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CHAPTER 1

INTRODUCTION

In this chapter we present some background information on sensor placement as well as

the mathematical tools that we will use.

1.1 SENSOR PLACEMENT

Sensor placement has many applications and uses that can be seen everywhere you go.

Almost all public buildings use some some sort of sensors. Motion sensors are used to

sense when someone enters a room and turn on the lights, there are sensors that tell air

conditioning units when to turn on, and security cameras to survey a given area. Sensors

are also used in the structural health monitoring of buildings and bridges. Sensors are

used to measure the temperature of the structure, how much stress or strain the structure is

undergoing, and how much the structure is leaning.

For an efficient deployment of sensors one has to take into account how much area is

needed to be covered, the restrictions on the sensors, and then decide where to place them

in order to use the sensors most efficiently. Knowing how much area needs to be covered

is extremely important as placing sensors that do not cover the entire area is obviously not

preferred. It is also inefficient to place two sensors that cover an area that can be covered

by just placing one sensor. Sometimes the restrictions of the sensors need to also be taken

into consideration.

1.2 BASIC GRAPH THEORY

When studying sensor placement some concepts from graph theory will be utilized. Of

course we can not talk about graph theory without first talking about what a graph is,

hence our first definition [8]:
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Definition 1. A graph G consists of two sets:

• V , whose elements are referred to as the vertices of G (the singular of vertices is

vertex); and

• E, whose elements are unordered pairs from V (i.e., E ⊆ {{v1, v2}|v1, v2 ∈ V }).

The elements of E are referred to as the edges of G.

Now that we know what a graph is we can define some useful concepts that will help

in our study. One of the tools from graph theory that will be particularly helpful to us is

graph coloring.

Definition 2. A graph coloring is when every vertex is assigned a color. an example can be

seen in Figure 1.1.

Figure 1.1: Example of a graph coloring.

More specifically, what we will be using in our algorithm is called a proper coloring

of a graph.

Definition 3. A proper coloring is a special graph coloring when no vertex is connected to

another vertex of the same color. A (proper) k-coloring is when k colors are used to color

the graph. We can see an example of this in Figure 1.2.

The majority of the structures that we will be dealing with lead to geometric structures

that are polygons or polygonal shapes. One of the most common way of partitioning a

polygonal shape is triangulation.
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Figure 1.2: Example of a (proper) 3-coloring.

Definition 4. Triangulation is when you connect the vertices of a polygon in order to make

triangles. An example of this can be seen in Figure 1.3

Figure 1.3: Example of the triangulation of a polygonal shape.

In graph theory there are special types of graphs that are frequently used in research.

We first define the paths as follows.

Definition 5. A path is a sequence of vertices that are connected by edges of which no

vertices are repeated. An example of this can be seen in Figure 1.4

In our study most paths will be x-monotone, as defined below. note that such charac-

teristics refer to the geometric nature of the structures and differ from the traditional graph

theory concepts.
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Path Not a path

Figure 1.4: Examples of path and non-path.

Definition 6. A path is x-monotone if you can move a straight vertical line across the path

and it never intersects the path more then once. We can see an example in Figure 1.5

x-monotone Not x-monotone

Figure 1.5: An example of what is and is not x-monotone.

1.3 THE ART GALLERY PROBLEM

The art gallery problem was first proposed in 1973 by Victor Klee [4]. The problem asked

that if you had an art gallery consisting of n vertices, how many guards would be needed

to see the entirety of the art gallery? Since then there have been many renditions of the art

gallery problem including: limiting the guards to just the vertices, allowing the guards to

move along a set route, guarding an orthogonal gallery, guarding a gallery with holes, etc.

In this thesis we will be presenting an approach to solve the problem for an orthogonal

art gallery with holes, which we will talk about in the next a few chapters. Before it would

be beneficial to mention the original problem and its solution. The original problem again

asked, how many guards are needed to guard a n-vertex polygon.

The number of guards needed to guard a n-vertex polygon is n
3
. There are two ways

to show this, the first is a combinatorics proof done by Václav Chvátal in 1975 [6]. The
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second and easier way uses graph theory and was done by Steve Fisk in 1978 [6]. We will

be using Fisk’s proof as it is easier to understand and to apply.

To find how many guards are needed to guard a n-vertex polygon we will first trian-

gulate the polygon. We know that we can triangulate any polygon using n− 3 diagonals to

make n− 2 triangles. Once we have triangulated the polygon we are left with a graph that

we can 3-color. If we look at Figure 1.6 we can see that a triangle is not only able to be 3-

colored but can only be 3-colored (i.e. two colors are not enough). Once we have 3-colored

one triangle we know that at least one other triangle shares an edge with it. Knowing this

may not be easy to see at first so we will show it.

Figure 1.6: A (properly) 3-colored triangle.

We know from the definition of a polygon that you can trace around the edge of a

polygon without tracing over the same spot more then once. We can see an example of this

in Figure 1.7.

Polygon Not a polygon

Figure 1.7: Example of what is and is not a polygon.

We also know that once we have triangulated the polygon if we trace around the the

outermost edges of the graph it will have the same result as tracing around the outermost

edges of the polygon. This is shown in Figure 1.8.
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Figure 1.8: Example where the outermost edges of a triangulated polygon being the same

as the original polygon.

Now we can show that once a triangle has been triangulated in the resulting graph

every triangle will share at least one side with another triangle. To do so assume that

after triangulating a polygon there is some triangle that does not share a side with another

triangle. Then if we trace around the outermost edges of the graph, when we get to that

triangle we will start at the point that connects it to the rest of the graph, then we will go

around the triangle and end up at the same point that connects it to the triangle, after which

we will have to continue going around the rest of the graph. A good visualization of this is

in Figure 1.7 where we can see what the graph might look like. This is again not a polygon

because we traced over the same point twice, a contradiction to the assumption that it was

a polygon. So now we have shown that every triangle must share at least one edge with

another triangle.

Next we can start by coloring one triangle. After we have colored this triangle we

know we can color the triangle connected to it. This is because The triangle we have not

colored shares to vertices with the triangle we have colored so those two vertices are already
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colored. This leaves only one other color left for the remaining vertex. This can be seen in

Figure 1.9. We can repeat this process until we have colored the whole graph and we will

not use any more then n
3

guards.

can only be blue

Figure 1.9: Visual of two triangles being 3-colored.

The only potential scenario of the above 3-coloring of triangles failing is when the

triangles “cycle around”. This can be seen in Figure 1.10. We can also see that the only way

that could happen is if the all connect at some center point. Because we are triangulating a

polygon there will be no point in the polygon for the triangles to meet at. This is due to the

fact that we are only connecting the vertices of the polygon to make triangles.

Figure 1.10: Visual of coloring a graph of cycling triangles.

In Chapter 2 we provide the detailed proof of a classic result of this nature, the nota-

tions are from [9] and the proof is from [5].

1.4 THE TERRAIN GUARDING PROBLEM

The terrain guarding problem, which has been extensively studied since 1995 [2], deals

with a path of length n that is x-monotone. The problem asks where to place the least
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amount of guards so that the guards can see all other vertices on the terrain.

We say a guard can see another vertex if you can draw a straight line from the guard to

the vertex without intersecting the terrain. We also assume that a guard can see the vertex

that he is on. There is also a continuous version of this problem where the guards need

to see every single point on the terrain. In Figure 1.11 we can see an example of where a

guard can see.

Figure 1.11: An example of where a point p can see.

For the continuous problem we will say that a guard can see an edge if he can see the

two vertices that are connected by the edge. In Figure 1.12 we can see that v1 can see v2

and v3 so it is able to see the edge v2 − v3, but v1 can see v5 but not v4 so v1 cannot see the

edge v4 − v5.

In applications, we will first take vertical crossing sections of the area we will be

placing guards around. The crossing sections will result in a 2-d image with the ground

of the area making up our terrain that we want to guard. We will then apply the terrain

guarding problem to place guards that will be able to see the whole terrain.
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v0

v1

v2

v3

v4

v5

Figure 1.12: Example for what edges a vertex can see.

1.5 OTHER RELATED INFORMATION

The most relevant research towards efficient solution to our problem, is the study of parti-

tioning of geometric shapes, coloring of the partitioned graphs, and various terrain guarding

problems. In Table 1.1 below we list some of the algorithmic works we have found.
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Table 1.1: Summary of related work

References Findings

[6] Lefthandside method of solving terrain guarding problem; Triangulation method of

solving art gallery problem; n
3 guards are always sufficient for art gallery problem.

[2] Annotated, Discrete, and Continuous terrain guarding problems can all be solved in

n(O(
√
k)) time where n is the number of vertices and k ≤ n.

[4] n
3 guards is always sufficient to cover a n-vertex polygon; Only one guard is needed

for convex polygons, star shaped polygons, 4-sided polygons, and 5-sided polygons;

Two guards needed for 6-sided polygons.

[10] For monotone polygons (if one can move a straight line through the polygon with-

out touching more than 2 sides.); Triangulation of a polygon with time complexity

O(n log(n)) for simple and O(n) for complex structures.

[7] A method is for triangulating a monotone polygon.

[3] O(n(3/14)) time complexity for three coloring a 3-colorable graph.
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CHAPTER 2

ORTHOGONAL GALLERIES

A common kind of geometric structures are bounded by mutually perpendicular sides,

called orthogonal shapes. The question of guarding orthogonal art galleries will be studied

in details in the upcoming chapters. Here, in preparation for the study of orthogonal gallery

with “holes”, we extensively discuss the orthogonal shapes and quadrilaterizations of such

shapes.

Definition 7. An orthogonal gallery is a gallery where all of the edges make either 90

degree or 270 degree angles as seen in Figure 2.1a.

An orthogonal gallery with holes will satisfy the same conditions for both the edges

of the polygon and the edges of the holes as seen in Figure 2.1b.

(a) (b)

Figure 2.1: (a) An orthogonal gallery; (b) An orthogonal gallery with one hole.
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2.1 ORTHOGONAL GALLERIES AND QUADRILATERALIZATIONS

First let us consider an orthogonal gallery without holes. It is shown in [5] that n
4

guards

is always sufficient. This proof is done by showing that if you have a orthogonal polygon

P and you can quadrilateralize every orthogonal polygon smaller then it then P can be

quadrilateralized. In this thesis we will be following the same format as the proof in [9].

The argument we provide here follow the same reasoning as [5]. We supply it with much

more details and sometimes slightly different explanation.

We will start with examining the quadrilateralization of our art gallery.

Definition 8. The quadrilateralization of a polygon is made by connecting the vertices

of the polygon that result in making convex quadrilaterals. An example can be seen in

Figure 2.2

Figure 2.2: The quadrilateralization of an orthogonal gallery with one hole.

Before we get into the proof we should define a couple more terms. In an orthogonal

polygon, a top edge is a horizontal edge where the interior of the polygon is below the edge.

A bottom edge is a horizontal edge where the interior of the polygon is above the edge. Left

and right edges are defined in the same way.
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A top edge T and bottom edge B can see each other if there exists a point on t on T

that can see a point b on B. T and B are neighbors if they can see each other and there is

no bottom edge higher then B that can see T and no top edge lower than T that can see

B. A tab is a pair of neighboring edges that are connected by a vertical edge. We can see

some of these definitions illustrated in Figure 2.3a. We can see that T and B can see each

other but they are not neighbors as T ′ is lower then T and can see B. We can also see that

T ′ and B′ can are neighbors and since they are connected by a vertical edge they form a

tab. In Figure 2.3b we can see M and N are neighboring edges that do not form a tab.

T ′

B′

T

B

(a)

M

N

(b)

Figure 2.3: Orthogonal shape, neighboring edges, and tabs.

2.2 SOME GEOMETRIC OBSERVATIONS

To prove that every orthogonal polygon can be quadrilateralized we will first show that if a

orthogonal polygon has one of three structures, we can split it into two smaller orthogonal

polygons that can be quadrilateralized, and then put the polygons back together to make a

quadrilateralization of the original polygon. We call the splitting of the polygon a reduction.

We will later show that every polygon contains one of the three structures.

Before we show that every polygon containing on of the three structures can quadri-

lateralized we first must introduce some geometric facts. The first deals with an orthogonal

polygon who’s edges are in general position. This means that the none of the horizontal
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edges of the polygon have the same vertical coordinate and none of the vertical edges have

the same horizontal coordinate.

Lemma 2.2.1 ([5]). An orthogonal polygon P that is not in general position has the same

quadrilateralization as any “nearby” P ′ that is in general position.

Proof. Consider a sequence of orthogonal regions P ′, that are all in general position, with

the same number of edges as P . We can assume, without loss of generality, that this

sequence converges to P . In other words, repeatedly making small changes to P ′ can result

in the same structure as P . Then near the end of the convergence, P ′ will be extremely

close to having the same structure as P , with the only difference being that it is in general

position. Then because there are only finitely many ways to quadrilateralize this region P ′

must have the same quadrilateralization as P .

Let a = (ax, ay) and b = (bx, by) be two points on the x, y coordinate plane. We

define a new point a#b = (ax, by). Consequently, �(a, b) is the box made by the points

a, b, a#b, b#a [5]. Sometimes we also use the same notation L#T = (a, b) for a vertical

line segment with x-coordinate a, and a horizontal line segment with y-coordinate b.

Lemma 2.2.2 ([5]). Let T and B be neighboring top and bottom edges of an orthogonal

polygon P . Then there is a left edge L left of both T and B, whose top endpoint is at least

as high as T and whose bottom endpoint is at least as low as B, and a right edge R with

analogous properties, such that �(L#B,R#T ) lies completely inside of P .

Proof. First we will show that if T and B are neighbors then there is a left edge, L, left of

both T and B, and a right edge, R, right of both T and B, that “extends” both at least as

high as T and at least as low as B. We will do so by contradiction.

So assume that T and B are neighbors and there is no left and right edge with such

properties. Without loss of generality, we may assume that there is no left edge with such

properties, then pick some left edge whose bottom end point can see B and T . If there is
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no such edge then pick some left edge whose top end point can see B and T . Note that at

least one of the top and bottom end point of the edge adjacent to T or B can see both of

them (under the assumption that no left edge is both high and low enough).

We may now assume, without loss of generality, that there is some left edge, L, whose

bottom end point can see B and T (Figure 2.4). Then we also know that there must be

some horizontal edge connected to L and that is a top edge, T ′ that is lower then T . We

can see that the bottom endpoint of L is the same as one of the endpoints of T ′. This means

that one of the of the endpoint of T ′ can see B, contradicting the assumption that T and B

are neighbors.

T

B

L

B′

Figure 2.4: The neighboring edges T,B and the left edge.

Therefore, if T and B are neighbors there is is a left edge, L, left of both T and B,

and a right edge, R, right of both T and B, that are both at least as high as T and at least as

low as B.

Next we will show that the rectangle �(L#B,R#T ) is completely inside of P . Con-

sider some top edge T and some bottom edge B that are neighbors. Let L be an edge left

of both T and B whose top endpoint is at least as high as T and whose bottom endpoint is

at least as low as B and R be a edge right of both T and B with the same properties.

For contradiction assume that �(L#B,R#T ) reaches outside of P . Then there would

have to be some edge sequence that intersects �(L#B,R#T ) as seen in Figure 2.5.

Consequently there would then be a bottom edge B′ higher then B that could see all of

T or a top edge lower than T that could see all of B. Either way this leads to a contradiction

to T and B being neighbors.
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T

B

L R

L#B

R#T

B′

Figure 2.5: A �(L#B,R#T ) that is not within P .

We may now assert the following for a tab, that it mst be “chopped off” in our “reduc-

tion” process.

Lemma 2.2.3. If ab and cd are the horizontal edges of a tab, then any quadrilaterization

must include the quadrilateral abcd.

Proof. Without loss of generality, assume that a is left of b and c is left of d. Hence ac is the

connecting edge of the tab. For contradiction assume that there is some quadrilateralization

that does not include abdc. Because of Lemma 2.2.2, a can only be connected to another

point, e, that is below cd.

Note that both c and d must be in the same quadrilateral as a and e. If not, either one

of them is “cut off” from the rest of the shape, or they make a non-convex quadrilateral

with other vertices. We would then have to connect d to e to make the quadrilateral aedc.

This can be seen in Figure 2.6

ba

c d e

Figure 2.6: The tab ab, cd and a failed quadrilateralization.

It is now obvious that acde is not convex (as cd is horizontal and de has negative
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slope), a contradiction. This means that the only way we can quadrilateralize tab ab, cd is

by connecting bd to make the quadrilateral abdc.
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CHAPTER 3

“REDUCTION” OF ORTHOGONAL POLYGONS

Our main idea is to convert the polygons into “smaller” ones that can be quadrilateralized.

With the basic observations from the previous chapter, we can now get into how we can

“reduce” orthogonal polygons.

A polygon P1 is smaller then polygon P2 if P1 has either fewer holes then P2 or P1

the same amount of holes as P2 and fewer vertices then P2.

By reducing the polygon P to P ′ and showing that P ′ is both smaller then P and can

be quadrilateralized we will show that P can also be quadrilateralized. We will discuss

several different cases in the rest of this chapter.

3.1 NEIGHBORING EDGES THAT DO NOT FORM A TAB

The first structure that allows us to reduce an orthogonal polygon is if the polygon contains

a pair of neighboring edges that do not form a tab.

Lemma 3.1.1. If P has a pair of neighboring edges that do not form a tab, then P is

reducible.

Proof. Let P be an orthogonal polygon with the following properties, all visualized in

Figure 3.1a. Let ab be a top edge, and cd be the neighboring bottom edge. Assume ab cd is

not a tab. Without loss of generality, further assume that a is left of b and c is left of d. We

can then define b′ = d#b and c′ = a#c.

By Lemma 2.2.2 we can see that �(a, d) = �(b′, c′) lies completely inside of P .

Assuming that P has no holes, we can now split P into P1 and P2.

We will split P using �(a, d) so that P1 will include the tab ab′dc and P2 will include

the tab bac′d, as seen in Figure 3.1b and Figure 3.1c. Both P1 and P2 are smaller then P

because they both have the same amount of holes but fewer vertices.



27

a b

c d

b′

c′

(a)

a

c d

b′

(b)

a b

dc′

(c)

a b

c d

b′

c′

(d)

Figure 3.1: An illustration of quadrilateralizing reducible polygons.
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With the assumption that every orthogonal polygon smaller than P can be quadrilat-

eralized, both P1 and P2 can be quadrilateralized. By Lemma 2.2.3 we can see that the

quadrilaterization of P1 will include the quadrilateral ab′dc and the quadrilaterization of

P2 will include the quadrilateral bac′d. We can then put quadrilateralizations of P1 and P2

back together to make the quadrilaterization of P .

This is illustrated by joining quadrilateral ab′dc from P1 and the quadrilateral bac′d

from P2 to make the quadrilateral abdc, as seen in Figure 3.1d.

3.2 GOOD TABS

The second structure that will allow us to reduce an orthogonal polygon is described ac-

cording to different types of tabs. A tab is an up tab if its bottom edge extends farther

then its top edge and a down tab if its top edge extends farther then its bottom. Through

Lemma 2.2.2 we know that there are two bounding vertical edges. One of the vertical edges

will be the edge connecting the neighboring edges, the other is called the facing edge. For

an up tab the top point of facing edge is called a step point and the connecting edge is called

the step edge, seen in Figure 3.2. A down tab’s step point is the bottom point of the facing

edge and the edge connected is the step edge.

s

F

S

U

Figure 3.2: An up tab, U , and its facing edge, F , step point, s, and step edge, S.

Let ab be the top edge of an up tab, cd be the bottom edge, and s be the step point. An

up tab is a bad up tab if the step edge is a bottom edge and �(b, s) is empty. Naturally a
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up tab is a good up tab if it is not bad (i.e. if the step edge is a top edge or if �(b, s) is not

empty).

Down tabs are defined to be good or bad in the same manner. Let ab be the bottom

edge of a down tab, cd be the top edge, and s be the step point. A down tab is bad if the

step edge is a top edge and �(b, s) is empty. Naturally a down tab is good if it is not bad,

(i.e. if the step edge is a bottom edge or if �(b, s) is not empty).

Lemma 3.2.1. If P has a good tab, then P is reducible.

Proof. Suppose that P contains a good up tab, as visualized in Figure 3.3, such that ab is

the top edge, cd is the bottom edge, e is connected to b, and s is the step point.

s

a b

c d

e

Figure 3.3: A good tab.

Because it is a good tab either the step edge is a top edge or if �(b, s) is not empty. If

the step edge is a top edge let xy be that edge, if �(b, s) is not empty let xy be the lowest

edge that intersects �(b, s). In both cases let x be to the left of y. This leads us to different

cases, if x is to the left of b, in which case x must be higher then e, and if x is to the right of

b, in which x can be either higher or lower then e. In all three scenarios y may be the same

as s. All three scenarios can be seen in Figure 3.4.

Case (1) x is to the left of b, seen in Figure 3.5a. First we will replace xy and the chain ebacd

with two tabs. The first tab will be the chain made from y, b#y, b#c, d and the second
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s

a b

c d

e

x y

(a)

s

a b

c d

e

x y

(b)

s

a b

c d

e
x y

(c)

Figure 3.4: The good tab and the step edge.

will be the chain made from x, y, y#b, b, e. Assume that P has no holes, then when

we replace xy and the chain ebacd with the two tabs we will get two new polygons

P1 and P2. Without loss of generality, let P1 contain y, b#y, b#c, d and P2 contain

x, y, y#b, b, e, seen in Figure 3.5c and Figure 3.5b. Because both P1 and P2 will

have the same amount of holes as P and less vertices they are both smaller then P .

Because every orthogonal polygon smaller P can be quadrilateralized, both P1 and

P2 can be quadrilateralized. By Lemma 2.2.3, the quadrilaterization of P1 will in-

clude the quadrilateral y, b#y, b#c, d and the quadrilaterization of P2 will include the

quadrilateral y, y#b, b, e. We can the put the quadrilateralizations of P1 and P2 back

together to make the the quadrilaterization of P and we will see that the quadrilat-

eral y, b#y, b#c, d and the quadrilateral x, y, y#b, b, e will sequence yebacdy, seen

in Figure 3.5d. and the only way this can be quadrilateralized is by making the

quadrilaterals yebd and abdc, seen in Figure 3.5e.

Case (2) x is to the right of b, seen in Figure 3.6a and Figure 3.7a. The same reduction will

be able to be applied to both these scenarios. We will start by making the same re-

placements as in Case (1), replace xy and the chain ebacd with two tabs. The first tab
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e
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(e)

Figure 3.5: Illustration of Case (1).
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will be the chain made from y, b#y, b#c, d and the second will be the chain made

from x, y, y#b, b, e. Assume that P has no holes, then when we replace xy and the

chain ebacd with the two tabs we will get two new polygons P1 and P2. Without

loss of generality, let P1 contain y, b#y, b#c, d and P2 contain x, y, y#b, b, e, seen in

Figure 3.6c and Figure 3.6b. Because both P1 and P2 will have the same amount of

holes as P and less vertices they are both smaller then P . Because every orthogonal

polygon smaller P can be quadrilateralized, both P1 and P2 can be quadrilateral-

ized. By Lemma 2.2.3, the quadrilaterization of P1 will include the quadrilateral

y, b#y, b#c, d.

Unlike in Case (1) (y, y#b) and eb are not neighbors in P2 and do not form a tab. We

can still show that either ey or bx is a part of the quadrilaterization. For contradiction

assume y#b is a part of more then one quadrilateral. That would mean that y#b either

connects to a vertex to the left of eb or above xy. This is because xy is the lowest edge

that intersects �(b, s) so �(b, y) is empty. If y#b connects to a vertex left of eb, b can

not be a part of a quadrilateral, a contradiction. If y#b connects to a vertex above xy,

y can not be a part of a quadrilateral, a contradiction. Therefor either the quadrilateral

e, y, y#b, b is a part of the quadrilaterization or the quadrilateral b, x, y, y#b is. In the

case that x is between e and b we can see that P2 can only contain the quadrilateral

b, x, y, y#b and not the quadrilateral e, y, y#b, b. This can be seen in Figure 3.7b.

We can then put the quadrilateralizations of P1 and P2 together to make the quadrila-

terization of P . We can see that the quadrilaterization of P will include the quadrilat-

erals yebd and abed when we combine the quadrilaterals e, y, y#b, b and y, b#y, b#c, d,

seen in Figure 3.6d. Or the quadrilaterization of P will include the quadrilaterals

yxdb and abed when we combine the quadrilaterals b, x, y, y#b and y, b#y, b#c, d,

seen in Figure 3.6e and Figure 3.7d.
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Figure 3.6: Illustration of Case (2).
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Figure 3.7: Illustration of Case (2).
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3.3 TAB PAIRS

The final reduction is based around the exsitence of a tab pair in P . Let U be an up tab and

D be a down tab. U and D make a tab pair if the step edge of U is the bottom edge of D

and the step edge of D is the top edge of U .

Lemma 3.3.1. If P contains a tab pair, then P is reducible.

Proof. Let the chain bacd form an up tab and the chain fgih form a down tab, such that

they both form a tab pair, as seen in Figure 3.8a.

Next replace the tab bacd with the tab f, a#f, c, d and the tab fghi with the tab

b, g#b, i, h. Assume that P has no holes, then this will create two new polygons, P1 and

P2. Without loss of generality, let P1 contain f, a#f, c, d and P2 contain b, g#b, i, h, seen

in Figure 3.8b and Figure 3.8c. Both P1 and P2 have the same amount of holes as P and

less vertices so are both smaller than P . Because every orthogonal polygon smaller P can

be quadrilateralized, P1 and P2 can be quadrilateralized.

By Lemma 2.2.3, the quadrilaterization of P1 contains the quadrilateral f, a#f, c, d

and the quadrilaterization of P2 contains the quadrilateral b, g#b, i, h. We can then put the

quadrilateralizations of P1 and P2 together to make the quadrilaterization of P . We can

also see that the quadrilaterals f, a#f, c, d and b, g#b, i, h will make the chain dcabhigfd

in P , which can be quadrilateralized as abed, bdfh, and hifg, seen in Figure 3.8d.
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Figure 3.8: Reducing polygon with tab pairs.
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CHAPTER 4

QUADRILATERALIZING THE ORTHOGONAL GALLERIES

We have shown, in the previous chapter, that if an orthogonal polygon contains one of

three structures that it can be reduced. We now need to show that every orthogonal polygon

contains at least one of these three structures.

This is done by contradiction, so for the following arguments we assume that P is

irreducible.

4.1 LEMMAS

Let E be a top edge, define n(E) to be the highest bottom edge that E can see. Sim-

ilarly if E is a bottom edge, then n(E) is the lowest top edge E can see. Notice that

ni+2(E) must fall somewhere between ni(E) and ni+1(E) as ni+2(E) is supposed to

be the closest “seeable” edge to ni(E). Also notice that if n(n(E)) = n2(E) = E

then E and n(E) are neighbors. Because P has a finite number of edges the sequence

E, n(E), n2(E), . . . , nk(E), nk+1(E) must also be finite ending when nk(E) and nk+1(E)

are neighbors.

Because P is irreducible, by Lemma 3.1.1 there can not be any neighboring edges that

are not a tab, so nk(E) and nk+1(E) must form a tab, call this tab(E). By Lemma 3.2.1, P

can not contain a good tab or it would be reducible so tab(E) must be a bad tab.

Lemma 4.1.1. Let E be a horizontal edge and tab(E) as defined above. Let F the facing

edge of tab(E). Then

• if E is a top edge, E falls horizontally between F and the top edge of tab(E); and

• E is a bottom edge, between F and the bottom edge of tab(E).

Proof. Consider nk−1(E), for contradiction assume that it extends horizontally past nk+1(E)

or past F as seen in Figure 4.1.
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nk−1(E)

F
nk+1(E)

nk(E)

Figure 4.1: The edge nk−1(E) that extends past nk+1(E) or past F .

If nk−1(E) extends past nk+1(E) then it would see some bottom edge higher then

nk(E) a contradiction.

Similarly, if nk−1(E) extends past F then it would see some bottom edge higher then

nk(E) a contradiction.

We can repeat the above argument to claim the same about E. The analogous argu-

ment works for the case of bottom edge E.

Lemma 4.1.2. Suppose P is irreducible and that E is a bottom edge such that tab(E) is a

down tab not containing E. Then there is a bottom edge h(E) that is not part of a down

tab.

Proof. Let the top edge of tab(E) be T and the bottom edge B, let the facing edge be F ,

the step point s and the step edge S, all as shown in Figure 4.2.

Because tab(E) is a bad down tab we know that S is a top edge and that �(s, c) is

empty. Because �(s, c) is empty we know that E must be below S.

We also know that E can not see S so let e be a point on E, then there is some point y

that is blocking e from seeing S. This means there must be an edge going through y. The

edge can not be a bottom edge as e can see y. It can also not be a top edge as then E would

be able to see and therefor would see a lower edge than T , a contradiction.

Therefor the edge going through y must be a vertical edge. Let h(E) be the horizontal
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T

B

F

S s

E

a b

c d

tab(E)

h(E)

Figure 4.2: Illustration of Lemma 4.1.2.

edge connected to the vertical edge. h(E) can not be a top edge or else E would be able to

see it and therefor would see a lower edge. So h(E) must be a bottom edge. Also, h(E)

can not be the bottom of a down tab because then e would be able to see the top edge of the

tab and therefor would see a lower edge.

Lemma 4.1.3. If P is irreducible, then P has an infinite number of edges.

Proof. Assume that P does have a finite number of edges. Then we know that the sequence

G, n(G), n2(G), . . . must lead to some tab U . Without loss of generality, assume that U is

the highest up tab.

The following descriptions can be seen in Figure 4.3. Let ab be the top edge of U , S

be the step edge of U which we know if a bottom edge because U is a bad up tab. Let s

be the step point of U and e be the top of the vertical edge connected with b. Let E be the

horizontal edge connected to e.

We can then have two possibilities to consider.

Case (1) S is not a part of tab(S). We know that tab(S) is above S and S is above U , so

tab(S) is above U . Because U is the highest up tab tab(S) must be a down tab. If

S is not a part of tab(S) then we can apply Lemma 4.1.2 to S and get h(S). This is

because P is irreducible, S is a down tab, and tab(S) is a down tab not containing

S. We can then see that tab(h(S)) is above U because tab(h(S)) is above h(S) and
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Figure 4.3: Illustration of Lemma 4.1.3.

h(S) is above S. We can then apply Lemma 4.1.2 to get h2(S). We can then continue

this process for an infinite amount of times showing that P is be infinite.

Case (2) S is a part of tab(S). In this case tab(S) must still be a down tab because it is higher

then U . Let F be the facing edge of tab(S) and f the step point. Because U and

tab(S) can not be a tab pair by Lemma 3.3.1 f 6= b. We also know that because

tab(S) is a bad tab that �(s, f) is empty and that because U is a bad tab �(b, s) is

empty. Because �(b, s) is empty we can see that E must be a bottom edge. Because

E is higher than U , tab(E) must be a down tab.

We will now show that E can not be a part of tab(E). If E was a part of tab(E)

then the top edge of the tab would have to extend farther then E. We can see that the

top edge of tab(E) must be horizontally between b and s. Because �(b, s) must be

empty then it must be above bottom edge of tab(S). But because of Lemma 2.2.2

the rectangle determined by tab(S) must be empty so the top edge of tab(E) can not

go higher then bottom edge of tab(S), a contradiction. Thus E can not be a part of

tab(E). This means that E is a bottom tab and tab(E) is a down tab so we can now

apply Lemma 4.1.2 to E to get h(E). We now have a bottom edge h(E) that is not
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a part of the down tab tab(h(E)) so we can apply Lemma 4.1.2 again. We can then

continue this process for an infinite amount of times showing that P is be infinite.

4.2 MAIN THEOREM

From everything we have shown we can now state the following theorem.

Theorem 4.1 ([5]). Every orthogonal polygon has a convex quadrilaterization.

Proof. By Lemma 2.2.1 we know that we can consider a polygon whose vertices are in

general position. We will then proceed by induction. The base case is a rectangle which

can obviously be quadrilateralized as it is a quadrilateral. Assume that every orthogonal

polygon smaller then P can be quadrilateralized. We then apply Lemma 4.1.3 to show that

all orthogonal polygons contains at least one of these three structures, a pair of neighbor-

ing edges that do not form a tab, a good tab, or a tab pair. We next use Lemma 3.1.1,

Lemma 3.2.1, and Lemma 3.3.1 to show that we can reduce P to a smaller P ′ that we can

quadrilateralize. We can then use the quadrilaterization of P ′ to make a quadrilaterization

of P .
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CHAPTER 5

GUARDING AN ORTHOGONAL GALLERY WITH “HOLES”

It is well known that through 4-coloring the quadrilateralization of an orthogonal one can

guard the corresponding art gallery with at most n
4

guards. In this chapter, we will discuss

this idea through the result of [11], where orthogonal galleries with holes are considered.

5.1 PREPARATION

Let us first look at an orthogonal gallery with one hole. Let Q be the quadrilateralization of

the orthogonal gallery. After we quadrilateralize the orthogonal gallery we can add edges

connecting the corner vertices of the quadrilaterals to make the quadrilateralization graph

GQ as seen in Figure 5.1a.

v u

(a)

w

(b)

Figure 5.1: (a) Example of the quadrilateralization graph, GQ, of an orthogonal gallery

with one hole. (b) Example of GD.

If we can show that we are able to 4-color GQ then we can use that coloring to place
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guards that will sufficiently guard the orthogonal gallery.

We consider the dual graph GD of GQ. In GD every vertex corresponds to a quadri-

lateral in GQ. In GD two vertices are connected by an edge if their corresponding quadri-

laterals share an edge. An example of GD can be seen in Figure 5.1b.

We can see that GD is made up of a single cycle with multiple branches attached. At

the end of each branch is a vertex of degree one in GD. The corresponding quadrilateral in

GQ has two vertices of degree 3. This is because two of the quadrilaterals vertices will only

be a part of that quadrilateral (and none else). Because of this those two vertices will only

be connected to each other and the other two vertices in the quadrilateral. So the degree of

each vertex will be 3.

We can observe the above discussion in Figure 5.1b that w has a degree of one. In

Figure 5.1a we can see that the corresponding quadrilateral to w has two vertices, v and

u of degree 3. We can remove these vertices and call the resulting graph G1
Q and its dual

graph G1
D, as seen in Figure 5.2.

(a) (b)

Figure 5.2: (a) Example of G1
Q. (b) Example of G1

D.

If we can 4-color G1
Q then we can also 4-color GQ. We can repeat this process of

removing vertices with a degree of one from our last dual graph until we are left with
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Gk
D and Gk

Q, as seen in Figure 5.3. Gk
D will just be a single cycle and Gk

Q will be the

corresponding quadrilaterals. If we can 4-color Gk
Q then we can also 4-color GQ.

(a) (b)

Figure 5.3: (a) Example of Gk
Q. (b) Example of Gk

D.

5.2 THE STUDY OF Gk
Q

In Gk
Q we can observe an interior boundary and an exterior boundary. We call a quadrilat-

eral balanced if it has two vertices on the interior boundary and two vertices on the exterior

boundary. A quadrilateral is called skewed otherwise.

Here we quote an observation from [11], that “the next step is to observe that”

Observation 5.1. Each skewed quadrilateral has one vertex of degree 3 in graph GK
Q .

Proof. This is because each skewed quadrilateral has three vertices on the exterior bound-

ary and one vertex on the interior boundary, or one vertex on the exterior boundary and

three vertices on the interior boundary. Without loss of generality, suppose the skewed

quadrilateral has three vertices on the exterior boundary and one vertex on the interior

boundary, as seen in Figure 5.4, where v1, v2, v7, and v6 make up the skewed quadrilateral.



45

v1 v2 v3

v4v5

v6
v7 v8

v9v10

Figure 5.4: A graph with one skewed triangle.

We can see that v6, v1, and v2 are the vertices on the exterior boundary. We can

also see that because v1 is in the middle of these vertices that it is not a part of any other

quadrilateral. Because of this it only has edges connecting it to the other vertices that are a

part of the same quadrilateral.

5.3 COLORING ALGORITHM

We can remove all vertices from Gk
Q that have a degree of three resulting in a graph G∗Q. If

we are able to 4-color G∗Q then we are also able to 4-color Gk
Q. G∗Q will consist of an even

number of balanced quadrilaterals and some number of triangles. For each triangle we will

call it an e-triangle if it has two vertices on the exterior boundary and an i-triangle if it has

two vertices on the interior boundary.

We can now present an algorithm that will 4-color G∗Q. Doing so will require 4 cases.

• The number of i-triangles is even and the number of e-triangles is even. From [1]

we know that the cycle in the dual graph of any quadrilateralization of an orthogonal

polygon with one hole has an even number (at least four) of balanced quadrilaterals.

By that we can gather that G∗Q has m = 2l vertices, l ≥ 4. We can now label the

vertices on the exterior boundary v1, v2, . . . , v2k for k ≥ 2 and the interior vertices



46

v2k+1, v2k+2, . . . , vm, both being labeled in a clockwise manner. We can then define

a coloring as follows:

c(vi) =



1 if (i ≤ 2k) and (i ≡ 1 (mod 2)),

2 if (i ≤ 2k) and (i ≡ 0 (mod 2)),

3 if (2k < i ≤ m) and(i ≡ 1 (mod 2)),

4 if (2k < i ≤ m) and (i ≡ 0 (mod 2)),

– Before moving on, we will explain, in detail, why this coloring works. Similar

discussions for other cases will be skipped.

Note that what we have is essentially two even cycles. A cycle is a sequence

of connected vertices that starts and ends with the same vertex and other then

the first vertex no vertex is repeated. In Figure 5.4 we can see an example of

a cycle in v1v2v3v4v5v5v6v1. We can also see that it is an even cycle because it

has an even number of vertices in it. Similarly a odd cycle has an odd number

of vertices. To properly color an even cycle we only need two colors. We can

see this by considering any even cycle. Then label the vertices of the cycle in

a clockwose manner u1u2u3 . . . u2n−1u2n where n is any integer. We can then

define a coloring to be as follows:

c(ui) =


1 if (i ≡ 1 (mod 2)),

2 if (i ≡ 0 (mod 2)),

We can also see in Figure 5.5, where instead of 1 and 2 we color the vertices red

and blue, that this will hold. It is because when we define the coloring this way

the vertices will alternate colors so a vertex colored 1 will only be connected to

two other vertices and both will be colored 2.
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u1 u2

u2n−1u2n

Figure 5.5: Coloring an even cycle.

We can now look back at our first case to see that the exterior boundary is an

even cycle. This means that we can properly color the exterior boundary using

only two colors. We can do the same with the interior boundary. We can then

see that for the interior boundary if we pick two different colors from what we

colored the exterior boundary with that the result will be a 4-coloring of G∗Q.

This is because both cycles will be properly colored and any edges connecting

two vertices from the two cycles can not be connecting two vertices of the same

color because the exterior and interior boundaries were colored using different

colors.

• The number of i-triangles is odd, and the number of e-triangles is even. Using the

same fact as before that the cycle in the dual graph of any quadrilateralization of an

orthogonal polygon with one hole has an even number (at least four) of balanced

quadrilaterals. we can gather that G∗Q has m = 2l + 1 vertices, l ≥ 4. We can now

label the vertices on the exterior boundary v1, v2, . . . , v2k for k ≥ 2 and the interior

vertices v2k+1, v2k+2, . . . , vm, both being labeled in a clockwise manner. W.L.O.G.

assume that vmv2k+1v1 is an i-triangle. We can then split vm into v′m and v′′m. Let

N(v′m) = N(vm)/{v2k+1} and N(v′′m) = {v1, v2k+1}. We can now define a coloring

as follows:
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c(vi) =



1 if (i ≤ 2k) and (i ≡ 1 (mod 2)),

2 if (i ≤ 2k) and (i ≡ 0 (mod 2)),

3 if ((2k < i ≤ m) and (i ≡ 1 (mod 2))) or (vi = v′m),

4 if ((2k < i ≤ m) and (i ≡ 0 (mod 2))) or (vi = v′′m),

• The number of i-triangles is even, and the number of e-triangles is odd. This case is

done the same way case 2 except that we use the endpoint of the external edge of an

e-triangle.

• The number of i-triangles is odd, and the number of e-triangles is odd. This means

that there is either an i-triangle or an e-triangle that shares an edge with a balanced

quadrilateral. Without loss of generality, assume it is an i-triangle that shares an

edge with a balanced quadrilateral. We can now label the vertices on the exterior

boundary v1, v2, . . . , v2k+1 for k ≥ 2 and the interior vertices v2k+2, v2k+3, . . . , vm,

both being labeled in a clockwise manner. It is important to point out that m is

even. We can then split v1 into v′1 and v′′1 . Let N(v′1) = N(v1)/{v2, v2k+3} and

N(v′′1) = {v2, v2k+2, v2k+3}. We can now define a coloring as follows:

c(vi) =



1 if ((2 ≤ i ≤ 2k) and (i ≡ 1 (mod 2))) or (v1 = v2k+2),

2 if ((2 ≤ i ≤ 2k) and (i ≡ 0 (mod 2))) or (vi = v′1),

3 if (2k + 3 ≤ i ≤ m) and (i ≡ 1 (mod 2)),

4 if ((2k + 3 ≤ i ≤ m) and (i ≡ 0 (mod 2))) or (vi = v′′1 ),
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CHAPTER 6

A RECURSIVE APPROACH FOR TERRAIN GUARDING PROBLEMS

As mentioned before, another important aspect of our study of the sensor placement is the

well known terrain guarding problem. In this chapter we describe an easy-to-use approach

to provide a fast algorithm that generates a close to optimal solution. This is done through

a greedy algorithm, discussed in detail in the next section.

6.1 GREEDY ALGORITHM

Definition 9. Greedy algorithm picks the option that will get you closest to your goal at

the time.

Greedy algorithms can be found in many applications in everyday life. This is because

it is a very easy and natural algorithm to use.

Example 6.1. A good example of greedy algorithm is U.S. coins. U.S. coins are designed

to work with greedy algorithm. This can be seen easily observed with some examples:

• If we want to get 67¢using greedy algorithm we will first start with one quarter. We

will then have 25¢. Then to get to 67¢we will use another quarter as that will get us

the closest. We now have 50¢so we will use a dime which will get us to 60¢. Then we

an use a nickel which will get us to 65¢. And finally we can use two pennies which

will get use to 67¢. We can also see that there is no way we could use less coins to

make 67¢. Therefor by using greedy algorithm we have found the most efficient way

to make 67¢.

• If the coins have different values, however, greedy algorithm will not necessarily

achieve the best result (i.e. fewest coins). Suppose, for instance, we have coin values

of 1¢, 7¢, and 10¢. To make 15¢we would have used a 10¢coin and five 1¢coins. On
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Figure 6.1: Example of the most efficient way to make 67¢.

the other hand, using two 7¢coins and 1¢coin is obviously a better solution (using

fewer coins).

• Furthermore, if wee use coins that have a value of 2¢, 3¢, 5¢, 7¢, and 11¢. If we

wanted to make 23¢using greedy algorithm we would first pick 11¢. Then we would

pick 11¢again. We would then have 22¢and there would be no way to get to 23¢. On

the other hand one could have used 11¢, 5¢, 5¢, 2¢. Hence, greedy algorithm has

failed to even produce a feasible solution in this scenario.

6.2 OUR APPROACH FOR THE TERRAIN GUARDING PROBLEM

Here we will be considering the continuous version of the terrain guarding problem as it is

more applicable. And to solve it we will be using the greedy algorithm.

Our plan is to first place a guard on the vertex that is able to see the most edges. We

will then look at the remaining edges that cannot be seen and place a guard on the vertex

that is able to see the most of the unseen (yet) edges. We will continue this process until all

of the edges are seen.
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We also know that all of the vertices will be seen as to see an edge you must see both

the vertices that the edge is attached to.

Lastly, this process must terminate as there are finitely many edges and the number of

unseen edges strictly decrease in each step.

Thus using greedy algorithm (Algorithm 1) we will be able easily and quickly place

guards that will be able to see the whole terrain.

Algorithm 1 Finding the Optimal Solution to the Terrain Guarding Problem
1: procedure INITIALIZE

2: V0 = {v1, v2, . . . , vn} ← The vertices of the terrain;

3: E0 = {v1v2, v2v3, . . . , vn−1vn} ← The edges of the terrain;

4: j = 0;

5: while Ej 6= ∅ do

6: vi ← The vertex that can see the most edges in Ej;

7: W (vi) = {va1va2, . . . , va(x−1)vax} ← All the edges vi can see in Ej;

8: Ej+1 = Ej/W (vi);

9: j = j + 1;

10: x(j) = vi;

11: x← The vertices that can see the entirety of the terrain

Example 6.2. As an example, we start with the structure in Figure 6.2a.

Then

V0 = {v0, v1, v2, v3, v4, v5}

and

E0 = {v0v1, v1v2, v2v3, v3v4, v4v5}.
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Figure 6.2: (a) Graph made of the sets V0 and E0. (b) Graph made of the sets V0 and E1.

We now consider E0 and we find the vertex that is able to see the most edges. In E0 that

vertex is v3. We can now let

W (v3) = {v1v2, v2v3, v3v4, v4v5}

as those are the edges that v3 can see. We will now let

E1 = E0/W (v3) = {v0v1, v1v2, v2v3, v3v4, v4v5}/{v1v2, v2v3, v3v4, v4v5} = {v0v1},

as seen in Figure 6.2b, and x(1) = v3 so that x = {v3}.

Because E1 6= ∅ we will repeat this process again with E1. We now find the vertex

that can see the most edges in E1. We can see that there are two vertices able to see all the

edges in E1 so we can just pick one. We will pick v1.

Following the same process we let

W (v1) = {v0v1}

and

E2 = E1/W (v1) = {v0v1}/{v0v1} = ∅.

We then let x(2) = v1 so now x = {v3, v1}. We can also see that E2 = ∅ so we are done

and we can guard the entire terrain by placing guards at the vertices in x.
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