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Abstract

As a partial answer to a question of Rao, a deterministic and customizable efficient
algorithm is presented to test whether an arbitrary graphical degree sequence has a
bipartite realization. The algorithm can be configured to run in polynomial time, at
the expense of possibly producing an erroneous output on some “yes” instances but
with very low error rate.

Keywords— graphical degree sequence, bipartite realization

1 Introduction

Given an arbitrary graphical degree sequence d � �d1 C d2 C � C dn�, let R�d� denote
the set of all of its non-isomorphic realizations. As usual, let χ�G� and ω�G� denote the
chromatic number and clique number of a finite simple undirected graph G respectively. It
is known from Punnim [12] that for any given d the set �χ�G� � G > R�d�� is exactly a
set of integers in some interval. Define X�d� to be max�χ�G� � G > R�d�� and χ�d� to be
min�χ�G� � G > R�d��. These two quantities can be interesting for the structural properties
of all the graphs in R�d�.

Good lower and upper bounds on X�d� are known from Dvořák and Mohar [3] in terms
of Ω�d� � max�ω�G� � G > R�d��, which can be easily computed for any given d using the
algorithm from Yin [18]. For example, X�d� C Ω�d�, X�d� B

4
5Ω�d� � 1

5 max�d� � 1 and
X�d� B 6

5Ω�d� � 3
5 .

It appears computationally intractable to compute χ�d� for any given zero-free d. In
this paper we are concerned with the related, somewhat easier, decision problem of whether
χ�d� � 2. Clearly, this is equivalent to decide whether d has a bipartite realization, which
is actually the first listed unsolved problem in Rao [13] to characterize potentially bipartite
graphical degree sequences and which remains unsolved to our knowledge. We will try to
design an efficient algorithm to decide whether the answer is “yes” or “no”. In case one is
interested in an actual bipartite realization when the answer is “yes”, then one can construct
it easily from what our designed algorithm computes together with other known methods.
We will briefly explain this later.

Note that the input d is a single sequence of vertex degrees. A related problem is to
decide, given two sequences of positive integers �a1, a2,�, am; b1, b2,�, bn�, where a1 C a2 C
� C am and b1 C b2 C � C bn and Pmi�1 ai � P

n
i�1 bi, whether there is a bipartite graph whose

two partite sets have a � �a1, a2,�, am� and b � �b1, b2,�, bn� as their respective degree
sequences. This problem can be easily solved by applying the Gale-Ryser theorem [6, 15],
which states that the answer is “yes” if and only if for each k � 1, . . . ,m,

k

Q
i�1

ai B
n

Q
i�1

min�k, bi�,
which is also equivalent to for each k � 1, . . . , n,

k

Q
i�1

bi B
m

Q
i�1

min�k, ai�.
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Using the standard concept of conjugate integer partition in number theory and the
dominance relation between a pair of partitions of the same integer, one can easily see that
the Gale-Ryser inequalities stated above can be represented in an equivalent and concise
way. The conjugate partition p� � �p�1, p�2, . . . , p�p1� of a partition p � �p1, p2, . . . , pn� with
p1 C p2 C . . . C pn can be defined as p�i � S�jS1 B j B n, pj C i�S for 1 B i B p1, which can be
verified through the Ferrers diagram of the partition p. Here we use the common definition
of dominance (sometimes also called majorization) ordering between two partitions of the
same integer: a partition p � �p1, p2,�� dominates a partition q � �q1, q2,��, denoted p W q
or q V p, if Pª

i�1 pi � P
ª

i�1 qi, P
j
i�1 pi C P

j
i�1 qi for each j � 1,2,�. By convention, pj � 0

for j A `�p�, where `�p� denotes the number of parts in the partition p. The reader may
refer to [1, 16] for more details about these concepts. With these notations, the Gale-Ryser
condition above can be represented as a V b� or b V a�. We also use SpS to denote the weight
of the partition p, that is, the sum of all the parts of p. The multiplicity of a part pi in a
partition p is denoted µ�pi�.

Krause [9] gives an alternative proof of the Gale-Ryser theorem, which actually provides
a procedure to construct a bipartite realization of any bigraphic pair �a,b� (i.e. a pair�a,b� that satisfies the Gale-Ryser condition). If one is interested in a bipartite realization
of the input d that is potentially bipartite, this procedure can be used since our designed
algorithm will compute a bigraphic pair �a,b� from the input d in case the algorithm decides
the answer is “yes”.

The rest of the paper is organized as follows. Section 2 describes the algorithm to decide
whether a given d has a bipartite realization. Section 3 gives a time complexity analysis of
the algorithm. Section 4 presents some experimental results. Section 5 discusses alternative
designs of the algorithm and comments on the complexity of the decision problem. Section
6 concludes with further research directions.

2 Description of the Algorithm

Clearly, to decide whether any zero-free graphical degree sequence d � �d1 C d2 C � C dn�
with weight SdS � Pni�1 di has a bipartite realization, we first need to determine whether it has
a bipartition into a and b of equal weights SdS~2 (for convenience, we call such bipartitions
of d candidate bipartitions). Whether there exists a candidate bipartition can be decided
with a standard dynamic programming algorithm for the subset sum problem, which runs in
pseudo-polynomial time O�nT � where n is the number of given integers and T is the target
sum to be found. Since every term in d of length n is less than n, our target T � SdS~2 is
O�n2� so this decision can made in O�n3� time. In fact, many inputs admit a large number
of candidate bipartitions. Now we can see that the decision problem boils down to checking
whether d has at least one candidate bipartition �a,b� that satisfies the Gale-Ryser condition
(i.e. a V b� or b V a�).

A naive algorithm can simply enumerate all candidate bipartitions of d and check each
of them against the Gale-Ryser condition. Such an algorithm necessarily runs in exponential
time in the worst case. Our algorithm is more sophisticated than that. It has two phases.
The first phase utilizes up to seven rules that can all be easily checked to reach a conclusion
for many inputs so that exhaustive enumeration can be avoided. As a matter of fact, in
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Section 4 we will show that most of the inputs can be resolved by this phase alone. The
second phase is the enumeration phase, in which we perform “brute-force” search in a clever
way.

In describing and justifying the seven rules in the first phase, we seek a candidate bipar-
tition of d into the left side a and the right side b in such a way that at least half of the
largest terms in d appear in a, without loss of generality. For example, for any input d of
length 50 with the largest term 34 whose multiplicity is 5 (i.e. there are exactly 5 copies of
34 in d), we will seek a candidate bipartition such that the left side a contains at least 3
copies of 34.

Rule 1. If d does not have a candidate bipartition, then it is not potentially bipartite.

Proof. This rule is obvious. As mentioned above, this rule can be easily implemented through
dynamic programming for the PARTITION problem.

Rule 2. If SdS A n2

2 , then d is not potentially bipartite.

Proof. Based on Mantel’s theorem [10], any simple undirected bipartite graph on n vertices

has at most n2

4 edges. So the degree sum cannot exceed n2

2 for any d that is potentially
bipartite.

Rule 3. If d1 � dn�1�d1 A n, then d is not potentially bipartite.

Proof. Suppose d is potentially bipartite. The left partite set contains a vertex v1 of degree
d1 so the right partite set contains at least d1 vertices (v�1s neighbors), each of which has a
degree at most n � d1 since the left partite set has at most n � d1 vertices. Consequently, d
must contain at least d1 degrees that are B n � d1. Therefore, dn�1�d1 must be B n � d1 for d
to be potentially bipartite.

Rule 4. If Pn�d1i�1 di @
SdS
2 , then d is not potentially bipartite.

Proof. As mentioned in the proof of Rule 3, the left partite set has at most n � d1 vertices.
Clearly, the degree sum SaS of the left side a is impossible to exceed Pn�d1i�1 di. Therefore,

Pn�d1i�1 di must be at least SdS
2 for d to be potentially bipartite.

Rule 5. If PdiAn�d1 di A
SdS
2 , then d is not potentially bipartite.

Proof. As shown in the proof of Rule 3, each of the right side degrees in b is at most n� d1.
Therefore, every degree larger than n � d1 must be in the left side a and the sum of such
degrees should not exceed SdS

2 for any d that is potentially bipartite.

For the following rule, we will need the concept of residue of a finite simple undirected
graph G or a graphical degree sequence d introduced in Favaron et al. [5] and we use
R�G� and R�d� to indicate this function. We also use d to denote the complementary
graphical degree sequence of d: �n � 1 � dn C n � 1 � dn�1 C � C n � 1 � d1�, which is the
degree sequence of the complementary graph of any realization of d. The residue R�d�
of a graphical degree sequence d � �d1 C d2 C � C dn� is the number of zeros obtained in
the last step by the iterative procedure consisting of deleting the largest term d1 from d,
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subtracting 1 from the d1 following terms (i.e. d2, d3, . . . , dd1�1) and sorting the new sequence
in weakly decreasing order. This iterative procedure is actually Havel and Hakimi’s method
[8, 7] to decide whether an arbitrary weakly decreasing sequence of non-negative integers
is a graphical degree sequence, which says the answer is “yes” if and only if a sequence
consisting entirely of zeros is obtained in the end. The reader can easily verify the residue
of the graphical degree sequence �4,4,3,3,2,2� is 2.

Rule 6. If R�d� C 3, then d is not potentially bipartite.

Proof. As proved in [5], the residue R�d� of a graphical degree sequence d is a lower bound
on the independence number of any realization of d. Then clearly R�d� is a lower bound
on the clique number of any realization of d. The result follows because any graph with a
clique of size at least 3 is not bipartite.

The following is a similar rule that uses the concept of Murphy’s bound introduced in
Murphy [11], denoted β�G� or β�d� here, which is also a lower bound on the independence
number of any realization G of d. Murphy’s bound β�d� of a graphical degree sequence
d � �d1 C d2 C � C dn� can be computed as follows. Let d�i � dn�1�i for 1 B i B n. Define an
auxiliary iterative function f �N � �d�1, d�2, . . . , d�n,ª� as: Set f�1� � d�1 and if f�j� � d�k for
1 B j B n, then

f�j � 1� � � d�
k�f�j��1

, if k � f�j� � 1 B n;

ª, otherwise.

If f�j� � ª then f�j � 1� � ª. Murphy’s bound β�d� is then defined as max�j > N �

f�j� x ª�. The reader can verify that Murphy’s bound of the graphical degree sequence�6,6,5,5,3,2,2,2,1� is 3. Note that both R�d� and β�d� can be calculated easily based on
their definitions.

Rule 7. If β�d� C 3, then d is not potentially bipartite.

If the input d passes the tests of all of the above seven rules and cannot be resolved
as a “no” instance, then our algorithm will enter the second phase called the enumeration
phase. From Rule 5 we know that by now we must have SdS

2 C PdiAn�d1 di. In the special
case that equality holds, which means the left side a must contain exactly those degrees
that are larger than n� d1 should d be potentially bipartite, our algorithm can immediately
stop based on the result of the Gale-Ryser conditional test on this candidate bipartition of
d. Otherwise, our algorithm continues with S �

SdS
2 �PdiAn�d1 di A 0, which is the sum of the

additional degrees that need to be in the left side a besides those that are larger than n�d1.
For convenience, we use af to denote the subsequence of d consisting of those degrees that
are larger than n � d1. Note that af is an empty sequence when n C 2d1.

The second phase will then enumerate candidate bipartitions of d into �a,b� by specifying
which degrees will be in the left side a, which also automatically specifies b � d � a. As we
already know, we need to choose a subsequence of d � af (i.e. from those degrees in d that
are at most n � d1) with sum S and concatenate af with this subsequence of degrees to
form a based on the above discussion. Several restrictions regarding `�a� (recall we use
`�a� to denote the number of terms in a) can be put on the left side a for the candidate
bipartitions �a,b� to possibly satisfy the Gale-Ryser conditional test so that our algorithm
will enumerate as few candidate bipartitions as possible.
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Restriction 1. The number of degrees `�a� in the left side a cannot exceed n � d1. This is
because the right side b contains at least d1 degrees.

Restriction 2. Let l1 be the maximum number of degrees in d with sum at most SdS
2 . Then

the number of degrees `�a� in the left side a cannot exceed l1. This is because the degrees in

the left side a must have sum SdS
2 .

Restriction 3. Let dm be the minimum largest degree in any subsequence of d with sum
at least SdS

2 . Then the number of degrees `�a� in the left side a must be at least dm. This
is because the largest degree in the right side b must be at least dm and the conjugate of a
should dominate b.

Restriction 4. Let l2 be the minimum number of degrees in d with sum at least SdS
2 . Then

the number of degrees `�a� in the left side a must be at least l2. The reason is similar to that
for Restriction 2.

It’s not hard to see that dm, l1 and l2 can all be easily calculated with greedy algorithms.
The above discussion shows we can enumerate all subsequences a of d that satisfies the
following three requirements:

1. it includes all degrees in af (i.e. those degrees in d that are greater than n � d1).

2. it has sum SaS � SdS
2 .

3. its number of degrees `�a� should satisfy max�dm, l2� B `�a� B min�n � d1, l1�.

In order to find a successful (i.e. satisfying the Gale-Ryser condition) candidate bipar-
tition �a,b� of d, our intuition is to include a suitable number of large degrees from d � af

and as many small degrees of d � af as possible into a without violating the inequalities in
requirement 3 mentioned above. In this way b � d � a will not include many of the largest
degrees in d while a will still include enough number of degrees, which makes it more likely
for the conjugate of a to dominate b.

Following this intuition we calculate a maximum index x0 > �1,2,�, n� such that a cannot
include all �d1, d2,�, dx0 , dx0�1� in order for its conjugate to dominate b. This index x0 can
be easily calculated as follows. Starting from x � 1, if for some x, when we include all�d1, d2,�, dx� in a and include from d � �d1, d2,�, dx� as many smallest degrees as possible

into a while still maintaining the correct sum SaS � SdS
2 , and when the number of degrees `�a�

in a starts to fall below max�dm, l2�, then x0 can be chosen to be x � 1.
After x0 has been calculated, we will try to find out if we can include a subsequence

dS of �d1, d2,�, dx0� into a together with some degrees in d � dS such that the conjugate
of a dominates b. Without loss of generality, this subsequence dS can be chosen to be
some largest terms of �d1, d2,�, dx0�. Or, equivalently, we can remove some smallest terms
from �d1, d2,�, dx0� one at a time to obtain these subsequences. For each such subsequence

dS � �d1, d2,�, dx�, where max�µ�d1�2 , `�af�� B x B x0 since dS has to include all degrees in
af and we insist that a include at least half of the largest terms of d according to the above
discussion, we perform the following two enumerative steps to fully construct a:

5
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1. starting from the largest possible, choose some degree dy from d�dS� and include some
copies of dy into a. We also stipulate that no degree larger than dy from d � dS� will
be included into a. Here dS� is defined as follows. If dS includes all µ�dx� copies of
dx from d, then dS� includes dS together with all copies of the degree from d which is
immediately smaller than dx. If dS does not include all µ�dx� copies of dx from d, then
dS� includes dS together with all the remaining copies of dx from d. The motivation
for such a definition is that we don’t want dy to equal a degree we have just excluded
from a previous consideration of dS when x is being reduced starting from x0.

2. include some small terms that are all less than dy from d � dS� � dy into a, where
dy is the subsequence of d consisting of all µ�dy� copies of dy. We can generate a
number of possible combinations of small terms with each combination summing to a
suitable value based on the choice of dS and the choice in the enumerative step (1) and
having a suitable number of terms so that `�a� satisfies the inequalities in the above
requirement 3. An appropriate procedure can be designed for this purpose such that
those combinations with more smaller terms are generated first and each combination
can be generated in O�n� time.

Note that both of these steps are enumerative steps. Step (1) must be exhaustive by
trying each possible distinct dy from d�dS� and each of the possible number of copies up to
its multiplicity µ�dy� in d. Step (2) can be non-exhaustive, which means we can impose a
limit lc on the number of possible combinations of small terms to be included into a. This
parameter lc is the place where our algorithm is customizable and in reality we can choose
lc to be a constant or a low degree polynomial of n. This non-exhaustive enumeration step
does open the possibility of our algorithm making an error on some “yes” input instances
if the specified limit lc will cause our algorithm to skip some of the possible combinations.
However, this step will not introduce any error on “no” input instances. We also note that
some of the choices in these two steps can be pruned during the enumerative process to
speed up the enumeration phase when they will cause `�a� to fail to satisfy the inequalities
in the above requirement 3. In fact, the lower bound on `�a� can be dynamically increased
during the process as x is being reduced starting from x0 so that the largest degree in b
dynamically increases.

The reader may have noticed that these enumerative steps are more sophisticated and
complicated than the simple naive scheme of enumerating all possible subsequences of d�af

with sum S. We will discuss several alternative enumeration schemes later in Section 5. The
presented enumeration scheme above is the fastest we found through experiments.

During the enumeration phase, the algorithm will stop and output “yes” if a successful
candidate bipartition �a,b� is found. Otherwise, it will stop enumeration and output “no”

when the index x falls below max�µ�d1�2 , `�af��.

We note that the enumeration phase can be easily parallelized with respect to the dif-
ferent choices of dS. However, it may not be worth it in practice given the good run time
performance of the serial version unless the input is long and hard (say when n � `�d� A 500).
See the following sections for run time complexity analysis and experimental evaluations.
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3 Analysis of Run Time Complexity

The seven rules in the first phase can all be checked in polynomial time. It can be easily
verified that the total run time of these rules is O�n3�.

In the second phase, the three quantities dm, l1 and l2 can all be computed in O�n� time.
The maximum index x0 can be calculated in O�n2� time. The number of choices for dS is
O�n�. For each choice of dS, the number of choices for dy and its number of copies to be
included in a in the enumerative step (1) is O�n�. The maximum number lc of combinations
of the remaining small terms to be included in a in the enumerative step (2) can be chosen
to be O�1�, O�n�, etc. Each combination can be generated in O�n� time. Whenever a full
left side a has been constructed, the Gale-Ryser conditional test on the candidate bipartition�a,b� can be performed in O�n� time. Overall, we can see that the second phase runs in
O�n5� time when lc is O�n� or O�n4� time when lc is O�1�. Note this run time complexity
is achieved at the expense of the algorithm possibly producing an erroneous output on some
“yes” instances due to the fact that when lc is limited the enumerative step (2) may skip some
candidate bipartitions �a,b�. However, the observed error rate is so low that we consider
the limit on lc worthwhile for the sake of efficiency. On the other hand, if no limit is placed
on lc, then our algorithm will always produce a correct output, at the expense of possibly
running in exponential time in the worst case.

In summary, our algorithm can be customized to run in polynomial time with satisfactory
low error rates (see Section 4 for some evidence of error rates). Also note that it is a
deterministic instead of a randomized algorithm.

4 Experiments

We mainly tested our C++ implementation of the decision algorithm with the parameter
lc customized as lc B n � `�d�. In certain situations when n is small, unlimited lc is chosen
to estimate approximately how large lc should be for the algorithm to make no errors. The
implementation is compiled with a reasonably recent g++ compiler with -O3 optimization
and tested under typical Linux workstations with at least 16GB memory. We first show the
low error rates of the algorithm and then show the good run time performance.

4.1 Error Rates

We first demonstrate the somewhat surprising power of the seven rules in the first phase.
In Table 1 we show the number r�n� of all zero-free graphical degree sequences of length
n that can be resolved by one of these rules and their proportion among all D�n� zero-free
graphical degree sequences of length n. Based on the description of the rules, these r�n�
instances that can be resolved in phase one are all “no” instances. The function values r�n�
are obtained through a program that incorporates our decision algorithm into the algorithm
to enumerate all degree sequences of a certain length from Ruskey et al. [14]. Let B�n� be
the number of zero-free potentially bipartite graphical degree sequences of length n. Clearly
B�n� B D�n� � r�n� since some of the “no” instances are resolved in the second phase.

It looks safe to conclude from this table that r�n�
D�n� tends to 1 as n grows towards infinity

7
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and so B�n�
D�n� tends to 0. Note that these are just empirical observations. Rigorous proofs

of the asymptotic orders of these functions or their relative orders might require advanced
techniques [17] and are out of our reach at this moment.

In fact, those instances that can be resolved by one of the seven rules are not the only
ones that can avoid the enumeration phase of our algorithm. For example, those instances
that have S �

SdS
2 � Saf S � 0 can also be resolved immediately following the tests of the seven

rules according to our description in Section 2.

Table 1: The number D�n� of zero-free graphical degree sequences of length n, and the
number r�n� of them that can be resolved by one of the seven rules.

n D�n� r�n� r�n�
D�n�

6 71 53 0.746479
7 240 203 0.845833
8 871 770 0.884041
9 3148 2902 0.921855
10 11655 10995 0.943372
11 43332 41603 0.960099
12 162769 158074 0.971155
13 614198 601556 0.979417
14 2330537 2295935 0.985153
15 8875768 8780992 0.989322
16 33924859 33663505 0.992296
17 130038230 129315300 0.994441
18 499753855 497745844 0.995982
19 1924912894 1919319963 0.997094
20 7429160296 7413535855 0.997897
21 28723877732 28680124185 0.998477
22 111236423288 111113621955 0.998896
23 431403470222 431058118392 0.999199

Next we demonstrate the low error rates of our algorithm. In Table 2 we show the
number Bw�n� of all zero-free potentially bipartite graphical degree sequences of length n
that will be incorrectly reported as a “no” instance if we set lc � 1 (the smallest possible
chosen limit on the number of combinations) and their proportion among all B�n� zero-free
potentially bipartite graphical degree sequences of length n. Even with this smallest possible
lc, our algorithm makes very few errors on the “yes” instances. In fact, if we set lc � n, then
our algorithm makes no error on all zero-free graphical degree sequences of length n B 23.
However, the observed trend suggests that the limit lc need to grow with n for our algorithm
to always produce correct outputs. For example, lc must be at least 19 for all instances with
n B 23 to be correctly decided and must be at least 91 for n B 28. We do not have more
data like this for n C 29 since exhaustive enumeration when n C 29 will become too time-
consuming and we are unable to prove whether there is any polynomial of n to bound lc such
that our algorithm can always give correct outputs or the error rate is always below some
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constant. If lc grows faster than every polynomial of n or is unlimited, then our algorithm
could run more than polynomial time in the worst case.

Table 2: The number B�n� of zero-free potentially bipartite graphical degree sequences of
length n, and the number Bw�n� of them that will be misidentified as “no” instances if lc is
set to 1.

n B�n� Bw�n� Bw�n�
B�n� (with lc � 1)

6 18 0 0
7 37 0 0
8 100 0 0
9 241 0 0
10 640 0 0
11 1639 0 0
12 4378 0 0
13 11601 2 0.000172399
14 31318 8 0.000255444
15 84642 32 0.000378063
16 230789 117 0.000506957
17 631159 482 0.000763674
18 1736329 1667 0.000960072
19 4790928 6107 0.00127470
20 13272233 20826 0.00156914
21 36869887 72879 0.00197665
22 102727688 244266 0.00237780
23 286893582 821331 0.00286284

We note that the error rates reported in Table 2 are with respect to the B�n� “yes”
instances. The error rate will be much lower if they are computed with respect to all D�n�
zero-free instances of length n because, as we know from Table 1, by far the majority of
the “no” instances have already been correctly detected by the seven rules. For example,
Bw�23�
D�23� � 1.9�10�6 at the setting of lc � 1, which is a lot lower than Bw�23�

B�23� . Plus, increasing lc

from O�1� to O�n� also further reduces the error rate. For example, Bw�23�
D�23� � 0 at the setting

of lc � 23.
Regarding error rates of our algorithm for larger n, say n C 50 or n C 100, we do not have

direct numeric estimates. However, we have reason to believe it will still be quite low. See
the next subsection.

4.2 Run Time Performance

In the last subsection we demonstrated the low error rates of our algorithm mainly through
exhaustive testing on inputs with small n. Run time performance test for small n is not
informative since each individual input can always be decided almost instantly when n B 50.
For larger n we resort to testing randomly generated instances. Basically, what we observe

9

Wang: Potential Bipartiteness of Graphical Degree Sequences

Published by Digital Commons@Georgia Southern, 2021



is that varied inputs might have quite different run times. The run time of our algorithm
reported in this subsection are all obtained under the setting of lc � n.

We have already shown in Section 3 that our algorithm runs in polynomial time if lc is
bounded by a polynomial of n. We want to generate random graphical degree sequences of
specified length n, largest term d1 and smallest term dn. The control of the largest term d1
and smallest term dn allows us to be able to mainly focus on hard instances since, according
to the seven rules used in phase one, random instances with d1 and dn in certain ranges
are more likely to be resolved in phase one, which will be uninteresting since phase one can
always be finished almost instantly for n B 500.

Tested random graphical degree sequences are generated by first sampling uniform ran-
dom integer partitions of specified length n, largest term d1 and smallest term dn with an
adaptation of a sampling algorithm in appendix A of Burns [2]. Such random partitions
are then chosen as inputs to our algorithm if they pass the Erdős-Gallai conditional test [4],
which is a criterion to decide whether an integer partition is a graphical degree sequence.
We do not believe these random inputs to our algorithm will continue to follow the uniform
distribution like those before they pass the Erdős-Gallai conditional test. However, they are
still varied enough for us to observe a diverse range of run time behavior.

We use an automatic tester program and tested a total of 20000+ random instances. Each
single run of the automatic tester program allows us to specify n, d1, dn and the number of
random instances to test. For a wide range of n B 500, we found that the hardest instances
for our algorithm are approximately in the range of 0.5n B d1 B 0.6n and 1 B dn B 0.1n. The
random instances in these ranges are the most likely to cause our algorithm to enter the
enumeration phase. However, even the hardest instances we found in our random tests for
n B 500 can be finished within about a couple of minutes, which are necessarily those inputs
reported as “no” instances that also undergo the entire enumeration phase without any
successful candidate bipartition being found. All the tested “no” instances that are decided
in the first phase can be finished almost instantly, which agrees with the run time complexity
analysis in Section 3. All of the tested “yes” instances detected in the enumeration phase
can be decided in at most tens of seconds due to the empirical evidence that most of these
“yes” instances have a successful candidate bipartition that can be found even if lc were
set to 1 (because our implementation additionally reports the number C of combinations
actually used in enumerative step (2) when a successful candidate bipartition is found for a
“yes” instance). This further strengths our belief that the algorithm has a low error rate for
large n under the setting of lc � n because, if a “yes” instance is to be erroneously reported
as a “no” instance, the actual number of combinations used in enumerative step (2) must
exceed lc � n. However, no reported “yes” instance in our tested random inputs with n C 100
was ever observed to use an actual number C of combinations in enumerative step (2) with
1 @ C B n, which suggests “yes” instances that require lc A n to be detected by our algorithm
are probably quite rare. We do believe that such rare “yes” instances exist. They are only
hard to be found through our random generation process.

In summary, our random tests of long inputs not only demonstrate good run time perfor-
mance of our algorithm, but also give some heuristic evidence that error rates will continue
to be low when n becomes large.
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5 Discussions

We mentioned in Section 2 that our algorithm is customizable through the limit lc in the enu-
merative step (2). In this section we describe several alternative designs of the enumeration
phase that we have considered and their consequences. We also comment on the complexity
of the decision problem itself.

5.1 Alternative Designs of the Algorithm

We note that the alternative designs we presented here are experimentally verified to be less
efficient than the version in Section 2. The reader may skip this part if not interested.

In the enumerative step (1) we have chosen dy from the largest possible value to smallest.
Instead, we can choose dy from the smallest possible value to largest. On average, we found
that the former has better run time performance.

In the enumerative step (2) we prefer to enumerate the combinations of smallest terms
first. Instead, we can choose to enumerate those of largest terms first. On average, we still
found that the former has better run time performance.

The enumerative steps (1) and (2) can even be combined into one step to make the
enumeration phase simpler. That is, we can exhaustively enumerate all possible combinations
of terms from d�dS� with an appropriate sum subject to the restrictions in the requirement
3 about the number of terms `�a� in a. (Or, to make it more naive, we could exhaustively
enumerate all possible combinations of terms from d � af with the sum S.) With these
schemes we still face the choice of enumerating largest terms first or smallest terms first.
On average, the choice of “smallest terms first” still enjoys better run time performance.
However, in order to achieve similar low error rates in these alternative schemes with this
choice of “smallest terms first,” the limit on the number of combinations to be generated
will usually have to be much larger than the chosen limit lc in our design in Section 2,
causing these alternatives to have much worse run time performance on those instances that
require the second phase to decide. If no limit is placed on the number of combinations to
be generated, these alternatives will all produce correct outputs always. Nevertheless, the
run time performance could become terrible. For example, for some hard instances with
length n from 100 to 300, it could take days to detect a successful candidate bipartition for
“yes” instances and tens of days to decide for “no” instances when no limit on lc is imposed,
a clear evidence of exponential run time behavior. For longer hard instances in the range
300 B n B 500, these more naive enumeration phases with unlimited lc might take years or
longer time to finish.

As mentioned before, our algorithm always produces a correct conclusion for “no” in-
stances. But it could give an incorrect output for some “yes” instances depending on the
limit lc set in the enumeration phase. This kind of behavior can be contrasted with some
randomized decision algorithms. The error our algorithm might produce is fixed and it comes
from the fact that not all potentially bipartite graphical degree sequences exhibit the kind
of pattern that can be captured by the particular “limited” enumeration process of our al-
gorithm. Simply put, our algorithm is deterministic. If it makes an error on an “yes” input
under a particular setting of lc, it always outputs an erroneous answer on that input under
the same setting. If a randomized decision algorithm makes an error on an input, then it
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could produce a correct output the next time it runs on the same input. And usually the
probability of correct output of a randomized decision algorithm is greater than one half and
can be analyzed or estimated.

5.2 Regarding Problem Complexity

Now we comment on the complexity of the decision problem of potential bipartiteness of
graphical degree sequences. It is obviously in NP since a successful candidate bipartition�a,b� can be verified in polynomial time with the Gale-Ryser condition. We don’t know
whether it is in co-NP or in P , nor do we know whether it is NP -complete since a reduction
to prove its NP-hardness is not found.

In this paper we dealt with the decision problem of whether χ�d� � 2. In the case that
d is not potentially bipartite (i.e. χ�d� A 2) and it is desired to compute χ�d�, we can
decide, for each successive fixed k C 3, whether there is a k-colorable realization of d, until
the answer becomes “yes.” Each of these decision problems for fixed k C 3 is clearly also in
NP and we conjecture them to be NP -complete.

6 Summary and directions for future research

We presented a fast algorithm to test whether a graphical degree sequence is potentially
bipartite. The algorithm works very well in practice. It remains open whether the decision
problem can be solved in polynomial time. The complexity of the decision problem of whether
χ�d� B k for fixed k C 3 also remains to be resolved.
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