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ABSTRACT Insubmillimeter-wave heterodyne imaging systems, op-
tical coupling provides the most efficient way of combining local oscillator
power with the array of signals from the telescope. For systems limited to
one local oscillator source an ideal optical-coupling scheme would produce
an array of appropriately scaled images of the local oscillator feed at the
detectors without any loss in power. One candidate for a beam multiplex-
ing system is the combination of an interferometric coupler with a type
of binary phase grating known as a Dammann grating. In this paper, we
consider in some detail the feasibility of such a system.

INTRODUCTION

Dammann gratings (DG) are binary phase gratings which produce a finite array
of diffraction spots of equal intensity when illuminated by a (coherent) plane
wave. Dammann gratings were developed for use at optical frequencies (Jahns
et al. 1989), and are binary in the sense that the optical path length through the
grating takes on just two values. The original goal of Dammann was to obtain
multiple images of a single coherently illuminated object (Dammann and Klotz
1977). In the case of a local oscillator(LO) multiplexing system we wish, in a
similar manner, to produce multiple images of the LO source feed, such that the
array of images couple well to the array of mixer feeds when used in combination
with an interferometric coupler. This approach is similar to other multiplexing
schemes reported by Jacobsson et al. 1990 and Belousov et al. 1991.

By producing a number of images of the LO feed, the DG potentially guar-
antees very high coupling efficiencies. Thus, a DG would be particularly useful
in situations where the total LO power per array element available through or-
dinary means is limited (such as in the cases of an array with a large number
of elements, a sparsely filled array or at high frequencies where LO power is
severely limited). A DG is a passive device so the amount of power to each
element is fixed and not variable; the repeatability, however, of SIS junction
characteristics produced in the same manufacturing process now suggests that

238

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ASPC...75..238M

FTIO5ASPC. ©.~75. —Z38MD

Dammann Gratings 239

Lens 1 Lens 2

ﬂ ﬂ Detector
Array
= >

f

18

<
L
¥ <& 7

FIGURE 1  Optical set-up for beam multi-plexing with DG.
an array of mixers with the same LO power requirement is feasible.

THEORY

Consider the case of a DG illuminated by an incident field, ¥(z, y), produced by
the local oscillator source feed, as shown in Fig. 1. Plane-wavefront illumination
of the grating located on the common focal plane of L; and L, is assumed; this
will be the case if the phase center of the LO feed is at the focal point of the
first lens L;. The grating consists of an infinite array of basic cells with the
transmission function of the on-axis cell being given by the aperture function
t(z,y), say. An example of the basic cell (one period of the transmission function
for the grating) for a one-dimensional grating is shown in Fig. 2. For the case
where the binary phase steps are equivalent to either 0 and 7, the transmission
function for the grating at (z,y) is given by #(z,y) = +1. The transmission
of an infinite grating with rectangular symmetry is given by the infinite double
sum: g(Z,Y) = Yopo o Yo _oo H(z — mAz,y — nAy), where Az and Ay are
the periods of the grating in the z and y directions, respectively. At the output
focal plane of lens Lg, the field due to the grating is given by the usual Fourier
transform relationship:

E('Un'v)‘—‘//g(a:,y)«,b(a:,y)e“z"(“‘”+””)da:dy, (1)

where the spatial frequencies u and v are related to the coordinates in the Fourier
output plane through v = z,/Af and v = y,/Af, where f is the focal length of
lens Lo.

For a rectangular array of LO beams in the image plane, rectangular sym-
metry holds for the grating and we write ¢(z,y) = tz(z)ty(y). In the example
of the basic period of a one dimensional grating shown in Figure 2, the free pa-
rameters are 1, + g + z3 etc. If the Fourier transform of ¢(z) (where we have
dropped the subscript z) be given by T'(u), then the Fourier transform of the DG
transmission function g(z) (= Y= _o H(z—mAZ) = t(z)*x> o _o, §(z—mAZ))
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FIGURE 2  One-dimensional, symmetric binary function having values of +1
and -1 only.

is given by: G(u) = T(u). Y = —oo §(u — mAu), and an array of point-like spot-
s (or infinitesimally narrow fringes in the one dimensional case) separated by
a common distance of Au = 1/Az will be obtained. Physically, these corre-
spond to the different diffraction orders of a uniformly illuminated grating. The
amplitude of the different orders is determined by the Fourier transform (or e-
quivalently, the Fraunhofer diffraction pattern) of the basic grating period t(z).
The different diffraction grating orders occur when u = mAwu, where m is some
integer. Thus, G(u) = 0 unless v = mAwu; this is equivalent, of course, to the
usual grating formula: n) = dsind = Az.(z,/f).

For a DG illuminated by a field ¢(z), with Fourier transform field ¥(«) on
the output plane, the pattern obtained in the output plane is given by:

E(u) = G(u) x ¥(u) = [T'(u). i 6(u — mAu)] * ¥(u), (2)

m=—00

an array of spots convolved with the output LO beam that would have been
obtained directly in the absence of the DG. Note ¥(u) will be an image of the
(virtual) field at the LO feed phase center.

If we require a 2M + 1 array of non-overlapping images of the LO phase
center field, of equal intensity, then G(u) should consist of 2M + 1 point-like
spots of equal intensity, with all higher diffraction orders of negligible intensity.
Thus, an ideal DG will satisfy:

M

Gu)l o« D |6(u~mAu). (3)

m=—M

The single aperture diffraction pattern of the basic grating period, T'(u), must
therefore be such that |T(mAu)| = |T(0)| for m between —M and M (giving
2M + 1 diffraction orders of equal intensity for G(u)), and T(mAwu) =~ 0, oth-
erwise (ensuring most of the power is in the central orders). To ensure this in
terms of the DG we must choose the values of z1,z,,z3 etc. mentioned above
for a single period of the grating. The values chosen should ensure maximum
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power is diffracted into the (2M + 1) array of spots (thus guaranteeing little
power into higher diffraction orders).

For a phase step difference of 7 (¢(z) = %1) for the grating with 2N steps,
one can show that T'(u) is given by:

1 N
T(u)= — —1)"(sin 2 — sin 27 . 4
(u) — nzzo( )*(sin 2w ULy — sin 2w uzy,) (4)
We choose the minimum number of steps by setting N = M, to give the

grating minimum complexity (Dammann and Klotz 1977). Thus, we solve for
|T(mAw)| = T(0) for |m| < M. Various solutions are tabulated in Dammann
and Klotz (1977) for different values of M.

If one wants a grating with an even number of output spots then neighbour-
ing elements must be out of phase by . This will cause the grating maxima to
lie not in the direction given by nA = dsin, but rather (n + %))\ = dsinf, and
an even number of equal intensity diffraction spots is obtained (Morrison 1992).

LO BEAM MULTIPLEXING

Now we consider applying the above theory to an example 25 element array
system arranged on a square grid of 5x5 elements. We assume a scalar feed
(corrugated horn) for the LO source, and diagonal horn feeds for the mixer
array. To a good approximation the resulting propagating LO beam can be
considered to have a simple Gaussian field distribution, whose form does not
change as the beam propagates. At the grating we can write the incident field
as P(z,y) = exp(—(z? + y?)/WZ), where W is the usual Gaussian beam waist
radius, while at the output Fourier plane ¥(u,v) = exp(—(u? + v?)/w%) =
exp(—(z2 + y2)/W}2), where W is the waist radius at the Fourier plane. Using
the usual results for Gaussian beam propagation: Wr = Af/7Wg, or wp =
1/7We(Goldsmith 1982). If both lenses have the same focal length then of
course Wy equals the beam waist radius at the LO horn phase center.

For a5x5 array M = 2 for the grating; the optimum power coupling solution
for the positions of the edges of the grooves in the grating for the one dimensional
basic period ¢(z) are given by z; = £0.132Az, and z; = +.480Az, where Az is
the grating period. What we require is that the positions of the diffraction orders
coincide with the centers of the mouths of the individual diagonal horns making
up the mixer feed array. Assuming a closely packed array of diagonal horns
of side length a, with horn walls of negligible thickness, implies a diffraction
order spacing Az, on the output Fourier plane of Az, = a = AfAu = Af/Az,
corresponding to the grating period of Az.

The best fit Gaussian beam to the field at the mouth of a diagonal horn has
a radius given by: W = 0.43a (Withington and Murphy 1992). For a horn of
finite length the beam waist radius at the horn phase centre will be somewhat
less than this, a typical value for a horn of moderate length being: W, = 0.38a.
Thus, if we wish to match this radius to the incident LO beams (Wr = W,),
the corresponding beam width Wg at the grating must have been:

We = Af/xWr = Af/7(0.38a) = 0.837Az,
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FIGURE 3  Array of Gaussian beams (thin line) superimposed on DG beam
array (thick line).

the Gaussian beam width is of order the grating period! The implications of this
for the phase array is we need only a small number of periods in the grating,
and thus it should not be too complicated to manufacture. The resulting set of
image Gaussian beams is shown in Fig.3, for the case where the total number of
periods in the DG equals 4 X 4. For comparison, a set of 5 Gaussian beams is
shown in intensity and, as can be seen, the coupling is high. Since about 77.4%
of the power is contained in the central orders for the one-dimensional case
(Dammann and Klotz 1977), the total LO coupling loss is of the order of 40%
(in two dimensions). This power is lost into higher diffraction orders than 2, and
so some power spills round the side of the array of diagonal horns. However, this
power can be easily terminated using an absorbing microwave material around
the array. It should also be possible to reduce loss by having a basic grating cell
with more grooves (more degrees of freedom).

GRATING BANDWIDTH

As with all binary optics the DG will only operate correctly over a finite band-
width. In many astronomical submillimeter receivers, however, the bandwidth is
of order 15%. We therefore investigate a frequency detuning of this order. Two
effects occur if the wavelength of the LO beam is not at the design wavelength
of the grating:

(i) The actual inter-beam diffraction order separation in the output plane
will change implying some of the beams will no longer couple well to the detector
array as they will be misaligned with the horn centres. Realignment, however,
can be achieved easily by designing some variable magnification into the LO
path optics.
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(ii) The two binary phase delays for the grating are wavelength dependent,
and so the grating will only operate as expected at the design frequency.

A groove depth of ! corresponds to a relative phase difference of ¢ = (n —
1)2xl/A. The relative phase difference equals the relative change in wavelength
A¢/d = AX/X. The effect is to change T'(u):

1 iApy N IV
T(u) = (—-gwiu——z ';)(—1)"(sin 2T ULy — SIN 27T UT,) | — (1=e 27m)4 simrd

()
The effect of the last term is to cause the grating function at the Fourier plane,
|G(0)|, to become greater than |G(n)|, so that more power is coupled to the
central order and less to the other orders.

If we are not operating at the design wavelength and we assume the worst
case scenario of AX/A = 0.063 (corresponding to a frequency displacement of 20
GHz for a 345GHz receiver system), then A¢ ~ 0.18. We can then calculate the
effect of this phase error on the DG for a 5 x 5 array. For the example in question
|G(nAu)|/|G(0)| = .97, thus an imbalance in power coupling of about 6 % will
occur between the central pixel and other pixels in a one-dimensional array. In
the case of the 2-D array a corner pixel will receive 12 % less LO power. SIS
mixer sensitivity to local oscillator power for optimised performance is usually
not so critical that such a variation would cause a significant deterioration in
performance across the array.

CONCLUSIONS

In this paper we have presented a theoretical study of the feasibility of us-
ing Dammann gratings for LO beam multiplexing in array receiver systems at
millimeter /submillimeter wavelengths. We have shown that at the design wave-
length we get good coupling with efficiencies of better than 60% for a 5x5 array,
with the missing power being channelled into higher diffraction orders which can
easily be terminated. The bandwidth of such a grating would be of the order of
15%, which would be adequate for astronomical array receivers operating in the
submillimeter waveband. Such an L.O multiplexing scheme would work best for
the case where mixer characteristics are very similar, so that the LO requirement
of individual mixers is the same. The scheme is particularly suitable for sparse
arrays.

We are now investigating the practical feasibility of producing a 5x5 grating
at submillimeter wavelengths for the scenario referred to above. Since with the
transmission grating there may be some reflection loss, we are also looking into
reflection grating designs. These would have to be operated off-axis to prevent
beam vignetting.
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