feasibility of obtaining a locally optimal τk is guaran-
teed if the following conditions are satisfied:

∂L
∂τk

|τk→T =
(
λω

(3)
k − ω1

k

)
(1− Pd )

−ω
(2)
k

(
1− Pfa

)− ω
(4)
k > 0

∂L
∂τk

|τk→0 < 0 (25)

For a given set of parameters defining the optimization
problem, one needs to check whether there is a set of Lagrange
parameters λ, βi ,r that satisfy the above mentioned condi-
tions. To this end, one can build up a lookup table of the
relevant Lagrange parameters for given sets of optimization
problem parameters (using numerical methods as no direct
closed form relationship exists), and use this for a feasibility
check.

If feasible, the equation ∂L
∂τk

= 0 can be solved by applying
a bisection search method in the interval 0 ≤ τk ≤ T or
τl ≤ τk ≤ T , depending on the method for finding ai ,k .

Algorithm 1 Algorithm for Calculation of Optimal Parameters
for Fixed ai ,k

1: Initialization: Choose a feasible initial sensing time τ0k for all
k ∈ {1, 2, . . . ,M }, tolerance of the algorithm δ, Lagrange
parameter λ0 and step-size of the sub-gradient algorithm ε.
Choose also the initial achievable sum rate as 0.

2: repeat
3: For l = 0, 1, . . . (l is an iteration number)
4: Determine the optimal transmission power pl+1

i ,k by solving
the quadratic non-linear equation (43).

5: Compute the shared energy T l+1
i ,m (k) by solving the following

iteration:

T l+1
i ,m (k) =

{
T l
i ,m (k)−ε(

M∑
r=k

βli ,r−ηi ,m

M∑
r=k+1

βlm,r )

}+

(26)
where βi ,k ’s are determined by a dual sub-gradient algorithm.

6: Fixing the pl+1
i ,k and T l+1

i ,k , the τ l+1
k is solved by applying

a bisection search method.
7: Solve for λ in the optimization problem (18) by a dual sub-

gradient method given as

λl+1 =

{
λl − ε

{
Qavg − E

{∑M
k=1

T−τ l+1
k

MT (1 −

Pd (τ
l+1
k ))

∑N
i=1 p

l+1
i ,k gi ,k

}}}+

.

8: until Convergence |C(pl+1
i ,k , τ l+1

k )−C(pli ,k , τ lk )| ≤ δ ∀i ,m, k ,
where C(pi ,k , τk ) is the achievable sum rate expression from (8).

B. Algorithm for Locally Optimal Transmission Power,
Shared Energy and Sensing Time

In this section we summarize the above mentioned
optimization procedure in an algorithmic form (Algorithm 1)
for computing locally optimal values of the transmission
power, sensing time and shared energy. We assume that there
are pre-decided tolerance values ε and δ. C(pi ,k , τk ) represents
the achievable sum rate corresponding to the transmission
power pi ,k and sensing time τk .

Convergence analysis: The objective function of the
optimization problem in (8) is non-decreasing from iteration
to iteration of the alternating optimization procedure as at
each iteration it is maximized with respect to a parameter
by fixing the other parameters. It can be easily shown that
by considering only the short term constraints (10), in the
extreme scenario, i.e., ai ,k = 1, ∀i , k , ∀k , τ�k = 0, ∀k and
p�i ,k = Pmax , ∀i , k , the achievable sum rate is upper bounded
by the following expression:

E

{
M∑

k=1

μ

2M
log2

{

1 +

∑N
i=1 Pmaxhi ,k

σ2 + σ2in

}

+

M∑

k=1

(1− μ)

2M
log2

{

1 +

∑N
i=1 Pmaxhi ,k

σ2

}}

where the expectation is taken over hi ,k . Note that the
additional constraints can only limit the feasible set further
and thus lower the objective function value. Using Jensen’s
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inequality, we can write:

E

{
M∑

k=1

μ

2M
log2

{

1 +

∑N
i=1 Pmaxhi ,k

σ2 + σ2in

}

+

M∑

k=1

(1− μ)

2M
log2

{

1 +

∑N
i=1 Pmaxhi ,k

σ2

}}

≤
M∑

k=1

μ

2M
log2

{

1 +

∑N
i=1 PmaxE

{
hi ,k

}

σ2 + σ2in

}

+
M∑

k=1

(1− μ)

2M
log2

{

1 +

∑N
i=1 PmaxE

{
hi ,k

}

σ2

}

=

M∑

k=1

μ

2M
log2

{

1 +

∑N
i=1 Pmax

σ2 + σ2in

}

+

M∑

k=1

(1− μ)

2M
log2

{

1 +

∑N
i=1 Pmax

σ2

}

(27)

Thus, the objective function is upper bounded by the achiev-
able sum rate using a feasible policy involving ai ,k , pi ,k , τk .
Since a non-decreasing sequence that is upper bounded must
converge, it follows that the alternating optimization algorithm
above converges to a local optimum.

C. Non-Adaptive Optimization With Non-Causal CSI

In this section we propose a policy (albeit sub-optimal)
where instead of optimizing the sensing time for each indi-
vidual time slot, we use a constant (but optimized) sensing
time for all time slots. In this case, the analysis for the trans-
mission power and transferred energy (for a fixed sensing
time) remains the same as before. A locally optimum non-
adaptive sensing time can be found by solving the following
optimization problem (where pi ,k ,Ti ,m (k) are kept fixed):

max
{τ}

M∑

k=1

{D1(τ) +D2(τ)}

s.t.
1

M

M∑

k=1

T − τ

T
(1− Pd (τ))

N∑

i=1

pi ,kgi ,kai ,k ≤ Qavg

0 ≤ τ ≤ T
k∑

r=1

(
ai ,rpsτ + pi ,r (T − τ)((1− Pd (τ))μ

+
(
1− Pfa(τ)

)
(1− μ)

)) ≤ Bi +

k−1∑

r=1

Hi ,r

−
k∑

r=1

∑

m∈NT ,i

Ti ,m(r) +
k−1∑

r=1

∑

m∈NR,i

ηm,iTm,i (r)

(28)

We can formulate a Lagrangian L∞ similar to (24), and solve
for a locally optimum τ∗ by solving ∂L∞

∂τ = 0. Feasibility
and convergence analysis of this setting can be carried out in
a similar fashion to the adaptive case.

V. CAUSAL OPTIMIZATION WITH FINITE BATTERY

In this section, we consider the finite horizon achiev-
able sum rate optimization problem under the more realistic
assumption of causal CSI and ESI, and a finite battery set-
ting. Similar to the previous section, this optimization can be
done for non-adaptive and adaptive sensing time both. For
space limitations, we only consider the adaptive sensing time
strategy below.

A. Achievable Sum Rate Optimization With Causal
CSI and ESI

The throughput optimization in the context of causal CSI
and ESI with finite battery is a stochastic control problem
and can be solved by dynamic programming (DP) techniques.
Note that in the case of DP, at each stage, it is natural to
consider the optimization over ai ,k in an exhaustive search,
along with optimization over discretized values of all the
continuous optimization variables for facilitating numerical
implementation.

1) Information Pattern: In each time slot the FC receives
the CSI between the PU transmitter and the SU receivers
gk = {g1,k , g2,k , . . . , gN ,k} causally with the assumption of
a priori knowledge of the PU transmission levels and chan-
nel reciprocity. The CSI between the SU transmitter and the
FC hk = {h1,k , h2,k , . . . , hN ,k} is also received at the FC by
channel training, estimation and feedback mechanisms. The
battery state information of the individual SUs are collected
at the FC and collated as Bk = B1,k ,B2,k , . . . ,BN ,k . The
information available at the k th time slot is given by the tuple
Jk = {gk , hk ,Bk , Jk−1}.

2) Dynamic Programming Algorithm: We denote the
immediate per-stage cost function for the stochastic control
problem as

C(pi,k , τk) = D1
(
pi,k , τk

)
+D2

(
pi,k , τk

)
− λ

{
T − τk
MT

(1− Pd (τk ))

N∑
i=1

pi,kgi,k −Qavg

}

(29)

Here, λ is the Lagrange parameter corresponding to the
average interference constraint. D1 and D2 are defined in (7).

Combining all the other short term constraints on the trans-
mission power, shared energy and sensing time, and the energy
causality constraint, along with the binary search space of ai ,k ,
we define the feasible set for the optimization variables as:

A =
{(

ai ,k , pi ,k ,Ti ,m (k), τk
)
: ai ,k , pi ,k ,Ti ,m (k), τk

satisfy (10), (11)}

For a fixed λ, the optimal values of transmission power, sens-
ing time and energy shared can be determined by the following
theorem:

Theorem 1: If the initial condition is J1 = {g1, h1,B1},
then the value of the finite horizon finite battery problem with
causal information is given by V1(g1, h1,B1), which can be
computed by the backward Bellman dynamic programming
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equation:

Vk (gk , hk ,Bk ) = max
(ai,k ,pi,k ,Ti,m (k),τk)∈A

× [C (pi,k , τk ) + E[Vk+1(gk+1, hk+1,Bk+1)|ai,k , pi,k ,
Ti,m(k), τk ]], k = 0, 1, . . . ,M − 1 (30)

where the terminal condition is given by VM (gM , hM ,BM ) is
given as the solution to the optimization problem (8)-(11) for a
single slot k = M with the causal knowledge of gM , hM ,BM .

Proof: The proof can be obtained by the standard opti-
mality conditions for the finite horizon stochastic control
problem [49], and is omitted for brevity.

The solution of the causal optimization problem, which can
be computed numerically, is obtained as:
{
a�i ,k , p

�
i ,k ,T

�
i ,m (k), τ�k

}
= argmaxai,k ,pi,k ,Ti,m (k),τk∈A

× [
C
(
pi ,k , τk

)
+ E

[
Vk+1(gk+1, hk+1,Bk+1)|ai ,k ,
pi ,k ,Ti ,m (k), τk

]]
. (31)

3) Sub-Gradient Method for the Lagrange Parameters: The
optimal value of λ from (29) can be found by solving the
following equation:

λ

{

E

{
M∑

k=1

T − τk
MT

(1− Pd(τk ))
N∑

i=1

pi,kgi,k

}

−Qavg

}

= 0

(32)

This is achieved by using a sub-gradient algorithm [36] by
updating the value of λ

λl+1 =

{

λl − αl

{

Qavg − E

{
M∑

k=1

T − τk
MT

(1− Pd (τk ))

×
N∑

i=1

pi ,kgi ,k

}}}+

(33)

where l is the iteration index and αl is a scalar step size
parameter for the l th iteration satisfying

∑∞
l=1 α

l = ∞ and
∑∞

l=1(α
l )2 < ∞, and {x}+ = max{x , 0}.

Note that the DP algorithm (31) and the subgradient based
update (33) are performed offline, iteratively until conver-
gence, purely based on the statistics of the channel gains and
harvested energy information. Since there is no closed form
expression to the optimal solutions, one needs to discretize the
search space for the continuous control variables pi ,k ,Ti ,m (k)
and τk , and the state variables gk , hk ,Bk . With these dis-
cretized search space, the FC creates a lookup table which is
shared with all SUs. In real time the FC receives the continu-
ous valued channel gains and battery states and check for the
closest quantization point in its lookup table. The table index
for the optimal sensing time, transmission power and energy
shared is fetched from the look-up table and sent to the indi-
vidual SUs, and then used by the SUs for sensing, information
transmission and energy sharing.

VI. SUB-OPTIMAL POLICIES

In order to apply the dynamic programming algorithm for
a fixed value of λ, we discretize both the state space parame-
ters gk , hk ,Bk and action space parameters pi ,k ,Ti ,m (k), τk ,

where i = 1, 2, . . . ,N and k = 1, 2, . . . ,M . If we consider A
and S to be the sets of discretized action (control) space and
state space respectively for a given time slot (considering all
the users together), then the complexity of the dynamic pro-
gramming algorithm becomes O(

(2N |A||S|)M )
, where the

factor 2N comes from the binary variable ai ,k for N secondary
users. To combat this exponential complexity, in this section
we propose a number of low-complexity suboptimal policies.

A. Limited Look-Ahead Policy

Here we propose a limited 2-Horizon look-ahead pol-
icy based on the approximate dynamic programming litera-
ture [39]. For this policy, only a two horizon lookup table in
the backward Bellman algorithm is created. For any time slot,
the causal optimization is performed with the help of the above
mentioned lookup table considering only one future time slot
at a time.

B. Ad-Hoc Policy

Here we formulate a sub-optimal policy based on the nec-
essary conditions determined in Section IV for non-causal
information with infinite battery and extend that approach
to the causal information scenario with finite battery capac-
ity. To alleviate the complexity associated with optimizing
the achievable sum-rate over all time slots, we implement a
greedy algorithm and formulate the optimization problem in
terms of individual time slots. The optimization of the sensing
time τk is done through a discretization process similar to the
DP algorithm. The parameter corresponding to the decision to
sense ai ,k is determined using the heuristic policy proposed
in Section III-B. The simplified optimization problem over
individual time slots becomes:

max
pi,k

μ

M

T − τk
T

(1− Pd (τk )) log2

{
1 +

∑N
i=1 pi,khi,k

σ2 + σ2
in

}

+
1− μ

M

T − τk
T

(
1− Pfa (τk )

)
log2

{
1 +

∑N
i=1 pi,khi,k

σ2

}

s.t.
T − τk

T
(1− Pd (τk ))

N∑
i=1

pi,kgi,k ≤ Qavg (34)

0 ≤ pi,k ≤ Pmax∀i , k ; 0 ≤ τk ≤ T ∀k ; 0 ≤ Ti,m (k) ∀i ,m, k(
ai,kpsτk + pi,k (T − τk )

× {
(1− Pd (τk ))μ+

(
1− Pfa (τk )

)
(1− μ)

}) ≤ Bi,k (35)

We can solve this problem using the same approach as in [19].
Using the techniques used in Section IV, we conclude the
following:

• Only one SU in the set {1, 2, . . . ,N } would be able to
transmit power from the open set (0,Pmax ). All the other
SUs either transmit with Pmax or do not transmit in the
time slot under consideration.

• If i 
= j, and pi ,k > 0 and pj ,k = 0, then
hi,k

λ�μgi,k+δ∗i
≥

hi,k
λ�μgi,k+δ∗j

, where λ� and δ∗i are the optimal Lagrange

parameters corresponding to (34) and (35), respectively.
• The above inequality also holds for the scenario when

pi ,k = Pmax and pj ,k ∈ [0,Pmax ).
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Thus we infer that for such choices of i and j , the following
condition holds:

{
gj ,k
hj ,k

− gi ,k
hi ,k

}

≥ 1

λ�μ

{
δ�i
hi ,k

−
δ�j
hj ,k

}

If we fix λ� > 0 and δ�j = 0 then we can have
hi,k
gi,k

≥ hj ,k
gj ,k

.
Using the above mentioned policy we sort all the SUs

according to the descending order of the ratio of their direct
and interference channel gains. Starting with the SU corre-
sponding to the highest ratio, we determine the SU transmis-
sion power of the according to the following expression:

p�i ,k = min

{

Pmax ,
TQavg

(T − τk )gi ,k (1− Pd (τk ))
,

Bi ,k − psτk

(T − τk )
{
(1− Pd (τk ))μ+

(
1− Pfa(τk )

)
(1− μ)

}

}

(36)

If there is still energy left in the battery after the transmission
process, the rest of the energy is shared to the SU with high-
est μh

μg
, ensuring that there is no battery overflow [25]. The

optimal transmission energy shared is given by the following
expression:

T �
i ,m(k) = min

{
max

{{
Bmax − Bm,k + Em,k

− 2μHm
}/ηi ,m ; 0

}
;Bi ,k

}
. (37)

C. Computational Complexity

Heuristic Policy for ai ,k : The proposed heuristic policy for
finding the spectrum access decision variable ai ,k ensures that
individual SUs can determine their corresponding spectrum
access decision ai ,k in a decentralized fashion. Compared
to the optimal policy, no look-up table is required in the
FC for specifically optimizing ai ,k for the heuristic policy.
Thus in this scenario, the value of ai ,k can be instantaneously
computed as the indicator variable IBi,k≥psτl , resulting in a
computational complexity of O(1) for a given i, k. However,
for optimizing the rest of the optimization variables like τk ,
pi ,k and Ti ,m (k) look up table needs to be created and stored
in FC as usual via dynamic programming, resulting in an expo-
nential complexity of O((|A||S|)M ). Therefore the overall
complexity of the heuristic algorithm is O(MN (|A||S|)M ).

Limited Look ahead Policy: For this sub-optimal policy, the
look up table is only stored for two time slots. Thus the cor-
responding computational complexity is O(M (2N |A||S|)2).

Ad-hoc Policy: For the ad-hoc policy, the value of the trans-
mission power pi ,k ,Ti ,m (k) are obtained by the closed form
expressions in (36-37), for each k, while ai ,k is computed
using the heuristic policy and τk is computed using a set of
discretized values, say of cardinality |Aτ |. In this case, the
complexity is O(MN 2(|Aτ ||S|)M ).

VII. SIMULATION RESULTS

In this section we present some numerical results to illus-
trate the performance of the various algorithms considered in

Fig. 3. Normalized average sensing time τavg vs Average harvested energy
μH with ratio of SU Tx-FC Rx and SU Tx-PU Rx average channel gain
μh/μg fixed.

the previous sections. We assume the energy harvesting pro-
cess at the SUs is an exponentially distributed random process
with a mean of 1 μJ, unless otherwise stated. The PU activity
probability is set to μ = 0.8 (we also present some results for
μ = 0.2 later in this section). The sensing channel signal to
noise ratio (SNR) is assumed to be −15dB. The PU signal
variance is taken to be σ2

x = 1 mW. The length of a time slot
is taken as T = 2 ms, and the individual mini-slot length is
0.001 ms. The probability of false alarm limit of the heuris-
tic policy κ is taken to be 0.1. The sampling frequency is
assumed to be 1 MHz and the normalized threshold of detec-
tion is assumed to be ε

σ2
n

= 1.006. This corresponds to a
minimum sensing time limit τl = 0.05 ms. This constraint
on the minimum sensing time has been applied only to the
heuristic policy based methods.

We assume a secondary network with N = 2 users and
with a maximum transmission power of 10 mW each. The PU
interference and noise variance for the channel between the
SUs and the FC is taken to be σ2

in = σ2 = 4 × 10−10 W.
Assuming the maximum average received SNR at the FC of
approximately 5 dB (with the primary interference active), this
corresponds to a path loss of approximately −87 dB with
a path loss exponent of 2.7 over a distance of 100 metres
between the SU and the FC, using the simplified path loss
model from [50, p. 46], where the reference distance for
the antenna far field is 10 m, and transmission frequency at
2.4 GHz. The energy transfer efficiency for energy sharing is
assumed to be 0.4. The average interference limit (normalized
by the path loss factor between the SUs and the PU receiver)
Qavg = 5 mW. The initial battery level for each SU is assumed
to be 0.4 μJ. For the dynamic programming simulation the
state space parameters gk , hk ,Hk and the action space param-
eters pi ,k ,Ti ,m (k), τk are quantized into 5 different discrete
levels.

In Fig. 3, we plot the average sensing time (averaged
over the time horizon) for the non-causal CSI and ESI
denoted by τavg with respect to the average harvested energy
denoted by μH , keeping the mean of the channel mean gains
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Fig. 4. Average Throughput vs ratio of SU Tx-FC Rx and SU Tx-PU Rx
average channel gain μh/μg with average harvested energy μH fixed with
Exhaustive Search and MINLP solver.

denoted by μg and μh constant, for M = 2, 3, 4. The averages
are taken over 50 Monte-Carlo simulations. From Fig. 3, it is
evident that the average sensing time τavg decreases monoton-
ically by increasing the length of the horizon. As a numerical
comparison, for mean harvested energy μH = 3.5 μJ, the nor-
malized average sensing times corresponding to M = 3 and
M = 4 are 12.1 and 31.7 percent less compared to M = 2
respectively. This is due to the fact that increasing the length
of horizon M in the non-causal CSI and battery state sce-
nario helps to spread out the sensing time over multiple time
slots, which means on average the transmission time increases
and the sensing time decreases with increasing M. A similar
behaviour of τavg is observed when plotted against increasing
μh/μg , keeping μH fixed, and hence not shown here.

Fig. 4 compares the average throughput with respect to the
ratio of mean channel gain μh/μg keeping μH fixed for hori-
zon length M = 2 and M = 3 with non-causal information. The
spectrum sensing decision variable is optimized using both the
exhaustive search and a MINLP solver called MIDACO [51].
From the figure, it is noticeable that both approaches result
in approximately the same throughput. Although the MINLP
solver is computationally faster, neither of these methods is
scalable for moderate to large values of M, N. Fig. 5 shows
the average throughput plotted against the battery capacity
Bmax for the adaptive and the non-adaptive optimization pol-
icy with non-causal and causal information. These simulations
are averaged over 100 Monte-Carlo iterations. We can notice
that for Bmax = 1.4 μJ the average throughput corresponding
to causal non-adaptive policy is 17.5 percent less compared to
its adaptive counterpart. As expected, the adaptive policy out-
performs its non-adaptive counterpart at the expense of higher
computational complexity.

Fig. 6 shows the optimized average throughput, i.e., aver-
age throughput plotted against battery capacity Bmax with
non-causal CSI and battery state scenario with the exhaus-
tive search technique (for the decision to sense), causal CSI
and ESI with exhaustive search and heuristic policy (for
the decision to sense). It is noticeable that for M = 4 and

Fig. 5. Average Throughput vs Battery capacity Bmax for Adaptive and
Non-Adaptive Policy for Horizon length M=4.

Fig. 6. Average Throughput vs Battery capacity Bmax Non-Causal, Causal
and Heuristic Policy.

Bmax = 1.4 μJ the average throughput corresponding to causal
adaptive policy and heuristic policy are 5 and 11.7 percent
less compared to its non-causal counterpart, respectively. As
expected the average throughput increases with increasing
horizon length and non-causal CSI/ESI scenario provides an
upper bound for the causal counterpart. As the heuristic pol-
icy is less computationally complex, we are able to simulate
the average sum throughput with causal information with this
policy for horizon M = 10, 15, 20 in Fig. 9. As expected, it is
seen that the average sum throughput increases with increasing
horizon length.

We have compared the policies proposed in our previous
work in [39] with the ones introduced in this present work
in Fig. 7. The figure includes plots for average throughput
with respect to battery capacity Bmax for Non-causal, causal
and heuristic policy with horizon length M = 4. The plots
show that the policies introduced in this work outperforms
their counterpart policies introduced in [39]. For a numerical
comparison, for Bmax = 0.8 μJ, the average throughput corre-
sponding to the causal policy introduced in [39] is 13.3 percent
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Fig. 7. Average Throughput comparison between Proposed policy and the
policy in [38] for Non-Causal, Causal and Heuristic Policy vs Battery Capacity
Bmax for Horizon length M=4.

Fig. 8. Average throughput for Non-Causal, Causal and Heuristic Policy vs
Battery capacity Bmax for Horizon length M=4 and PU activity probability
μ = 0.2.

Fig. 9. Average Throughput vs Battery capacity Bmax Heuristic Policy for
Horizon length M=10,15,20.

less than its counterpart introduced in this paper. This is due to
the fact that in our previous work, one additional optimization
variable was spectrum sensing decision θk , which could only

Fig. 10. Throughput Ratio between Heuristic and Non-Causal Policy vs
Battery Capacity Bmax for Horizon length M=4.

Fig. 11. Average Throughput vs Battery capacity Bmax Horizon length
M=4 with Causal information for Adaptive, Limited look-ahead and Ad-Hoc
Policy.

Fig. 12. Average Throughput vs Energy Transfer Efficiency η Horizon length
M=4 with Non-Causal, Causal and Heuristic Policy.

take binary values, whereas in our present work, the problem
formulation includes parameters like probability of detection
Pd and probability of false alarm Pfa , which are continuous
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functions of sensing time parameter τk . We have also simu-
lated comparative plots for Non-causal, causal and heuristic
policy when the PU traffic is comparatively light in Fig. 8.
For this figure, we have assumed the PU activity probability
to be μ = 0.2. The plots show that the average throughput
for this scenario is higher compared to the scenario involving
μ = 0.8. This is due to the fact that PU spectrum availability
for μ = 0.2 is much more significant compared to the case
when μ = 0.8.

Fig. 10 shows the ratio of average throughput between
heuristic and non-causal policy for horizon length M = 4 with
respect to varying level of battery capacity Bmax . We also
provide an upper bound based on a feasible policy for the
non-causal case for this ratio of average throughput between
the heuristic and the non-causal policy. We assume that the
sensing time for every time slot to be τk = τl . We also
assume that no energy is shared between the SUs. Assuming
that each SU transmits the same amount of power at every time
instant, we can derive the following expression as an upper
bound of pi ,k .

pi,k ≤ min

⎧
⎨

⎩
Pmax ,

Qavg

N T−τl
T (1− Pd(τl))

∑M
k=1

∑N
i=1 gi,k

,

min
{
Bmax ,Bi +

∑k−1
r=1 Hi,r − psτl

(∑k
r=1 ai,r

)}

k(T − τl)((1− Pd(τl))μ+ (1− Pfa(τl))(1− μ)

⎫
⎬

⎭

(38)

We also assume that at every time slot at least one SU decides
to sense, the probability of which is very high when the num-
ber of SUs becomes large. This allows us to use the tightest
upper bound which satisfies all such MN constraints in (38)
for the transmission by all SUs at all time slots. We propose a
lower bound on the throughput ratio, by using the upper bound
expression for the non-causal policy from equation (27). The
expression in (27) assumes that the interference constraint is
absent from the optimization problem, resulting in an enlarged
feasible set of transmission power and sensing time. Thus the
corresponding lower bound is rather loose compared to its
upper bound counterpart. The throughput ratio between the
Heuristic and Non-causal policy increases gradually with bat-
tery capacity Bmax , because as the battery capacity Bmax

increases, on average the amount of energy that can be stored
without overflow in the battery also increases. This further
makes the optimal solutions for non-causal scenario less supe-
rior compared to its heuristic counterpart, as both policies have
more energy at their disposal for the sensing, transmission and
energy sharing process.

In Fig. 11, we compared the average throughput with
respect to the battery capacity Bmax with causal information
and adaptive sensing time, limited look-ahead policy and
ad-hoc policy. From the simulation, we notice that for M = 4
and Bmax = 1.4 μJ the average sum throughput corresponding
to causal limited look-ahead policy and ad-hoc policy are
13.7 and 20 percent lower compared to its causal adaptive
counterpart respectively. Between the limited look-ahead and
ad-hoc policy the first one is more computationally complex,

but performs better in terms of average sum throughput,
which again illustrates the trade-off between complexity and
performance.

In Fig. 12, we use an asymmetric energy harvesting and
channel gain model. This situation is different compared to all
the previous figures, where we assumed that the mean chan-
nel gains μg and μh and mean harvested energy μH are the
same for the two SUs. Intuitively, SUs do not have any incen-
tive to share energy with their neighbours if their CSI and
ESI are symmetric. We assume that the mean channel gain
between the SU transmitters and the PU receiver, μg = 1 for
both SUs, but the mean channel gain between the SU trans-
mitters and the FC is different for different SUs. We take
μ1h = 1 and μ2h = 10. The harvested energy mean is taken as
μ1

H = 10 μJ and μ2
H =1 μJ. The battery capacity is assumed

to be Bmax = 1.5 μJ. The figure shows that the average sum
throughput indeed increases with increasing energy transfer
efficiency, indicating an increased incentive to share energy in
the asymmetric case. This increase is more prominent in the
non-causal and causal dynamic programming graphs as com-
pared to the heuristic policy, where the increase is marginal
in nature.

VIII. CONCLUSION

This paper deals with a mixed integer non-linear pro-
gramming problem of maximizing a finite horizon expected
achievable sum rate of a cognitive multiple access channel
consisting of energy harvesting SUs under long term average
interference constraints at the PU with a cooperative spectrum
sensing model, where the SUs are also capable of directional
energy sharing with their neighbours. We first investigated
this optimization problem with non-causal CSI and infinite
battery settings, where the integer variable for decision to
sense is optimized by an exhaustive search approach when
the horizon length and number of SUs are small, and a less
computationally complex heuristic policy in the case of longer
horizon lengths and moderate to large number of SUs. In
the non-causal case, we also provided analytical solutions
for the sensing time, transmission power, energy shared. The
performance in the non-causal scenario is used to provide
an upper bound on the performance of its causal CSI (and
ESI) counterpart. The causal CSI and ESI scenario with finite
battery setting is handled using dynamic programming tech-
niques. To combat the curse of dimensionality of dynamic
programming, we also propose two sub-optimal policies for
the scenario involving causal information, namely limited look-
ahead and ad-hoc policy. Through simulations we found that
the energy sharing is only beneficial in the situation involving
asymmetric energy harvesting and channel condition scenar-
ios, i.e., when some SU is harvesting significantly less on
average compared to other SUs, but has a better channel for
data transmission.

APPENDIX A
PROOF OF LEMMA 1

Since p�j ,k = 0 and p�i ,k > 0 from the KKT condition it
follows that δ�i ,k = 0, α�

j ,k = 0, and δ�j ,k ≥ 0, α�
jik ≥ 0.
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Using the KKT optimality conditions, it can be deduced after
some basic algebra that:

(T − τk )

MT log 2
hi ,k

{
μ(1− Pd (τk ))

σ2 + σ2in +
∑N

l=1 p
�
l ,khl ,k

+
(1− μ)

(
1− Pfa(τk )

)

σ2 +
∑N

l=1 p
�
l ,khl ,k

}

≥ T − τk
MT

λgi ,k (1− Pd (τk )) + (T − τk )

× {
(1− Pd (τk ))μ+

(
1− Pfa(τk )

)
(1− μ)

} M∑

r=k

β�i ,r

(39)

(T − τk )

MT log 2
hj ,k

{
μ(1− Pd (τk ))

σ2 + σ2in +
∑N

l=1 p
�
l ,khl ,k

+
(1− μ)

(
1− Pfa(τk )

)

σ2 +
∑N

l=1 p
�
l ,khl ,k

}

≤ T − τk
MT

λgj ,k (1− Pd (τk )) + (T − τk )

× {
(1− Pd (τk ))μ+

(
1− Pfa(τk )

)
(1− μ)

} M∑

r=k

β�j ,r

(40)

The above two equations imply the required result.

APPENDIX B
PROOF OF LEMMA 2

First, we need the following lemma:
Lemma 3: The optimal solution of the problem has at most

one user indexed by i that satisfies 0 < p�i ,k < Pmax where
i = π(|I|), and the following condition must hold for the
optimal transmission power:

dπ(|I|),k
λeπ(|I|),k + fπ(|I|),k

=

⎧
⎨

⎩

μ(1− Pd (τk ))

σ2 + σ2in +
∑|I|

c=1 Pmaxhπ(c),k

+
(1− μ)

(
1− Pfa(τk )

)

σ2 +
∑|I|

c=1 Pmaxhπ(c),k

⎫
⎬

⎭

−1

.

(41)

Proof: (By contradiction) We assume that there exist two
users i and j such that with 0 < p�i ,k < Pmax and 0 <
p�j ,k < Pmax . From the KKT condition we determine that
δ�i ,k = δ�j ,k = 0 and α�

i ,k = α�
j ,k = 0 respectively. Using

these values we can deduce:
di,k

λei,k+fi,k
=

dj ,k
λej ,k+fj ,k

. Since
hi ,k and gi ,k ’s are independent of hj ,k and gj ,k ’s and they
are drawn from a continuous distribution and λ is constant,
it can be inferred that the above equality is satisfied with a
probability of measure zero. Thus we can deduce that there is
at most one user (say user i) with 0 < p�i ,k < Pmax . Thus the

following expression holds for transmission power for i th SU:

di ,k
λei ,k + fi ,k

=

⎧
⎨

⎩

μ(1− Pd (τk ))

σ2 + σ2in +
∑|I|

c=1 Pmaxhπ(c),k

+
(1− μ)

(
1− Pfa(τk )

)

σ2 +
∑|I|

c=1 Pmaxhπ(c),k

⎫
⎬

⎭

−1

(42)

Using the KKT conditions it is easy to check that for any
user z ∈ I, z 
= i, with p�z ,k > 0 must satisfy

dz ,k
λez ,k+fz ,k

≥
di,k

λei,k+fi,k
. Thus it follows that i = π(|I|).

From this result, we can now infer that there are only two
possible sets of solutions for p�i ,k , k ∈ I:

• Case I: p�π(a),k = Pmax , a = 1, 2, . . . , |I|.
• Case II: p�π(a),k = Pmax , a = 1, 2, . . . , |I| − 1

The expression for p�π(|I|),k can be solved by solving the
following non-linear equation:
{

μ(1− Pd (τk ))

ρ1 + p�
π(|I|),khπ(|I|),k

+
(1− μ)(1− Pfa(τk ))

ρ2 + p�
π(|I|),khπ(|I|),k

}−1

= ω

(43)

where

ρ1 = σ2 + σ2in +

|I|−1∑

c=1

Pmaxhπ(c),k

ρ2 = σ2 +

|I|−1∑

c=1

Pmaxhπ(c),k

ω =
dπ(|I|),k

λeπ(|I|),k + fπ(|I|),k
Since p�π(|I|),k ≤ Pmax , thus we can write the optimal trans-
mission power as p�π(|I|),k = min{Pmax ,P

∗
k }, where P∗

k is
the feasible solution to the quadratic equation (43).

All that is required now is to show the fact that optimal
number of active users |I| is the largest value of x such that :

dπ(x),k

λeπ(x),k + fπ(x),k
>

{
μ(1− Pd (τk ))

σ2 + σ2in +
∑x−1

c=1 Pmaxhπ(c),k

+
(1− μ)

(
1− Pfa(τk )

)

σ2 +
∑x−1

c=1 Pmaxhπ(c),k

}−1

(44)

It can be shown that both the case I and case II, for any SU
π(b), b = 1, . . . , |I|, the above inequality holds. Since from
Lemma 1, it can be said that its left hand side decreases with x,
while the right hand side increases with x, thus it is sufficient
to show that the inequality holds for b = |I|. Thus in this case
δ�π(|I|),k = 0 and α�

π(|I|),k ≥ 0, we have

dπ(|I|),k
λeπ(|I|),k + fπ(|I|),k

≥
⎧
⎨

⎩

μ(1− Pd (τk ))

σ2 + σ2
in +

∑|I|
c=1 p

�
|I|,khπ(c),k

+
(1− μ)

((
1− Pfa (τk )

))

σ2 +
∑|I|

c=1 p
�
|I|,khπ(c),k

⎫
⎬

⎭

−1
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>

{
μ(1− Pd (τk ))

σ2 + σ2
in +

∑|I|−1
c=1 Pmaxhπ(c),k

+
(1− μ)(1− Pfa (τk ))

σ2 +
∑|I|−1

c=1 Pmaxhπ(c),k

}−1

Next we have to show that for any user π(j ), j = |I| +
1, . . . ,M , the inequality does not hold. Again it is sufficient
to show that it does not hold for π(|I| + 1). For that user
δ�π(|I|+1),k ≥ 0 and α�

π(|I|+1),k = 0, we have

dπ(|I|+1),k

λeπ(|I|+1),k + fπ(|I|+1),k
≤

⎧⎨
⎩ μ(1− Pd (τk ))

σ2 + σ2
in +

∑|I|
c=1 p

�
|I|,khπ(c),k

+
(1− μ)(1− Pfa (τk ))

σ2 +
∑|I|

c=1 p
�
|I|,khπ(c),k

⎫⎬
⎭

−1

≤
⎧⎨
⎩ μ(1− Pd (τk ))

σ2 + σ2
in +

∑|I|
c=1 Pmaxhπ(c),k

+
(1− μ)(1− Pfa (τk ))

σ2 +
∑|I|

c=1 Pmaxhπ(c),k

⎫⎬
⎭

−1

Thus we can determine |I|, and the proof is complete.
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