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Summary

Background: Race distance aptitude in Thoroughbred horses is highly heritable and is influenced largely by variation at the myostatin gene (MSTN).

Objectives: In addition to MSTN, we hypothesised that other modifying loci contribute to best race distance.

Study design: Using 3006 Thoroughbreds, including 835 ‘elite’ horses, which were >3 years old, had race records and were sampled from Europe/

Middle-East, Australia/New Zealand, North America and South Africa, we performed genome-wide association (GWA) tests and separately developed a

genomic prediction algorithm to comprehensively catalogue additive genetic variation contributing to best race distance.

Methods: 48,896 single-nucleotide polymorphism (SNP) genotypes were generated from high-density SNP genotyping arrays. Heritability estimates,

tests of GWA and genomic prediction models were derived for the phenotypes: average race distance, best race distance for elite, nonelite and all

winning horses.

Results: Heritability estimates were high (h2m = 0.51, best race distance – elite; h2m = 0.42, best race distance – nonelite; h2m = 0.40, best race distance

– all) and most of the variation was attributed to the MSTN gene. MSTN locus SNPs were the most strongly associated with the trait and included BIEC2-

438999 (ECA18:66913090; P = 4.51 9 10�110, average race distance; P = 2.33 9 10�42, best race distance – elite). The genomic prediction algorithm

enabled the inclusion of variation from all SNPs in a model that partitioned horses into short and long cohorts following assignment of MSTN genotype.

Additional genes with minor contributions to best race distance were identified.

Main limitations: The nongenetic influence of owner/trainer decisions on placement of horses in suitable races could not be controlled.

Conclusions: MSTN is the single most important genetic contributor to best race distance in the Thoroughbred. Employment of genetic prediction

models will lead to more accurate placing of horses in races that are best suited to their inherited genetic potential for distance aptitude.

Keywords: horse; Thoroughbred; race distance; genomics; myostatin; prediction; GWAS

Introduction

Thoroughbred horses (Flat) race in distance categories ranging from
~1000 m (5 furlongs) to 4000 m (20 furlongs) and are rarely capable of

racing at a high level across the distance range. Broadly, horses are

considered to be ‘sprinters’, ‘middle-distance’ or ‘stayers’. Traditionally,
pedigree records and conformation characteristics have been used to

attempt to identify the best race distance for an individual horse at an early
age. There is a premium in some regions for horses suited to shorter

distance races, since the value of the races tend to be higher; in Australia
39% of Group races are <1400 m compared with 23% in Great Britain and

Ireland [1–3]. Furthermore, horses that are suited to shorter distances tend
to be better suited to race as 2-year-olds [4–6]. The demand for such

horses has led to proposals to encourage breeding of ‘stayers’ to

counteract the strong selection for ‘sprinters’ [7]. Despite a commercial
trend for early speed, paradoxically, the longer distance races (e.g. Epsom

Derby, Prix de L’Arc de Triomphe, Breeders’ Cup Classic, Melbourne Cup)
tend to have greater prestige and higher prize money.

The power of predictive tests that use genome-wide marker information
is dependent on the total genetic contribution to the trait (heritability), the

number of reference animals with accurate phenotypes, and the
development of robust and reliable algorithms to best estimate genetic

values for animals. Variation at the myostatin gene (MSTN) has been
shown to be a major contributor to optimum race distance in

Thoroughbreds [5,8–10] and it is widely referred to as the “Speed Gene”.

Genomic selection [11], which depends on large numbers of genetic

markers, became technically feasible with the availability of high-density

single-nucleotide polymorphism (SNP) arrays. Genomic selection breeding
programmes, on which the genomic prediction approach is predicated,

have been highly successful in livestock populations [12–14].
We have evaluated the effect of MSTN on distance aptitude in a

considerably larger population than previously reported and assessed the

variable effect in different racing regions. Furthermore, we performed a
genome-wide association study (GWAS) to test the hypothesis that other

additive genetic variants may also be contributing to distance aptitude.
Finally, we developed a genomic prediction model to catalogue the suite of

genetic variants contributing to the distance trait that may be applied in
the improved management of horses in-training.

Methods

Samples and phenotypes

DNA samples (n = 3006) were collected with owners’ consent and

approved for use in research. The sex, month of birth (corrected for

hemisphere), region with greatest number of starts and race distance (m)
for each race start were recorded. Regions were defined as Australia and

New Zealand, Europe and Middle-East, North America and South Africa
(Supplementary Item 1).

Average race distance was calculated for all horses (n = 3006). For
horses that had won at least one race, the best race distance (best race
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distance – all, n = 2371) was defined as the distance of the highest-grade

race won. For each region the number of horses that had won at least one
race was Australia and New Zealand (n = 426), Europe and Middle-East

(n = 1073), North America (n = 508) and South Africa (n = 225). The best
race distance was analysed separately for ‘elite’ (won at least one Stakes/

Group/Listed race; i.e. won a Black Type race) (best race distance – elite,
n = 829) and nonelite winners (best race distance – nonelite, n = 1536)

and for all winning horses (best race distance – all). The criterion for best

race distance – elite was as previously described [10,15]. Details are
provided in Supplementary Item 2.

DNA, genotyping and quality control

DNA was isolated from blood or hair samples and genotyped using the

Illumina EquineSNP50 BeadChip (SNP50), the Illumina EquineSNP70
BeadChip (SNP70) or the Affymetrix AxiomTM Equine 670K SNP genotyping

array (SNP670). Only individuals and SNPs with a genotyping rate >95%
were included with a minor allele frequency threshold >0.05 applied. This

resulted in a set of n = 48,896 SNPs derived from the three platforms.

Details of this SNP set and concordance across genotyping platforms are
provided in the Supplementary Item 3.

Two polymerase chain reaction (PCR)-based assays were used to
genotype a subset of n = 143 Thoroughbred horses for the MSTN 227 bp

ERE-1 SINE insertion polymorphism (hereafter referred to as the ‘SINE’) to
determine concordance with the SNPs (g.66493737C/T and g.66913090).

Primer and assay details are provided in Supplementary Item 4.

Heritability estimates

Chip or marker heritability (h2m) was estimated using the genomic-

relatedness-based restricted maximum-likelihood (GREML) method within
Genome-wide Complex Trait Analysis (GCTA) [version 1.24.2] [16,17] for an

additive model with each of the phenotypes considered as a continuous
trait. Sex, MSTN genotype at SNP g.66493737C/T (representing the MSTN

locus), month of birth (corrected for hemisphere) and region were included
as covariates in the estimation of h2m, each separately, and together in a

final model.

Genome-wide association study (GWAS)

A series of GWAS were performed for each of the phenotypes using a

linear model implemented through the egscore function in the R software
package GenABEL. An identity-by-state matrix was calculated for all

samples and principal components derived from this matrix were used to
correct for population stratification. Sex, month of birth (corrected for

hemisphere) and region were included as co-variates in the analyses. The
Benjamini-Hochberg correction factor [18] for probability values of ≤0.05
was applied to control the false discovery rate and the Bonferroni

correction for multiple testing calculated a modified P-value threshold
(P<1.02 9 10�6).

Genomic Prediction using Random Forests with mixed

effects (RFME) modelling

A prediction model was fitted for best race distance – elite using a

standard two-step approach [19]. We first fitted a fixed effects model to
account for SNP effects and subsequently a univariate random effects

model to account for residual polygenic effects constrained by genetic
relatedness. To obtain the best possible prediction model we used a

Random Forests [20] machine learning method to account for the fixed

effects. All calculations were performed using the R programming
language. Since the data set contained <1000 horses (n = 835) we used

fivefold cross validation [21] to determine the out-of-sample performance
of the model (Supplementary Item 5). To generate predictions for future

(i.e. unknown) horses the model run was repeated on the full data set (i.e.
no cross validation) to produce estimated important SNPs (via the Random

Forest variable importance score). The procedure corresponds to a
standard GBLUP run (fitted via REML) with the linear fixed effects portion

replaced by a more flexible random forests approach.
The inbreeding co-efficient was included in the Random Forest feature as

there is evidence (e.g. in Norwegian trotters) to indicate that inbreeding

may influence performance and the level of pedigree-based inbreeding is

often a factor which Thoroughbred breeders take into consideration when

making mating decisions. For the calculation of the inbreeding coefficient,
the SNP dataset was pruned based on the variance inflation factor (VIF) to

9659 SNPs using PLINK [version 1.07] [22].

Bioinformatics and gene mining

Gene clusters were extracted from the top 100 SNPs from the GWAS. A

locus was defined as one or multiple consecutively associated SNPs within
a chromosomal region with all distances <1 Mb between two adjacent

associated loci. Genes within 500 kb up and downstream of the flanking
SNPs for each locus were extracted from Ensembl BioMart.

Results

Heritability

Marker or chip heritability estimates ranged from h2m = 0.25–0.51 (Table 1).

When no co-variate was included heritability estimates were highest for
average race distance (h2m = 0.50). The highest estimate was for best race

distance – elite with sex included as a co-variate (h2m = 0.51). The estimates
were similar for best race distance – nonelite (h2m = 0.42) and best race

distance – all (h2m = 0.40). Considering the inclusion and exclusion of co-

variates, sex, region and month of birth contributed little to the heritability
estimates. However, MSTN genetic variation (represented by genotypes at

the g.66493737C/T SNP) contributed considerably to the heritability
estimates; the highest proportion of the variability explained by the MSTN

SNP was for best race distance – elite (0.25) and the lowest proportion of
the heritable variation for best race distance – nonelite (0.11).

Genome-wide association study (GWAS)

We performed a GWAS for each phenotype, including region, sex and
month of birth as co-variates and a GWAS for BRD-E where the MSTN SNP

(g.66493737C/T) was also included as a co-variate. For each of the
phenotypes SNPs on ECA18 at the MSTN gene region were the highest

ranked: 64 (average race distance), 42 (best race distance – elite), 44 (best
race distance – nonelite) and 70 (best race distance – all) consecutive top-

ranked SNPs (Supplementary Item 6); the SNPs spanned regions of 7.2 Mb
(best race distance – elite) to 16.5 Mb (best race distance – all). In all cases,

the highest ranked SNP was BIEC2-438999 (ECA18:66913090; P = 4.
51 9 10�110, average race distance; P = 2.33 9 10�42, best race distance

– elite) (Supplementary Item 6). The extreme peak on ECA18 can be

visualised on GWAS plots for best race distance – elite and average race
distance (Fig 1a, b) and best race distance – nonelite and best race

distance – all (Supplementary Item 7). Genes were identified within the
regions containing the top 100 SNPs in the GWAS for best race distance –
elite and are provided in Supplementary Item 8. The QQ plots
(Supplementary Item 9) indicated a large contribution to the trait from

SNPs that did not reach the threshold for significance in the GWAS.

Prediction model development and performance using

RFME

A prediction model was developed for best race distance – elite since the

estimates for heritability were highest for this trait (when sex was included
as a covariate) and the heritable contribution from MSTN was also highest.

The top SNP contributing to the prediction model was also the top SNP in
the GWAS and contributed 9.3% of the total variation for the phenotype.

The previously described SNP (g.66493737C/T) contributed 7.5% of the total
variation. The top 100 SNPs accounted for 30% of the variation in best race

distance (Supplementary Item 10). Among these, 23 SNPs spanning 2.8 Mb
at the MSTN locus on ECA18 were responsible for 27% of the variation in

the trait.
Using the prediction model for best race distance – elite, the correlation

between the actual and predicted phenotype was 0.59 and R2 = 34.8%.

When corrected for heritability (h2m = 0.50) the model identified a set of
SNPs that contributed to 69.6% of the heritable variation in the trait i.e. 35%

of the total phenotypic variance. Using the best race distance prediction
model, the correlation between the predicted distance and the actual best

2 Equine Veterinary Journal 0 (2019) 1–9 © 2019 EVJ Ltd
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win distance for an independent set of horses (best race distance –
nonelite, n = 1536) was 0.46 and R2 = 21.3%. When corrected for

heritability (h2m = 0.42) the predictor SNPs accounted for 51% of the
heritable variation in the trait.

Phenotypic variation among regions and MSTN

genotypes

The data were analysed separately for each MSTN genotype defined by the

g.66493737C/T SNP and separately in each of the four main racing regions
represented in the data set (n = 835; Europe and Middle East, Australia and

New Zealand, North America, South Africa). Regional variation in the

distribution of MSTN SNP genotypes was observed (Table 2, Fig 2). For
instance, there were almost twice as many C:C horses among elite race

winners in Australia and New Zealand (0.46) compared with Europe and
Middle East (0.26) and North America (0.28). There were almost seven times

as many C:Cs as T:Ts within the Australia and New Zealand population.
In each region best race distances were partitioned among the genotype

cohorts (Table 3, Supplementary Item 11). In Australia and New Zealand
>88% of C:Cs had a best race distance ≤1600 m and in Europe and Middle

East, North America and South Africa a best race distance ≤1600 m was

observed for 83, 64 and 85% of C:C horses, respectively. In Australia and
New Zealand 4% of C:Cs had a best race distance >2000 m and there was

no observation of C:Cs with best race distance >2200 m in Europe and
Middle East or North America. Conversely, >85% of T:Ts had a best race

distance >1600 m; in Australia and New Zealand (77%), Europe and Middle
East (89%) and North America (80%). It also appears that the race pattern in

different racing jurisdictions has a major impact on MSTN genetic variation

in a population; for example, in Australia and New Zealand >54% of Group

races are competed at <1400 m, and >45% of the population are C:C,
whereas in Europe and Middle East approximately 25% of the population

are C:C to meet the demand of <15% of Group 1 races competed at
<1600 m.

To further refine the distance predictions, the genomic prediction model
was used to separate the horses into ‘short’ and ‘long’ cohorts within each

region. Using the median distance for each genotype as the cut-off for

each cohort, the distance ranges were examined for each of the six
cohorts (i.e. C:C-short, C:C-long, C:T-short, C:T-long, T:T-short and T:T-long).

The mean best race distance for elite horses and all horses (elite and
nonelite winners) split by region and predicted C:C/C:T/T:T long/short

cohort are provided in Tables 4 and 5 and Figure 3. When all horses were
included there was a significant difference (P<0.05) in mean best race

distance between each long/short cohort apart from the North America C:
C and C:T cohorts. This may be explained by the narrow range of race

distances in these cohorts ranging from 1000 to 2414 m with mean
distance of 1691 � 303 m. This reflects the race pattern in North America

where >58% of Group 1 races are competed at the 1700–2000 m distance

range. The most significant difference was observed for the Europe and
Middle East C:T-short and C:T-long cohorts with C:T-long horses having on

average a best race distance 241 m longer than C:T-short horses
(P = 2.24 9 10�09).

In Australia and New Zealand 96% of C:C-short and 86% of C:C-long had a
best race distance ≤1600 m (P = 0.0007). The greatest difference in C:C-

short and C:C-long distance was observed in Europe and Middle East,
where 84% of C:C-short and 71% of C:C-long had best race distance

≤1600 m (P = 7.23 9 10�05). In Australia and New Zealand there was no

C:C-short horse with a best race distance >2000 m compared with 5% C:C-
long. Variation was also observed among the short and long T:T cohorts. In

Australia and New Zealand 24% of T:T-short had a best race distance
>2000 m compared with 63% of T:T-long (P = 0.01) and in Europe and

Middle East 51% of T:T-short had a best race distance >2000 m compared
with 65% of T:T-long (P = 0.04) (Table 6).

SINE, SNP concordance

Complete (100%) concordance between the SINE and the g.66493737C/T

SNP was observed (n = 143). A single individual was homozygous for the

BIEC2-438999 SNP and heterozygous for the SINE. Linkage disequilibrium
between the g.66493737C/T and BIEC2-438999 SNPs was r2 = 0.93. The

greatest discordance was among C:Cs, where 8% were heterozygous at
BIEC2-438999 and among C:Ts 2% were homozygous for the ‘long’ BIEC2-

438999 allele. All other differences were ≤1% (Supplementary Item 12).

Discussion

We have performed an investigation of the genetic contribution to distance

phenotypes in the largest cohort of racing Thoroughbreds reported to-
date. In this study, the sample size for Group/Listed race winners (best race

distance – elite) was tenfold larger than the original study describing the
contribution of MSTN genetic variation to optimum race distance [9] and

was expanded to include horses that had raced in the major race regions

of the world and winners of non-Group/Stakes races to increase the sample
size by over 25-fold.

The highest heritability was observed for average race distance (0.50),
when no co-variate was included, which may simply be explained by the

largest sample size for this phenotype. Notably, the smallest contribution
to the heritable variation explained by the MSTN SNP (0.12) was observed

for the average race distance phenotype when it was included as a
covariate, suggesting that other factors may be incorrectly influencing

trainers regarding race distance.
Heritability estimates were highest for best race distance – elite when

sex was included as a co-variate (0.51), which may be explained by the

subtleties of variation in race patterns for colts and fillies previously
observed [10]. The contribution of the MSTN SNP (g.66493737C/T) to best

race distance – elite heritability was estimated to be 0.24, indicating that it
is responsible for almost half the variation in genetic potential for distance.

When all horses were included the heritability dropped to 0.40 and the

TABLE 1: Predicted heritability (h2
m) of each phenotype with co-

variates. MOBc refers to the month of birth corrected for

hemisphere

Phenotype Co-variates h2m s.e. P value n

Average race distance None 0.50 0.03 <1E-17 3006

Average race distance MSTN

genotype

0.38 0.03 <1E-17 3006

Average race distance Region 0.44 0.03 <1E-17 3006

Average race distance Sex 0.50 0.03 <1E-17 3006

Average race distance MOBc 0.50 0.03 <1E-17 3006

Average race distance Final 0.37 0.03 <1E-17 3006

Best race distance – all None 0.40 0.03 <1E-17 2371

Best race distance – all MSTN

genotype

0.26 0.03 <1E-17 2371

Best race distance – all Region 0.38 0.03 <1E-17 2371

Best race distance – all Sex 0.41 0.03 <1E-17 2371

Best race distance – all MOBc 0.40 0.03 <1E-17 2371

Best race distance – all Final 0.26 0.03 <1E-17 2371

Best race distance – elite None 0.49 0.06 <1E-17 835

Best race distance – elite MSTN

genotype

0.25 0.06 2.12E-08 835

Best race distance – elite Region 0.48 0.06 <1E-17 835

Best race distance – elite Sex 0.51 0.06 <1E-17 835

Best race distance – elite MOBc 0.49 0.06 <1E-17 835

Best race distance – elite Final 0.26 0.06 1.14E-08 835

Best race distance –
nonelite

None 0.42 0.04 <1E-17 1536

Best race distance –
nonelite

MSTN

genotype

0.30 0.04 <1E-17 1536

Best race distance –
nonelite

Region 0.37 0.04 <1E-17 1536

Best race distance –
nonelite

Sex 0.42 0.04 <1E-17 1536

Best race distance –
nonelite

MOBc 0.42 0.04 <1E-17 1536

Best race distance –
nonelite

Final 0.29 0.04 <1E-17 1536
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contribution of MSTN was estimated to be 0.14. While the sample size was
smaller for best race distance – elite, these data suggest that horses

competing at Group/Stakes level are generally being placed in races that
are most suitable to their MSTN genotype.

The estimates of contribution to variance in the trait established by the
genomic prediction model are in good agreement with the heritability

estimates. The 24 SNPs representing the MSTN locus on ECA18 that were
among the top 100 SNPs in the genomic prediction model were

responsible for 27.1% of the variation in the trait. This is similar to the

proportion of variance attributed to the MSTN SNP (g.66493737C/T) under
the heritability model.

The BIEC2-438999 and g.66493737C/T SNPs were the top ranked SNPs in
the GWAS (best race distance – elite, P = 2.33 9 10�42 and

P = 2.29 9 10�41 respectively). When all horses were included, BIEC2-
438999 had a significance value (P = 4.51 9 10�110, average race distance)

equivalent to values for the strongest genetic associations that have been
observed in the top 1% of human GWAS studies that included in some cases

>100,000 samples. These human traits include eye colour traits [23,24],
blood cell phenotypes [25,26] and male-pattern baldness [27], traits that

have been clearly established to have well defined genetic contributions

with major gene effects, thus lending support to the notion of a major
genetic contribution ofMSTN to the distance trait in Thoroughbreds.
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Fig 1: a) Manhattan plot showing GWAS results for best winning race distance for elite horses. The red line indicates the P-value cut-off for genome wide significance

using the Benjamini Hochberg corrections for multiple testing. b) Manhattan plot showing GWAS results for average race distance for all horses. The red line indicates

the P-value cut-off for genome wide significance using the Benjamini Hochberg corrections for multiple testing.

TABLE 2: Regional distribution of MSTN genotype among elite race winners. Percentages are rounded to the nearest whole number

MSTN

genotype

Australia and

New Zealand

Europe and

Middle East

North

America

South

Africa

Australia and

New Zealand (%)

Europe and

Middle East (%)

North

America (%)

South

Africa (%)

CC 118 93 45 20 46 26 28 32

CT 123 200 101 32 48 57 63 52

TT 17 61 15 10 7 17 9 16
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BIEC2-438999 was observed to make the greatest contribution to

variation in the distance trait. Consequently, the BIEC2-438999 SNP may be
a key influence in the genomic prediction model developed here to

distinguish short and long C:Cs, C:Ts and T:Ts (g.66493737C/T), because
while the LD was high (r2 = 0.93) there was not complete concordance.

Notwithstanding this, the SINE located in the MSTN promoter region,
modulates the expression of a reporter gene suggesting that MSTN gene

expression is under-expressed when the SINE is present [28]. This evidence

supports the hypothesis that the SINE is the functional variant affecting
best race distance and that LD accounts for the association between SNPs

in the MSTN region and best race distance. Although Santagostino et al.
[28] reported incomplete concordance between the SINE and the

g.66493737C/T SNP here complete (100%) concordance was observed for
all n = 143 horses genotyped. However, for a single individual discordance

was observed between the SINE and the BIEC2-438999 SNP. Therefore the
g.66493737C/T SNP may be a better indicator of the presence of the SINE.

A separate study using a sample set of n = 31 Thoroughbred horses and
270 horses from 13 other breeds [29] found LD (r2) of 0.93 in the

Thoroughbred but a much lower LD (0.41) across all breeds. While multiple

haplotypes were identified containing the C-allele without the SINE

TABLE 3: Regional distribution of MSTN genotype by best race distance (m) among elite race winners. Percentages are rounded to the

nearest whole number

1000–1200
m (%)

1201–1400
m (%)

1401–1600
m (%)

1601–1800
m (%)

1801–2000
m (%)

2001–2200
m (%)

2201–2400
m (%)

2400+
m (%) N

Australia and New Zealand

C:C 59 17 12 6 3 1 2 1 118

C:T 11 10 28 10 11 10 8 14 123

T:T 0 6 18 6 0 12 24 35 17

Europe and Middle East

C:C 41 19 23 9 5 3 0 0 93

C:T 8 14 20 10 16 12 12 10 200

T:T 2 5 5 7 20 11 23 28 61

North America

C:C 24 11 29 27 9 0 0 0 45

C:T 3 8 17 40 22 3 4 4 101

T:T 0 7 13 40 7 0 20 13 15

South Africa

CC 55 10 20 0 10 0 5 0 20

C:T 9 12 25 16 28 0 6 3 32

T:T 0 0 10 20 20 0 20 30 10

AusNZ

CC
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TT
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0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

EU_ME NAm SAfr

Fig 2: Variation in MSTN genotype distribution among elite horses in different

racing regions. The proportion of elite horses for each of the MSTN genotypes in

each race region is shown (Australia and New Zealand, n = 258; Europe and

Middle East, n = 354; North America, n = 161; South Africa n = 62).

TABLE 4: Mean best race distance (m) among elite race winners split by region and predicted distance categories

Region
CC-short CC-long CT-short CT-long TT-short TT-long

Mean s.e. n Mean s.e. n Mean s.e. n Mean s.e. n Mean s.e. n Mean s.e. n

Australia and New Zealand 1285 262 26 1342 363 68 1716 432 37 1989 632 44 1817 257 3 2740 521 6

Europe and Middle East 1286 258 47 1422 296 59 1786 444 134 2012 520 95 2107 587 28 2436 469 37

North America 1555 209 34 1541 255 13 1721 198 43 1728 246 58 1705 213 9 2073 380 10

South Africa 1339 342 14 1379 415 15 1724 388 21 1804 387 24 2133 602 6 2163 828 4

TABLE 5: Mean best race distance (m) among all winners split by region and predicted distance categories

Region
CC-short CC-long CT-short CT-long TT-short TT-long

Mean s.d. n Mean s.d. n Mean s.d. n Mean s.d. n Mean s.d. n Mean s.d. n

Australia and New Zealand 1236 244 65 1374 341 168 1592 358 120 1820 577 121 1788 546 16 2306 572 19

Europe and Middle East 1362 302 120 1517 357 175 1714 445 446 1955 504 229 2107 599 108 2262 528 110

North America 1454 241 48 1436 238 64 1630 245 95 1668 280 134 1643 211 28 1869 505 26

South Africa 1246 233 56 1446 417 29 1465 294 98 1657 373 65 1674 387 17 2085 600 14

Equine Veterinary Journal 0 (2019) 1–9 © 2019 EVJ Ltd 5

E. W. Hill et al. Genetic contributions to race distance in Thoroughbreds



insertion there was no instance of the SINE insertion and the T-allele within

the same haplotype indicating that the original SINE insertion event
occurred within a haplotype containing the g.66493737C/T SNP C-allele and

recent intense selection for this haplotype in the Thoroughbred has
resulted in reduced haplotypic diversity in the presence of the SINE

insertion and the C-allele [30]. LD patterns are likely to vary across

populations dependent on the proportion of C- and T-alleles in the
population. The observation of high LD in this region, and the extremely

long haplotypes, indicates that multiple genetic markers may be indicative
of the presence of the SINE. Studies have indicated that the presence of

TT-Long

CT-Long

CC-Long

TT-short

CT-short

CC-short

1000 1200 1400 1600 1800 2000 2200 2400

SAfr

NAm

EU_ME

AusNZ

Fig 3: The average best race distances (m) for all winners in each long and short cohort in each region.

TABLE 6: Regional distribution of predicted distance cohort by best race distance among all race winners

1000–1200
m (%)

1201–1400
m (%)

1401–1600
m (%)

1601–1800
m (%)

1801–2000
m (%)

2001–2200
m (%)

2201–2400
m (%)

2400+
m (%) n

Australia and New Zealand

CC-short 68 11 17 3 2 0 0 0 65

CC-long 48 22 16 6 2 3 2 1 168

CT-short 17 23 28 9 9 9 2 2 120

CT-long 17 10 25 12 9 9 7 12 121

TT-short 12 19 25 12 6 6 6 12 16

TT-long 0 5 11 0 21 16 21 26 19

Europe and Middle East

CC-short 41 22 21 8 5 1 2 0 120

CC-long 25 21 25 10 9 6 4 1 175

CT-short 13 19 22 11 14 9 6 6 446

CT-long 8 10 15 9 17 12 14 16 229

TT-short 4 11 9 11 14 12 18 21 108

TT-long 1 5 8 6 15 9 24 32 110

North America

CC-short 27 17 25 27 4 0 0 0 48

CC-long 30 22 23 20 5 0 0 0 64

CT-short 11 11 22 41 14 1 0 1 95

CT-long 6 16 18 40 10 3 4 2 134

TT-short 4 11 21 54 7 4 0 0 28

TT-long 4 8 19 35 8 4 12 12 26

South Africa

CC-short 68 9 20 2 2 0 0 0 56

CC-long 48 14 21 0 7 3 3 3 29

CT-short 32 16 30 13 8 0 0 1 98

CT-long 14 18 26 15 18 0 3 5 65

TT-short 24 6 18 12 35 0 6 0 17

TT-long 0 7 21 21 7 0 14 29 14
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the SINE, directly assayed and indicated by SNPs in the region, is

responsible for variation in MSTN gene expression [28,31] resulting in
muscle fibre type variation [29,32], precocity [4] and rates of differential

growth [5,33] in Thoroughbreds, which consequently influences measured
speed variables [8] and distance aptitude at various stages of racing.

We have shown here, in agreement with previous work discussed
above, that although genomic variation at the MSTN locus is the main

determinant of best race distance, there are other genetic markers that

also contribute to the trait. Metabolic requirements and physiological
responses differ considerably for endurance and shorter distance intense

exercise. Endurance is associated with increased mitochondrial abundance
and a shift in substrate preference from carbohydrates to fatty acids;

conversely, during intense sprint exercise there is an increased reliance on
anaerobic metabolism and localised hypoxia may occur in muscle. Based

on the GWAS analysis we identified three candidate genes that may
contribute to optimal race distance through modulation of substrate

availability and the response to exercise induced hypoxia. The solute
carrier family 7 member 5 (SLC7A5) gene, the ETS proto-oncogene 1,

transcription factor (ETS1) gene and the peroxisome proliferator activated

receptor gamma (PPARG) gene are located on ECA3, ECA7 and ECA16,
respectively—genomic regions that contained two or more of the top 100

SNPs in the GWAS analysis. These genes are linked through a mechanistic
interaction with the mammalian/mechanistic target of rapamycin complex 1

(mTORC1) complex which is a master regulator of anabolic processes
including the rate of protein synthesis and the anabolic response to

resistance exercise [34,35]. The expression of SLC7A5 increases following
exercise [36,37] and is modulated by insulin concentrations and hypoxia

[38,39]. The SLC7A5 gene product is central to the regulation of protein

translation and cell proliferation via the activation of the mTORC1 signalling
pathway [40,41]. PPARG is a downstream target of mTORC1, modulates fat

metabolism and can inhibit ETS1 gene expression [42]. In racehorses
PPARG gene expression is significantly differentially expressed in skeletal

muscle in response to training [43]. ETS1 knockdown and over expression
studies in human cell lines identified differential expression of genes in

metabolic and oxidative stress response pathways. The ETS1 knockdown
model had increased oxygen consumption as measured by high resolution

respirometry while overexpression of the ETS1 transcription factor resulted
in increased expression of genes involved in glycolysis [44].

Conclusion

The training and preparation of Thoroughbreds for racing is a multifaceted
process and includes selection of the most suitable race for an individual

horse. Race distance aptitude is generally based on evaluation of the

recorded race performance of relatives in the horse’s pedigree, assessment
of conformation and other physical characteristics, trainer observations and

exercise rider feedback during training, jockey opinion following a race and
opportunity arising from the race pattern that varies temporally due to the

restriction of distances for 2-year-old races and spatially due to higher value
races at certain distances specific to geographic racing region. We have

provided here substantial evidence that genetic variation at theMSTN locus
is the major determinant of race distance aptitude and have described the

additional genomic variants that have a minor but measurable contribution
to the distance trait. Based on results from the present study and previous

research work, we suggest that the body of knowledge within the breeding

and racing industry can now be augmented with evidence-based genomic
prediction tools, leading to more accurate placing of horses in races that

are best suited to their genetic potential. It would also be prudent to
monitor genetic variation in the global population and refine practice

towards the future sustainability of the Thoroughbred.
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